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Abstract

Our brains do object recognition effortlessly all the time. However, the mechanisms that pro-
duce this process remain unclear. There has been notable progress in AI algorithms that can
learn to perform different types of pattern recognition tasks. By and large, many of these suc-
cesses are founded upon supervised training with large number of examples. In contrast, animals
including humans excelt at unsupervised few-shot learning. We studied a paradigm whereby
human subjects were able to rapidly learn to recognize novel images using “Mooney images”.
Mooney images consist of black and white blurred objects that are extremely hard to recognize.
Recognition rates for these images are close to 0%, yet humans can learn to rapidly recognize
them via few-shot learning. We implemented learning by showing subjects the grayscale image
counterparts, which are easily recognizable. Even after a single exposure to the grayscale images,
subjects dramatically improve their ability to interpret the Mooney images. Here recent exper-
imental findings about single neuron signature of rapid learning are summarized. To evaluate
the mechanisms involved in this form of rapid learning, we collaborated with neurosurgeons who
implant electrodes in patients with epilepsy. We worked with subjects with pharmacologically
intractable epilepsy implanted with electrodes to localize the seizure focus and recorded action
potentials from individual neurons along key areas of the occipital and temporal lobes. Visual
representations elicited by Mooney images as well as grayscale images could be observed, crucial
regions for object recognition in the brain have been identified and category-selective responses
could be discriminated. Furthermore, we built a machine learning pipeline to decode whether
subjects had learnt to recognize the images from the neuronal population activity.
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1 Introduction

One key ability of human brain is object recognition, which refers to the identification of objects
based on visual input. This process is rapid, effortless and can impressively happen even after
a single exposure. Recognizing a car or a familiar face at a simple glance, seems so easy, so
automatic! The brain is capable of comparing visual stimuli with memorized information to
accomplish recognition behavior and tasks that assess recognition memory have become increas-
ingly useful tools for investigating the neural basis of object recognition.

Here, we analyzed neuronal responses evoked by Mooney images before and after recognition
induced by a learning phase using their grayscale corresponding. Mooney images are two-tone
black and white pictures of one object that can be very difficult to recognize. However, after
seeing the grayscale image, observers often directly perceive the hidden object, like an eureka
effect. From meaningless black and white patches, the image appears as a coherent percept of an
object. The cognitive task consisted of several trials during which subjects had to judge by but-
ton press whether they recognized the content of the image after brief presentations (500 ms) or
not. After several unrecognized presentations of a Mooney image, the Mooney and corresponding
grayscale photograph pairs were shown back to back to enforce learning. Finally, the Mooney
images were presented again alone. We recorded single unit responses in the human brain, mostly
from the medial temporal lobe, from pharmacologically intractable epilepsy patients. They were
implanted with electrodes, containing several microwires each, in order to determine the location
of the seizure.

How can intracranial field potential recordings help us decoding the process underlying object
recognition and understand the mechanisms by which top-down inputs can rapidly orchestrate
plastic changes in neuronal circuitry?

The interest of Mooney images lies in the fact that there are stimuli that lead to recognition
that is not necessarily obvious or that can even be ambiguous. This makes it possible to report
neural changes occurring during differences in perception. Thus, only the variations related to
the change in interpretation can be highlighted.

1.1 Neuroscience of Visual Object Recognition

Object recognition is the ability to perceive an object’s physical properties (such as shape, colour
and texture). It involves a wide variety of functions including the recognition of specific individ-
ual objects, their classification into a single category and the understanding of its use and how
it relates to others. This recognition requires memory to judge a previously encountered item as
familiar and matching with structural descriptions stored in the brain.

Visual recognition processing can be viewed as a bottom-up hierarchy in which visual stimuli are
processed sequentially by an intricate system of interconnecting neurons. All the information
travels in the form of nerve impulses that are triggered by the photoreceptors in the retina which
are neurons specialized on the reception and conduction of visual stimuli [1]. It is then trans-
mitted through the optic nerve in the eye. The two optic nerves travel toward, and meet at the
optic chiasm, which lies in the subarachnoid space of the suprasellar cistern [2]. From the optic
chiasm, the same axons continue through the optic tract until they synapse with neurons situated
in the lateral geniculate nucleus (LGN), a relay system located in the thalamus [3]. From the
LGN, axons then carry visual information to the visual cortex through the optic radiations. The
pathway can be divided into the upper optic radiation that carries fibers through the parietal
lobe to reach the visual cortex and the lower optic radiation where the fibers travel through the
temporal lobe, via a pathway known as Meyers’ loop, to reach the visual cortex located in the
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occipital lobe [4].

Two information processing pathways originate in the occipital cortex, dorsal, which goes to
parietal cortex and ventral, which goes to temporal cortex [5]. This two-streams hypothesis was
first proposed by Ungerleider and Mishkin (1982) [6] who argued that humans possess two dis-
tinct visual systems. The dorsal stream is involved with processing the object’s spatial location
("how"), and the ventral stream is involved in the processing of visual object identification and
recognition ("what") [7]. The latter, involved in object recognition, is of particular interest in
this study. This pathway consists of visual input from primary visual cortex V1 relayed through
areas V2 and V4, and finally projected into the inferior temporal cortex.

Figure 1: Central Visual Pathway [8]

While areas V1, V2, and V4 are involved in the processing of basic level visual features such as
edges, contours, and color, the inferior temporal cortex is suggested to process complex objects [8].
It also makes reciprocal connections with the structures in the limbic system. This subcortical
structure plays an important role in processing memory and emotional responses [9], both of
which are significant components to visual perception. The two large limbic system structures,
the amygdala and hippocampus have important roles in memory. Memory can be categorized as
explicit or implicit and involves different brain regions. Explicit memory involves the recall of
previously learned information that requires conscious effort to receive, while implicit memory
is unconscious and effortless [10]. The amygdala, involved by explicit memory, links visual
stimuli with emotions and gives value to items and is associated to implicit basic learning. The
hippocampus, on its side, is responsible for learning and memory and helps establish memories of
visual stimuli [11]. Both implicit and explicit processes seem to contribute to object recognition
and modulate activation that comprise frontal, temporal, parietal and occipital regions [12].

1.2 Responses of single neurons in different human brain regions during ob-
ject recognition

The neuronal connections originating from the visual cortex are projected to different other cor-
tical areas in the temporal and frontal lobes and to numerous subcortical structures. The medial
temporal lobe (MTL), including the hippocampus, enthorinal cortex, amygdala and parahip-
pocampal cortex is known to play an essential role in recognition memory [13]. Within the
temporal lobe, the perirhinal cortex is also a major component of recognition memory. It rapidly
processes information about the novelty or prior occurrence of individual stimulus items [14].
The hippocampus, due to his critical anatomic position recevies converging uni- and multimodal
input from neocortical regions and contribute to memory formation [15]. However, entire vi-
sual cortical pathways and connecting medial temporal lobe seem important for both perception
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and visual memory and there is no functional separation of areas [16]. At the neuronal level,
crucial changes could mostly be observed in feedforward neuronal processing during learning in
high visual areas. Nevertheless, learning can also be processed through changes in V1 visual
cortex based on top-down feedback processing. Thus, early visual areas like the primary visual
cortex (V1) have been shown to also be involved in object learning [17]. Indeed, traditional
models of object recognition pathway state that processing within the visual system proceeds
in a bottom-up, feedforward manner from retina to higher cortical areas [18]. Recent researches
have demonstrated strong evidence that recurrent feedback circuits from higher visual areas to
lower ones are also engaged during the first hundreds of milliseconds of visual processing and
might have contributions to sensory encoding that rely upon top-down [19]. The timing of the
responses is a promising tool to distinguish between bottom-up and top-down processing.

Moreover, we know that as we move forward from one layer to a higher one in the visual hier-
archy, the neuronal response properties become increasingly complex. In monkeys for example,
some V4 neurons respond selectively to particular color, pattern or luminance contrast and IT
cells respond only for a specific shape [20]. Additionally, certain neurons respond only to a re-
stricted set of exemplars of a given category [21]. A remarkable degree of category specific firing
of individuals neurons were previously found, with a selective response to visual stimuli, includ-
ing faces, natural scenes, famous people and animals [22]. While some incredible progress has
been made to describe visual neural plasticity, understanding single-unit responses has proven
to be extremely challenging and yet, few studies have reported to examine the neural activity
during conscious recognition at the neuronal level and millisecond temporal resolution. Most
of our knowledge at the neuronal level about the visual system comes from studies in animal
models such as macaque monkeys, cats, rats or mice. Indeed, researchers are limited by ethical
consideration and can’t do all the measurements they want in a healthy person. Thus, many
recordings of neural activity come from the brains of epileptic patients who are required to have
brain surgery in order to determine the location of the seizure. Epileptic seizures are defined as
jerky or trembling movements in the body due to abnormal neuronal activity and can result in
damage to the brain or other parts of the body [23]. We benefit from the fact that these patients
need to be implanted for clinical reasons to record physiological data. Here, we take this rare
opportunity to highlight the recruitment of neurons that change their firing patterns either in
an excitatory or an inhibitory manner related to encoding and retrieval of objects. In addition,
we have the chance to have electrodes in several regions of the brain and not to be limited to
one location as it is the case in many studies.

1.3 Motivation

Understanding how humans achieve recognition is not only of interest to neuroscientists but also
to researchers who are implicated in building computational models that mimic the behavior of
real neurons to a high degree of accuracy. Human models are central to the development of these
systems and have helped enable the successful emergence of the first generation of BMIs. Those
technologies present many potential clinical uses. Recent studies have shown that brain-machine
interfaces (BMIs) could offer great potential for applications such as generating images in the
mind of a blind person [24]. Indeed, researchers succeeded in identifying patterns of electrical
activity in neurons that correspond to a person’s attempts to recognize an image, so that the
instructions can then be fed to a cortical visual prosthetics.

The research topic of this thesis is fully in line with one of the main goals of the Kreiman lab:
elucidating how neural circuits compute and building biologically-inspired artificial intelligence.
We now know that bringing together artificial intelligence and neuroscience can be beneficial for
both. The architecture of Deep Convolutional Neural Networks (DCNNs) often closely mimics
the functioning of the ventral visual stream. These networks consist of layers of nodes that are
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analogous to neurons. They have revolutionized machine vision and can now outerperform hu-
man vision in many object recognition tasks. More recently, Spiking Neural Networks (SNNs),
often defined as third generation neural networks have shown promising results and competitive
capabilities to deal with numerous cognitive tasks. SNNs are inspired by information processing
in biology and operate using spikes, which are discrete events [25]. A clear example of how neural
representation in the visual system can be leveraged to build computational models is given by
the work of Yamins and his colleagues. They constructed their deep neural network according
to the same retinotopic, hierarchical architecture as the brain to predict the brain activity of a
monkey [26]. In a more applied way to our project, contours are ambiguous in Mooney images
which makes integration of information difficult for both human and computer vision systems.
Current computer vision techniques fail to recognize Mooney images and understanding how the
visual-processing pathways in the brain are organized could enlighten us on how the eyes take
in visual information. Our findings could reveal opportunities to solve issues in computer vision
like face recognition in noise, occlusion and darkness, which are often met in video surveillance.

Moreover, neurophysiological recordings in humans can help us understand the computations
performed by visual cortex. These discoveries could play a critical role to help the large number
of subjects with disorders caused by damage to the parts of the brain that process vision. The
study of the responses of single neuron and how this correlates to conscious recognition, whether
the activity changed with stimulus, whether this activity depended on the subjects’ recognition.
The answers of these questions is vital not only for uncovering the neural substrates of these key
aspects of learning, but also for understanding the processes of associative visual agnosia and
the validity of visual models of this syndrome. Visual agnosia is an impairment in recognizing
visually presented objects [27]. This inability is usually caused by lesions on the parietal, tem-
poral, or occipital lobes of the brain. These lobes store semantic information and language [28].
In such cases, messages from the retina of the eye get perfectly transmitted along the optic nerve
and visual loss is associated with brain damage.

From another point of view, remembering the content of previously seen Mooney images could
be at the origin of a new authentication system. Very promising results have shown that implicit
visual memory-based authentication could reduce the password burden [29]. Forgot your pass-
word? How many times have you seen this question appear on your screen? Two-tone images
can provide an excellent opportunity for realizing implicit authentication and outperform current
implicit memory-based methods. The enrollment phase consists in showing both the Mooney
images and their corresponding original images to create a link in the user’s memory. This phase
is similar to what we do in our experiment and reveals that applying the knowledge about how
humans store and recall information can be used for real-world applications.

Other possible findings may lead to identify neuronal properties that facilitate the recognition of
black and white images. Previous studies showed that 4-5 year-old children are generally unable
to recognize Mooney images even after showing them the corresponding grayscale photograph
[30]. These results point the ability of the brain to undergo perceptual reorganization over time.
This study could allow to know more about the development of top-down mechanisms of per-
ceptual learning and improve young children’s interpretation of images.

Understanding object recognition leads us to look at the particular human experience of the
Eureka effect or ‘Aha!’ moment of suddenly understanding a previously insolvable problem. Re-
search on this phenomenon started with Köhler’s observations on the problem-solving abilities
of chimpanzees [31] and is among the most fascinating mysteries of human cognition. Still, this
neuroscientific challenge remains poorly understood and our visual task can be used to assess
the perceptual learning component of Eureka moment.
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2 Experimental procedures

2.1 Subjects

Subjects were 13 patients (25–50 years old, 11 right-handed, 8 males) with epilepsy, admitted
into the hospital to localize the seizure foci for potential surgical resection. Thus, there is a high
variability in the number and location of electrodes across subjects. It should be noted that these
patients have neurological disorder; however, all the data was collected during periods without
any seizure events and most of it was from regions that were found to be nonepileptogenic. Basic
information about the 13 subjects are shown in Table 1:

Patient ID Gender Age
Subject 1 male 25
Subject 2 female 26
Subject 3 male 50
Subject 4 male 33
Subject 5 female 41
Subject 6 female 40
Subject 7 male 35
Subject 8 female 35
Subject 9 male 48
Subject 10 male 26
Subject 11 male 45
Subject 12 male 46
Subject 13 female 33

Table 1: Subjects Information

2.2 Recordings

Hybrid depth electrodes which contained eight sub-micron-diameter microwires at the tip of
each electrode shank were used. The locations of electrode implantation were selected based
exclusively on clinical reasons. Targets included the amygdala, entorhinal cortex, hippocampus,
occipital lobe, parahippocampal gyrus, anterior temporal lobe, posterior temporal lobe and pari-
etal cortex. The number of recording sites per subject ranged from 14 to 70, for a total of 1424
electrodes. Table 2 reports the number of electrodes in each anatomical region.

Anatomical Region # of channels # of clusters
Amygdala 170 337
Enthorhinal 38 49
Hippocampus 164 343
Occipital Lobe 73 163
Parahippocampal Gyrus 92 212
Anterior Temporal Lobe 47 90
Posterior Temporal Lobe 105 217
Parietal Cortex 8 13
Total 697 1424

Table 2: Distribution of electrode locations
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2.3 Stimulus presentation and task

The cognitive task (Figure 2 and Figure 3) consisted of several trials during which subjects had to
judge by button press whether they recognized the content of the image after brief presentations
(500 ms) or not. If the subject’s response was yes, the experimenter noted the answer as ’Y’ and
the subject was then asked to verbally provide the answer (for example camel, penguin, Eiffel
tower...). If the subject was correct, experimenter input another ‘Y’. If incorrect, experimenter
input ‘N’ response. If subject responded "no I did not understand the image", i.e., he/she acci-
dentally pressed the wrong button, experimenter input ‘N’. The stimuli were presented in blocks
of 60 images. In case of a negative response, indicating no recognition, or no button press, the
same image was presented again 1300 ms after the first one. After several unrecognized presenta-
tions of a Mooney image (preGS), the grayscale (GS) version of the same images were shown. If
the response was correct, the Mooney image version (postGS) was shown back to back with the
GS to reinforce learning. Finally, the Mooney images were presented again alone. Trials of the
preGS condition, that were recognized by the patient, as well as all trials that were not correctly
recognized in the GS and postGS conditions were not considered further. We recorded single unit
responses in the human brain, mostly from the medial temporal lobe, from pharmacologically in-
tractable epilepsy patients. They were implanted with electrodes, containing several microwires
each, in order to determine the location of the seizure. Between 5 and 10 images were presented
per section from several categories, including people, building, sports, clothes... Figure 4 shows
an example of a Mooney image and its grayscale corresponding belonging to the animal category.

Figure 2: Experimental Design
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Figure 3: Sequential presentation task and corresponding epochs

Figure 4: Example of a Mooney image and its grayscale corresponding

2.4 Spiking activity

The activity of neurons was recorded from extracellular electrodes capable of recording spiking
from multiple nearby neurons. The raw data were band-pass filtered between 300 and 3000 Hz
and thresholded for detection of potential spikes. Action potentials were then sorted using a clus-
tering algorithm and manually sorted as spikes or electrical noise [32]. This sorting corresponds
to the identification of which spike corresponds to which neuron.

2.5 Further processing

Matlab (MathWorks) was used for data analysis, including statistical analysis as well as data
visualization. For classification, we implemented machine learning algorithms in Python (Jupyter
lab) using scikit-learn library in addition to standard libraries (NumPy, Pandas, Matplotlib,
SciPy, Seaborn).
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3 Neurophysiological Data Analysis

Data was collected from epileptic patients willing to provide neurophysiological data while they
were implanted with electrodes for clinical purposes. Hence, the choice of the location of these
electrodes is dictated by medical reasons and involves recordings from areas of the brain not
related to vision.

3.1 Visual screening

Before doing any statistical analyses to find significant units, a visual screening (brief visual ex-
amination to look for potential variability) of neuronal responses has been carried out to identify
potentially interesting neurons and check that future tests do not miss beautiful responses. Two
fundamental methods are used to analyze spike trains of single neurons, which aim to charac-
terize their encoding properties: raster plots and peri-stimulus time histograms. They allow to
visually examine spiking activity, trial-by-trial, of a neuron over a period of 900 ms (from -200
ms before stimulus onset to 700 ms after) and show histograms of the times at which neurons
fire.

3.2 Visual responsiveness

Several statistical tests have been performed with the aim of identifying visually responsive
neurons. A non parametric permutation test was performed to compare the responses during
the 50 to 300 ms interval after stimulus onset to the baseline before stimulus presentation (-
250 to 0 ms) for every single cluster based on the number of spikes over that period. Non
parametric tests come with the advantage that no assumptions are made about the theoretical
underlying distribution of test statistics under the H0 (null hypothesis assuming that the mean
is the same between the two sample sets). Instead, the distribution is created from the data we
have by shuffling values 1000 times over the two different time windows (baseline and stimulus),
computing t-test and thus creating a distribution of t-values. No distinction is made between
the conditions for this statistical test and all trials are considered. Statistical significance is then
obtained by counting the number t-values that are more extreme (further to the right or left tail
of the distribution) than the original t-value and divide it by the total number of iterations to
obtain a p-value. A neuron was considered visually responsive when the test showed a significant
difference (p<0.01 or p>0.99) between the number of spikes for the baseline and the stimulus
epoch.
The t-value is computed as followed for two independent data samples:

t =
x̄1 − x̄2√
σ12

n1
+ σ22

n2

(1)

where x1 and x2 are the sample means, σ1 and σ2 are the sample standard deviations, and
n1 and n2 are the sample sizes.

Excitatory vs inhibitory responses
The response was termed "inhibitory" when it was significantly lower than the prestimulus base-
line and "excitatory" when it was higher.

3.3 Difference between conditions

3.3.1 Neural differences in single units following rapid learning

We first performed an analysis to see if there were differences in the firing characteristics between
preGS and postGS conditions only, as the main focus is the difference in response between the
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unrecognized versus the recognized identical images, rather than differences in stimuli response
that might be induced by a different type of stimuli in the GS condition. In order to test the
single neuron response to differences in stimuli, we performed t-tests comparing the firing rate in
the stimulus window for each neuron separately and for each examplar. An examplar is defined as
an image type (for example all images 10). The response of a neuron was considered statistically
different between two conditions if (i) the response was significantly different between preGS and
postGS for the stimulus time period, (ii) the response of the neuron was not different from one
condition to the other during baseline and (iii) the response of the neuron was different between
stimulus and baseline period. The second condition is necessary in order to eliminate non-task-
related effects. All channels that showed a significant difference (t-test, p ≤ 0.01 or p ≥ 0.99) for
the baseline window were not considered further. For the examplars, the same conditions were
applied at the image level.

3.3.2 Responses to stimulus features

We have also shown interest for modulation of firing rates between stimuli elicited by Mooney and
grayscale images. Several studies have demonstrated that contrast and luminance adaptation
alter neuronal coding [33] and we found interesting to explore the potential existence of specialized
neurons in the perception of either two-tone black and white images or pictures with different
shades of gray. To do so, we performed t-tests to see if the responses to the GS condition was
significantly different from the preGS and postGS. The response of a neuron was considered
statistically different for the GS condition if (i) the response was significantly different between
preGS vs GS and postGS vs GS for the stimulus time period, (ii) the response of the neuron was
not different from one condition to the other during baseline and (iii) the response of the neuron
was different between stimulus and baseline period.

3.4 Selective responses

A neuron was considered selective for a particular stimulus category (i.e. animal, people, build-
ing, sports) if (i) the response was significantly different from baseline, (ii) the response of the
neuron was different from one category to the others after stimulus onset and (iii) the response
of the neuron was not different from one category to the others during baseline. The differ-
ence were assessed by doing a one-way analysis of variance (ANOVA) using permutation tests
(two tailed, p<0.01 or p>0.99). In this analysis, stimuli were pooled according to the category
they belonged to. We simply permuted the number of spikes across categories, calculated an F
value (defined as the variation between sample means over the variation within the samples),
repeated this 1000 times, and found the percentage of repetitions in which the calculated val-
ues of F exceeded the Fs obtained from the original data. This is the p-value under the null
hypothesis. Subsequent pairwise t-test comparisons (two tailed, p<0.01 or p>0.99) between the
activity during this interval for the specific category and the rest of the categories had to show
a statistically significant change. We assessed significance of the response to different categories
of visual stimuli by conditions.

For neurons that showed visual selectivity, we further compared the results between the dif-
ferent conditions and illustrated it with a Venm diagram showing the number of neurons with
selective responses to one, two or three conditions. Moreover, for each visually selective neuron,
we plotted the categorical mean firing rates distribution in order to try to identify category spe-
cific responses.

We were also interested in the role of human brain regions in the representation of different
categories of visual stimuli and computed the importance of selective neurons in each region.
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3.5 Multiple-trial classification of intracranial data recordings in a object
recognition task using machine learning

Perception from the same visual stimuli can elicit detectable changes in firing rate recordings
and we were interested to see if machine learning classification was able to correctly distinguish
this changes with a high accuracy. Before going into deeper classification tasks, we first wanted
to determine if an object presentation could be distinguished from the vision of a blanck screen.
Classification was performed using data from the first 500 ms after each object was shown, from
t = 0 ms to t = +500 ms, relative to the image appearing on the screen and before stimulus onset
from t = -500 ms to t = 0 ms. A 250 ms time window was then used, with data collected from t
= -250 ms to t = 0 ms and from t = +50 ms to t = +300 ms. Previous studies have shown that
neural responses usually occur in the window between 50 ms and 300 ms post stimulus onset
[34]. Neurophysiological data collected before and after stimulus onset were respectively labelled
as ‘baseline’ or ‘stimulus’. We then trained a support vector machine (SVM) algorithm with a
linear kernel to classify the data into one of the two classes according to the presence or absence
of specific visual stimuli. This technique has given particularly good results in a wide range of
domains, including neural decoding problems in both rats and humans [35][36]. The objective
of the SVM algorithm is to find a hyperplane in an N-dimensional space that distinctly classifies
the data points. To do so, this method finds a plane that has the maximum margin, i.e the max-
imum distance between data points of both classes. If the data used shows modulation between
one state or another (object presentation vs blank screen) when performing a recognition task, it
might allow to later classify if the object is recognized and eventually to which category it belongs.

Since we are interested in understanding the ability to rapidly recognize objects and how it
is solved in the brain, it is interesting to try to predict if the image is recognized or not by the
subject when the same image is shown. Thus, we again trained an SVM classifier with a linear
kernel on all the neurons. The trials were respectively labelled as ‘preGS’ or ‘postGS’.

3.5.1 Classifier input

Each session includes several hundreds presentation trials. As this number can be different across
sessions, we had to choose a number of trials and remove those who exceeded it. The second
minimum number of trials across sessions was chosen as a threshold (552 trials). Thus, the
session with the lowest number of trials was taken away. The training data was the number of
spikes for each channel either during baseline or stimulus presentation. These training data were
labelled as ‘1’ and ‘0’ respectively for baseline and stimulus for each trial when used with our
classifier. As a control, the classification was computed with training labels assigned randomly
for the stimulus and baseline. Classification was also computed using data from individual ses-
sions separately. On this data, classifiers were trained using input from each individual session
in order to potentially identify a small subset of units that consistently gave much higher classi-
fication accuracy.

For the image recognition classification, the number of trials chosen was again computed by
taking the second minimum across all sessions for preGS and postGS conditions. We then se-
lected the smallest of the two (105 trials). These training data were labelled as ‘1’ and ‘0’
respectively for preGS and postGS images for each trial when used with our classifier. Since
we recorded from neurons in several different brain regions, we also trained the classifier using
data coming from distinct brain locations. Again, as a control and to assess the performance
directly associated with difference of conditions, the classification was computed with training
labels assigned randomly for the preGS and postGS condition.
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3.5.2 Cross-validation

We used k-fold crossvalidation to evaluate whether the SVM technique achieved significant clas-
sification accuracy. It is a standard method for estimating the performance of a machine learning
algorithm in which the training set is split into k smaller sets. The model is trained using k-1
of the folds as training data and the resulting model is validated on the remaining part of the
data. The performance measure reported by k-fold cross-validation is then the mean of the values
computed in the loop. We used the cross_val_score function from the sklearn python library
to estimate the accuracy of a linear kernel support vector machine, by computing the score 5
consecutive times. Each time, it returns the mean accuracy on the given test data and labels.

3.5.3 Weights

Once the linear SVM is fit to data, the weights can be assessed with svm.coef_. They represent
the vector coordinates which are orthogonal to the hyperplane and their direction indicates the
predicted class. The absolute size of the coefficients in relation to each other can then be used to
determine feature importance for the data separation task. Thus, in our analysis, we analyzed
the weights assigned to cells by our decoder to determine the importance of input neurons and
to make some inference of how the information is decoded.

3.6 Neural correlates of Eureka moment

Initially, Mooney images seem difficult to interpret, but eventually lead to a rich and stable per-
cept of the objects in the image. This process often occurs with a unique phenomenal experience,
the ‘Aha!’ moment, referring to the sudden, unexpected recognition of object content, the feeling
of finally "seeing" it. Here, we were interested to know if neurons change their activity pattern
when that moment happens. For this purpose, we compared the firing rates between the last
preGS trials, when the image was not recognized and the first few postGS trials, with correct
object identification. Since this part of the study focuses on very few trials, we were not able to
perform statistical tests. However, the firing rates of the neurons of the previously mentioned
trials were plotted with perhaps the hope of seeing a sudden change in the response.

3.7 Similarity index

To quantify the modulations in firing rates, we computed an index based on the average number
of spikes 50-300 ms after the stimulus onset. Next, to compare the change of modulation after
recognition, we computed a similarity index to assess whether the firing rates fluctuates towards
the GS condition or not.

The modulation index is defined as the change in firing rate from one condition to the other
as proportion of the variances of the 2 conditions.

The similarity index (Figure 5) is the difference between the preGS and postGS modula-
tion index. A positive SI means representation change towards GS.

MIpreGS =
|GS − preGS|√

σ2
GS+σ

2
preGS

2

MIpostGS =
|GS − postGS|√

σ2
GS+σ

2
postGS

2

(2)

SI = MIpreGS −MIpostGS (3)
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Figure 5: Similarity Index

This index was calculated for all neurons collapsed across exemplars and separately for each
exemplar (with at least 10 trials per condition). Then we only kept the indexes of the neurons
and exemplars that showed a difference between preGS and postGS conditions according to the
previously mentioned criteria. Furthermore, we separated the analysis by region in order to draw
conclusions. Moreover, as a control, the similarity indexes were computed for the baseline.

3.8 Temporal dynamics underlying object recognition

In this study, we took advantage of having a temporal resolution of milliseconds to investigate
the latency of visually responsive neurons from different regions of the brain. Neuronal response
latency is usually defined as the delay between the stimulus onset and the beginning of the
response [37]. Quantitative estimates of latency are difficult because they depend on multiple
variables, including number of trials, response amplitudes and thresholds. We considered visual
response latency (i.e., the time point when a visual response occurred) as a metric to quantify
timing. Latency of the visual response was computed at the neuronal level by determining the
time, in each unit, when the mean firing rate amplitude from all trials exceeded the mean plus
2.5 standard deviations (s.d.) of the baseline, in the time period after 50 ms post stimulus onset.
Only neurons showing a difference between baseline and stimulus were used in the analysis. An
additional requirement was added in order to capture truly distinguishable responses. We only
took into account neurons showing a mean firing rate after stimulus onset (from 0 to 500 ms) 1.5
times higher than the mean firing rate during baseline. Latency was also computed for neurons
that showed inhibition and was defined as the time, in each unit, when the mean firing rate
amplitude from all trials was below the mean plus 2.5 standard deviations (s.d.) of the baseline,
in the time period after 50 ms post stimulus onset. As before, we have imposed a threshold with
a mean firing rate during the baseline 1.25 times higher than the mean firing rate after stimulus
onset (from 0 to 500 ms).
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4 Results

4.1 Behavioral recognition

All subjects taking part in the neurophysiological experiment were evaluated on their recognition
performance at a behavioral level. Figure 6 shows the mean performance of the 13 participants
who completed the test. Recognition rates for new Mooney images are close to 0%, yet humans
can learn to rapidly recognize them via few-shot learning. We were able to implement learning
by showing subjects the grayscale image counterparts, which are easily recognizable. Even after
a single exposure to the grayscale images, subjects dramatically improve their ability to interpret
the Mooney images. An 80% increase of overall performance was observed in the recognition
accuracy between the Mooney images shown before and after the subject has seen the grayscale
version.

Figure 6: Recognition rate for the 3 image conditions averaged over patients (n = 13). The error
bars show the standard error of the mean.

4.2 Visual responsiveness

Of the 1424 neurons, 293 (20%) showed changes in firing rate during presentation of the visual
stimuli. A comprehensive list of the portion of significant channels for each area is shown in Table
3. No significant response differences were observed between the right and left hemispheres, and
therefore the data were pooled. Areas with the highest percentage of modulated channels include
the occipital lobe (64.4%) and the parahippocampal gyrus (35.4%).

Anatomical Region # sig. neurons % Sig. Tot. # of neurons
Amygdala 40 11.9 337
Enthorhinal 7 14.3 49
Hippocampus 21 6.1 343
Occipital Lobe 105 64.4 163
Parahippocampal Gyrus 75 35.4 212
Anterior Temporal Lobe 8 8.9 90
Posterior Temporal Lobe 37 17 217
Parietal Cortex 0 0 13
Total 293 20.6 1424

Table 3: Units in each region that show a significant difference between the stimulus and baseline
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Figure 7: Response of two single units in the occipital lobe of an epileptic patient showing the
activity of neurons with a response modulated by visual stimulus. The raster plot (top) shows
the spikes aligned to stimulus onset (at t = 0 ms). The numbers on the right side indicate the
label of the image. The post-stimulus time histogram (bottom) shows the average firing rate of
the neuron during each condition.

16



Kreiman Lab Master Project

4.3 Differences between conditions

4.3.1 Neural modulation in single units following rapid learning

24% of the visually responsive neurons showed firing rate modulation dependent on changes
in recognition with different responses to preGS and postGS (Table 4). Considering only the
responding hippocampal units, 71% had a difference in activity between novel and recognized
trials. Other regions of the medial temporal lobe elicited neuronal difference. More than 40%
of the neurons in the amygdala and the enthorinal cortex showed a statistical difference. Figure
8 shows raster plots of evoked responses before and after learning in 2 distinct neurons of the
occipital lobe.

Anatomical Region # Sig. neurons % Sig. Tot. # neurons
Amygdala 16 40.0 40
Enthorhinal 3 42.9 7
Hippocampus 15 71.4 21
Occipital Lobe 13 12.4 105
Parahippocampal Gyrus 13 17.3 75
Anterior Temporal Lobe 2 25.0 8
Posterior Temporal Lobe 7 19.0 37
Parietal Cortex 0 0 0
Total 69 23.5 293

Table 4: Units in each region that show a significant difference between preGS and postGS
condition
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Figure 8: Response of two single units in the occipital lobe of an epileptic patient showing an
example of learning during a visual memory task. The raster plot (top) shows the spikes aligned
to stimulus onset (at t = 0 ms). The numbers on the right side indicate the label of the image.
The post-stimulus time histogram (bottom) shows the average firing rate of the neuron during
each condition.
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At the examplar level, 129 examplars showed a difference between preGS and postGS (Table 5).
This result is well above difference as due to random chance, obtained by shuffling the conditions
(on average, 45). The rationale behind the shuffle test is that we wanted to check if the significant
examplars obtained was matter of chance or not. Figure 9 shows raster plots of evoked responses
before and after learning in 2 distinct neurons of the occipital lobe and parahippocampal gyrus
for a particular exemplar.

Anatomical Region # Sig. examplars % Sig. Tot. # examplars
Amygdala 19 6.7 282
Enthorhinal 2 3.1 64
Hippocampus 28 8.0 346
Occipital Lobe 34 8.6 393
Parahippocampal Gyrus 22 6.3 350
Anterior Temporal Lobe 4 4.8 83
Posterior Temporal Lobe 19 7.5 254
Parietal Cortex 1 1.0 10
Total 129 7.2 1782

Table 5: Exemplars in each region that show a significant difference between preGS and postGS
condition
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Figure 9: Response of two single units in the occipital lobe and parahippocampal gyrus of an
epileptic patient showing an example of learning at the exemplar level during a visual memory
task. The raster plot (top) shows the spikes aligned to stimulus onset (at t = 0 ms). The
post-stimulus time histogram (bottom) shows the average firing rate of the neuron during each
condition.
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4.3.2 Responses to stimulus features

Out of the 293 responsive units, 70 responded differently to the GS condition than to preGS and
postGS (Table 6). One region showed a particularly high number of units, the parahippocampal
gyrus with almost half of the responsive units showing a statistically different response. The
occipital lobe also showed different responses to Mooney and grayscale images. Figure 10 shows
the responses of 3 representative GS-selective single neurons.

Anatomical Region # Sig. neurons % Sig. Tot. # neurons
Amygdala 0 0.0 40
Enthorhinal 2 28.6 7
Hippocampus 1 4.8 21
Occipital Lobe 31 29.5 105
Parahippocampal Gyrus 35 46.7 75
Anterior Temporal Lobe 0 0.0 8
Posterior Temporal Lobe 1 2.7 37
Parietal Cortex 0 0.0 0
Total 70 23.9 293

Table 6: Units in each region that show a significant difference between preGS and postGS versus
GS condition
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Figure 10: Response of three single units in the occipital lobe and the parahippocampal gyrus of
an epileptic patient showing an example of grayscale condition specific response during a visual
memory task. The raster plot (top) shows the spikes aligned to stimulus onset (at t = 0 ms).
The numbers on the right side indicate the label of the image. The post-stimulus time histogram
(bottom) shows the average firing rate of the neuron during each condition.
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4.4 Selectivity

Figure 11 shows the number of neurons responding differently across categories for the different
conditions.

Figure 11: Venn diagram illustrating the number of neurons showing differences in firing rate
among the different categories

Thereafter, we only considered the GS and postGS conditions as the images in the preGS condi-
tion were not recognized. Figure 12 shows an example of a neuron in the parahippocampal gyrus
with a particularly strong response to flowers for the GS condition. A one-way ANOVA yielded
p > 0.99, and subsequent across-categories pairwise comparisons also showed that the activity
during stimulus presentation was significantly higher for this category. One visually selective
neuron in the occipital lobe (Figure 13) showed an increased firing rate over baseline in response
to animal pictures. Both the ANOVA test and pairwise comparison showed a significant selective
response. Some of the neurons also showed changes in firing rate in response to more than one
of the categories. Most of these neurons responded to one or two categories.
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Figure 12: Response of a single unit in the parahippocampal gyrus of an epileptic patient showing
an example of selectivity during a visual memory task. The raster plot (top) shows the spikes
aligned to stimulus onset (at t = 0 ms). The numbers on the right side indicate the label of the
image. The post-stimulus time histogram (middle) shows the average firing rate of the neuron
during each condition. The average number of spikes is shown for each image (bottom).
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Figure 13: Response of a single unit in the occipital lobe of an epileptic patient showing an
example of selectivity during a visual memory task. The raster plot (top) shows the spikes
aligned to stimulus onset (at t = 0 ms). The numbers on the right side indicate the label of the
image. The post-stimulus time histogram (middle) shows the average firing rate of the neuron
during each condition. The average number of spikes is shown for each image (bottom).
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Also, in order to identify neurons responding selectively to a specific category for different stimuli
types, we looked at the neurons that showed both a selective response for GS and postGS. Figure
14 allows to visualize the stronger activity for animal stimuli than other categories like building,
car, people or instrument for both GS and postGS conditions.
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Figure 14: Response of a single unit in the occipital lobe of an epileptic patient showing an
example of selectivity during a visual memory task. The raster plot (top) shows the spikes
aligned to stimulus onset (at t = 0 ms). The numbers on the right side indicate the label of the
image. The post-stimulus time histogram (middle) shows the average firing rate of the neuron
during each condition. The average number of spikes is shown for each image (bottom).
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Respectively 27% and 17% of the visually responsive neurons showed selectivity for the GS and
postGS conditions (Table 7). Regarding the regions in which we found the most selective re-
sponses, the parahippocampal gyrus encompasses respectively 40% and 19% of neurons showing
a selective response for GS and postGS conditions. A high number of selective responses were
also found in the occipital lobe with respectively 36% and 29% of neurons responding differently
to the different categories. For the enthorinal cortex, whereas a significant proportion of neurons
are selective for the GS condition, none are listed for the postGS condition. We also observed
neurons that showed significant but nonselective changes in firing rate between categories during
stimulus presentation, 7% for GS and 9% for postGS condition. However, most neurons for which
the ANOVA test indicated difference between categories were also selective.

Anatomical Region % Selective for GS % for postGS # Responsive neurons
Amygdala 7.5 (3) 10.0 (4) 40
Enthorhinal 28.6 (2) 0.0 (0) 7
Hippocampus 0.0 (0) 0.0 (0) 21
Occipital Lobe 36.2 (38) 28.6 (30) 105
Parahippocampal Gyrus 40.0 (30) 18.7 (14) 75
Anterior Temporal Lobe 0.0 (0) 0.0 (0) 8
Posterior Temporal Lobe 13.5 (5) 5.4 (2) 37
Parietal Cortex 0.0 (0) 0.0 (0) 0
Total 26.6 (78) 17.1 (50) 293

Table 7: Units in each region showing a significant selective response according to the criteria
mentioned in the text. The numbers in parenthesis indicate the number of visually responsive
neurons showing a selective response.

4.5 Inhibitory responses of single neurons during recognition of objects

An important part of the responsive neurons showed an inhibitory response (more than 40%).
Recording from single neurons in different regions of the brains during visual recognition, we
found that in the anterior temporal lobe and amygdala visual stimulus evoked predominantly
suppression of neuronal firing below prestimulus baseline (‘inhibitory responses’). 87.5% of the
responsive neurons in the anterior temporal lobe showed an inhibitory response (Table 8).

Anatomical Region # Sig. neurons % Sig. Tot. # neurons
Amygdala 22 55.0 40
Enthorhinal 3 42.9 7
Hippocampus 8 38.0 21
Occipital Lobe 43 40.9 105
Parahippocampal Gyrus 21 28.0 75
Anterior Temporal Lobe 7 87.5 8
Posterior Temporal Lobe 18 48.6 37
Parietal Cortex 0 0.0 0
Total 122 41.6 293

Table 8: Units in each region showing a significant an inhibitory response
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Figure 15: Response of two single units in the parahippocampal gyrus and occipital lobe of an
epileptic patient showing an example of inhibition during a visual memory task. The raster plot
(top) shows the spikes aligned to stimulus onset (at t = 0 ms). The numbers on the right side
indicate the label of the image. The post-stimulus time histogram (bottom) shows the average
firing rate of the neuron during each condition.
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4.6 Classification of visual trials from single neuron recordings

We present results from classifying the activity of neurons as either ‘stimulus’ or ‘baseline’, based
on SVM models. Then, the results for the ‘preGS’ versus ‘postGS’ conditions are stated. We
report results using spikes from 250 ms or 500 ms time window and from classifiers using data
from all neurons, neurons from each of the individual sessions of recordings, and classifiers where
only neurons from one region are used.

4.6.1 Classification of visual object presence

We assessed the accuracy of the model in classifying new trial recordings as either ‘baseline’ or
‘stimulus’, based on SVM models built on prior single cell recordings. Training SVM classifiers
based on 250 ms or 500 ms time window of all channels from all subjects simultaneously appeared
to give a high accuracy of 99.19% and 99.46% respectively (Figure 16). These results are encour-
aging for the continuation of the study as visual object presentation could be distinguished at
all. Data used to train the classifier contain information that is indicative of one state or another
as it allowed high classification accuracy.
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Figure 16: Mean classifier performance across all subjects. The error bars show the standard
deviation of the mean. After cross-validation, the model yielded more than 99% classification
performance in identifying ‘stimulus’ from ‘baseline’ for the 250 ms and 500 ms time windows
based on neural activity

We also show the results of ‘stimulus’ versus ‘baseline’ classification for each subject in Figure
17. Among the 34 sessions, none outperformed the performance for all units combined although
some sessions showed a higher performance compared to others.
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Figure 17: Mean classifier performance for each session. The error bars show the standard
deviation of the mean.

4.6.2 Classification of different conditions

We wanted to see if our SVM model could perform well on behavioral state classification. How-
ever, the accuracy for the stimulus time period was not different from the baseline (Figure 18).
Since we were not able to predict preGS and postGS conditions with all the neurons combined,
we focused and separated the analysis by region. The occipital lobe and parahippocampal gyrus
neurons clearly yielded higher classifier performance than other regions for the 500 ms time win-
dow (Figure 19). For instance, decoding performance of 95% is reached by using the activity of
neurons from one of these two regions. They also showed a statistical difference in accuracy from
the baseline and post-stimulus which is a good control to ensure the quality of our results. For
the 250 ms time window, again the occipital lobe was shown to have a high classification accu-
racy for the stimulus period and a low one for the baseline, both statistically different (Figure
20). Thus far, we have demonstrated that recognition by a subject can be predicted using the
SVM classifier with data from neurons in the occipital lobe. The algorithm achieved a higher
decoding by using the 500 ms time window and detected the condition correctly with accuracy
greater than 95%.
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Figure 18: Mean classifier performance for two time windows. The error bars show the standard
deviation of the mean. After cross-validation, the model didn’t yield a difference in classification
performance in identifying preGS or postGS condition for stimulus versus baseline
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Figure 19: Mean classifier performance for each region. The error bars show the standard devi-
ation of the mean. Only the occipital lobe and the parahippocampal gyrus showed a difference
in accuracy from the baseline and post-stimulus. After cross-validation, the model yielded more
than 95% classification performance in identifying preGS or postGS condition for both regions.
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Figure 20: Mean classifier performance for each region. The error bars show the standard de-
viation of the mean. Only the occipital lobe and the enthorhinal cortex showed a difference in
accuracy from the baseline. After cross-validation, the model yielded more nearly 80% classifi-
cation performance in identifying preGS or postGS condition for the occipital lobe.

4.6.3 SVM feature weights

The occipital lobe being the region showing the strongest accuracy to decode preGS of postGS,
we were interested in the weights associated with each input neuron. From the 163 neurons,
the 75 (46%) having a weight in absolute value higher than 0.1 represented 70% of the neurons
showing a difference between preGS and postGS. Our results from the SVM classifier are thus
in line with what was obtained in the permutation tests presented above. Taken together, the
results suggest that few neurons in the occipital lobe showed progressive changes in firing rate
between the preGS and postGS conditions which could reveal evidence of a modulation in the
brain that led to learning.

4.7 Neural correlates of Eureka moment

The visualisation of firing rate of the last preGS trials in parallel with the first postGS trials in
order to identify a change in activity didn’t show significant difference. The variability in the
tasks used and the low number of available trials make it difficult to get a clear picture of the
neurobiological underpinnings of the Eureka moment.

4.8 Similarity in Neuronal Firing

As seen in the previous section, the degree of rate modulation can vary considerably across
categories within the same neuron. In order to avoid category bias, we decided to analyze the
results at the exemplar level instead of doing it per neuron. The control performed by calculating
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the indexes over the baseline period gave an average of 54% of positive results. On the other
hand, after the stimulus onset, this number was on average 71% across the different regions. This
shows a tendency of the firing rate to fluctuate towards the GS condition and possibly a more
similar activity between the recognized images than when perception differs. However, not all
regions showed an increase in the number of positive indexes. Moreover, one must be aware that
other parameters could be taken into account in the calculation of the modulation index like the
latency or the magnitude of the peaks. Also, this method is not highly precise and a positive
index doesn’t necessarily mean learning.

4.9 Timings

A total of 84 units showed a measurable excitatory response according to our previously men-
tioned criteria for one of the 3 conditions (preGS, GS or postGS) [42 (50%) in the occipital
lobe; 32 (38%) in the parahippocampal gyrus]. We will detail the results for these two regions
only as we had less than 10 units for the others. Average response latencies for the 3 condition
were earlier (7 ms) in the parahippocampal gyrus than those in the occipital lobe. However,
the difference is not significant (Figure 21). Because we used an objective criterion to determine
response latencies, we cannot expect our approach to be perfect, and our results may contain
a few unreliable latencies. Statistical analysis across all 84 neurons didn’t show any difference
between preGS and postGS conditions (p = 0.9737). Separate regional analysis confirmed no
statistically difference between latency for the 2 conditions in the occipital lobe (p = 0.6395) and
parahippocampal gyrus (p = 0.2241).

Regarding inhibitory responses, a total of 37 units showed a measurable response for one of
the 3 conditions (preGS, GS or postGS) [13 (35%) in the occipital lobe; 7 (19%) in the parahip-
pocampal gyrus]. Unlike for the excitatory cells, responses latencies for the 3 conditions were
higher (20.3 ms) in the parahippocampal gyrus than those in the occipital lobe for the preGS
and postGS condition. Each of the 3 conditions showed a later response in the parahippocampal
gyrus. However, this difference is not significant. Statistical analysis across all 37 neurons didn’t
show any difference between preGS and postGS conditions (p = 0.9984). Separate regional anal-
ysis confirmed no statistically difference between latency for the 2 conditions in the occipital
lobe. Not enough neurons showed a measurable response in the parahippocampal gyrus for both
conditions to compute a statistical test.
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Figure 21: Violin plot showing the distribution of latency for excitatory neurons. For each
condition, we separated the analysis by brain regions. The contours of the violins show kernel
density estimates of the distributions, truncated at min and max observed values. White circles
indicate the medians, thick bars indicate the first and third quartiles, and whiskers indicate
1.5×interquartile ranges.
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Figure 22: Scatter plots of preGS versus postGS latencies for excitatory neurons. Each point
accounts for a neuron showing a responsive and measurable response.
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Figure 23: Scatter plots of preGS versus postGS latencies for inhibitory neurons. Each point
accounts for a neuron showing a responsive and measurable response.

When looking at the scatter plots (Figure 22 and 23) for both the excitatory and inhibitory
latencies, the results hardly show any tendency. Latencies might not characterize the difference
in object recognition as well as expected or might reveal the imprecision and the difficulty of its
measurement.
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5 Discussion

The increase in performance during object recognition between the presentation of novel versus
learned Mooney images reveals how this type of stimulus can offer a means of inducing variable
perception with constant stimulus and study neuronal activity during learning. The exact same
Mooney image presented before and after learning elicited different patterns and these changes
in firing rates allowed us to identify relevant regions for learning.

The main goal of this study was to investigate the neural correlates of learning during an object
recognition task. Using extracellular single cells recordings in humans, we analyzed neuronal
activity evoked by Mooney images before and after they were recognized as meaningful objects.
Recognition induced changes, mainly in the hippocampus. Previous studies have pointed at the
hippocampus as the central hub for memory formation and highlighted its critical role for long
term memory [38]. In line with previous work, we identified significant hippocampal contribu-
tions to rapid learning. A large number of visually responsive neurons showed a modulation in
firing rate in this region and this study provides further evidence that the hippocampus plays
an important role in encoding and recall of memory. This result parallels the increased activa-
tion observed in some human studies after learning in visual memory tasks. However, little is
known about the features and the time scale of such changes. These are questions that will need
to be addressed in future work. At the examplar level, the results were consistent with those
obtained previously with differences mainly in the hippocampus. Importantly, we also found
induced modulation in the occipital lobe. Although the occipital lobe is often viewed as a visual
processing module, our results might indicate that cortical interactions play a role in learning.

The processing delays in excitatory cells associated with object recognition did not increase
along the visual hierarchy as expected in feedforward visual processing. In fact, for an object to
be recognized, it has to travel through the ventral visual cortex, from earlier visual areas (V1) to
the temporal cortex accumulating delays in processing. Importantly, these delays can increase
when additional processing (recurrent or feedback) is required to allow recognition. Our results
showed a delayed response in the occipital lobe and revealed conceivable involvement of various
feedback processing between the medial temporal lobe and the occipital lobe. The timing of
neurophysiological responses gives great insights on the implication of top-down modulation of
the visual cortex. However, no difference could be identified in the response time between preGS
and postGS condition. Thus, at this point, the analysis of timing cannot show how temporal
patterns might be modulated and influenced by perception in our learning task. The location of
the electrodes in our study was dictated by clinical criteria. Therefore, the electrode coverage
was far from exhaustive. There may well be other areas in the human brain, not interrogated in
this study, which might show a direct relationship between latency and recognition. Inhibitory
cells showed an early response in the occipital lobe followed by a difference in activity later in
the parahippocampal gyrus. Our results suggest that inhibition occurs at all levels of processing
of visual information and that it facilitates bottom-up attentional modulation in the primary
visual cortex [39].

The images used in this study were both two-tone black and white and corresponding grayscales
images, shown in alternation. By using such stimulus set, we were able to test the responses to
the same objects with different luminance, contrast and more or less defined contours. While
color and contrast selectivities has been studied extensively in macaques, in human, luminance
and contrast perception is not well understood. Even if the main focus of this study was not
on understanding of the representation of luminance and brightness in the visual cortex, we
confirmed that they might have effects on the activity of neurons in the primary visual cortex,
which had already been demonstrated in awake monkeys [40]. Moreover, by going back to the
fact that young children are generally unable to recognize two-tone images, these results shed
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light on where perceptual reorganization might happen in the brain and how important they are
to allow latter instant recognition in adults.

Research on the neurophysiological correlates of visual object recognition in a sudden and un-
expected Eureka moment is still at its early stages. Here, we wanted to understand more about
this mysterious ‘Aha!’ sensation. Learning how to rapidly extract an object identity can occur
by an abrupt flash of understanding during which nerve cells in the brain allow sudden insight by
changing their activity pattern. However, using the data we had at our disposal, we found that
the neuronal firing was not a direct reflection of sudden object recognition behavior, showing a
response that changed only marginally between the last preGS trials (unrecognized) and the first
postGS trials (recognized).

In this study, we found an important portion of visually responsive neurons showing inhibition,
which gave the opportunity to identify the regions in which this phenomenon is most present and
plays a role in recognition. Responses of inhibitory cells have attracted less attention, mostly
due to their smaller size and larger diversity. Despite the fact that there are fewer of them,
inhibitory cells play an essential role in shaping the dynamics and modulation of the neuronal
circuits. From a computational point of view, network models increasingly incorporate inhibitory
synaptic plasticity [41]. The vast majority of the inhibitory responses to visual stimuli that we
found were in the anterior temporal lobe and the amygdala also showed an important part of this
type of response. It is possible, however, that the prevalence of inhibitory responses is a function
of the epileptic brain. Even if the data were collected during periods without any seizure events,
we can’t rule out the possibility of a disturbance leading to an inhibition of certain neurons,
particularly in regions with a high prevalence.

Selective neural responses to visual objects is a topic of great interest in neuroscience. This
fundamental ability to classify visual inputs into meaningful categories depends on neural com-
putations performed along the visual pathway from the retina to the higher visual areas in ventral
temporal cortex. In humans, functional magnetic resonance imaging (fMRI) [42], electrocorticog-
raphy (ECoG), evoked-potential studies and single-neuron electrophysiology [22] researches have
been influential in revealing preferential activation to categories such as faces, animals, building
in specialised areas in the brain. They have identified several regions of the occipital and tem-
poral lobe that appear specific for complex stimuli [43]. Studies of patients with agnosia have
revealed that the deficit of stimulus recognition does not necessarily impair the recognition of all
visual stimuli, but can selectively affect certain categories (faces, spatial layouts, letters, body
parts), leaving others unaffected [44]. We showed that in the occipital lobe and the parahip-
pocampus gyrus, there is a relatively high degree of category-specific neurons, showing a firing
patterns representing certain objects. Surprisingly, we did not identify as many selective neurons
as expected in some regions of the medial temporal lobe while its role in the representation of
different categories of visual stimuli has been previously demonstrated [45] [46]. No selective
neurons were found in the hippocampus, less than 10% of the responses in the amygdala are
selective and a significant proportion of neurons are selective in the enthorinal cortex only for
the GS condition. We established that single neurons in humans explicitly respond to specific
categories of stimuli. However, another definition of the categories given here may show other
results, with neurons changing their activity only to specific examples. Moreover, it could be
important to examine recognition for an entire population of neurons by pooling together re-
sponsive units.

We described a method for classifying visual perception from neuronal activity patterns us-
ing a machine learning approach. We demonstrated that our classifier can distinguish responses
to visual object presentation on a trial-by-trial basis from data when a blanck screen was pre-
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sented to the subject at a 95% accuracy. The question of whether the decoder was subsequently
able to decode learning in single trials based on the activity of a neuronal pseudopopulation led
to no significant performance accuracy when using activity from units in all regions. However,
when classifying preGS versus postGS condition using classifier inputs of the occipital lobe gave
an accuracy well above chance. This presents evidence that activity from 0 ms to 500 ms after
stimulus onset in the occipital lobe can be used to predict recognition. On the other hand, the
weights associated with the input neurons are consistent with the results obtained from the sta-
tistical tests. The same units showed both absolute weights with large values and a significant
difference between the two conditions. Taken together, these results show an evidence of rapid
plastic changes in the occipital lobe associated with object recognition.

There are rare cases where Mooney images were not recognized even after seeing the grayscale
corresponding image. By considering those cases, future analyses of the neuronal responses as-
sociated could be conducted to try to identify neurons that fired differently depending on the
perception and understand what happened at the neuronal level that made the patient unable
to memorize the image. However, one must be aware that these cases are much less numerous
and it is therefore more difficult to conduct analysis based on a few trials.
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Figure 24: Mooney images presented
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Figure 25: Corresponding grayscale images
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