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Summary:

Extracting meaning from a dynamic and variable flow of incoming information is a major goal of both natural and
artificial intelligence. Computer vision (CV) guided by deep learning (DL) has made significant strides in recognizing a
specific identity despite highly variable attributes'. This is the same challenge faced by the nervous system and partially
addressed by the concept cells—neurons exhibiting selective firing in response to specific persons/places, described in the
human medial temporal lobe (MTL)*®. Yet, access to neurons representing a particular concept is limited due to these
neurons’ sparse coding. It is conceivable, however, that the information required for such decoding is present in relatively
small neuronal populations. To evaluate how well neuronal populations encode identity information in natural settings, we
recorded neuronal activity from multiple brain regions of nine neurosurgical epilepsy patients implanted with depth
electrodes, while the subjects watched an episode of the TV series “24”. We implemented DL models that used the
time-varying population neural data as inputs and decoded the visual presence of the main characters in each frame.
Before training and testing the DL models, we devised a minimally supervised CV algorithm (with comparable
performance against manually-labelled data’) to detect and label all the important characters in each frame. This
methodology allowed us to compare “computer vision” with “neuronal vision”—footprints associated with each character
present in the activity of a subset of neurons—and identify the brain regions that contributed to this decoding process. We
then tested the DL models during a recognition memory task following movie viewing where subjects were asked to
recognize clip segments from the presented episode. DL model activations were not only modulated by the presence of the
corresponding characters but also by participants’ subjective memory of whether they had seen the clip segment, and by
the associative strengths of the characters in the narrative plot. The described approach can offer novel ways to probe the
representation of concepts in time-evolving dynamic behavioral tasks. Further, the results suggest that the information
required to robustly decode concepts is present in the population activity of only tens of neurons even in brain regions
beyond MTL.
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Main:

Nine neurosurgical patients (Extended Data Table 1) watched a 42-minute movie (first episode, season six of “24” TV
series). Following the movie viewing, participants were tested for recognition memory by showing them multiple short
clips of targets (taken from the same episode) and foils (taken from another episode of the same TV series) and were
instructed to mark whether they had seen the clip (Fig. 1a; Methods). These participants were implanted with multiple
depth electrodes as part of the clinical procedure for seizure monitoring and possible resection of the epileptogenic tissue.
We recorded single unit activity from 385 neurons from multiple brain regions (Methods; Extended Data Table 2,3)**1°,

a
Figure 1: Schematic of the task and the pipeline
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We first sought to examine whether it is possible to decode the presence or absence of individual characters throughout the
movie from the neuronal population responses despite the highly variable physical appearance and context. As a first step
towards generating training and test sets for the decoding task, we developed a semi-supervised algorithm that labeled the
presence or absence of nine important characters in each frame (Fig. 1b, c; Extended Data Fig. 1; Methods). Briefly, the
associated pipeline involved: 1) extraction of humans in each frame using a pre-trained YOLO-V3 network', 2)
spatio-temporal tracking of detected humans to form clusters of image crops belonging to the same character, 3) grouping
of these spatio-temporal image clusters into nine important character identities, based on facial features; (this is the only
part that required manual intervention), and 4) training a ten-label Convolutional Neural Network (CNN) with the
automatically learned examples to identify the presence or absence of each of the nine characters in each frame (the tenth
label corresponded to “other”). Of the nine character identities created by our algorithm, we picked the four most
prominent characters to be decoded using neural data; henceforth, to be referred to as C.1, C.2, C.3, and C.4 (This allowed
us to have sufficient data points for training and testing in the later steps; see Methods; Extended Data Fig. 2; Extended
Data Table 4). Prior work” had segmented the same movie into a set of shots (or cuts, defined as consecutive frames
between sharp transitions), and manually labeled each shot (as opposed to the individual frames in our case) with the
names of the characters in it. By aggregating frame level labels over each shot, we benchmarked the performance of the
automated method against the manual labels (results are shown in Fig. 1d).

Having established continuous (as opposed to a cut-level human annotation) labels for the visual presence of characters in
each frame (using our semi-supervised method), we asked whether it is possible to find neural footprints for each of the
four main characters in our electrophysiological data for each participant in our study. A footprint of a character is a
discriminative pattern in neural data responding to the presence of the character, such that the pattern appears if and only
if the character is present, and hence a decoder can be trained. Furthermore, these footprints are participant-specific, given
that each participant had a unique set of recording sites. To build such a decoder, for any given frame with a character in
it, we created a candidate footprint feature vector comprising the firing rates of all active neurons from all regions during a
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two-second interval around the frame (one second before and one second after for each target frame; see Methods). The
exact number of neurons and regions for each participant can be found in Extended Data Tables 2, 3.

To implement the decoder, we first used, and optimized, a two-layer Long Short Term Memory (LSTM) network'? (Fig.
2a, Methods; Extended Data Table 5). The final layer outputs the probabilities of the four main characters in each frame,
which during evaluation were further binarized into presence (“yes” label) or absence (“no” label) predictions (Fig. 2a).
We used a 5-fold cross-validation method, with 70% of the data used for training, 10% for validation, and 20% for testing
(frames were randomized and were independent in each set). It is worth noting that the true data labels were highly
unbalanced and the characters were at most visually present in only around 20% of the frames, (Extended Table 4). As
such, without using higher weights for the loss function corresponding to “yes” labels, one would expect that the
performance would converge to a misleadingly high accuracy of 80% but would yield 0% for character detection.
However, we obtained good decoding performance both in terms of accuracy and character detection, thus indicating

significant latent character information in the neural data (Methods).
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participants. Note that the chance level for accuracy is at 80% due to the unbalanced nature of the data. For instance, given that a character is present
only in 20% of the frames, predicting a “N” for all frames would yield 80% correct predictions.

For each participant, the performance of the decoder was first visualized by comparing the frame level predictions for
each character against the corresponding true labels (Fig. 2b), and was further quantified by a normalized confusion
matrix (Fig. 2¢). Performance of the LSTM decoder, as quantified by the F1-scores—a measure that is more appropriate
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for unbalanced datasets—was on average 7-times better than that of a distribution-based decoder (such as Naive Bayes
(Methods); Extended Data Table 6). This suggests the presence of strong and unique discriminative character footprints in
the neural data. The distribution of the entries of the normalized confusion matrix (Fig. 2d), the plots of the Accuracy (Fig.
2e) and Fl-scores (Fig. 2f) across all nine participants, as well as the table of Recall, Precision, F1-scores, and Accuracy
(Extended Data Table 7) showed consistently good results. Lastly, to further ensure that our results could not arise by
chance, we performed a shuffling procedure in which the character labels were randomized with respect to the neural data
and the participant-specific models were retrained and re-evaluated. Here, too, the performance of the true model was far
above the performance of the chance model (Figs. 2e,f; shaded region). Next, we addressed the effect of faulty labels in
the output of the semi-supervised computer vision algorithm on the performance of the neural decoder ("neuronal vision").
We used the cut-level human annotations as the ground truth. Although the neural decoder was trained and tested using
the computer vision (CV) labels, which albeit close to the ground truth (manually-labelled data) contained a small number
of faulty labels (Fig. 1c¢), we found that in the case of recall, neural vision outperformed the computer vision results
(p=5.05x10", Signrank test).

Since Neural Network (NN) architectures, such as the LSTM, have high representational capabilities, several different
converged models (corresponding to different minima for the same training data) could give comparable end-to-end
performance but could produce dramatically different results when the models are used to determine functional properties
of the underlying physical systems. In our case, for example, we intended to use the learned models to determine the
regions and subregions carrying the most relevant information in the decoding of different characters. Therefore, we used
an entirely different NN architecture, namely a convolutional neural network (CNN) model, where the time series training
data around each frame was converted into an image (Methods; Extended Data Table 8). The exact same tasks were
replicated for both LSTM and CNN networks. Indeed, the CNN model reached comparable high performance to that of
the LSTM model in decoding characters (Extended Data Fig. 3; Extended Data Table 6) and yielded similar results to the
LSTM pipeline in the subsequent analyses detailed below. The consistency of results between the two NN models (LSTM
and CNN) is critical, especially when assessing the importance of different brain regions in the decoding process, since it
ensures that the results are not merely an artifact of model optimizations.

Thus far, we used the activity of all of the recorded units within each participant as the input to the NN models. Next, we
used a knockout analysis to determine the brain regions that were more critical than others in the decoding process. This
knockout analysis is analogous to the analysis tool named Occlusion Sensitivity'® for inspecting NN image classifiers.
Specifically, we evaluated the performance of our model (that was trained on units from all regions; base results) on data
in which the activity of units from individual regions was eliminated one at a time (region knockout results). We used the
change in the Kullback—Leibler divergence (KLD) loss due to the knockout, normalized by the number of neurons, as a
proxy for how worse (or better) the model performs without units recorded from a specific region (Methods). We found
that knockouts of different regions led to different changes in KLD loss, and we determined important regions to be those
which, when knocked out, led to higher normalized KLD loss (Fig. 3a). Of the eleven regions, knocking out five of them
resulted in the most notable (normalized) losses in decoding performance (occipital, entorhinal cortex, parahippocampal,
anterior cingulate, and superior temporal)(Fig. 3b). For each participant, we additionally verified this finding by
re-training two independent NNs on neural data from important and less important regions and by comparing their
performance. The two separate models, one trained only using the units from regions that were deemed important, and
another one trained only using the remainder of the units (Methods), showed a significant difference in their decoding
performance (p=0.01, Wilcoxon ranksum test comparing the F1-scores of the two re-trained models).

We asked whether the co-activation pattern among the neurons within each region was contributing to the decoding
performance. We defined the incremental information content of a neuron as the increase of the KLLD loss on removing the
neuron’s activity while preserving the rest of the system. We observed that the information content of a set of neurons, that
is, the increase in the KLLD loss by removing all the neurons in the set, is larger than the one obtained by summing up the
incremental information contents of the individual neurons. This was shown by applying the same knockout analysis,
where we knocked out the activity of all the neurons recorded on individual electrodes (microwires; 8 per region;
electrode knockout results) one at a time and evaluated the KLD loss (Fig. 3¢). Our analysis showed that the resulting
increase in the KLD loss from region knockout (i.e., when all the units in a given region were knocked out together) was
greater compared to when the increases in KLD losses from electrode knockout within a region were added together (Fig.
3d) in most regions (Fig. 3e; P<0.05 for eight out of eleven regions, Wilcoxon signed-rank test). These results were
replicated using the CNN network as well (Extended Data Fig. 4). This finding of “the whole is greater than the sum of its
parts” may indicate that the neurons’ dynamics and inter-relations across a region may also contribute to the decoding
performance.
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After quantifying the model performance during movie viewing, we examined how the model fared during the memory
test following the movie (Fig. 1a; Methods). It should be borne in mind that because of the nature of the recognition
task—where participants have to decide whether they have seen the clip or not—participants would most likely remember
parts of the movie plot beyond those displayed during the clips. Thus, any well-trained decoder may predict the presence
of characters not necessarily visually present in the clip itself. As such, when any such decoder is evaluated by whether it
predicts the characters in the clips, it might lead to more false positives (FPs) compared to the movie viewing time,
therefore lowering the accuracy. Indeed, as reported in the following, we observed that our decoder led to an increased
number of FPs and, as expected, the accuracy of our model was lower during the memory task compared with the movie
(~67% compared to ~95%). We discovered, however, that the accuracy of the model was positively correlated with both
the percentage of the time the character was present in the clip, as well as, the size of the character in the frames (Fig. 4a),
which might be expected given that both are measures of how prominent the character is.

Our NN models output a confidence level for each character in the range [0,1] at any given time; this confidence level is
henceforth referred to as model activation. So far, while reporting metrics such as accuracy and F1-score, we followed the
standard technique of binarizing this model activation: 1 if it is greater than 0.5 and 0 otherwise. However, model
activation can provide more granular information and was, therefore, used to analyze the decoder performance during the
memory task. We evaluated the NN model activations for each character as a function of time and, specifically, with
respect to the clip onset time (Fig. 4b). We noted that the model activations, in addition to the visual presence or absence
of the characters, were also related to participants’ subjective memory. Model activation during clip viewing was highest
when the characters were in the clip and the participants later marked the clip as “seen before” during the response time.
Conversely, model activation was lowest when the character was not in the clip and the participant marked the clip as “not
seen before” (Fig. 4c). At the population level, both the presence of the character as well as the participants’ response to
whether they had seen the clip were significant contributing factors in model activation as revealed by Generalized Linear
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Models (GLM) (Fig. 4d; Character in: estimated coeff.=0.39, p=8.02x10; Clip marked as seen: estimated coeff.=0.24,
p=0.001; GLM estimates). The effect of participants’ subjective memory of the clips on the model activation during
memory was surprising given that the NN model was only trained to distinguish the visual presence or absence of the
characters. When we performed the knockout analysis (described in the previous sections) and evaluated the model
activations after knocking out the activity of all MTL neurons, participants’s subjective memory was no longer a
significant predictor of the activations, i.e. only the character presence remained a significant factor (GLM estimated
coeff. = 0.50, p=9.50x107), which is consistent with the role of the MTL in the formation of memories'* .

It has been shown previously that the formation of new associations are reflected in the firing pattern of single neurons’.
Accordingly, we hypothesized that the emergence of NN model coactivations would reflect character associations. To test
this, we quantified two measures in parallel: 1) character associations: we utilized a segmentation of the movie into a set
of scenes (provided by an independent study’) where each scene represents a meaningful subplot that is expected to create
associations in viewers. We computed the conditional probabilities of the characters over the scenes (e.g., the probability
of character 1 appearing given character 2 appears in a given scene (Methods), henceforth referred to as character
associations; Fig. 4¢); 2) NN model coactivations: We noted that model predictions for characters during clip viewing
exhibited overlapping activations amongst the characters. For example, when the model activation was high for character
1, there was a higher activation for character 4 as well (even in the absence of character 4, which led to lowering the
general performance of the model in decoding characters). Thus, we computed the conditional probabilities for the
characters predicted by our model in the clips (e.g., the probability of model activation being above 0.5 for character 1
given the model activation is above 0.5 for character 2)(Methods). We found that the conditional probabilities of the
model activation for characters during clip viewing were positively correlated with character associations in the movie
(example: Fig. 4f; for all participants: p<0.05, Spearman correlation).

Figure 4: Properties of the NN model trained for
decoding characters in the movie during the
memory test.

a. The accuracy of the NN model (trained during
movie viewing) in decoding the visual presence of
the characters in the clips during the memory test
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model activation at the population level (for all
participants and clips), we used a GLM method. We
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Lastly, we inspected the model activation during the response time (following the end of the clip and prior to the
participants making a choice) when no visual information was provided to the participants, and noted that conditional
probabilities of model activation for the different characters were significantly higher compared to those during clip
viewing (p=0.016; sign-rank test; Fig. 4g), which might suggest higher-order associations among the characters rather
than first-order associations as observed during clip viewing, may be invoked during the response time.

Discussion:

We report on an integrated methodology that allowed us to perform neuronal decoding of individual characters, each with
highly variable sensory and contextual depiction viewed throughout a 42-minute audiovisual sequence, and to compare it
to the ability of computer vision with minimal human supervision to recognize these characters’ identities. On the one
hand, we proposed a semi-supervised algorithm to extract the characters in each movie frame to achieve continuous
labelling of data for further analysis. On the other hand, we implemented a DL-based framework to decode the visual
presence of characters using neuronal data. Our NN model further allowed us to extract and follow the characters’
footprints in time and investigate how they interact during memory tests.

Our semi-automated method served two purposes: first, its performance was comparable to that of human labeling, and
thus it could be used as a general tool for future research in this field without the need for time-consuming and expensive
use of Mechanical Turk resources; second, it showcased what state-of-the-art computer vision technology stack can
achieve (along with minimal human intervention) if it were to watch the movie itself instead of a human. In particular,
whether it could accurately create visual models of different character identities, and then recognize them in every frame.
The full power of CV tools provided an interesting contrast to the information contained in the firing patterns recorded
from only a few tens of neurons.

Our ability to decode the visual presence of the characters using the neural data, even in the absence of direct access to
concept neurons explicitly representing these characters™®, suggests that there is indeed sufficient information in relatively
small populations of neurons, even in regions beyond the MTL, to detect the character footprints. Given that we obtained
similar results—in both decoding of the characters as well as identifying the important regions contributing to the
decoding process—using two different neural networks, it is unlikely that our results are merely artifacts of the trained
networks. Of note, the sensory and association regions—such as the occipital and superior temporal—contributed most to
the decoding process'*'®. In addition to highlighting the brain regions that may be recruited in the representations of the
characters, this approach suggested that the correlations amongst the neurons within a region may be conducive to the
decoding process. This observation perhaps resembles the information theoretic phenomenon of synergy'” where the
aggregation of knowledge from multiple sources results in more information than the sum of the sources.

Despite having trained the NN models to only decode characters during movie viewing, the model performed well during
the memory test. Although, admittedly, the model performance during the memory test was slightly lower compared to
movie viewing. This lower NN model performance could be potentially explained by the changes in neural representations
due to the change in context (viewing versus remembering) or the formation of composite representations due to forming
associations with time. The model activation during the memory test seemed to corroborate previous hypotheses on
memory reinstatement given that the participants’ subjective memory was, in addition to the presence of characters, a
significant predictor of the NN model activations. This may suggest that the patterns of neural activity during movie
viewing might be reinstated'®? differently in accordance with participants’ memory of whether they had previously seen
the clip or not, which consequently affects our NN model predictions—an effect that was eliminated when the activity of
MTL neurons were discarded from the models.

Moreover, during the memory test, the model predictions may be capturing what has been conjectured regarding the
change in the neuronal representations as a result of forming associations between items®?’. How the model coactivation
for the characters during the memory test reflected the relationship between the characters, and their associations, in the
movie itself may be reminiscent of associative coding schemes. Although our knockout analysis to examine whether this
effect was specific to the medial temporal lobe regions or not did not lead to convincing results, examining the role of
MTL vs. non-MTL neurons in the representation of associations warrants future investigations with large-scale data.

Taken together, our proposed platform offers an approach to interrogate the neural signatures involved during a temporally
continuous experience that is aimed at mimicking real-life episodes and going beyond the stimulus-response experiments.
Furthermore, it allows inquiries beyond the possibility of character decoding and shed light on potential mechanistic
insights into memory processes.
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Materials and Methods:

Participants:
Nine epilepsy patients (6 Females, 20-50 years old; Extended Data Table 1) who were implanted with intracranial depth

electrodes for epilepsy treatment (seizure monitoring) participated in our study during their hospital stay. Prior to the
surgery, an informed consent was obtained in accordance with the Institutional Review Board at UCLA.

Behavioral Tasks:

Nine participants watched an episode of the TV series 24 (season 6, episode 1) and were tested for recognition memory
following the movie viewing.

The memory recognition task consisted of participants being presented with short clips. Half of the clips, chosen
randomly, were from the episode they had just watched (target clips), and the other half were chosen from the second
episode of season 6 (lure clips). Because the episodes occur in two subsequent hours of the day, the characters look similar
between the two episodes, and hence the clips from the second episode seemed appropriate as lure clips (for further
justification, see ref. 7). After the end of each clip, participants were asked to make a choice of whether they had seen the
clip before or not. Thus, the memory phases consisted of interleaved “clip viewing” and “response time” sections and the
number of presented clips varied from participant to participant (range: 100 - 300 clips).

Data Acquisition:

Electrophysiological data were recorded from the microelectrodes located on the depth electrodes (placement was
determined by clinical criteria). Wideband Local Field Potential was recorded using a 128-channel Neuroport recording
system (Blackrock Microsystems, Utah, USA) sampled at 30 kHz.

Neural data preprocessing:

Previously used methods were used for spike detection and sorting®*'°. A bandpass filter in the range 300-3000Hz was
applied to the broadband data to detect spikes. Spikes were first automatically sorted into clusters using the Wave clus
toolbox and the clusters were further manually inspected for: 1) spike waveforms; 2) refractory spikes; and 3) the
interspike interval for each cluster. The units with a mean rate below 0.05Hz were discarded for further analysis.

Additionally, we constructed a spike train by temporarily binning the spikes into 100ms bins. We further visually
inspected the data, a matrix of the size NXT, where N was the number of units and T was the number of time bins. Time
bins with synchronous activity across multiple regions were deemed as artifacts and were excluded from further analysis.

After data preprocessing and visual inspection, the cleaned spikes in selected regions were binned into 20ms bins. Then
the spike counts were interpolated linearly into 15Hz signals.

Electrode Localization:

Electrode localization was done by co-registration of a high-resolution post-operative CT image to a pre-operative whole
brain and high-resolution MRI for each participant using previous methods'** (Extended Data Table 2).

Semi-supervised character identification:

We developed a semi-supervised framework for identifying the characters in the movie at the frame level. The original
movie was sampled at 30 frames per second and to make the framework computationally efficient, we downsampled the
frames by a factor of 4, i.e. every fourth frame was retained. After downsampling, the number of frames in the 42-minute
movie was reduced to 18900. The semi-supervised framework consists of three main stages, which we described below:

1) Stage I:
a) We utilized a common practice in filming, where a particular visual setting is used to describe a part of the
underlying plot. This visual setting is characterized by a distribution of colors and other features in the
frames which are distinct from those of the preceding and succeeding settings, allowing one to


https://doi.org/10.1101/2021.10.10.463839
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.10.463839; this version posted October 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

b)

available under aCC-BY-NC-ND 4.0 International license.

automatically split the video into segments, which we called cuts. We used PySceneDetect® to generate

such cuts. Each such cut, represented by a sequence of frames (clip of the video), will be our unit of
analysis. The primary advantage in extracting such cuts is that during each cut, a group of mostly
unchanged characters play their roles, thus, allowing us to create real-time identities of these characters
via local tracking and similarity metrics, as described next.

We processed each cut separately and created real-time identities of distinct characters as follows. (i) We
first used a pre-trained YOLO-v3"' to detect humans and drawed the bounding boxes of them in each
frame. If the bounding boxes were too small or the aspect ratio was highly skewed, we filtered them out
(thresholds are specified in the code accompanying the manuscript). (ii) Then we used SORT® to group
all bounding boxes belonging to the same character in one group, solely based on the principle of
spatio-temporal continuity: each character will follow a unique trajectory across consecutive frames; no
discriminating image features are used. The framework uses two algorithms, (a) A Kalman filtering
tracking to follow the bounding boxes across frames; however, when characters cross each other (in the
2D frame space) or when a new character appear, the trajectories cannot be disambiguated by tracking
alone; (b) A Hungarian matching algorithm to resolve such ambiguities by assigning the correct labels.
For example, if the 2D projections (as captured by frames) of two 3D trajectories intersect and then
separate into two, the Hungarian matching algorithm can label one outgoing trajectory as the continuation
of the correct incoming trajectory by matching the bounding box dimensions before and after the
intersection. For each such distinct trajectory, we collected and cropped (from the original frame images)
all the bounding boxes belonging to it. These image patches will be referred to as crop clusters. Thus each
cut will generate multiple crop clusters, corresponding to the number of significant characters in that cut.
There are two kinds of errors that might be generated in this stage: 1. Multiple crop clusters within the
same cut might correspond to the same character. 2. Several characters might show within one crop
cluster. We manually checked the result in this stage, and the mistakes were found to be negligible. At the
end of this stage, we got 1705 crop clusters and each crop cluster is pure in the sense that the image
patches belong to a single ground-truth character.

2) Stage 2:

a)

b)

We merged the crop clusters belonging to the same character across all the cuts purely based on facial
features. This grouping of the crop clusters was done iteratively, using k-means clustering and KNN. The
feature vector of crop cluster C; was extracted in the following manner: i) Each image in cluster C; was
fed into a pre-trained FaceNet™ to extract a 128-dimensional feature vector from the last layer of the
network. Note that if no face is detected in a given image patch, we do not use this image’s patch in this
stage. Moreover, if any crop cluster loses 80% of its image patches due to lack of facial features, we
removed this crop cluster. The attribution of such image patches dropped in this phase to characters is
made at Stage 3 using the trained ResNet. ii) Averaging the feature vectors of all of the remaining image
patches in this crop cluster C; produced the final feature vector F(C)).

The second step consisted of first clustering crop centers using k-means, yielding k super-clusters. Each
such k-means super-cluster was evaluated using a distortion metric. A good super-cluster with low
distortion was retained defining a character; note that multiple super-clusters at this stage can represent
the same character. For example, if feature vectors F(C;)’s of crop clusters C;, C, ...C; comprise a good
super-cluster (i.e. with distortion metric below a threshold) after k-means, then image crops belonging to
all these crop clusters were merged together into a single group (which we referred to as a supernode)
representing the visual snapshots of one unique character in the video. The bad super-clusters after
k-means were disintegrated into their constituent crop clusters: each such crop cluster that belonged to the
bad super-clusters will be evaluated to see if they can be merged with a good super-cluster and hence it
will be referred as a candidate crop cluster (CCC). Since the clustering results depend on the choice of k
(the number of clusterings) in the k-means algorithm, we picked a relatively large k to balance the purity
and completeness of supernodes (good super-clusters). This choice of a large value of k ensured that bad
super-clusters always existed, allowing the supernodes to be pure.

Next, realizing that the bad super-cluster may have crop clusters that would otherwise be a good match
for the supernodes, k-nearest neighbors algorithm (KNN) was used to determine such crop clusters and
assign them to match supernodes. This increases the sizes of the supernodes, improving coverage while
retaining purity. We defined image distance between two image patches as the euclidean distance of their
feature vectors extracted from FaceNet. Additionally, we define cluster distance from crop cluster A to
crop cluster B as the median of the collection of K nearest image distances from each member in A to
those in B. Then we define the distance from a candidate crop cluster (CCC) to a supernode as the
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minimal distance from the candidate to any crop cluster in the supernode. Then the assignment of the
candidate crop cluster (CCC) to a particular supernode is determined by the smallest distance among all
supernodes. If the distance to the winning supernode is below a threshold, then this candidate crop cluster
is assigned the same label as the winning supernode. To summarize, crop clusters with the same pure
character were first grouped into supernodes by k-means and then image level feature comparisons were
used so that the supernodes still remain pure while absorbing candidate crop clusters.

d) At the end of this KNN operation, we had supernodes (with absorbed candidate crop clusters) and isolated
crop clusters that were not merged into any of the supernodes. We defined this one pass of k-means
clustering and KNN reassignment as one iteration. After each iteration, we computed the increase in the
size of each supernode. If the increase in the size of any supernode is above a threshold, implying there is
potential to still absorb more crop clusters, then we move to the next iteration where each supernode is
treated as a single crop cluster. Otherwise, we moved to the third step in this stage. In our experiment, we
achieved satisfactory results after two iterations. After the first k-means, we had 21 supernodes and over
600 bad candidate crop clusters. Then around 100-200 bad candidate crop clusters were merged into
supernodes in each iteration. After two iterations we generated 32 supernodes with consistent character
appearance within each supernode and leftover 300 isolated candidate crop clusters.

e) The clustering obtained after the end of the above processing might not still be perfect because the same
character can be in different clusters. We fine-tuned the clusters to further increase the completeness of
clustering in the following manner: i) Constructed a fully connected weighted undirected graph with the
clusters as the nodes and the euclidean distance between the cluster centroids as the edge weights ii)
Pruned the network using frame distribution and edge weights iii) Extracted the connected components of
the network as the fine-tuned clusters. Finally, we obtained 305 fine-tuned clusters having one character
in each of them and used human supervision to aggregate and select 9 major characters.

3) Stage 3:
We obtained 305 fine-tuned clusters having one character in each of them and used human supervision to
aggregate and select 9 major characters which comprised 200 clusters. We manually inspected each cluster and
assigned them character labels (e.g., clusters of the same character), see Extended Data Fig. 5.

4) Stage 4:
Until now, we were able to recognize characters in most generated crop clusters from original cuts in stage 1.
However, only frames with high quality facial features are labeled in this processing. We intend to improve
coverage using data augmentation from spatial-time correlation. To be more specific, based on the time and space
continuity in the cuts, the label is augmented by assigning the same label to the back view or blurred images as the
clear and frontal view faces in the same cut. At the same time, after stage 2, we dropped the whole cuts with only
back view or blurred characters, which are not further processed in the grouping and human-labeling. To recall
those character occurrences in the original video, we trained ResNet” using augmented labels for those human
selected nine characters. We expected the trained ResNet to successfully classify the images according to its
generalization ability. The trained ResNet was used to detect characters in all the crops from stage 1. As a result,
the number of recalls of each character increased around 20% compared to that from stage 3.

The above-mentioned procedures were initially implemented on the first episode and the reported numbers are associated
with episode 1. Subsequently, we applied the same method on the second episode to detect the characters in each frame
since during the memory test the lure clips were taken from episode 2.

Comparison of our semi-supervised method against human labeling:

To validate the performance of our pipeline, we compared our results against manual character labeling of the movie that
was done in an independent study’. The independent study divided the whole movie into 1001 cuts (segments between
two sharp transitions) and marked which characters were present during each cut (even when present only for a subsample
of the cut). Since the manual labeling was done on these cuts, as opposed to individual frames, we upsampled our
character detection results to accommodate the cut base. We introduced a filter to further denoise our predictions. In one
cut defined by the independent study, we viewed any character as appearing in that cut if the said character was identified
for at least 12 frames in the cut. If the cut was longer than 1.3 seconds, for a character to be present in that cut, the
detection of that character had to be more than 40% of the frames. Otherwise, the character had to be detected in at least
12 frames.

We then computed the confusion matrix for our model predictions against the human annotations of the four dominant
characters, and the results are reported in Fig. 1d.
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Deep Neural Network (NN) implementation for neural data processing:

NN implementations were done using Python and the PyTorch framework. This procedure consisted of multiple sections
that are detailed below:

1.

Training data sample generation (inputs): The training dataset of the NN model was generated by sampling the
neural signal (firing rate sampled at 30Hz) around the timestamp of each frame. Since the total number of frames
used in character identification is 18900, we created 18900 corresponding windowed neural signals as training
data with character occurrence descriptors as labels. Concretely, for each frame, we retrieved neural data one
second before and after as one training data point. Therefore one training data is a 2d matrix with shape 60 *
number of neurons (in each participant). It is worth noting, however, that this duration interval of two seconds
around each frame was determined by minimizing the length while meeting good decoding performance.

Training data sample generation (outputs): The corresponding label for each training data sample was constructed
by three categories: Yes, No, and Do-Not-Know (DNK) for each character. Unlike traditional binary classification
tasks, we introduced a third category for each character to handle the ambiguity of the visual signal. Yes was
defined as when the character was present in a given frame, and No was defined as when the character was not
shown in a given frame with certainty. DNK is a mechanism to particularize the training set. If an individual
character is located in the predefined ambiguous time intervals (for example, when two characters are having a
dialogue in a sequence of frames but some intermediate frames include only one character at a time), we allocate a
DNK label to the temporarily absent character for those frames. However, this data sample could still be used by
other characters in the decoding task. The percentages of Yes and No labels were around 10% and 88% of the
total data samples, respectively (exact values are reported in Extended Data Table 4), showing that characters’
appearances are not evenly distributed. Moreover, we took measures to accommodate the skewed nature of our
training data when quantifying the performance of our models (see 7. Further quantifications of the model
performance). The percentage of DNK labels were around 2% of the total training samples, which indicates that
the dropping of these data samples would not affect the total information provided to the model. The class DNK is
discarded in all of the visualizations and performance analyses.

LSTM: A suitable type of network for our purposes was the Long Short Term Memory (LSTM)'?, which has been
already employed in neural signal processing” due to its ability to extract patterns from sequential data. The
architecture of the LSTM network is shown in (Fig. 2a, Extended Data Table 5). The raw windowed neural signal
was fed into the LSTM directly. We conducted several preliminary evaluations to optimize the best network
architecture by varying the number of hidden layers and their size (i.e., the number of LSTM units for each layer).
The best network was found to have two hidden layers with 128 LSTM units each. The last layer of the hidden
state of the LSTM was fed into two sequential Fully-Connected layers with LeakyReLU activation and Batch
Normalization in between. The output of the last Fully-Connected layer was reshaped into a 4x3 matrix, where
each row contains the scores of a given character for each of the three labels. A softmax function was applied to
the scores to represent the probability distribution of Yes, No, and DNK labels.

CNN: We additionally used a convolutional neural network (CNN) and the architecture of the CNN network is
shown in (Extended Data Fig. 3a, Extended Data Table 8). We made the assumption that the information
regarding each character's appearance was encoded within a fixed time duration of the neural signal. Therefore,
the windowed neural signal was treated as an image and fed into the CNN directly. The neural signal went
through several convolution layers with LeakyReLU activations and Batch Normalization in between. The output
of the last convolutional layer went through a Maxpooling layer and was subsequently flattened to a
one-dimensional vector. Finally, the vector was fed into two sequential Fully-Connected layers with LeakyRelu
activation and Batch Normalization in between. Similar to the LSTM network, the output of the last
Fully-Connected layer was reshaped into a 4x3 matrix with rows and columns corresponding to the four
characters and the three labels (Yes, No, and DNK) respectively. The scores were converted into probabilities after
applying a softmax function. Here, too, the network architecture (e.g., number of layers and size) was optimized.
Training, validation, and testing of the NN models; The constructed dataset was randomly shuffled and split
into training, validation, and testing sets. We used a 5-fold cross-validation method. The general procedure
consisted of the following steps: a) We first split the randomly shuftled data into five groups (20% of the
overall data in each group). b) For one fold of the cross validation, one group was picked as the test set, and
from the remaining 80% of the data, we selected 87.5% as the training data (70% of the overall data) and
12.5% as the validation data (10% of the overall data). c) In each fold, the model was trained for up to 100
epochs (one epoch corresponds to one full iteration on the training data), and after each epoch, the model
performance was evaluated on the validation set to infer its potential performance in the test set. This
procedure is common practice to avoid over-fitting. d) Since each character’s label distribution was highly
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biased towards No, in order to ensure better predictions for each character, we selected the model with the
best validation F, score averaged within each character (note that accuracy is not a representative
performance measure for imbalance datasets). e) For the selected model, the average performance on the test set
in each fold was reported and summarized in Fig. 2, Extended Data Figure 2 and 3. It must be borne in mind that
because each participant had a unique set of electrode locations, the models were trained and tested for each
participant independently.

Further details of the model: The goal of training these networks in a supervised way was to predict the

probability of a given character for each of the three labels (Yes, No, and DNK). Network weights were

recursively updated using the Adam optimizer with backpropagation of the output’s computed loss. We initialized
the weights with a random Gaussian distribution (mean=0, standard deviation=0.1) for the convolution layers, and

a uniform distribution for Fully-Connected layers to better assist the gradient descent algorithm.

Further quantifications of the model performance: We used commonly used measures to quantify the performance

of our models. It is worth noting that for measures (b-e), the reported results were averaged across the five folds

(for each character, on the test set). After computing the number of true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN), we also reported:

Normalized confusion matrix: TP and FN values were normalized by the total number of Yes labels ,and

TN and FP values were normalized by the total number of No labels.

Accuracy: (TP + TN)/(TP+TN+FP+FN) in Fig. 2, Extended Data Figure 3, Extended Data Table 7.

Recall: TP/(TP+FN) in Extended Data Table 7.

Precision: TP/(TP+FP) in Extended Data Table 7.

F-1 score: 2/(1/recall + 1/precision) in Fig. 2, Extended Data Figure 3, Extended Data Table 7, as well as

in the text when identifying important brain regions in the decoding process. As mentioned previously, for

unbalanced datasets, such as outs, F-score is a more realistic measure of the performance (as opposed to
accuracy).

f. KLD loss: We computed the character-wise Kullback—Leibler divergence (KLD) loss to compare the
difference between model predictions and ground truth. The mean of the four (character) losses was
back-propagated to tweak the model’s weight. The loss associated with a DNK label was set to zero.
Therefore, the back-propagated loss was only calculated on the average loss between Yes and NO entries
in KLD loss for each character. Even though the label distribution was not even, no class weight was
applied to the loss to balance the data. Furthermore, we also trained models with weighted loss over
categories but got a similar performance. The fact that without designing handcrafted category weights
and with unbalanced data, our models worked may also indicate that the vanilla KLD loss—together with
complexity compatible architecture—was sufficient for mining essential patterns from a large enough
dataset. The loss calculation is shown below:

KLD loss(y’, y) = >.ec ¥'(c) log(y’(c) / y(c)) where y’ are the model prediction, y are the ground truth,
and c is the character label space.

g. Comparisons of the NN model performances against a Naive Bayesian Model: To further gauge our
models’ performance, we compared our LSTM and CNN models against a Naive Bayesian model as
quantified by accuracy, and Fl-scores. For the Naive Bayesian model, we learned each character’s
category distribution from training data, then made predictions over test data points following this
distribution. One observation was that CNN and LSTM both achieved high performance with small
variations in performance, which suggested that they all captured the essential information for decoding
character footprints but may vary in the way of constructing the knowledge and making inferences.
Additionally, we can conclude that without a structured and meaningful model for detecting and
decoding, the F1-score would be far lower even with guesses following statistics.

°ono o

Determining the important brain regions in character decoding:

To quantify the contributions of different regions to the decoding process, we performed multiple analyses:

1.

Region Knockout: To evaluate a given brain region’s importance, we introduced a metric called knockout analysis.
The method is analogous to occlusion sensitivity analysis, a tool commonly used for inspecting NN image
classifiers". Here, we perturbed the area of the input corresponding to each region (i.e., spiking activity of all of
the neurons recorded from that region) by replacing it with zeros. Then, we re-evaluated the model performance
on the perturbed data in the whole training dataset. The general procedure of this knockout analysis was
performed by iterating over all regions (knocking out one region at a time) and computing accuracy, loss and F,
score for each character (within each participant). These performance metrics were averaged over models trained
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on each of the five folds. Furthermore, for the loss analysis, we subtracted the baseline loss (loss from the original
model with intact inputs) from the loss obtained from the knockout perturbation for each region. Thus, a positive
change in the loss indicates a lower decoding performance after a region has been knocked out. Lastly, to account
for the different number of neurons recorded from each region, the change in the loss was normalized by the
number of neurons (Fig.3a, b and Extended Data. Fig. 4). As previously mentioned, all of these analyses were
done in a within-participant design manner.

Electrode knockout: To address whether the encoding correlations among the neurons within each region was
contributing to the decoding performance, we explored the importance of each electrode following the same
procedure described above (Fig. 3¢ and Extended Data Fig. 4) in the region knockout section and computed the
same metrics (accuracy, Fl-score, and loss). Concretely, we added up the change in the KLD loss following
knocking out all the electrodes from a given region (one at a time, subtracting the baseline loss, but not
normalizing by the number of neurons). Next, we subtracted this sum from the region knockout loss (after
subtracting the baseline loss, but not normalizing by the number of neurons). A positive value would indicate that
the information in a region, as a whole, is greater than simply the sum of the information from its constituents.
The rationale behind a lack of normalization by the number of neurons in this particular step was that the number
of neurons were the same on the two sides of the subtraction operation.

Re-trained models: To further verify the difference between important and non-important regions in the decoding
process, within each participant, we employed an alternative approach. Here, we trained two separate models: 1)
The first model was trained (and tested) using the neural activity from the regions that were deemed important
from the region knockout analysis. 2) The second model was trained (and tested) using the neural activity from
the remaining regions. The split was done such that the two models had comparable numbers of neurons as their
inputs. Here, we computed the Fl-scores for each model and compared the two across all characters and
participants. The results, demonstrating that the model trained on important regions performed significantly better
than the other model, are reported in the main text.

Analyses concerning the memory test:

As described in the Behavioral task section of the Methods, the memory test consisted of clip viewing and response time
phases. For each participant, the neural data during the entire memory test was fed into the participant-specific model (that
was trained and tested during movie viewing), and the model activation (probability of each character) was obtained as a
function of time. Furthermore, we defined that a character is activated by the model in a given phase (i.e., clip viewing or
response time) if model predictions went above 0.5 in that phase. The analyses presented in Fig.4 and Extended Data. Fig.
5 required several steps:

1.

Identifying the characters during each clip: Here, character identification was done based on the clips such that,
within each clip, we used the result of our semi-supervised character identification method, and defined a
character as present if the number of their occurrences (positive detections) was above a threshold. We quantified
the performance of the NN model predictions in decoding the characters during the clips while we allowed this
threshold (percentage of time when the character was present in the clip) to vary. Similarly, we allowed the
threshold for the size of the character in the frame (maximum=half of the frame) to vary and quantified the NN
model performance respectively (Fig. 4b).

Generalized Linear Models (GLM): To examine what factors significantly contributed to the NN model
activations during the memory test, we used a GLM method. Here, the character activations (averaged across the
five folds and summed over a two-second period following the clip onset) were modeled as a function of 1) the
presence or absence of the character in the clip; 2) whether the participant marked that clip as seen or not during
response time; and 3) whether the clip belonged to the target category (same episode) or the lure category (another
episode the participants had not seen). A similar analysis was done during a two-second period following the end
of the clip as well as a two-second period prior to the participants’ responding time. The estimated coefficients
and the corresponding p-values for each of these factors are reported in the main text.

Character associations during the movie: We defined a character occurrence association based on the scenes
during the movie for which the timing information was provided by an independent study’. The occurrence
association between two characters was defined as the sum of durations of scenes where both characters were
present divided by the sum of durations of scenes where the conditioned character is present. To be more specific,
the association between character ¢; and ¢; can be denoted as follows:
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frame of the shots where ¢ & ¢ both are present

p(cil Cj) - frame of shots where ¢, is present

we will refer to this occurrence association (conditional occurrence probability), character associations.

The conditional probability of model activation for characters: We constructed the conditional activation
probabilities of each pair of characters (Py,odei activarion(CilC;)) OVer a given phase (clip viewing or response time) as
the number of trials for which character i and character j are both activated divided by the number of trials where
character j (the conditioned character) is activated by the model. Recall that, here, the activation is defined as the
model predictions going above a threshold (0.5). Thus, a higher conditional probability indicates that the model
predicts character i more frequently when character j is predicted. We generated two sets of 16 conditional
activation probabilities between the four prominent characters for the clip viewing phase and the response time
phase. These conditional activation probabilities were compared between clip viewing and response time phases
using a signrank test, which revealed higher values during the response time (Fig. 4).

The relationship between conditional activation probabilities and character associations during clip viewing:
Within each participant, we computed the (Spearman) correlation between the conditional probabilities of the
model activation for the characters (computed during clip viewing; see item 4 above) and the character
associations (computed over the movie duration; see item 3 above) after removing the diagonal elements from
these matrices. The results are reported in Fig. 4 and the main text.
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Extended Data Figures and Tables:
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Extended Data Figure 1. Flow chart of Semi-supervised Character Identification.

Split the video into cuts
and cluster the
trajectory of the same
character in each scene
Over all scenes, 1705
crop clusters are
generated

/

Group the crop
clusters using
hierarchical
>' clustering and
KNN in an
iterative manner

Fine tune the clusters
and select the
characters of interest

We developed the semi-supervised framework to identify characters in the movie at the frame level. It consists of three
main stages, requiring minimal human supervision but producing reliable ground truth labels to train our decoding
models. In the first stage, we split the whole video into cuts based on the scenes (b), then created stable real-time
identification of characters, i.e. crop clusters, based on human detection (c,d), and tracking and matching algorithm (e). In
the second stage, we merged crop clusters purely based on facial features with k-means clustering (i) and KNN (j)

iteratively.


https://doi.org/10.1101/2021.10.10.463839
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.10.463839; this version posted October 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Distribution of the Characters’ Presence in Time during Movie
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Extended Data Figure 2. Distribution of the Characters’ Presence in Time during the Movie.

40 min

Coverage

The results from our semi-supervised character identification algorithm are shown. The presence of each of the nine
characters (rows) in each frame of the movie (x-axis) is indicated by vertical lines. For our subsequent neural decoding
analysis, we picked the four characters (bottom 4) that were most prominent and were present during different time points
in the movie. For further details about the character distributions in the movie, see Extended Data Table 4. For

visualization purposes, each vertical line has been dilated for 50 data points.
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Extended Data Figure 3. Convolutional Neural Network as an Alternative Architecture to Decode Characters from
Neural Data (related to Fig. 2).

a. The structure of the CNN network used for classification. Here, input data was the firing sequence of all neurons
(colormap; x-axis: time, y-axis: neuron number; brighter shades correspond to higher firing) from a participant within a
two-second window around each frame. Firing rate maps were passed through four CNN layers followed by two fully
connected (FC) layers to output a probability distribution over the four main characters in that frame of the movie. b.
Frame-by-Frame comparison of character labels generated by CV and CNN: The labels generated by the CNN and the
computer vision algorithm for each movie frame are plotted as a function of time. The significant overlap between the two
labels (a large number of true positives) illustrates the goodness of the decoding algorithm (A manual inspection of the
time series output of the CNN model for each frame against the true character labels and noted that the model prediction
shared high overlap with the true labels). ¢. In an example participant, the normalized confusion matrices for the binary
classification task for all the four characters are shown. The large numbers on the diagonals (high TPR and TNR) of all
the four matrices show that the CNN achieves high accuracy in decoding all the four characters. d. The distribution of the
entries of the confusion matrix overall participants is shown as a bar plot (mean) with errorbar (std) for all four characters.
The high mean and low standard deviation for the TPR and TNR values in all four matrices shows that the CNN achieves
high accuracy in decoding all the four characters across participants. e-f. Accuracy (e) and F1-scores (f) for decoding each
character are shown with each colored dot indicating different participants. The consistently high accuracy and F1-scores
across participants indicate that the CNN generalizes well in this decoding task. The lines and shaded areas (mean+STD)
indicate the performance of the chance model (obtained from shuffling labels) across all participants.
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Extended Data Figure 4. Identification of important regions in decoding characters using a CNN architecture
(related to Fig. 3).

a. The change of KLD loss for each character (row) after knocking out a given region (column) for one participant is
shown (Region Knockout). The value is normalized by the number of neurons in that region and demonstrates how the
model performance deteriorated when excluding the units recorded from that region. Important regions are those with
higher KLD loss values. L. and R correspond to the left and right hemisphere respectively. A: amygdala, AC: Anterior
Cingulate, EC: Entorhinal Cortex, MH: Middle Hippocampus, VMPFC: Ventro-medial Prefrontal Cortex. b. The changes
in KLD loss after knocking out regions are shown across participants. Different colored dots correspond to the change in
KLD loss for different characters. Bars indicate the median value of the change in KLD loss after region knockout. The
following regions resulted in the most notable losses in decoding performance: anterior cingulate (22.22, [10.12,
39.15]%), occipital (40.00, [19.12, 63.95]%), Subiculum (37.5, [8.52, 75.51]%), and superior temporal (66.67, [34.89,
90.08]%). Reported are the percentage of losses above 0.5 (as well as the binomial fit confidence intervals) ¢. The change
in KLD loss for each character (row) after knocking out a given electrode (column) at a time is shown (Electrode
Knockout) for an example participant (same as in a). Similar to the region knockout results in (a), the loss value is
normalized by the numbers of units recorded on each electrode. d. The sum of the change in KLD loss following electrode
knockout (all electrodes within a region) was subtracted from the change in KLD loss following region knockout. Shown
are these values for the four different characters (rows) from an example participant (same as in a and c). Positive values
indicate that knocking out a whole region deteriorates the model performance to a greater extent. e. When considering all
regions from all participants, in most regions, the region knockout loss was greater than the sum of electrode knockout
loss (each column, and its associated colormap, is the distribution of this measure and the red horizontal line indicates the
median of the distribution for those that were significantly different from zero) as quantified by Wilcoxon signed-rank
tests (*: p<0.05; **: p<0.01; ***: p<0.001).
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Extended Data Figure 5. The Semi-supervised Character Identification Algorithm Generated Multiple Clusters for
Each Character throughout the Movie.

Our character identification method resulted in multiple clusters for a single character. Each row represents a cluster and
the vertical lines indicate the frames in which a given cluster was identified. Note that each cluster corresponds to a
visually different representation of the same character (snapshots on the right; cluster six refers to all other small clusters

merging together).
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Demographics of Participants

f]t) Age Handedness Gender
1 50 R F
2 22 L F
3 27 R F
4 31 R M
5 49 R F
6 49 R M
7 24 R F
8 37 L M
9 20 R M

Extended Data Table 1. Participant demographics.
Demographics of the study participants (age, gender, and handedness) are presented.
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Extended Data Table 2. Electrode Localizations.

Electrode locations are listed for each participant (rows). Columns indicate the electrode locations (categories that were
used for group analysis) with R and L referring to the right and left hemispheres respectively. The number in parentheses
indicates the number of electrodes within each hemisphere. “Participant 3 had units in the parietal region as well.
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Participant ID | Number of Units
1 56

2 53

3 49

4 84

5 8

6 18

7 29

8 60

9 28

Extended Data Table 3. Number of Units Recorded in Each Participant.
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Yes No DNK
C.1 17.96 80.25 1.826
C.2 10.73 85.73 3.531
C3 10.01 89.76 2.230
C4 8.683 89.59 1.720

Extended Data Table 4. Distribution of the Character Labels during the Movie Generated by the Semi-supervised
Framework.

This table shows the percentage of each label for the four main characters detected by our semi-supervised character
identification framework on a frame level in the movie. Label Yes (No) was defined as when the character was (not)
present at the exact time step (frame). Label DNK (Do Not Know) was introduced as a mechanism to particularize the
training set (Methods). The characters were present in less than 20% of the frames across the movie and, thus, it must be
borne in mind that the training data used for further neural decoding model was heavily skewed and appropriate measures
were taken to remedy this issue. The percentage of DNK was around 2% of the total training samples, which indicates that
the dropping of the data sample would not affect the total information provided to the model.
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Layers Feature Map Activation
Input Neural Signal Nieurons 60 -

1 Two-layer LSTM 128 -

2 FC + BatchNorm 128 LeakyReLU
3 FC 12 Softmax

Extended Data Table 5. LSTM Architecture.

The input to the LSTM model consisted of the firing rate of all neurons from a participant in time (2 seconds around each
frame with 60 time-steps). This was first fed into a two-layer LSTM followed by a fully connected layer (FC) and a Batch
Normalization layer (BatchNorm) with LeakyReLU as the activation function. This was further processed by a connected
layer followed by a softmax operation to output the confidence scores for three labels (Yes, No, DNK) for each character.
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Pt. 1 Pt. 2 Pt. 3 Pt. 4 Pt. 5 Pt. 6 Pt.7 Pt. 8 Pt. 9

NB 0.1160 ]0.1144 ]0.1158 |0.1154 |0.1180 [0.1158 (0.1148 (0.1137 [0.1151

LSTM (0.8784 [0.8766 [0.8788 ]0.8772 0.7597 |0.8536 [0.8692 (0.8793 [0.8647

CNN |0.8738 |0.8737 10.8633 |0.8755 |0.6272 ]0.8620 |0.8400 |0.8702 ]0.8483

Extended Data Table 6. Comparing NN Model Performances against Baseline (Naive Bayes).

For each participant (columns), average performance (as quantified by Fl-scores) is reported for three different methods
used to decode the visual presence of characters using the neural data. Our main methods, the LSTM and the
complimentary CNN architectures, fared much (on average 7 times) better when compared against the performance of a
Naive Bayes method, which was used as a baseline model.
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Recall Precision F, score Accuracy
C.1 83.59+2.24 87.60+2.15 0.8090+0.0158 90.37+2.30
C.2 86.68+4.33 88.65+5.54 0.8222+0.0535 88.29+5.94
C.3 94.57+1.06 97.44+0.73 0.9677+0.0048 97.90+0.74
C.4 85.06+3.17 88.08+3.81 0.8148+0.0341 89.274+4.17

Extended Data Table 7. Further Quantifications of the LSTM Model Performance in Decoding Characters.

In addition to the LSTM model F1-scores and accuracy values shown for all participants in Fig. 2e and Fig. 2f, here we
report mean+STD values of other measures such as recall and precision to quantify model performance in decoding each
of the characters (rows).
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Layers Feature Map Kernel Size | Stride Activation
Input Neural Signal Nieurons F00%1 - - -
1 Conv + BatchNorm | n;*60%12 1*1 1 LeakyReLLU
2 Conv + BatchNorm | n,*12*12 8*8 1 LeakyReLU
3 Conv + BatchNorm | n;*10*10 3*3 1 LeakyReLU
4 Conv + BatchNorm |8 3*3 1 LeakyReLU
5 MaxPooling - 3*3 3
6 Flatten Variable (see - - -

below)*
7 FC + BatchNorm 64 - - LeakyReLU
8 FC 12 - - Softmax

Extended Data Table 8. CNN Architecture

The CNN model was used as an independent confirmation of the LSTM model results. Here, too, the windowed neural
signal (firing rate of all neurons from a participant during a two-second interval around each frame) was the input that
underwent several convolution layers with LeakyReLU activations and Batch Normalization (BatchNorm) layers in
between. The output of the last convolutional layer went through a MaxPooling layer and was then flattened to a
one-dimensional vector. This one-dimensional vector was concatenated with the flattened region tag embedding
corresponding to each region in order to incorporate more information into the model. Finally, the concatenated vector
was fed into two sequential Fully Connected (FC) layers with LeakyReLU activation and a Batch Normalization in
between. The output of the last Fully Connected layer was reshaped into a 4*3 matrix corresponding to the confidence
scores of the three labels (Yes, No, DNK) for each of the four main characters.

* Given that each participant had a different number of contacts, the number is variable from participant to participant.
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