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Our lives unfold over time, weaving rich information into a 
continuous sequence of experiences. However, our memo-
ries are not continuous. Rather, we remember discrete epi-

sodes (‘events’)1, which serve as anchors to bind together the myriad 
different aspects (where, when and what) of a given autobiographi-
cal memory2,3, much like objects do in perception4. A fundamental 
unresolved question in human memory is, therefore, what marks 
the beginning and the end of an episode?5

The transformation from ongoing experience to distinct events 
is thought to rely on the identification of boundaries that separate 
events1,6–11. This theory is motivated by large-scale patterns of activ-
ity changes in the human brain around event boundaries5,12,13, but 
the underlying neural mechanisms and their relationship to mem-
ory are unknown. Neurons in the rodent hippocampus elevate their 
firing rates in the vicinity of investigator-imposed spatial bound-
aries14, and the place fields of hippocampal neurons are shaped 
by physical boundaries15–17. In accordance with the boundaries of 
subenvironments14, hippocampal place fields remap18,19 in response 
to context shifts and are reinstated15,20 when the animal is placed 
back into a familiar context. Additionally, rodent hippocampal neu-
ron ensembles encode lap-specific representations in a maze irre-
spective of an animal’s spatial location21, presumably representing 
cognitive boundaries between distinct events. Boundaries shape 
mnemonic representations of both spatial environments and the 
events that occur during navigation and structure the place fields 
and event-specific representations of cognitive maps. No such 
understanding at the single-cell level exists for the non-spatial epi-
sodic memories that define us as individual human beings2,22.

We investigated the neuronal mechanisms underlying the 
identification of event boundaries in humans under semirealistic  

continuous experience. We recorded single-neuron activity from 
individuals with drug-resistant epilepsy implanted with depth 
electrodes23 while testing their memory for the content of video 
clips with two kinds of embedded cognitive boundaries: soft 
boundaries (SBs) and hard boundaries (HBs). SBs are episodic 
transitions between related events within the same movie, while 
HBs are episodic transitions between two unrelated movies. 
Behaviorally, both SBs and HBs enhanced recognition of video 
clip content that followed a boundary, whereas HBs impaired 
memory of the temporal order of events. We found neurons in the 
MTL that signaled the timing of both types of boundaries. The 
activity of these boundary-responsive neurons predicted memory 
strength as assessed by scene recognition and temporal order  
discrimination accuracy.

Results
Boundaries boost recognition but disrupt serial order memory. 
We studied how boundaries influence the formation and retrieval 
of memories of brief video clips. Twenty individuals performed 
the task while we recorded the activity of single neurons (Fig. 1e, 
Extended Data Fig. 1 and Supplementary Tables 2 and 3 show the 
participant demographics and the location of microwire bundles). 
The task consisted of three parts: encoding, scene recognition 
and time discrimination. During encoding (Fig. 1a), individu-
als watched 90 different and new video clips containing either no 
boundaries (NBs; one continuous movie shot), SBs (cuts to a new 
scene within the same movie) or HBs (cuts to a new scene from a 
different movie; Fig. 1b). A question about the prior movie appeared 
every four to eight clips (for example, is anyone wearing glasses?). 
Participants answered 89 ± 5% of these questions accurately.
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We subsequently evaluated what individuals remembered about 
the video clips with two memory tests: scene recognition (Fig. 1c) 
and time discrimination (Fig. 1d). During the scene recognition 
test, individuals were presented with a single static frame. These 
frames were chosen with equal probability from either the previ-
ously presented video clips (‘targets’) or from other video clips that 
were not shown to the participants (‘foils’). Participants made an 
‘old’ or ‘new’ decision together with a confidence rating (sure, less 
sure and very unsure) in each trial. During the time discrimination 
test, individuals were shown two old frames chosen from the same 
video clip, presented side by side, and had to indicate which frame 
was seen earlier in time together with a confidence rating.

In the time discrimination task, participants correctly identified 
which frame was shown first in 73 ± 7% and 73 ± 8% of trials when 
the two frames were separated by a NB or an SB, respectively (Fig. 2a;  
both above chance of 50%; one sample t-test, NB: t19 = 13.97, 

P = 2 × 10−11; SB: t19 = 11.63, P = 4 × 10−10). By contrast, participants 
performed significantly worse when discriminating the order of 
frames separated by an HB (Fig. 2a; HB: 53 ± 5%, P = 0.02 against 
chance level; significantly lower than NB and SB: F2,57 = 51.33, 
P = 2 × 10−13). Individuals also showed longer reaction times (Fig. 2b;  
HB: 2.10 ± 0.37 s; NB: 1.62 ± 0.28 s; SB: 1.59 ± 0.34 s; F2,57 = 14.25, 
P = 10 × 10−6) and lower confidence ratings when discriminating 
the order of frames separated by an HB (Fig. 2c; HB: 1.95 ± 0.45; 
NB: 2.52 ± 0.29; SB: 2.59 ± 0.23; F2,57 = 20.41, P = 2 × 10−7). This 
effect on reaction times and confidence was not driven by accuracy 
differences, as it was observed for both correct and incorrect trials 
independently (Supplementary Fig. 1). Discriminating the temporal 
order of two frames was not possible by reasoning alone without 
having seen the video clips (Supplementary Fig. 2).

Across all trials, the ability to recognize a frame as old did not 
differ significantly between the types of boundaries preceding the 
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Fig. 1 | Experiment and recording locations. a, Encoding task. Individuals watched 90 video clips (~ 8 s each, no audio) with either NB (continuous movie 
shot), an SB (cut to a new scene within the same movie, one to three SBs per clip) or an HB (cut to a different movie, one HB per clip). Every four to eight 
clips, individuals were prompted to answer a yes or no question related to the content of the immediately preceding clip together with a confidence rating 
(Methods). RT, reaction time. b, Example boundaries (visual features of boundaries are in Supplementary Table 1). Owing to copyright restrictions, the 
images shown are different from those used for the experiment. c, Scene recognition memory task. Individuals indicated whether a static image was new 
or old (seen during encoding task) together with a confidence rating. d, Time discrimination task. Individuals indicated which of two frames they saw first 
during the encoding task together with a confidence rating. e, Recording locations of the 39 microwire bundles that contained at least one boundary/event 
neuron (see Montreal Neurological Institute (MNI) coordinates in Supplementary Table 3 and Extended Data Fig. 1) across all individuals (participant 
information is in Supplementary Table 2) in the amygdala (red), hippocampus (blue) or parahippocampal gyrus (cyan), rendered on a template brain.  
Each dot represents the location of a microwire bundle.
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frame (Extended Data Fig. 2a; NB: 76% ± 10%; SB: 75% ± 9%; HB: 
75% ± 8%; F2,57 = 0.07, P = 0.94). The reaction times and confidence 
ratings during the scene recognition task were also similar across 
the different types of boundaries (reaction times are presented in 
Extended Data Fig. 2b; NB = 1.47 ± 0.18 s, SB = 1.43 ± 0.16 s and 
HB = 1.49 ± 0.15 s, F2,57 = 0.28, P = 0.76; confidence ratings are pre-
sented in Extended Data Fig. 2c; NB = 2.60 ± 0.18, SB = 2.60 ± 0.20 
and HB = 2.52 ± 0.28, F2,57 = 0.54, P = 0.56). Therefore, the impaired 
time discrimination ability across HB transitions was not due to 
differences in memory strength as measured by scene recognition 
accuracy. Even though the overall accuracy was similar among NB, 
SB and HB conditions, the recognition accuracy of target frames 
decreased as a function of the time elapsed between the target 
frame and its immediately preceding boundary. Target frames pre-
sented shortly after an SB and HB were remembered better than 
those farther away from the boundary (Fig. 2e,f; SB: r = −0.61, 
P = 4 × 10−4; HB: r = −0.44, P = 0.015). By contrast, recognition 
accuracy did not differ significantly as a function of time relative 
to NBs (Fig. 2d; Pearson correlation; NB: r = 0.085, P = 0.65). The 
temporal distance to boundary effects was unidirectional; the tem-
poral distance to future boundaries did not correlate with memory 
performance (Supplementary Fig. 3a,b). Additionally, no temporal 
distance effect was present in the time discrimination task accuracy 
(Supplementary Fig. 3c,d). Also, the scene recognition accuracy 
and time discrimination accuracy were not significantly related 
to the time at which the tested frames were shown during encod-
ing (Supplementary Fig. 4; scene recognition: F5,114 = 1.87, P = 0.11; 
time discrimination: F5,114 = 1.1, P = 0.37). Together, the behavioral 
analyses revealed that frames that closely followed an SB or HB were 
more likely to be remembered. Temporal order memory, however, 

was disrupted by the presence of HBs. These results reveal a tradeoff 
in the effect of HBs on memories, with enhanced scene recognition 
memory and disrupted temporal order memory.

MTL neurons demarcate episodic transitions. We next inves-
tigated the neuronal responses to boundaries and their relation-
ship to memory by recording from neurons in the MTL (including 
the hippocampus, amygdala and parahippocampal gyrus; Fig. 1e  
and Extended Data Fig. 1) and other brain areas (Supplementary 
Tables 2 and 4). Across all areas, we recorded the activity of 985  
neurons from 19 individuals (1 of the 20 individuals yielded no 
usable recordings; Supplementary Table 2). Of these 985 neurons, 
580 were recorded from the MTL. We first tested whether neurons 
changed their activity following boundaries by comparing their fir-
ing rate in a 1-s-long window following boundaries relative to base-
line (1 s before boundary; Methods). For video clips with NBs, we 
aligned responses to the middle of the clip and compared responses 
between before and after this virtual boundary. Fig. 3a,b shows two 
example neurons recorded from the hippocampus and parahip-
pocampal gyrus, respectively. These neurons showed a transient 
increase in firing rates within approximately 300 ms after both SBs 
(blue) and HBs (red). No such change was observed in the clips with-
out boundaries (green). We refer to this type of neuron as a ‘bound-
ary cell’; 42 of 580 MTL neurons (7.24%; expected proportion by 
chance for all MTL neurons = 2.11%) were classified as boundary 
cells (Fig. 3c). The regions with the largest proportion of boundary 
cells were the parahippocampal gyrus (n = 18/68, 26.47%), amyg-
dala (n = 12/169, 7.10%) and hippocampus (n = 12/343, 3.50%). 
These proportions are all significantly larger than expected by 
chance (P < 0.05; Supplementary Table 4).
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Fig. 2 | Behavior. HBs impaired time discrimination memory, while SBs and HBs improved scene recognition memory for frames close to them. a–c, Performance 
in time discrimination task (see also Supplementary Figs. 1 and 2) quantified by accuracy (a) (F2,57 = 51.33, P = 2 × 10−13, one-tailed analysis of variance 
(ANOVA)), reaction time (b) (F2,57 = 14.25, P = 10 × 10−6, one-tailed ANOVA) and mean confidence level (c) (F2,57 = 20.41, P = 2 × 10−7, one-tailed ANOVA) across 
all the trials for NBs (green), SBs (blue) and HBs (red). Behavioral data for the scene recognition task are shown in Extended Data Fig. 2. d–f, Scene recognition 
accuracy as a function of time elapsed between the target frame and its nearest past boundary (the distance effect for time discrimination accuracy and future 
boundaries is shown in Supplementary Fig. 3) plotted separately for NB (d), SB (e) and HB (f). For NB clips, time from the past boundary is measured relative to 
the middle of the clip. Each dot represents one recording session in a–c and one clip in d–f. Black lines in a–c denote the mean of the results, and colored lines in 
d–f are the fitted lines for linear regression; ***P < 0.001.
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Fig. 3 | Boundary cells and event cells demarcate different types of episodic transitions. a,b, Responses during the encoding stage from two example 
boundary cells located in the hippocampus (HPC) (a) and parahippocampal gyrus (PHG) (b), respectively (spike sorting quality of all detected cells is 
shown in Supplementary Fig. 5). Boundary cells responded to both SB (blue) and HB (red) transitions. Responses are aligned to the middle point of the 
clip (NB, green) or to the boundary (SB, HB); top, raster plots; bottom, poststimulus time histogram (bin size = 200 ms; step size = 2 ms; shaded areas 
represent ±s.e.m. across trials); insets, all spike extracellular waveforms (gray) and mean (black). c,d, Firing rates of all 42 boundary cells (solid and 
dashed arrows denote the examples in a and b, respectively) during the encoding stage aligned to the boundaries (c) or clip onsets (d) averaged over trials 
within each boundary type and normalized to each neuron’s maximum firing rate from the entire task recording (see color scale on bottom). e,f, Responses 
during the encoding stage from two example event cells located in the amygdala (AMY) (e) and hippocampus (f), respectively. Event cells responded 
to HB (red) but not SB (blue) transitions; poststimulus time histogram: bin size = 200 ms, step size = 2 ms and shaded areas represent ±s.e.m. across 
trials. g,h, Firing rates of all 36 event cells (solid and dashed arrows denote the examples in e and f, respectively) during the encoding stage, using the 
same format as in c and d (aligned to boundaries (g) or clip onsets (h)). Both boundary cells and event cells in the MTL do not respond to the clip onsets 
(d, h) and clip offsets (Extended Data Fig. 3) during encoding and image onsets and offsets during scene recognition and time discrimination (Extended 
Data Fig. 4). No significant difference in saccades was found after clip onsets versus after boundary transitions for one individual where we could record 
eye movement data simultaneously with the neurophysiological data (Supplementary Fig. 7). i, Latency analysis. Firing rate during HB transitions (to 
which both boundary cells and event cells responded) reached peak response earlier for boundary cells (pink) than event cells (purple). The average 
z-scored firing rate normalized using the average and s.d. of the firing rates and aligned to HB is shown (bin size = 200 ms, step size = 2 ms, shaded areas 
represent ±s.e.m. across all boundary cells or event cells). j, Peak times of average firing rate traces of all boundary cells (pink) and all event cells (purple) 
(F1,76 = 274.78, P = 6 × 10−27, one-tailed ANOVA). Each dot represents one boundary cell (pink) or one event cell (purple). Black lines denote the mean 
averaged across all boundary cells or event cells; ***P < 0.001, one-way ANOVA, d.f. = 1,76. The spatial distribution of boundary cells and event cells is 
shown in Supplementary Table 4.
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Was the response of boundary cells a result of the abrupt changes 
in pixel-level content between the frame before and after the bound-
ary? To answer this question, we considered the responses of the 
cells during other abrupt changes of visual input: video clip onsets 
(Fig. 3d) and offsets (Extended Data Fig. 3) during encoding and 
image onsets and offsets during scene recognition and time dis-
crimination (Extended Data Fig. 4). Boundary cells did not respond 
significantly to either clip or image onsets or offsets (P > 0.05; per-
mutation t-test, Methods), showing that the response of boundary 
cells is likely related to higher-level cognitive discontinuities rather 
than pure visual changes.

We also found a second group of neurons that transiently 
increased their firing rate only following HBs but not SBs or NBs. 
Two examples of such cells, located in the amygdala and hippocam-
pus, are shown in Fig. 3e,f. We refer to this type of neuron as an 
‘event cell’; 36 of 580 MTL neurons (6.20%; proportion expected by 
chance for all MTL neurons = 2.26%) were classified as event cells 
(Fig. 3g). The regions with the largest proportion of event cells were 
the hippocampus (n = 27/343, 7.87%), amygdala (n = 7/169, 4.27%) 
and parahippocampal gyrus (n = 2/68, 2.94%). These propor-
tions are all significantly larger than expected by chance (P < 0.05; 
Supplementary Table 4). Similar to boundary cells, event cells did 
not significantly change their firing rates following video clip onsets 
or offsets (Fig. 3h and Extended Data Fig. 3) during encoding nor 
did they respond to image onsets or offsets during scene recogni-
tion or time discrimination (Extended Data Fig. 4; P > 0.05, per-
mutation t-test; Methods). However, boundary cells and event cells 
did increase their firing rates to the randomly interspersed probe 
questions that followed some clip offsets (randomly present every 
four to eight trials; Supplementary Fig. 6). Seventy six of 580 (13.1%, 
P = 0.01) and 4 of 580 (0.7%, P = 0.43) MTL cells changed their 
firing rate in response to clip onsets and clip offsets, respectively, 
but neither of these cells qualified as boundary cells or event cells 
(Extended Data Fig. 5).

SBs and HBs differed in terms of their high-level conceptual 
narrative, which is interrupted in HBs but not in SBs. To evalu-
ate whether it is possible to determine from visual features alone 
whether a boundary is soft or hard, we computed the differences 

between pre- and postboundary frames in terms of pixel-level char-
acteristics (that is, luminance, contrast, complexity, entropy and 
color distribution), high-level visual features (that is, objects) and 
perceptual similarity ratings. These analyses revealed that SB and 
HB transitions did not differ significantly from each other in any 
of the attributes we tested (Supplementary Table 1). Therefore, the 
differential activation of event cells to HBs but not SBs was likely  
a result of detection of the disruption in the conceptual narrative, 
that is, a transition between two different episodes.

While both boundary cells and event cells responded to HB 
transitions, a comparison of their response dynamics indicated that 
boundary cells responded to HBs approximately 100 ms earlier than 
event cells (Fig. 3i). This latency difference was also observed when 
comparing the time at which the peak responses were reached; 
boundary cells showed a peak at 197 ± 49 ms, whereas event cells 
showed a peak at 301 ± 55 ms (Fig. 3j; F1,76 = 274.78, P = 6 × 10−27).

We also evaluated the existence of boundary and event cells in 
brain areas other than the MTL, such as the medial frontal cortex, 
insula and orbitofrontal cortex (OFC). We found 8/405 (1.96%) 
boundary cells and 9/405 (2.22%) event cells among the non-MTL 
group (Supplementary Tables 2 and 4), with only event cells in 
the OFC exceeding the proportions expected by chance. Thus, 
boundary-responsive neurons are largely within the MTL, to which 
we restricted the following analyses.

Responses of boundary and event cells predict memory strength. 
We next asked whether the responses of boundary cells and event 
cells during encoding correlated with later measures of memory 
for the content of the videos. We examined whether the strength of 
responses of boundary cells or event cells to boundaries varied as 
a function of whether the familiarity or temporal order of a stimu-
lus was later remembered or forgotten. Fig. 4a shows an example 
boundary cell located in the hippocampus whose response during 
encoding differed between video clips, from which frames were 
later correctly remembered as familiar (Fig. 4a(i)) versus incorrectly 
identified as new (forgotten; Fig. 4a(ii)); the responses to bound-
aries that preceded later-remembered frames were stronger. This 
effect was present, on average, among boundary cells (n = 42) for 

Fig. 4 | Responses of boundary cells and event cells during encoding correlate with later retrieval success. a–d, Response of boundary cells during 
encoding grouped by participants’ subsequent memory performance in the scene recognition task. a, Boundary cell recorded in the hippocampus. During 
encoding, this cell responded more strongly to SB and HB transitions than NB if the frame following the boundary in that trial was correctly identified 
during the scene recognition task (i) compared to incorrect trials (ii). The format is as in Fig. 3. Shaded areas represent ±s.e.m. across trials. b, Timing of 
spikes from the same boundary cell shown in a relative to theta phase calculated from the LFPs for clips of which frames were later remembered (i) or 
forgotten (ii) (left). The phase distribution of spike times in the 1-s period following the middle of the clip (NB) or boundary (SB, HB) for clips from which 
frames were remembered (i) and forgotten (ii) is shown on the right. c,d, Population summary for all 42 boundary cells. Black lines denote the mean 
results averaged across all 42 boundary cells. c, Z-scored firing rate (0–1 s after boundaries during encoding) differed significantly between boundaries 
after which frames were remembered (color filled) versus forgotten (empty) for both SB and HB (SB: F1,82 = 82.93, P = 4 × 10−14; HB: F1,82 = 156.9, P = 1 × 10−20; 
NB: F1,82 = 1.18, P = 0.28; one-tailed ANOVA); NS, not significant. d, Mean resultant length (MRL) of spike times (that is, sum of vectors with vector lengths 
equal to 1 and vector angles equal to the spike timings relative to theta phases 0–1 s after boundaries during encoding divided by total number of vectors; 
value range (0 to 1): 0, uniform distribution (i.e., neurons fire at random theta phases); 1, unimodal distribution (i.e., neurons firing at the same theta phase 
across all boundary cells for each boundary type did not differ significantly between correct (color filled) and incorrect (empty) clips). e,f, Response of 
boundary cells during encoding grouped by participants’ subsequent memory performance in the time discrimination task. e, Example event cell recorded 
in the hippocampus that responded to HB transition regardless of whether the temporal order of the clip was later correctly (i) or incorrectly (ii) recalled 
in the time discrimination task. Shaded areas represent ±s.e.m. across trials. The format is the same as in a, but clips were grouped based on memory 
outcomes in the time discrimination task. f, The spike timing of the same event cell shown in e relative to theta phase plotted for correct (i) and incorrect 
(ii) trials. The format is the same as in b, but clips were grouped based on memory outcomes in the time discrimination task. g,h, Population summary for 
all 36 event cells. Black lines denote the mean results averaged across all 36 event cells. g, Z-scored firing rate (0–1 s after boundaries during encoding) 
did not differ significantly between later correctly (color filled) or incorrectly (empty) remembered temporal orders for all three boundary types. h, MRL 
of spike times (relative to theta phases, 0–1 s after boundaries during encoding) was significantly larger after SB and HB transitions if the temporal order 
of the clip was correctly recalled (color filled) than if it was incorrectly recalled (empty) (SB: F1,70 = 81.55, P = 2 × 10−13; HB: F1,70 = 60.79, P = 4 × 10−11; NB: 
F1,70 = 1.53, P = 0.22; one-tailed ANOVA). Each dot represents one boundary cell (c and d) or one event cell (g and h). Black lines in c, d, g and h denote 
the mean of the results. Note that in a–d, the neural responses of boundary cells reflect whether participants remembered or forgot target frames that 
followed a boundary. Results computed based on trials grouped by participants’ memory performance for a target frame before a boundary are shown in 
Supplementary Fig. 8; ***P < 0.001, one-way ANOVA, d.f. = 1,82 for c and d, and d.f. = 1,70 for g and h.
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frames preceded or followed by both SBs and HBs but not by NBs 
(Fig. 4c, SB: F1,82 = 82.93, P = 4 × 10−14; HB: F1,82 = 156.9, P = 1 × 10−20; 
NB: F1,82 = 1.18, P = 0.28; Supplementary Fig. 8, SB: F1,82 = 91.67, 
P = 5 × 10−15; HB: F1,82 = 62.78, P = 1 × 10−11; NB: F1,82 = 0.05, 
P = 0.83). This effect was specific to scene recognition and bound-
ary cells. First, the firing rate of boundary cells did not significantly 
predict performance in the time discrimination task (Extended 
Data Fig. 6a,c; NB: F1,82 = 1.25, P = 0.27; SB: F1,82 = 1.35, P = 0.25; 
HB: F1,82 = 1.14, P = 0.29). The firing rate of event cells (n = 36) 
during encoding was not predictive of scene recognition memory  
and temporal order memory (Fig. 4e,g and Extended Data  
Fig. 7a,c; NB: F1,70 = 1.12, P = 0.29; SB: F1,70 = 1.63, P = 0.21;  
HB: F1,70 = 0.79, P = 0.38).

Given the importance of theta frequency band spike field coher-
ence in plasticity24, we next considered the timing of spikes with 
respect to the theta band in the local field potentials (LFPs; 4–8 Hz, 
measured on the same microwire from which the neuron was 
recorded; Methods and Supplementary Fig. 9). We determined the 

theta phase of each spike that occurred within 1 s following bound-
aries and compared the resulting phase distributions among NB, SB 
and HB. Event cells tended to fire at a consistent phase of the theta 
band LFP following both HBs and SBs for clips whose temporal 
order was later remembered correctly (Fig. 4f). To summarize this 
effect across the population, we computed the MRL across all phases 
for all spikes fired by a given cell (Methods). If the time of spikes are 
randomly distributed, the MRL equals 0, whereas an identical phase 
for all spikes would result in an MRL of 1. The mean MRL across 
all event cells (n = 36) was significantly larger following both SB and 
HB but not NB if temporal order was later correctly remembered 
(Fig. 4h; SB: F1,70 = 81.55, P = 2 × 10−13; HB: F1,70 = 60.79, P = 4 × 10−11; 
NB: F1,70 = 1.53, P = 0.22). This effect was specific to event cells and 
temporal order memory. First, the strength of theta phase locking 
of event cells did not predict scene recognition memory success 
(Extended Data Fig. 7b,d; NB: F1,70 = 0.75, P = 0.39; SB: F1,70 = 1.1, 
P = 0.30; HB: F1,70 = 2.13, P = 0.15). Second, the strength of phase 
locking of boundary cells neither predicted scene recognition 
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memory success (Fig. 4b,d; NB: F1,82 = 1.16, P = 0.28; SB: F1,82 = 1.87, 
P = 0.18; HB: F1,82 = 0.45, P = 0.5) nor temporal order memory 
(Extended Data Fig. 6b,d; F1,82 = 1.33, P = 0.25; SB: F1,82 = 0.14, 
P = 0.71; HB: F1,82 = 1.98, P = 0.16). Third, we evaluated whether 
there were cells whose theta band phase locking of spikes follow-
ing boundaries was predictive of the success of memory formation 
regardless of whether their firing rate was modulated (Methods). 
There were 32 of 580 MTL cells that showed an enhanced number of 
spikes phase locked in the theta band after a boundary compared to 
before a boundary and where the phase locking was correlated with 
correct/incorrect performance in either one of the two memory 
tasks. Of those 32 cells, 20 (56%) were also event cells. By contrast, 
there was no significant overlap between the 32 cells and boundary 
cells (Supplementary Table 5).

In summary, boundary cells and event cells predicted distinct 
aspects of memory formation; whereas the firing rate of boundary 
cells was predictive of later scene recognition memory performance, 
the phase locking of event cells was predictive of temporal order 
memory performance.

Neural state shifts across boundaries reflect memory strength. 
We next investigated the changes in the neural responses following 

boundaries at the population level of all n = 580 MTL cells (pseu-
dopopulation, Methods). We examined the dynamics of population 
activity around the boundaries by evaluating the change of activ-
ity using principal component analysis (PCA). During NB video 
clips, the neural state exhibited only slow changes as a function of 
time (Fig. 5a). By contrast, the neural state changed abruptly fol-
lowing SBs and HBs (Fig. 5b,c). These abrupt ‘neural state shifts’ 
were consistent with the changes in firing rates we reported for 
boundary cells and event cells, but the observations in Fig. 5 reflect 
the activity of all MTL cells. To quantify the size of state shifts, we 
computed the multidimensional Euclidean distance (MDD(t)) in 
state space between a given time t and the boundary (Fig. 5d–g). 
The dimensionality of the state space we used was the number of 
principal components (PCs) that explained ≥99% of the variance. 
Plotting MDD as a function of time revealed an abrupt change 
within ~300 ms after the boundary for SB and HB video clips (Fig. 
5d–g). This abrupt change can also be seen at the level of individuals 
(Extended Data Fig. 8).

We evaluated what types of cells contributed most to the neu-
ral state shift. First, neural state shifts following SBs were only vis-
ible when boundary cells were included (Fig. 5d,e). Second, early 
neural state shifts after HBs were only visible when event cells were 
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included, while later HB-related shifts remained present in the 
absence of either event cells (Fig. 5f) or both event and boundary 
cells (Fig. 5g). Third, the point of time at which MDD reached its 
maximal value varied systematically between groups of cells; the 
responses carried by boundary cells appeared significantly earlier 
than those carried by event cells and non-boundary/event cells 
(Fig. 5h; F3,76 = 103.96, P = 8 × 10−27). Together, this shows that early 
population-level state shifts are principally due to the activity of 
boundary cells, whereas event cells and non-boundary/event cells 
in MTL contribute to slower-latency HB-related state shifts.

We next assessed whether the size of neural state shifts follow-
ing boundaries during encoding was related to whether a stimu-
lus was later remembered or not. We computed the extent of state 
changes in the population following a boundary by calculating the 
total Euclidean distance traversed in state space in the 0- to 1-s time 
window after boundaries (AUC MDD; Methods). The AUC MDD 
was positively correlated with recognition accuracy for frames fol-
lowing SBs and HBs but not NBs (Fig. 5i; SB: r = 0.653, P = 0.002; 
HB: r = 0.565, P = 0.009; NB: r = 0.214, P = 0.256). By contrast, the 
AUC MDD was negatively correlated with accuracy in the time 
discrimination task for HBs but not for NBs or SBs (Fig. 5j; HB: 
r = −0.677, P = 0.001; NB: r = 0.212, P = 0.261; SB: r = −0.273, 
P = 0.244). Together, these results reveal a neural correlate of the 
tradeoff between these two types of memory, with large neural state 
shifts beneficial for scene recognition memory but detrimental for 
order memory.

Neural context after boundaries reinstates during recognition. 
It is thought that reinstatement of the neural context present at 
encoding enables mental time travel during memory retrieval25,26. 
However, it remains unknown what exactly is reinstated for con-
tinuous experience and how boundaries shape the retrieval process. 
To address this question, for each individual, we quantified the 
degree and timing of reinstatement by computing the correlation 
between the vectors of spike counts of all recorded MTL neurons 
during the scene recognition task (1.5-s fixed time window) and 
during encoding (1.5-s sliding window, step size of 0.1 s; Methods). 
Correct targets (that is, frames from presented clips during encod-
ing that were correctly remembered as old) were accompanied by 
a significant positive correlation between neural activity during 
the scene recognition and the encoding period shortly after SB/
HB transitions (Fig. 6a,e; P < 0.01, permutation test; Methods). By 
contrast, we observed no significant correlation for forgotten targets 
(that is, frames from presented clips that were incorrectly marked as 
new; Fig. 6b,f). This effect could not be explained by individuals not 
attending to the scene recognition task because visually responsive 
cells responded equally well to both remembered and forgotten tar-
get trials (Extended Data Fig. 9).

The reinstated neural context during retrieval was most 
similar to the neural context present during encoding approxi-
mately ~1.2 s after the boundary that preceded the tested frame  
(Fig. 6i, filled circles; SB: −1.26 ± 0.38 s, t19 = 14.68, P = 8 × 10−12;  
HB: −1.28 ± 0.48 s, t19 = 11.80, P = 3 × 10−10). Notably, the point 
of time of maximal similarity preceded the time at which the 
later tested frame was shown by 1–1.5 s (Fig. 6i, empty circles;  
SB: 1.53 ± 0.61 s, t19 = 11.18, P = 8 × 10−10; HB: 1.72 ± 1.03 s, t19 = 7.44, 
P = 5 × 10−7). This observation remains true also for smaller win-
dow sizes used to compute the correlations (Supplementary Fig.13), 
indicating that the neural state reinstated during testing is the one 
that was present in between the preceding boundary and the tested 
frame. Thus, the neural state that was reinstated is the one present 
well before the tested frame was shown during encoding. Together 
with an absence of significant reinstatement during incorrect targets  
(Fig. 6b), these analyses suggest that the neural correlate of rein-
statement is not the result of identical sensory inputs in the  
clips and tested frames. Additionally, no significant correlation  

for correctly identified foils was observed (that is, frames from 
unpresented clips correctly marked as new; Fig. 6c,g).

Reinstatement is thought to contribute primarily to the rec-
ollection of memories that are remembered with high confi-
dence27,28. Compatible with this view, the correlations following 
boundary transitions were significantly stronger in high- than in 
low-confidence trials (converted from three levels of confidence; 
Methods). This difference was observed during both correctly 
remembered targets and falsely recognized foils (Fig. 6j–m; SB, cor-
rect targets: P = 5 × 10−10; HB, correct targets: P = 4 × 10−6; NB, cor-
rect targets: P = 0.79; SB, incorrect foils: P = 5 × 10−7; HB, incorrect 
foils: P = 5 × 10−5; NB, incorrect foils: P = 0.18; t-test).

Notably, strong correlations between the neural state at retrieval 
and encoding also occurred when a new image was incorrectly clas-
sified as seen before (Fig. 6d,h; incorrect foil, P < 0.01, permutation 
test; Methods), thereby revealing a neural explanation for the false 
alarms. Were these false alarms, which were accompanied by neural 
reinstatement, caused by visual similarity between the targets and 
foils? To address this question, we assessed the similarity between 
each target and foil by acquiring similarity ratings from an indepen-
dent control group of individuals (n = 30). Similarity values were bal-
anced across NB, SB and HB (Supplementary Fig. 2a). We split foils 
into low (top 66.67–100%), medium (top 33.33–66.67%) and high 
(top 1–33.33%) similarity groups. Correlations between encoding 
and scene recognition were significantly stronger for highly similar 
foils falsely recognized as old than for low- and medium-similarity 
foils (Fig. 6o; incorrect foil: F2,54 = 10.67, P = 1 × 10−4). By contrast, 
the extent of correlation for correctly rejected foils (true nega-
tives) did not vary as a function of similarity (Fig. 6n; correct foil: 
F2,54 = 2.182, P = 0.144). Thus, the reason for false alarms is that the 
wrong context is reinstated due to the high similarity of the foil with 
a target. Together, these results support the notion that the neural 
state present at encoding following the boundary is reinstated dur-
ing memory retrieval.

Discussion
Memories are often conceptualized as discrete events on a narrative 
timeline6. However, the very definition of an event remains enig-
matic. Where do events start and end, and how are multiple signals 
bound together over time to form a singular event? Here, we test 
the hypothesis that boundary detection is a mechanism that seg-
ments continuous experience into discrete events. Behaviorally29, 
boundaries enhance scene recognition memory for temporally 
proximal events while disrupting temporal order memory. We 
found two types of cells that responded to cognitive boundaries; one 
responded to both SBs and HBs, while another group responded 
only after HBs.

Both SBs and HBs are accompanied by salient visual changes, 
whereas the NB control condition does not (Fig. 1b). However, the 
observed responses to boundaries (Fig. 3) cannot be explained by 
these sharp visual input changes. First, cells differentiate between 
SBs and HBs even though both types encompass similar changes 
at the pixel level (Supplementary Table 1). Second, boundary and 
event cells did not respond to strong visual changes at clip onsets 
(Fig. 3d,h) or offsets (Extended Data Fig. 3) during encoding nor 
to the image onsets or offsets during the scene recognition and 
time discrimination tasks (Extended Data Fig. 4). In our task, trial 
structure is predictable, that is, the intertrial interval is always fol-
lowed by a video and then the next intertrial interval (Fig. 1a–d). 
By contrast, whether a boundary will occur in a given video and 
if so what type (SB or HB) is not predictable. One hypothesis for 
the absence of responses to clip onsets and offsets is therefore their 
predictability, which would lead to an absence of prediction errors 
that are hypothesized to underly event segmentation30. Supporting  
this hypothesis, boundary and event cells also increased their 
responses following the unpredictable probe question during 
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encoding (present randomly every four to eight trials; Fig. 1a). In 
contrast to the selective single-neuron response to cognitive bound-
aries, prior functional magnetic resonance imaging (fMRI) work31 
reported a clip offset-triggered blood oxygenation level–dependent 
signal change in the hippocampus whose magnitude was predictive 

of subsequent memory strength. This off response has been inter-
preted to have the same origin as the between-event responses32 and 
was present despite the fixed clip length and trial structure.

Boundary cells respond to both SBs and HBs, whereas event cells 
respond only to HBs (Fig. 3). These distinct responses may reflect 
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the population response during scene recognition (0–1.5 s relative to stimulus onset) and the encoding period (sliding window of 1.5 s and 100-ms step 
size). Correlations are aligned to the middle of the clip (NB) or boundaries (SB, HB) and are shown separately for correctly recognized familiar targets 
(a), correctly recognized new (not seen) foils (c), forgotten targets (b) and incorrectly recognized foils (false positives; d) in the scene recognition task. 
The same plots for all subjects are shown in Supplementary Figs. 10 and 11. e–h, Population summary. Correlation coefficients, as shown in a–d, averaged 
across all participants for NB (green), SB (blue) and HB (red) trials. Shaded areas represent ±s.e.m. across participants. The gray dashed horizontal lines 
denote the significance threshold (P < 0.01, one-tailed permutation test; Methods). Data are shown for correctly recognized familiar targets (e), forgotten 
targets (f), correctly recognized new foils (g) and incorrectly recognized foils (h) in the scene recognition task. See the same analyses after excluding 
boundary cells and event cells and only for boundary cells and event cells in Supplementary Fig. 12. i, The reinstated neural context was located in between 
the boundary and the tested frame. For trials with target frames extracted after boundaries, the time distance from when the correlation coefficient peaks 
to the time of SB and HB (filled circles: SB: −1.26 ± 0.38 s, t19 = 14.68, P = 8 × 10−12; HB: −1.28 ± 0.48 s, t19 = 11.80, P = 3 × 10−10; one-tailed t-test) or target 
frames (empty circles; SB: 1.53 ± 0.61 s, t19 = 11.18, P = 8 × 10−10; HB: 1.72 ± 1.03 s, t19 = 7.44, P = 5 × 10−7; one-tailed t-test) is shown. Negative/positive values 
denote the point of time of boundaries (negative) or target frames (positive) relative to when the correlation coefficient reaches its peak value. Asterisks 
indicate the significance of the peak correlation leading the time of target frames. See the same analyses with the correlation computed using different 
window sizes in Supplementary Fig. 13. j–m, Population summary (confidence). Reinstatement differed between frames remembered with high (filled 
circles) and low (empty circles) confidence responses for "old" decisions (correct targets (j) and incorrect foils (m)) in SB and HB conditions but not 
"new" decisions (correct foils (l) and incorrect targets (k)) and NB conditions, regardless of whether they were correct or incorrect (SB, correct targets: 
P = 5 × 10−10; HB, correct targets: P = 4 × 10−6; NB, correct targets: P = 0.79; SB, incorrect foils: P = 5 × 10−7; HB, incorrect foils: P = 5 × 10−5; NB, incorrect 
foils: P = 0.18; one-tailed t-test). Correlation coefficients are as shown in e–h averaged over 0–1 s after boundaries. n,o, Population summary (target–foil 
similarity). Correlation coefficients versus similarity ratings between targets and foils are plotted for correct (n; F2,54 = 2.182, P = 0.144; one-tailed ANOVA) 
and incorrect recognized foils (o; F2,54 = 10.67, P = 1 × 10−4; one-tailed ANOVA). Each dot represents one recording session. Black lines in i–m and o denote 
the mean results averaged across all recording sessions; ***P < 0.001.
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the hierarchical structure of episodic memory, with event cells rep-
resenting episodic transitions between distinct events, while bound-
ary cells represent more frequent but smaller episodic transitions 
within the same overall narrative. These findings provide evidence 
for the theory that event segmentation is a hierarchical dynamic 
procedure, with fine-to-coarse segmentations associated with dif-
ferent kinds of cognitive boundaries9. The anatomical location 
and response latency of the cells are also compatible with this pro-
posal; boundary cells respond first and are most common in the 
parahippocampal gyrus, whereas event cells respond later and are 
most common in the hippocampus (Supplementary Table 4). This 
distinction is also visible at the population level, with neural state 
shifts for SBs mainly driven by boundary cells, whereas HB-related 
state shifts occur later and are driven by a broader group of cells 
(Fig. 5d–h). Notably, the late HB-related state shifts are partially 
driven by cells that are not classified as event cells (a conclusion 
that holds even when using a more liberal definition of event cells at 
P < 0.01). This suggests that besides the early HB-related responses, 
there is a secondary later response to HBs that is encoded as a 
distributed population response. We hypothesize that the early 
responses of boundary cells reflect contextual changes detected in 
the higher-level visual areas33,34, while event cells are the result of a 
late output signal from a comparator operation between predicted 
and received signals35,36.

Responses of boundary or event cells bring to mind border and 
place cells in the rodent hippocampus16,37. As rodents move between 
compartments, place cells cluster at boundaries (for example, door-
ways)14, the crossing of which is followed by remapping18,19 or rein-
statement15,20 of a different set of hippocampal place fields. Here, 
boundary cells and event cells respond to transitions (boundaries) 
between different episodic contexts. Also, similar to place field 
remapping, the neural state changed abruptly following a bound-
ary. When participants are reexposed to familiar target frames dur-
ing the later recognition test, the neural state reinstates if the item 
is successfully recognized. Similar to place field reinstatement, the 
reinstated neural state is most similar to the one following boundar-
ies even before when the tested frame is shown. This finding pro-
vides insight into the question of what neural context is reinstated 
during mental time travel and memory search38–42. This finding 
also indicates that abrupt changes in neural context are important 
to demarcate periods of time that can be reinstated later. We note 
several differences between boundary and event cells and border 
cells in rodents. Border cells respond to physical boundaries and 
are observed in tasks in which rodents are extensively trained. By 
contrast, boundary or event cells in humans respond to cognitive 
boundaries in a variety of different videos, none of which inidividu-
als have seen before. This property is an essential requirement for a 
process to divide experience into episodes to shape episodic memo-
ries, which, by definition, occur only once in new environments.

What roles do boundary responses play in episodic memory? 
At the single-cell level, the firing rate of boundary cells predicts 
scene recognition memory strength and the clustering of event 
cells’ spike timing relative to theta phase predicts temporal order 
memory encoding success. This indicates that these two kinds of 
cells play distinct roles during encoding, with each strengthen-
ing only one kind of memory using a different mechanism. The 
response of boundary and event cells during encoding was ‘con-
tent invariant’ because they responded to many clips with varying 
content (Fig. 3). The role of boundary responses during retrieval 
was in guiding the points of time that would later be reinstated  
(Fig. 6i) but not participating in the reinstatement process itself. 
This is expected if boundary cells do not carry information about 
content. Confirming this, the results on reinstatement remain essen-
tially unchanged after excluding boundary and event cells from the 
analysis (Supplementary Fig. 12). Together, these findings suggest 
that boundary and event cells play two roles in episodic memory; 

they structure memories during encoding, and they serve as mark-
ers for periods of time that are later reinstated.
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Methods
Participants. Individuals with drug-resistant epilepsy. Twenty individuals with 
drug-resistant epilepsy volunteered for this study and gave their informed 
consents. The institutional review boards of Toronto Western Hospital and 
Cedars-Sinai Medical Center approved all protocols. The task was conducted 
while the individuals stayed in the hospital after implantation of depth electrodes 
for monitoring seizures. The location of the implanted electrodes was solely 
determined by clinical needs. The behavioral analyses included results from all  
20 individuals, and the neural results were analyzed across 19 individuals 
(participant 20 had no usable recordings; Supplementary Table 2).

Amazon Mechanical Turk (MTurk) workers. MTurk workers were recruited for 
similarity ratings (Similarity ratings), including 30 individuals (age 23.25 ± 3.42 
years, nine female) for rating the visual properties of different boundaries 
(Supplementary Table 1), 30 individuals (age 22.79 ± 5.73 years, 11 female) for 
rating the similarity between target and foil frames (Supplementary Fig. 2a) 
and 30 individuals (age 25.06 ± 6.11 years, 7 female) for performing the time 
discrimination task without an encoding session (Supplementary Fig. 2b). All 
control tasks conducted on Amazon MTurk workers were under the approval 
of the institutional review board of Boston Children’s Hospital, and informed 
consents were obtained with digital signatures for each individual.

Task. The task consisted of three parts: encoding, scene recognition and time 
discrimination (Fig. 1a,c,d).

Encoding. Participants watched a series of 90 unique clips with no sound and were 
instructed to remember as much of the clips as possible. Each trial started with a 
baseline period, a fixation cross reminding individuals to fixate at the center of the 
screen throughout the task. The duration of the baseline period ranged from 0.9 to 
1.1 s (randomized, sampled from uniform distribution). The fixation period was 
followed by the presentation of a video clip that contained either NBs (continuous 
movie shots; virtual NBs for analysis purposes were always located in the middle of 
the clip), SBs (cuts to a new scene within the same movie, one to three SBs per clip 
randomly distributed in the clips) or an HB (cuts to a new scene from a different 
movie, one HB per clip located at 4 s after the start of the clip). Examples of SBs 
and HBs are shown in Fig. 1b. A yes or no question related to the content of the 
clip (for example, is anyone in the clip wearing glasses?) appeared randomly after 
every four to eight clips.

Scene recognition. After watching all 90 clips, participants’ memory for the content 
of the videos was evaluated in a scene recognition test. During scene recognition, 
frames extracted from encoded clips (target frames) and frames from new, never 
shown clips (foil frames) were presented to the participants. Individuals were 
instructed to identify whether these frames were old or new (that is, whether they 
had seen the frame during the encoding session). To generate the testing frames 
for scene recognition, we first extracted two frames from each clip, one randomly 
pulled out from the first half of the clip and the other one from the second half. 
We then kept half of these frames extracted from the first/second half of the clip 
(in total, n = 90) as target frames and used the other half as templates to search 
for foil frames (in total, n = 90) from a different movie played by different actors/
actresses (n = 30), a different movie played by the same actors/actresses (n = 30) or 
the unpresented portion from the same movie played by the same actors/actress 
(n = 30) to introduce different levels of similarity between the target frames and 
foil frames. The total number of target and foil frames (30 target frames and 30 foil 
frames for each boundary type) and the average similarity level of foil frames were 
counterbalanced across different boundary types (F2,87 = 1.72, P = 0.19; rated by 
Amazon MTurk workers; Similarity ratings).

Time discrimination. After the scene recognition test, we evaluated participants’ 
memory about the temporal structure of the clip with a time discrimination test. In 
each trial, two frames (half of them picked at 1 s and 7 s and the other half picked 
at 3 s and 5 s of the clip) separated by different kinds of boundaries (NB, SB or HB) 
were extracted from the same video clip and were presented side by side. Participants 
were instructed to indicate which of the two frames (that is, ‘left’ or ‘right’) appeared 
first (earlier in time) in the videos they watched during encoding. In both the time 
discrimination and recognition memory test, the duration of the baseline period 
ranged from 0.45 to 0.55 s (randomized, sampled from uniform distribution).

Confidence measurement. All binary choices through the encoding session, 
scene recognition and time discrimination were made together with a subjective 
confidence judgment (that is, sure, less sure and very unsure). Thus, there were 
always six possible responses for each question. Given that there were fewer ‘less 
sure’ and ‘very unsure’ responses than ‘sure’ responses, we grouped ‘very unsure’ 
and ‘less sure’ responses together as ‘low confidence’ and labeled ‘sure’ responses as 
‘high confidence’ in Fig. 6j–m.

Similarity ratings. Visual properties of SBs and HBs. Both SB and HB transitions 
were accompanied by transient visual changes (cuts to a new scene), whereas there 
were no such visual changes for the NB condition. We quantified the visual changes 

of each boundary type by computing metrics that relate to pixel-level differences, 
luminance, contrast, complexity, entropy and color distribution between pre- and 
postboundary frames. In addition, to quantify visual differences not directly 
captured at the pixel level, we used pre- and postboundary frames as inputs for 
the AlexNet network (pretrained on ImageNet dataset)43, extracted the activation 
matrices from the layer ‘fc7’ for both images and computed the Euclidean distance 
between their activation matrices. Moreover, we collected perceptual ratings (that 
is, similarity ratings between pre- and postboundary frames) from Amazon MTurk 
workers. During similarity ratings, pre- and postboundary frames were presented 
side by side, and MTurk workers were instructed to rate the similarity of the image 
pairs by clicking on a scaling bar (0–1: 0, different; 1, identical). See results in 
Supplementary Table 1.

Similarity ratings between target and foil frames. When selecting foil frames, we 
used target frames as templates to search for foil frames with different similarity 
levels (Task). We presented the target frame with its corresponding foil frame 
side by side and instructed MTurk workers to rate the similarity between them 
(Supplementary Fig. 2a).

Time discrimination without encoding. To ensure that the time discrimination task 
could not be solved by pure reasoning, we recruited MTurk workers to perform the 
time discrimination test without watching clips (Supplementary Fig. 2b).

Electrophysiology. We recorded bilaterally from the amygdala, hippocampus  
and parahippocampal gyrus and other regions outside the MTL using hybrid  
depth electrodes (Ad-Tech Company), which contained eight microwires  
(40 μm in diameter) at the tip of each electrode shank. For each microwire, 
broadband signals (0.1–9,000 Hz filtered) were recorded at 32 kHz using the 
ATLAS system (Neuralynx).

Spike sorting and quality metrics of single units. The recorded signals were 
filtered offline in the 300- to 3,000-Hz band with a zero-phase lag filter. Spikes 
were detected and sorted using the semiautomated template-matching algorithm 
Osort44,45 v4. We computed spike sorting quality metrics for all putative single units 
(Supplementary Fig. 5) to quantify our recording and sorting quality46–48.

Electrode localization. Electrode localization was based on postoperative MRI/
computed tomography scans. We co-registered postoperative and preoperative 
MRIs using Freesurfer’s mri_robust_register49. To summarize electrode positions 
and to provide across-study comparability, we aligned each participant’s 
preoperative scan to the CIT168 template brain in MNI152 coordinates50 using 
a concatenation of an affine transformation followed by a symmetric image 
normalization (SyN) diffeomorphic transform51. The MNI coordinates of the right 
microwires from the same electrode shank were marked as one location. MNI 
coordinates of microwires with putative neurons detected across all participants 
were plotted on a template brain for illustration (Fig. 1e).

Data analyses. Boundary cell. For each recorded neuron, we counted spikes within 
the 0- to 1-s (postboundary) and −1- to 0-s time interval (baseline) relative to 
boundaries during encoding. A cell was considered a boundary cell if it met the 
following criteria: (1) its spike counts within postboundary time windows were 
significantly different from its spike count within baseline time windows for SB and 
HB but not for NB (P < 0.05, permutation t-test), and (2) its spike counts within 
postboundary time windows were significantly greater in SB and HB than NB 
(P < 0.05, permutation t-test).

Event cell. A cell was considered an event cell if it met the following criteria:  
(1) its spike counts within postboundary time windows were significantly  
different from its spike count within baseline time windows for HB but not  
for NB and SB (P < 0.05, permutation t-test), and (2) its spike counts within 
postboundary time windows were significantly greater in HB than NB and SB 
(P < 0.05, permutation I-test).

Boundary and event cell responses to clip onsets and offsets. For each selected 
boundary cell and event cells, we counted spikes within the 0- to 1-s (post)  
and −1- to 0-s (pre) time interval relative to clip onsets/offsets during encoding 
for clips with NB, SB and HB separately. The boundary cell or event cell was 
considered as not responding to clip onsets/offsets if their spike counts within 
each boundary condition did not differ between post- and prewindow (P > 0.05, 
permutation t-test).

Phase-tuning cells. We computed the MRL for the theta band phases of all spikes 
fired within a 0- to 1-s window following a boundary and −1 to 0 s preceding a 
boundary (baseline) during encoding. We also computed the MRLs in the 0- to 
1-s postboundary time window separately for spikes fired in trials that were later 
remembered (correct) versus forgotten (incorrect) during the scene recognition 
and time discrimination task. We defined a cell as a ‘phase-tuning neuron’ if it 
met the following criteria: (1) its MRL within the postboundary time window was 
significantly different from its MRL within the baseline time window for SB and 
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HB but not for NB trials (P < 0.05, permutation t-test), and (2) its MRL within 
the postboundary time window was significantly different between correct and 
incorrect trials in either the scene recognition and/or the time discrimination tasks 
(P < 0.05, permutation t-test).

Chance level for cell response analyses. To estimate the number of neurons that 
would be considered boundary cells or event cells by chance, we repeated the same 
procedures for boundary cell and event cell analyses after randomly shuffling 
the trial labels (NB, SB and HB) 1,000 times. For each iteration, we obtained the 
proportion of selected boundary cells and event cells relative to the total number of 
neurons within each region. These 1,000 values formed the empirically estimated 
null distribution for the proportion of boundary cells and event cells expected by 
chance. A region was considered to have a significant amount of boundary cells 
or event cells if its actual fraction of significant cells exceeded 95% of the null 
distribution (Supplementary Table 4; P < 0.05).

Association between spiking activity during encoding and later memory 
retrieval accuracy. Firing rate modulation. For each boundary cell and event cell, 
we grouped its spike activity within 0 to 1 s after boundaries during encoding 
based on participants’ subsequent memory performance either in the scene 
recognition task (correct versus incorrect recognition) or the time discrimination 
task (correct versus incorrect discrimination). We then computed the firing rate 
as a function of time (bin size = 200 ms, step size = 2 ms) for each trial, which 
was further z score-normalized using the mean and s.d. of the firing rate across 
the whole trial. For each boundary cell and event cell, we then computed the 
mean z-scored firing rate within 0- to 1-s time intervals relative to boundaries 
for each trial and averaged this value across trials within each boundary type. 
The resulting values across all boundary cells and event cells were used for 
comparisons across NB, SB and HB conditions (Fig. 4c,g and Extended Data 
Figs. 6c and 7c).

Phase modulation. For each spike of each boundary cell and event cell, we 
computed the phase of the spike relative to the theta frequency band-filtered 
LFP signals recorded from the same microwire. To eliminate potential 
contamination by the spike waveform, we removed the LFP signal within the 
3 ms around each spike and replaced it with a linear interpolation. The cleaned 
LFP signals were then bandpass filtered between 1 and 300 Hz (a zero-phase 
delay finite impulse response filter with Hamming window) and downsampled 
from 32 kHz to 500 Hz. We performed automatic artifact rejection52 and manual 
visual inspection (using ft_databrowser.m from Fieldtrip toolbox53 version 
20190527) to remove large transient signal changes from the downsampled 
LFPs. Next, we extracted neural activity within the theta band by bandpass 
filtering in the 4- to 8-Hz band (eegfilt.m function in EEGLAB toolbox54, a 
two-way, zero-phase lag, least-squares finite impulse response filter to prevent 
phase distortion), followed by the Hilbert transform to obtain theta phase as 
a function of time. We then extracted the phase for each spike (that is, spike 
phases) by boundary cells and event cells. The phase-locking strength of each 
boundary cell or event cell was quantified as the MRL of all spike phases of 
all spikes that occurred within a 0- to 1-s window after boundaries (0, no 
phase locking; 1, strongest phase locking). The resulting MRL values were 
then compared between trials with correct or incorrect subsequent memory 
performance for NB, SB and HB trials separately (Fig. 4d,h and Extended  
Data Figs. 6d and 7d). The computation of MRL is sensitive to the number  
of spikes. Therefore, the comparison of MRL between correct and incorrect 
trials was conducted with balanced spike counts.

State space analyses. Neural state trajectories. For each trial, we binned each 
neuron’s spike counts during encoding into non-overlapping 10-ms-wide 
bins, followed by smoothing with a 200-ms s.d. Gaussian kernel and z score 
normalization (mean and s.d. were calculated across the entire trial). We used 
these z-scored smoothed spike density estimates from all recorded MTL cells 
across all participants to form a pseudopopulation. We applied PCA to reduce 
the dimensionality of the pseudopopulation (MATLAB R2019b function svd.m). 
We then rank ordered the resulting PCs by their explained variance (function 
dpca_explainedVariance.m from dpca toolbox55) and plotted the average neural 
state trajectories for each boundary type in a three-dimensional space constructed 
by the top three PC components (Fig. 5a–c).

MDD. MDD was defined as the Euclidean distance between two points in the 
PC space (with all the first n PCs that accounted for >99% explained variance). 
Note that while this space captured 99% of explained variance, it was nevertheless 
substantially lower dimensional than the original space.

AAUC MDD. AUC MDD was defined as the cumulative sum of all Euclidean 
distance values within the 0- to 1-s time window after boundaries (in the PC space).

Reinstatement of neural context. This analysis was done separately for 
each session of simultaneously recorded neurons and did not rely on the 
pseudopopulations defined in the previous section.

Correlation between encoding and retrieval. Neural activity was quantified for each 
neuron in 1.5-s-wide bins and a step size of 100 ms. We computed the Pearson 
correlation coefficients (corrcoef.m from MATLAB R2019b) between the neural 
population activity during scene recognition (1 time bin × number of neurons) and 
encoding (80 time bins × number of neurons) at each time step.

Significant correlation threshold. We computed the same correlation values after 
randomly shuffling the trial labels (that is, disrupting the correspondence between 
encoding and scene recognition trials) to obtain the average correlation strength 
across trials and neurons expected by chance. This procedure was repeated 1,000 
times to form a null distribution, in which the 2.5th and 97.5th percentile values 
were used as the threshold to determine significance of the actual correlation 
values (dashed horizontal lines in Fig. 6).

Statistics and reproducibility. No statistical method was used to predetermine 
sample size, but our sample sizes are similar to those reported in previous 
publications46,56. Data collection and analysis were not performed blind to the 
conditions of the experiments. The experiments were not randomized. No data 
were excluded from the analyses. For comparisons between two groups, we used 
the permutation t-test statistic, and for comparisons between more than two 
groups, we used a parametric one-way ANOVA. For statistical thresholding, 
permutation tests were conducted to generate a null distribution estimated 
from 1,000 runs on data with scrambled labels, which avoids the assumption of 
normality when evaluating significance.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data (in NWB format) that supports the key findings of this study 
are publicly available on the DANDI archive (https://doi.org/10.48324/
dandi.000207/0.220216.0323).

Code availability
Codes that support the key findings of this study are publicly available on GitHub 
(https://github.com/rutishauserlab/cogboundary-zheng).
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Extended Data Fig. 1 | Electrode locations in MNI coordinates, Related to Fig. 1. a-c, Each dot is the location of a microwire bundle in either the amygdala 
(cyan), hippocampus (yellow) or parahippocampus (red) on which at least one event or boundary cell was recorded, also presented in a template brain in 
Fig. 1e. Coordinates are in Montreal Neurological Institute (MNI) 152 space, here plotted on top of the CIT168 brain template for axial (a), coronal (b), and 
sagittal (c) view (see Methods).
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Extended Data Fig. 2 | Participants’ performance in the scene recognition task did not differ significantly across different boundary types, Related 
to Fig. 2. a-c, Behavior quantified by accuracy (a), reaction time (b), and confidence level (c) across all trials. Results are shown for boundary type NB 
(green), SB (blue), and HB (red) during the scene recognition task. The horizontal dashed lines in (a) show chance levels (0.5) and in (c) show the 
maximum possible confidence value (3 = high confidence). Each dot represents one recording session. Black lines in (a-c) denote the mean results 
averaged across all recording sessions. One-way ANOVA between NB/SB/HB, degrees of freedom = (2, 57).
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Extended Data Fig. 3 | Boundary cells and event cells do not respond to clip onsets and clip offsets during encoding, Related to Fig. 3. a, Responses 
during the encoding stage from the same example boundary cells shown in Fig. 3a,b aligned to the clip onsets. b, Firing rates of all 42 boundary cells (solid 
and dashed arrows denote the examples in a) during the encoding stage aligned to the clip onsets, averaged over trials within each boundary type and 
normalized to each neuron’s maximum firing rate throughout the entire task (see color scale on bottom). c, Responses during the encoding stage from 
the same example boundary cells shown in (a) aligned to the clip offsets. d, Firing rates of all 42 boundary cells during the encoding stage aligned to the 
clip offsets using the same format as (b). e, Responses during the encoding stage from the same example event cells shown in Fig. 3e,f aligned to the 
clip onsets. f, Firing rates of all 36 event cells (solid and dashed arrows denote the examples in e) during the encoding stage aligned to clip onsets, using 
the same format as (b). g, Responses during the encoding stage from the same example event cells shown in € aligned to the clip offsets. h, Firing rates 
of all 36 event cells during the encoding stage aligned to the clip offsets using the same format as (b). For (a), (c), (e), (f), Top: raster plot color coded 
for different boundary types (green: NB; blue: SB; red: HB). Bottom: Post-stimulus time histogram (bin size = 200 ms, step size = 2 ms, shaded areas 
represented ± s.e.m. across trials). (b and f) are copied from Fig. 3d,h for comparison purposes.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Boundary cells and event cells do not respond to image onsets and offsets during scene recognition and time discrimination, 
Related to Fig. 3. a-b, Responses during scene recognition from the same example boundary cells shown in Fig. 3a,b aligned to stimulus onset. c, Firing 
rates of all 42 boundary cells (solid and dashed arrows denote the examples in a and b) during scene recognition aligned to the stimulus onsets, averaged 
over trials within each boundary type and normalized to each neuron’s maximum firing rate throughout the entire task (see color scale on bottom). 
d-e, Responses during time discrimination from the same example boundary cells shown in (a and b) aligned to stimulus onset. f, Firing rates of all 42 
boundary cells during time discrimination aligned to the stimulus onset using the same format as in c. g-h, Responses during scene recognition from the 
same example event cells shown in Fig. 3e,f aligned to stimulus onsets. i, Firing rates of all 36 event cells (solid and dashed arrows denote the examples 
in g and h) during scene recognition aligned to the stimulus onset, using the same format as in a and b. j, Responses during time discrimination from the 
same example event cells shown in g and h aligned to stimulus onset. k, Firing rates of all 36 event cells during time discrimination aligned to the stimulus 
onsets using the same format as in f. For (a), (b), (d), (e), (g), (h), (j), (k), Top: raster plot color coded for different boundary types (green: NB; blue: SB; 
red: HB). Bottom: Post-stimulus time histogram (bin size = 200 ms, step size = 2 ms, shaded areas represented ± s.e.m. across trials).
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Extended Data Fig. 5 | Neurons that respond to clip onsets and clip offsets do not overlap with boundary and event cells, Related to Fig. 3.  
a-b, Responses during the encoding stage from an example clip onset-responsive cell located in the amygdala aligned to clip onsets (a), and boundaries 
(b). Top: raster plots. Bottom: Post-stimulus time histogram (bin size = 200 ms, step size = 2 ms, shaded areas represented ± s.e.m. across trials). A cell 
was considered as a clip onset cell if its firing rate differed significantly between a 1 s window immediate before and after clip onset (p < 0.05, one-tailed 
permutation t-test). c-d, Responses during the encoding stage from an example clip offset-responsive cell located in the hippocampus aligned to clip 
offsets (c), and boundaries (d). A cell was considered as a clip offset cell if its firing rate differed significantly between a 1 s window immediate before 
and after clip offsets (p < 0.05, one-tailed permutation t-test). Same format as (a and b). e, Seventy six out of 580 cells in the MTL qualified as clip 
onset-responsive cells and four out of 580 cells in the MTL qualified as clip offset-responsive cells. None of these were also selected as either boundary or 
event cells.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Responses of boundary cells during encoding grouped by memory outcomes from the time discrimination task, Related to Fig. 4.  
a1-a2, Response of the same example boundary cell in Fig. 4a and Fig. 4b. During encoding, this cell responded to SB and HB transitions regardless of whether 
the temporal order of the clip was later correctly (a1) or incorrectly (a2) retrieved in the time discrimination test. Shaded areas represented ± s.e.m. across 
trials. b1- b2, Left: timing of spikes from the same boundary cell shown in (a1 and a2) relative to theta phase calculated from the local field potentials, for clips 
whose temporal order were later correctly (b1) or incorrectly (b2) retrieved. Right: phase distribution of spike times within [0, 1] seconds time windows 
following the middle of the clip (NB) or boundary (SB, HB) for clips whose temporal order were later correctly (b1) or incorrectly (b2) retrieved. c-d, Population 
summary for all 42 boundary cells. c, Z-scored firing rate (0–1 s after boundaries during encoding) for each boundary type did not differ between clips whose 
temporal orders were later correctly (color filled) vs. incorrectly (empty) retrieved. d, Mean resultant length (MRL) of spike times (relative to theta phases, 
0–1 s after boundaries during encoding) across all boundary cells for each boundary type did not differ between clips whose temporal orders were later 
correctly (color filled) vs. incorrectly (empty) retrieved. Each dot represents one boundary cell. Black lines in c and d denote the mean results averaged across 
all boundary cells. One-tailed permutation t-test, degrees of freedom = (1, 82).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Responses of event cells during encoding grouped by memory outcomes from the scene recognition stage, Related to Fig. 4. 
a1-a2, Response of the same example event cell in Fig. 4e,f. During encoding, this cell responded to HB transitions regardless of whether frames were later 
correctly (a1) or incorrectly (a2) recognized in the scene recognition task. Shaded areas represented ± s.e.m. across trials. b1-b2, Left: timing of spikes from 
the same event cell shown in a1-a2 relative to theta phase calculated from the local field potentials, for frames that were later correctly (b1) or incorrectly 
(b2) recognized. Right: phase distribution of spike times within [0, 1] seconds time windows following the middle of the clip (NB) or boundary (SB, 
HB) for frames that were later correctly (b1) or incorrectly (b2) recognized. c-d, Population summary for all 36 event cells. c, Z-scored firing rate (0–1 s 
after boundaries during encoding) for each boundary type did not differ between frames that were later correctly (color filled) vs. incorrectly (empty) 
recognized. d, Mean resultant length (MRL) of spike times (relative to theta phases, 0–1 s after boundaries during encoding) across all event cells for each 
boundary type did not differ between frames that were later correctly (color filled) vs. incorrectly (empty) recognized. Each dot represents one event cell. 
Black lines in c and d denote the mean results averaged across all event cells (c, d). One-tailed permutation t-test, degree of freedom = (1, 70).
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Extended Data Fig. 8 | Neural state changes following soft and hard boundaries shown for individual participants, Related to Fig. 5. Multidimensional 
distance (MDD, see Fig. 5d–g for definition) as a function of time aligned to the middle of the clip (green: NB) and boundaries (blue: SB, red: HB). MDD 
is shown for all MTL cells within each participant (for example, ‘Sub1 in B1 E2 O32’ denotes MDD computed by 1 boundary cell, 2 event cells and 32 other 
MTL cells in participant 1). Shaded areas represent ± s.e.m. across trials.
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Extended Data Fig. 9 | Clip-onsets responsive neurons respond to both correct and incorrect targets during scene recognition, Related to Fig. 6.  
a-b, Responses during scene recognition from an example clip onset-responsive cell (see definition in Extended Data Fig. 12) located in the amygdala 
aligned to image onsets in correctly recognized target (a) and forgotten target (b) trials. Top: raster plots. Bottom: Post-stimulus time histogram  
(bin size = 200 ms, step size = 2 ms, shaded areas represented ± s.e.m. across trials). c, Comparison (across all 76 identified clip-onsets responsive 
neurons) between mean firing rates averaged within [0 1.5]s after image onsets for remembered vs forgotten targets. On each box, the central mark 
indicates the mean results averaged across all clip-onsets responsive neurons, and the bottom and top edges of the box indicate the 25th and 75th 
percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using  
the ‘+‘ marker symbol. One-way ANOVA, degrees of freedom = (1, 150).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Neurophysiological data were collected using the ATLAS system (Neuralynx Inc., Bozeman, Montana, USA) and hybrid depth electrodes (Ad-

Tech company, Oak Creek, Wisconsin, USA). See detailed description in the Methods section.

Data analysis Data analyses were performed using MATLAB R2019b and Fieldtrip Toolbox 20190527. Spike sorting was done using the open source toolbox 

OSort v4 (https://rutishauserlab.org/osort). Anatomical data analysis was performed using FreeSurfer version 6 (surfer.nmr.mgh.harvard.edu) 

and dcm2niix (github.com/rordenlab/dcm2niix). Specific functions used in this study was described in the Methods section.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

We have made the data and code that supports the findings of this study publicly available on the NIH DANDI archive and Github. The access links are listed in the 

"Data availability" and "Code availability" section. 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Our analysis is based on 985 neurons recorded from 20 subjects. This sample size is very large compared to similar studies. No statistical 

methods were used to pre-determine sample sizes but our sample sizes are similar to those reported in previous publications.

Data exclusions No data were excluded

Replication The analyses were performed at single neuron level. The effect reported in the study were consistent and replicated across 20 subjects. 

Randomization Our design is a within-subject analysis: all the subjects were in the same analysis set and had all types of trials. We performed permutation 

testing where appropriate to ensure statistical validity of our results.

Blinding Subjects were not aware of the goals of the study. There was no subjective measurement or decision that the investigator needed to make 

during the experiment. All the data are collected and analyzed off-line. Data collection and analysis were not performed blind to the 

conditions of the experiments as conditional information is required for further analyses. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
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Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics We studied a group of 20 subjects where 12 were female, and the average age was 40.65 years old (range 20-68), and all 

were diagnosed with pharmacologically-intractable epilepsy. Supplementary table 3 provides information about each subject. 

90 Amazon Mechanical Turk Workers (27 females, age range 21 - 43) have participated in our behavioral only tasks.

Recruitment Subjects undergoing invasive electrophysiological recording for clinical purposes were recruited and consented to participate 

in this research study. Subjects who was capable of and was willing to participate the task were recruited. All the Amazon 

Mechanical Turk Workers recruited in this study were under 50 years old. Their behavioral results might not be generalizable 

to the older age group.

Ethics oversight The study was approved by the institutional review boards of Toronto Western Hospital, Cedars-Sinai Medical Center and 

Boston Children's Hospital. Subjects provided informed consent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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