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Face neurons encode nonsemantic features
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The primate inferior temporal cortex contains neurons that respond more strongly to
faces than to other objects. Termed “face neurons,” these neurons are thought to be
selective for faces as a semantic category. However, face neurons also partly respond
to clocks, fruits, and single eyes, raising the question of whether face neurons are
better described as selective for visual features related to faces but dissociable from
them. We used a recently described algorithm, XDream, to evolve stimuli that strongly
activated face neurons. XDream leverages a generative neural network that is not
limited to realistic objects. Human participants assessed images evolved for face neurons
and for nonface neurons and natural images depicting faces, cars, fruits, etc. Evolved
images were consistently judged to be distinct from real faces. Images evolved for face
neurons were rated as slightly more similar to faces than images evolved for nonface
neurons. There was a correlation among natural images between face neuron activity and
subjective “faceness” ratings, but this relationship did not hold for face neuron–evolved
images, which triggered high activity but were rated low in faceness. Our results suggest
that so-called face neurons are better described as tuned to visual features rather than
semantic categories.
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Ventral stream neurons fire selectively to visual features, such as optimally oriented
bars, particular colors, specific curvatures, or certain object categories. A famous type of
category-selective neurons is the “face neuron.” Recordings in monkey inferior temporal
cortex (IT) by Gross and colleagues (1–3) revealed neurons that responded more strongly
to images of faces than to other objects, such as hands and eyeless faces. Face-selective
neurons, whose tuning properties are stable for at least months (4), tend to cluster
within millimeter-wide patches on the cortex (5). Face-selective neural signals have also
been found in humans by intracranial field potential recordings (6); subsequently, by
noninvasive measurements (e.g., ref. 7); and recently, with unit recordings (8).

A paragon of category selectivity in the visual cortex, face neurons are as extensively
studied as they attract controversy in the interpretation of their tuning properties. The
debate centers on whether category-selective neural signals truly represent a semantic
category (9–11) or whether they represent visual features that correlate with, but are
dissociable from, any object category. The semantic view is often referred to as “word
models.” Word models, being essentially ambiguous, are difficult to formally define and
to falsify (12). A semantic category–selective neuron should exclusively respond to the
namesake category. However, IT neurons ostensibly selective for nonface categories in
fact respond to typical features even when they are separated from the preferred category
(13–16). Face-selective neurons are known to respond to round objects and other nonface
objects in a graded manner (5), and face-selective voxels in functional magnetic resonance
imaging (fMRI) show significant responses to face pareidolia images (17). Nevertheless,
there is scant evidence that nonface stimuli can drive responses as strong as faces in face-
selective neurons.

A diagnostic finding would be to identify nonface stimuli that strongly activate face
neurons (i.e., counterexamples to the word model). Finding such stimuli would require
efficient exploration of the vast space of images within limited neuron recording time.
Here, we recorded spiking activity from both face-selective and nonface-selective neurons
and used the XDream method to find strongly activating images (18, 19). XDream uses
a broad image prior, does not depend on a predictive model of neuronal responses, and
rather uses adaptive search with closed-loop neuron recording. In face-selective neurons,
XDream led to images that elicited comparable responses with faces. To evaluate semantic
tuning to faces, we quantified human perception to define how face-like images were
using a series of six experiments ranging from open-ended (subjects entered one-word
descriptions) to more structured (subjects answered whether or not an image looked like a
face). Our results show that subjects did not perceive evolved images as faces. Yet, evolved
images tailored to face-selective neurons were perceived as more face-like than nonface
object images and evolved images tailored to nonface-selective neurons. Moreover, among
natural images, there was a significant correlation between subjects’ ratings for “faceness”
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and face neuron responses. This correlation was present even
among nonface images. However, evolved images received rela-
tively low faceness ratings yet evoked some of the highest firing
rates from face neurons. These results show that face neurons are
not tuned to the semantic concept of faces but, instead, respond
to visual attributes associated with faces.

Results

We synthesized preferred stimuli for neurons in monkey ventral
visual cortex using the XDream algorithm (18, 19). Evolved
images strongly activated both face neurons and nonface neurons
(Fig. 1 D and E). For face neurons, evolved images were as
effective stimuli as face images (Fig. 1D). We conducted a series
of six behavioral experiments to evaluate how human subjects
perceived these evolved images (Fig. 1 A–C ). For comparison,
we included natural images depicting faces and nonface objects
(book, butterfly, car, chair, cloud, dog, fruit, tree, and wheel) and
abstract drawings. Images included in the main analyses are shown
in SI Appendix, Fig. S1. Numbers in the text refer to mean ± SD
unless otherwise noted.

For each neuron, we used its mean background-subtracted
firing rate to faces (rf) and to nonface objects (rnf) to define a face
selectivity index (FSI) = (rf − rnf)/(rf + rnf) that summarizes
the neuron’s selectivity for faces over nonface objects. We opera-
tionally defined face-selective neurons (face neurons for brevity) to
be neurons with FSI greater than 0.5 recorded in central inferior
temporal cortex (CIT) to exclude recordings from the posterior
lateral (PL) face patch in posterior IT (PIT) (20). PL neurons often
have high FSI but are known to respond to single eyes instead of
whole faces (21). We defined nonface neurons to be neurons with
an FSI less than zero recorded from any area, although all but one
included neuron were recorded in CIT. Based on these criteria,
we included in the main analyses 39 images evolved from face
neurons and 47 images evolved from nonface neurons. Similar
results were observed using more lenient criteria admitting more
neurons (SI Appendix, Figs. S6 and S7).

Experiment 1: One-Word Description. In the first experiment,
we sought to use an open-ended approach. We asked subjects to
use one word to describe each image [i.e., basic-level description
(22)]. Fig. 2 A–C shows example images and their descriptions.
When presented with a photo of a child, subjects gave consistent
descriptions, such as “child,” “girl,” and “kid”; when presented

with an illustration of clouds, subjects described it with words
such as “sky” and “cloud.” For five chair photos, subjects con-
sistently answered “chair” (86%) (Fig. 2D). In contrast, for 10
face photos, subjects used a variety of words like “woman” (21%),
“man” (15%), or “girl” (12%) (Fig. 2 D and E), thereby using
more specific words than “face” as the basic-level description.
Notwithstanding the sometimes varied answers, all natural object
images (book, butterfly, car, chair, cloud, dog, face, fruit, tree, or
wheel) were adequately described (SI Appendix, Fig. S2 D and E),
indicating that subjects followed the task directions. To assess
how subjects described images that did not afford a single ob-
vious label, we included abstract drawings. Abstract drawings
received a variety of descriptions, including “painting” (13%),
“art” (12%), and “flower” (7%), among others (Fig. 2 D and E,
third column; also, example descriptions of a single image are in
SI Appendix, Fig. S2A).

How did subjects describe images evolved by visual neurons?
An example image and its responses are shown in Fig. 2C. The
neuron that gave rise to this image was recorded in the middle
lateral (20) face patch in CIT and showed high selectivity to
faces (FSI = 1.18; background-subtracted firing rate response to
10 human faces: 26 ± 10 spikes/s; 20 monkey faces: 18 ± 14
spikes/s; 22 nonface objects: −4 ± 5 spikes/s). This evolved image
elicited a stronger neuronal response than face images did (20
last-generation evolved images: 64 ± 19 spikes/s). The subjects
described the evolved image using words such as “face” (19%),
“monkey” (16%), “painting” (5%), and “art” (5%). For all images
evolved from face neurons, top descriptions included “monkey”
(14%), “dog” (5%), “art” (5%), “animal”(4%), and “face” (4%)
(Fig. 2 D and E, fourth column). For all images evolved from
nonface neurons, similar words were used, including “bird” (7%)
and “dog” (5%), but words like “monkey” and “face” were less
frequently used (3 vs. 14% and 2 vs. 4%, respectively) (Fig. 2
D and E, fifth column). The words used to describe evolved
images were more heterogeneous than the words used to describe
control object images but were comparable with the diversity of
words used to describe abstract drawings. This is indicated by the
frequency of the top word. The top word accounted for about 14
and 7% of descriptions of images evolved from face and nonface
neurons, respectively, compared with 13% for abstract drawings,
21% for face photos, and 86% for chair photos.

To better quantify and summarize the descriptions, we cal-
culated the similarity from descriptions to category labels using

Experiments 1, 2, 5, 6 Experiment 3

Fixation
cross, 1s

Image,
200 ms

Response screen

Describe (Exp. 1)
Categorize 5-way (Exp. 2)
Categorize 2-way (Exp. 5)
Rate 1–5 (Exp. 6)

Experiment 4

Face
Non-face

Evolved

A

D

Choice 2 Click on the mouth
Choose the more similar image

Choice 1 Test

B C

E

0 1
Response percentile

D
is

tr
ib

ut
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n

Face neurons

0 1
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Non-face neuron

Fig. 1. Overview of the study. (A–C) Schematics of experiments. (A) In experiments 1, 2, 5, and 6, each trial began with a center cross shown for 1 s followed by
an image shown for 200 ms and then, the response screen. (B) In experiment 3, three images were presented together in each trial. The subject was instructed
to select the side that was more similar to the center image. (C) In experiment 4, images were presented individually, and the subject was instructed to “click on
the mouth.” (D and E) Distributions of normalized neuronal responses to face, nonface, and evolved images for face-selective (D) and nonface-selective neurons
(E). The distribution is over images and neurons.
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Fig. 2. Experiment 1: one-word (basic-level) description. (A–C) Three example images and example responses are shown. (D) The top 10 descriptions along with
frequency are shown for each image group. Frequencies lower than 20% are indicated by numbers above bars. (E) Description frequency for each image group
is visualized using a word cloud. (F) WP semantic similarity was calculated between subject-provided descriptions. The swarm plot shows WP similarity between
the descriptions of any image and descriptions of face photos (each face photo was compared with the other 9 face photos; other images were compared with
all 10 face photos). Each small point represents an image. The horizontal spread within each group is for visualization only. Open contour indicates the kernel
density estimate for the points. The inner thick bar and point indicate data mean and bootstrap 95%-CI of the mean. Only indicated pairs were tested. n.s., not
significant. **P < 0.01, one-tailed permutation test with test direction indicated by the slope of the square bracket, false discovery rate (FDR) corrected across
seven tests.

the Wu–Palmer (WP) semantic similarity measure (23), a metric
ranging from zero to one based on how close two words are
in the WordNet hierarchy (24). For example, the first row in
SI Appendix, Fig. S2F is the WP similarity of each image to the
word “book,” averaged over all descriptions of each image. As
expected, descriptions of book images had high similarity to
the word book. Descriptions of other object images also mostly
matched their respective category names, resulting in a strong
diagonal in SI Appendix, Fig. S2F . One exception is the category
of face photos. Due to the structure of the WordNet hierarchy, WP
similarity is lower (0.31) between face and woman (most common
description of face images) than between woman and for example,
“butterfly” (0.57), “tree” (0.63), and “dog” (0.67). Materials and
Methods describes in more detail how WP similarity is defined and
how it was calculated for these example word pairs.

To avoid this problem in comparing against category labels,
we compared subject-provided descriptions with each other, aver-
aging over all word pairs between each image pair (SI Appendix,
Fig. S2H ). Consistent with the analyses so far, natural images in
the same category received similar descriptions, visible as diagonal
groups indicating high similarity in SI Appendix, Fig. S2 H , Upper
Left. For instance, descriptions of book images had an average
WP similarity of 0.78 ± 0.07 to other book image descriptions
compared with a similarity of 0.38 ± 0.05 to descriptions of all
other images.

We focused on whether descriptions of images evolved by face
neurons were similar to descriptions of face photos. Fig. 2F shows
the similarity of descriptions per image to face photo descriptions
averaged over face photos (each face photo was compared with
the other 9 face photos; other images were compared with all
10 face photos). By this measure, face photo descriptions were
most similar to other face photo descriptions (WP similarity
0.57 ± 0.02). As expected, nonface object descriptions were
significantly less similar to face photo descriptions (0.42 ± 0.09;
P < 10−5, one-tailed permutation test). Relative to face photo
descriptions, descriptions of images evolved from face neurons
were significantly less similar (0.43 ± 0.04) than descriptions of
other face photos (P < 10−5) while comparable with descriptions

of nonface object images (0.42 ± 0.09; P = 0.11) and descriptions
of images evolved from nonface neurons (0.44 ± 0.05; P = 0.32).

To assess whether the quantification of semantic similarity
depended on WordNet, we considered an alternative word sim-
ilarity measure based on word embeddings, LexVec (25). Con-
clusions were similar using this alternative metric, except that
images evolved from face neurons were described as slightly more
similar to faces than nonface objects or images evolved from
nonface neurons (0.31 ± 0.06 vs. 0.20 ± 0.08 and 0.27 ± 0.06;
P = 0.001 and P < 10−5, respectively) (SI Appendix, Fig. S2L;
also, SI Appendix, Fig. S2 F–L compares the WP and LexVec
metrics).

Evolved images are limited by the underlying image generator,
which can approximately depict objects but does not produce pho-
torealistic images (18). To account for this “stylistic” constraint,
we generated “stylized” images from face and object images as
additional controls. A stylized image is a natural image converted
to a synthetic image that the generator could produce and that
was optimized to resemble the original image. All stylized im-
ages are shown in SI Appendix, Fig. S1. Stylized faces were most
commonly described as face (30%), man (20%), and woman
(13%) (SI Appendix, Fig. S2 D and E). Stylized nonface images
were also mostly described as the correct object, as indicated by the
near diagonal in SI Appendix, Fig. S2 F and G (stylized nonface
images include one abstract and one for each category on the
y axis in that order). Thus, the image generator style, although
nonrealistic, retained enough information to allow for reliable
object identification. Compared with face photo descriptions,
stylized face image descriptions had WP similarity of 0.50 ±
0.02 and LexVec similarity of 0.51 ± 0.04, both significantly
higher than for descriptions of face neuron evolved images (both
P < 10−5). Thus, generator style alone did not account for the low
proportion of descriptions indicating faces in the evolved images.

In summary, evolved images were described by a variety
of words in open-ended categorization. The most common
descriptions of evolved images related to animals or art, but there
was much less agreement in the description of evolved images
among observers than for any natural image category. In terms of
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Fig. 3. Experiment 2: five-way categorization. (A) Subjects were presented with an image and were asked to choose among five category labels (Fig. 1A). The
heat map shows the fraction of trials a label was chosen when it was an available option. Thus, the fraction ranges from zero to one in all cases. Each column
corresponds to an image. Each row corresponds to a categorization option. (B) The swarm plot shows the fraction of trials each label was chosen (if available)
separately for images evolved by face neurons (purple) and nonface neurons (green). Each point represents one evolved image. Open contour indicates the
kernel density estimate. The inner thick bar and point indicate data mean and bootstrap 95%-CI of the mean. *On violin, P < 0.05, two-sided binomial test
for difference from chance = 0.2, FDR corrected across 20 tests; **on violin, P < 0.01, two-sided binomial test for difference from chance = 0.2, FDR corrected
across 20 tests; *on the black line, P < 0.05, **on the black line, P < 0.01, permutation test, FDR corrected across 10 tests, the test was one tailed for the face
option (face neurons evolved greater than nonface neurons evolved) and two tailed otherwise.

similarity to face photo descriptions, descriptions of images
evolved by face neurons were comparable with descriptions of
nonface object images and images evolved from nonface neurons.

Experiment 2: Five-Way Categorization. Experiment 1 allowed
for a wide range of subjective word choices. To more directly test
the hypothesis that face neurons have a specific categorical prefer-
ence for faces, we conducted a forced choice categorization task.
We assessed 10 categories in total (the y axis in Fig. 3A), including
face. In each trial, after the image was shown, five category options
were presented, and subjects were asked to “choose the most
appropriate category.” For nonface object images, the options
always included the correct category, while the four other options
were randomly composed from the remaining nine categories on
a trial by trial basis. For abstract drawings and evolved images,
all five options were randomly chosen from the 10 categories. We
report in Fig. 3 the fraction of trials in which a category was chosen
for an image normalized by the number of trials in which that
category was available as an option for that image.

Natural images were almost always correctly classified (0.97 to
0.99 accuracy), evident as strong diagonal elements in Fig. 3A. For
abstract drawings, choices were dispersed, with the most common
choices being butterfly (0.45 ± 0.16) and cloud (0.33 ± 0.19).
Stylized face images were almost always categorized as “face.”
Stylized nonface images were also usually correctly categorized (in
Fig. 3A, values near the diagonal that correspond to the stylized
image categories were usually high).

Evolved images, like abstract drawings, received a wide range of
categorization choices. Nevertheless, the choices were not random.
For both groups of evolved images, the fraction of times a label
was chosen was significantly different across label options (face-
neuron-evolved images: P = 1 × 10−27; nonface-neuron-evolved
images: P = 7 × 10−9, Kruskal–Wallis test), and several options
were chosen significantly differently than expected by chance
(asterisks for individual violins in Fig. 3B). Images evolved from
face neurons were most commonly labeled as face (0.44± 0.22) or
dog (0.36 ± 0.20). The same two categories were the top choices
for nonface neuron evolved images, with lower frequency (dog:
0.31 ± 0.21, face: 0.27 ± 0.21). Thus, both groups of evolved
images were categorized as face less than half of the time when
face was an available option and significantly less than face photos
(0.97 ± 0.01; both P < 10−5, one-tailed permutation test). The
differences between face and nonface neuron evolved images were
significant for the categories “face” (P = 0.003), “chair” (P =
0.003), and “car” (P = 0.043; one-sided test for face, two-sided test
for other categories, FDR corrected across 10 tests). The category

face was chosen significantly more often for images evolved from
face neurons than those from nonface neurons; the reverse was
true for chair and car.

Experiment 3: Image Similarity. In experiment 3, we aimed to
assess visual similarity without using words as in experiments 1
and 2. We asked subjects to “choose the more similar image” from
one of two choice images (Fig. 1B). Choice images were drawn
from the same natural images used in experiments 1 and 2. In
each trial, choice images were randomly drawn from 2 of the
same 10 categories as in experiment 2. We tested each evolved
image at least once with each of 45 possible category pairings.
Fig. 4A shows the fraction of evolved images for which subjects
chose the category indicated on the y axis over the one on the x
axis (thus, entries i, j and j, i sum to one) separately for evolved
images from face (Fig. 4 A, Left) and nonface (Fig. 4 A, Right)
neurons. For example, the entry in row 2, column 1 shows that
for the majority (76%) of face neuron evolved images, subjects
chose photos of butterflies as being more similar than books.
If subjects did not prefer either category, selecting by chance
should correspond to a value of 0.5 on average, indicated by white
color. For images evolved from face neurons, subjects preferred
the category dog significantly above chance for five of the nine
possible comparisons. Subjects preferred face to a lesser degree,
doing so significantly above chance for three of nine comparisons.
For images evolved from nonface neurons, subjects preferred the
categories dog and butterfly significantly above chance in two of
nine comparisons.

To summarize the pairwise comparisons and to directly com-
pare the two groups of evolved images, we calculated the prefer-
ence for each category averaged over alternatives (Fig. 4B). For
images evolved from face neurons, the top choices were dog
(70 ± 16%), face (68 ± 18%), and butterfly (54 ± 17%).
For images evolved from nonface neurons, the top choices were
butterfly (66 ± 19%), dog (65 ± 16%), and face (56 ± 22%).
Subjects chose the option face more often for images evolved
from face neurons than nonface neurons (P = 0.018, one-tailed
permutation test, FDR corrected across 10 tests). Butterfly also
showed a statistically significant difference (P = 0.018, two-tailed
permutation test) and was chosen less often for face neuron than
nonface neuron evolved images.

These results show that face neuron evolved images were more
visually similar to face photos than nonface neuron evolved images
were. Nevertheless, both groups of evolved images were more
similar to dog images than faces.
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Fig. 4. Experiment 3: image similarity. (A) Subjects were presented with three images and asked to select whether the left or right image was more similar to
the center one (Fig. 1B). Each evolved image was tested at least once for each option pair (10 choose 2 = 45 pairs). The heat map shows the faction of images
for which the y category was chosen over the x category for images evolved from face neurons (Left) or nonface neurons (Right). *P < 0.05, two-sided binomial
test for difference from chance =0.5, FDR corrected across 90 pairwise tests; **P < 0.01, two-sided binomial test for difference from chance =0.5, FDR corrected
across 90 pairwise tests. (B) The swarm plot shows the fraction of trials a category was favored when it was an option (thus, possible values range from zero to
one). Plot conventions follow those in Fig. 3B. *On violin, P < 0.05, **on violin, P < 0.01, two-sided binomial test for difference from chance =0.5, FDR corrected
across 20 tests; *on the black line, P < 0.05, permutation test, FDR corrected across 10 tests, the test was one tailed for the face option (face neurons evolved
greater than nonface neurons evolved) and two tailed otherwise.

Experiments 4 and 5: Metrics Tailored to Measure Face Sem-
blance. In two further experiments, we specifically measured
whether and how much the evolved images resembled faces. First,
we reasoned that if subjects perceived a face in any image, they
should be able to locate specific features of the face. An intuitive
assay is to ask the subjects to locate an “eye.” However, any small
dark spot in an image could be interpreted as an eye. Additionally,
the two eyes, if present, would add ambiguity to eye localization.
Therefore, in experiment 4, we asked subjects to “click on the
mouth (if unsure, make your best guess)” (Fig. 1C ). The task
instructions are ill defined for nonface objects, such as chairs.
We reasoned that if subjects did not see a face in an image, they
would click on inconsistent locations. Thus, we quantified the
consistency of click locations across subjects using the entropy of
the distribution of click locations. An entropy of zero indicates

that subjects always clicked on the same location (after binning),
and higher entropy indicates more varied click locations.

Subjects located the mouth in face photos consistently and
correctly (an example is shown in Fig. 5 A, Upper Left). In
comparison, clicks were dispersed, as predicted, in nonface object
images (an example is shown in Fig. 5 A, Lower Left). The
entropy of clicks was significantly different across image groups
(Fig. 5B) (P = 7 × 10−11, Kruskal–Wallis test). Ad hoc pairwise
comparisons confirmed that clicks were more consistent for face
photos (entropy = 0.9 ± 0.3) than for nonface object images (2.6
± 0.9; P < 10−5, one-tailed permutation test, FDR corrected
across seven tests). Clicks were also more consistent for face photos
and stylized face images (1.4 ± 0.3) compared with face neuron
evolved images (2.2 ± 0.5; both P < 10−5). Clicks were slightly
more consistent for images evolved from face neurons than for
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Fig. 5. Experiments 4 to 6: locating the mouth, binary classification, and rating of faceness. (A) In experiment 4, subjects were asked to click on the mouth
(Fig. 1C). Click locations are shown for six example images. (B) The swarm plot shows the entropy of click locations for each image across subjects. Shading
indicates permutation 95% CIs at the image (lighter gray) or group level (darker gray) when click locations were permuted across images to represent the null
hypothesis that there was no difference across images. (C) In experiment 5, subjects indicated whether or not an image contained a face (Fig. 1A). The swarm
plot shows the fraction of yes answers for each image across subjects. Plot conventions follow those in Fig. 2F. (D) In experiment 6, subjects provided a faceness
rating between one (not a face) and five (most face like) to each image (Fig. 1A). The swarm plot shows the average faceness ratings for each image across
subjects. FDR correction was across all three tests performed. In B–D, plot conventions follow those in Fig. 2F. *P < 0.05, **P < 0.01, one-tailed permutation
test with test direction indicated by the slope of the square bracket, FDR corrected across all seven tests performed in B, C, and all three tests performed in D.
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images evolved from nonface neurons (2.5 ± 0.4; P = 0.017).
As an alternative way to quantify click consistency, the spread
of a Gaussian fitted to click locations per image showed the
same between-group differences (SI Appendix, Fig. S3A). Click
consistency was not explained by center bias, which did not differ
across groups (SI Appendix, Fig. S3B).

In experiment 5, we asked directly, “Is there a face in this
image?” (Fig. 1A). No definitions or further explanations were
provided, so participants had to interpret the question based on
their own concept of the word face. Face photos were unequivo-
cally reported as faces (fraction of yes responses = 0.94 ± 0.02)
(Fig. 5C ), even when distorted in the stylized versions (fraction of
yes responses = 0.84 ± 0.09). Nonface object images were clearly
reported as not face (0.05 ± 0.12; 0.01 ± 0.01 when excluding
five images of dogs, which were grouped with nonface object
images but received a fraction of yes responses of 0.39 ± 0.04).
Images evolved from face neurons received a fraction of 0.19 ±
0.16 yes responses, less than face photos (P < 10−5, one-tailed
permutation test, FDR corrected across seven tests) but more than
nonface object images (P < 10−5) and slightly more than images
evolved from nonface neurons (0.11 ± 0.14; P = 0.007).

Experiment 6: Faceness Rating. The results of experiment 5
showed that evolved images were not consistently classified as faces
in a binary choice task. In an additional experiment, we measured
a graded value of faceness rather than just the binary distinction
of face or nonface. For each image, subjects were asked to “rate
the faceness of this image on a scale of 1 to 5.” As in experiment
5, we did not elaborate on the definition of faceness, nor did we
tell the subjects what kind of faces to expect. Subjects used the
whole scale for rating. Face photos received ratings of 4.90 ± 0.04
(Fig. 5D), and nonface object images received ratings of 1.2 ± 0.1
(Fig. 6A). All evolved images received low ratings (Fig. 5D). There
was a small, although statistically significant, difference between
the ratings assigned to face neuron evolved images (1.6 ± 0.3)
and nonface neuron evolved images (1.4 ± 0.3; P = 0.002, FDR
corrected across three tests). The low rating was not fully explained
by generator style, as stylized face images received ratings of
3.1 ± 0.4.

These ratings provide a unique opportunity to compare face
neuron responses with a graded measure of face semantic content
based on human perception. To this end, we collected faceness rat-
ings for 131 additional images (SI Appendix, Fig. S4A) that were
included as reference images in some of the evolution experiments.
Faceness ratings for this set of images are presented in Fig. 6A.
Subjects gave the highest rating to face photos, as expected.
Human faces with various modifications, such as faces wearing
personal protective equipment or faces including bodies, received
slightly lower ratings. Monkey faces received lower ratings still.
Nevertheless, all of the images mentioned so far received ratings of
at least three. Other animate images (e.g., elephant) and inanimate
objects with face-like features (e.g., jack-o’-lantern) received a
wide range of ratings centered around 2.5 (other animate: 2.7 ±
0.5; inanimate face like: 2.5± 0.9). As expected, the lowest ratings
(1.2± 0.1) were given to nonface objects. Nonface objects had the
most similar ratings to both groups of evolved images (1.6 and 1.4,
respectively).

Did the faceness ratings, a graded measure of semantic face
content, correspond well with neuronal responses that would be
considered face selective using a conventional metric based on bi-
nary categories? We described the responses of each neuron by two
numbers: 1) the FSI and 2) the correlation between neuronal firing
rates and image faceness ratings. This analysis is illustrated for
four example face neurons in Fig. 6B, where the FSI is indicated
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Fig. 6. Face neuron responses were correlated with graded ratings of face-
ness. (A) The swarm plot shows faceness ratings for 131 natural images of
objects grouped by category. The images are shown in SI Appendix, Fig. S4A.
(B) Responses of example face neurons are compared with image faceness
ratings, including the natural images in A (green to blue dots) and the
evolved image for each neuron (purple square). The text indicates the FSI of
the neuron and the correlation coefficient between natural image faceness
and neuronal responses. (C) The face selectivity of 220 visual neurons as
quantified by FSI is compared with the correlation between faceness rating
and neuron spiking responses. Each point represents a neuron. Face and
nonface neurons are colored purple and green, respectively. The size of each
point is scaled relative to the neuron’s trial to trial self-consistency. (D) The
swarm plot compares firing rate with image faceness correlation values (y
values in C) for face and nonface neurons. In A and D, plot conventions follow
those in Fig. 2F. **P < 0.01, one-tailed permutation test. (E) Image faceness
and firing rates were normalized as percentiles within each neuron and then
pooled over face neurons separately for natural and evolved images. Each
point represents one image response in one face neuron. Green to blue
scatter represents natural images, and shading represents their distribution
(kernel density estimate). Purple scatter represents evolved images. Solid lines
represent linear regression fits. The dashed gray line is the identity line.

alongside the full range of responses in relation to image faceness
ratings. The neuronal responses were correlated with faceness with
coefficients ranging from 0.33 to 0.5 for the example neurons.
This correlation was positive for all face neurons but one (CIT,
FSI > 0.5) and indeed, for most neurons with an FSI > 0 (Fig. 6
C and D). Across 220 neurons for which we both evolved images
and showed the rated natural images, there was a clear positive
relationship between the firing rate–faceness correlation and the
FSI (Fig. 6C ) (Pearson’s r = 0.69; P = 4 × 10−32). Face neurons
had higher response correlations to image faceness (r = 0.44 ±
0.16) than nonface neurons (−0.07 ± 0.17; P < 10−5, one-tailed
permutation test) (Fig. 6D). Although face photos received high
faceness ratings and although neurons with high FSI responded
strongly to faces by definition, it is not a forgone conclusion that
face neuron responses should be positively correlated with faceness
ratings at the image level. Unlike FSI, faceness ratings are a graded
rather than binary measure of face vs. nonface. Indeed, when
the firing rate–faceness analysis was restricted to only nonface
object images, the responses of more face-selective neurons were
still more correlated with faceness ratings (SI Appendix, Fig. S4C )
(Pearson’s r = 0.41; P = 2 × 10−10).

Was high faceness rating for an image a necessary condition for
strong responses to that image from face-selective neurons? For
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the four example face neurons in Fig. 6B, evolved images (purple
squares) elicited higher responses than all natural images, includ-
ing those with comparable faceness ratings. To summarize across
face-selective neurons, we overlaid one plot per neuron similar to
Fig. 6B by normalizing, per neuron, all image responses (evolved
or natural) as a percentile relative to natural image responses. We
did the same for image faceness ratings. The summary plot in
Fig. 6E shows that for face neurons overall, neuronal responses
positively correlated with faceness, but evolved images consistently
evoked higher firing rates than would be expected by their faceness
rating in comparison with the regression fit for natural images.

Discussion

Face-selective neurons in primate visual cortex have been exten-
sively studied (2, 3, 5, 26, 27). These so-called face neurons tend to
cluster on the cortex into “face patches” that are stereotyped across
individuals (5). Yet, do face neurons truly represent the semantic
concept of “face,” or are they better described as responding to
visual features typical of but dissociable from faces? If face neurons
are semantic, they should respond exclusively to face images. Con-
versely, if face neurons respond to some nonface images as strongly
as to realistic faces, these neurons are better described as visual
feature selective. Face neurons have been observed to respond
moderately to inanimate objects, such as clocks or round fruits
(5, 28). However, because responses to faces are yet stronger, these
observations do not seriously challenge the semantic hypothesis.
There is so far no convincing evidence that nonface images can
activate face neurons as strongly as face images do. A recently
developed algorithm, XDream, can generate images that strongly
activate visual neurons, including face neurons (18, 19), for
which evolved images elicited as high of responses as face photos
(Fig. 1D). Thus, these synthetic stimuli provide an opportunity
to test the alignment between face neuron selectivity and the
semantic category of face. If face neurons are semantic, evolved
images that strongly activate face neurons should be perceived
to be as face like as possible compared with realistic faces, with
stylized faces (to account for limits of the image generator), or with
monkey faces (to account for possible species-specific preference).
Conversely, if face neuron evolved images are less face like than
any of the comparisons, the evolved images would constitute
counterexamples to the semantic hypothesis.

To measure perceptual similarity, we conducted psychophysics
experiments on Mechanical Turk (with pilot experiments in the
laboratory) (SI Appendix, Fig. S5) to assess whether subjects per-
ceived faces in images evolved by the XDream algorithm, com-
paring images generated for face neurons and nonface neurons
and comparing with natural object images. We probed perception
of evolved images in six psychophysics experiments progressively
more focused on face semblance from open-ended description
(experiment 1) to binary face detection (experiment 5) and face-
ness ratings (experiment 6). To capture the ambiguous semantic
category of faces impartially, we deliberately gave minimal in-
structions, no definitions, and no feedback on correctness. Our
experiments consistently showed that subjects did not interpret
evolved images as faces. Subjects described evolved images using a
wide variety of words that were different from the words they used
to describe face photos (experiment 1), chose the label face much
less often than for face photos in forced choice categorization
(experiments 2 and 5), did not consistently choose face images
as more visually similar (experiment 3), were less consistent in
locating facial features than with face photos (experiment 4), and
rated evolved images with much lower faceness than face photos
(experiment 6). Meanwhile, subjects identified animal-related

attributes in the evolved images, showing a small but significant
tendency to associate evolved images more with categories such
as monkeys, dogs, or faces than with categories such as books or
chairs. Furthermore, in most experiments, there was a small but
significant effect showing that images evolved from face neurons
resembled face photos slightly more than nonface object images
and images evolved from nonface neurons.

Although we focused on 86 evolved images, our conclusions
remained the same when we repeated the analyses using relaxed
criteria to include more evolved images, either by including inter-
mediate FSI values (SI Appendix, Fig. S6, 315 evolved images) or
by using imputed values for neurons with missing or unreliable
FSI estimates (SI Appendix, Fig. S7, 187 evolved images). In both
repeat analyses, evolved images for more face-selective neurons
were perceived as more face like than evolved images for less face-
selective neurons, even though neither group closely resembled
real faces.

There are a few caveats when interpreting the present results.
One is that we studied the selectivity of monkey neurons but
tested human perceptual properties. It is not feasible to conduct
some of the behavioral experiments (such as experiment 1) in
monkeys. We cannot rule out the possibility that monkeys might
perceive the evolved images as more (or less) face like than human
subjects have reported here. Conversely, putative human face-
selective neurons may not respond strongly to the evolved images
here. We share all data, stimuli, and code to facilitate future
experiments to test whether the evolved stimuli examined here
are good counterexamples to human face-selective neural signals
or whether evolved images based on human neurophysiological
recordings can look more face like to human subjects.

Second, we predominantly studied multi- and single-unit spik-
ing activity, whereas semantic information may be more relevantly
encoded at the population level. Studies have generally found
the same category selectivity in face patches using noninvasive
imaging, single-unit activity, or multiunit activity (8, 29), but
detailed tuning patterns likely differ, as they do even among
face neurons. Thus, it is conceivable that single neurons may
respond to face-related features at the same time that population
activity encodes semantic categories (11). Population activity can
refer to several distinct concepts—such as the (weighted) average
activity of neurons within an anatomical area, within certain cell
types, in a cortical layer, or in a minicolumn—that are more or
less directly captured by a range of experimental techniques.
Mesoscopic signals, like local field potentials or intracranial
field potentials, or macroscopic noninvasive signals, like fMRI,
magnetoencephalography (MEG), or electroencephalography
(EEG), could lead to different conclusions. Future work is needed
to test which, if any, level of neural activity encodes semantic
selectivity for faces and to elucidate how such selectivity could
emerge from the firing of nonsemantic neurons.

Although we find that semantics is an inadequate model for
describing the responses of face neurons, subjects nevertheless
described face neuron evolved images as face about 4% of the
time in open-ended description, when they could have used any
of about 7,000 common English nouns we accepted. While this
could indicate a human bias toward seeing faces that was possibly
enhanced by the presence of faces in control images, this result
also suggests that evolved images do contain features that are rem-
iniscent of faces. Moreover, in most experiments, evolved images
from face neurons were perceived as slightly more face like than
nonface object images and also, than evolved images from nonface
neurons. Furthermore, when considering only natural images,
face neuron responses were moderately correlated to faceness
ratings. This correlation remained even when considering only
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nonface object images. This relationship between face-selective
neural responses and graded face semblance (even among nonface
stimuli) is reminiscent of prior results in the human fusiform face
area (30). However, this correlation does not extend to evolved
images, which elicited comparable face neuron responses with real
faces but were rated with far lower faceness values.

In conclusion, we found that face neurons are tuned to visual
features that are correlated with, but are not exclusive to, the
semantic category of faces by generating stimuli that evoked face-
level responses but that were not perceived to be face like. This
view is compatible with evidence from several studies showing a
dissociation between the tuning of (nonface-selective) IT neurons
and the category for which they are supposedly selective (14–
16). Although face neuron selectivity is not coextensive with
the semantic category of face, this selectivity might well serve
the function of detecting faces and processing facial features.
Such a teleological hypothesis cannot be tested by feature tuning
alone but requires causal perturbation. The results highlight the
challenges associated with word models that are ambiguous and
difficult to falsify and emphasize the need for more rigorous
and quantitative theories of neuronal tuning along ventral visual
cortex.

Materials and Methods

Images. There were three main sources of images: evolved images, control
images involving photos and drawings, and stylized images. Of those, 166 were
included in main analyses of experiments 1 to 5, and 237 were included in
experiment 6. All evolved, control, and stylized images used in main analyses
are shown in SI Appendix, Figs. S1 and S4A.

Evolved images were generated using the XDream algorithm (18, 19) based
on neuronal recordings from macaque IT (18). Briefly, XDream consists of a
closed-loop algorithm that starts with noise images and gradually tweaks im-
ages to trigger high firing rates by a single neuron or neuronal multiunit. The
algorithm has three components: an image generator, a fitness function given
by neuronal firing rates, and a genetic search algorithm that selects the best
candidate images in each generation and introduces visual variations to these
successful images (31). In most of the figures, we consider 39 evolved images
from 34 recording sessions in the middle lateral face patch (20) in CIT in four
monkeys and 47 images from 39 recording sessions in nonface patches (46 in
CIT, 1 in V1) in five monkeys. In Fig. 6C, recording locations were represented by
78 images from CIT, 96 from PIT, 5 from V4, 1 from V2, and 40 from V1.

Control images in experiments 1 to 5 were taken from the internet and
included images of books, butterflies, cars, chairs, clouds, dogs, human faces,
fruits, trees, wheels, and abstract drawings. We used 10 human face photos and
five images for each of 10 nonface object categories. In experiment 6, together
with human face photos and stylized faces, we tested 131 additional images
that were used to record neuronal responses. These additional images comprised
images from a published set (32) and photos taken in the laboratory. Although we
included human faces for comparison, we deliberately excluded monkey faces in
experiments 1 to 5 to avoid possible priming effects, even as we recognized that
some evolved images may be reminiscent of monkey faces. We included monkey
faces in experiment 6 because they have been used to record neuronal responses.

Stylized images were based on additional images from each control category
(10 faces and 10 nonface objects, 1 from each nonface category). Those images
were reconstructed from the image generator underlying XDream by using back
propagation to optimize for pixel-level similarity (19).

Neurophysiological Responses. Neuronal responses were recorded using
high-impedance intracranial electrodes in floating microelectrode arrays (Micro-
Probes) or microwire bundles (4). Background-subtracted firing rates were com-
puted using windows for background and evoked activity that were chosen and
fixed before each evolution experimental session. The dataset includes previously
published data (18).

Mechanical Turk Experiments. Behavioral experiments were conducted on
the Amazon Mechanical Turk platform through psiTurk (33). Initial versions of the
experiments were conducted in the laboratory (five subjects) with eye tracking
to obtain a baseline level of subject performance that could be compared with
the performance on Mechanical Turk, where subjects could not be monitored
(SI Appendix, Fig. S5). All participants provided informed consent and received
monetary compensation for participation in the experiments. All experiments
were conducted according to protocols approved by the Institutional Review
Board at Boston Children’s Hospital. Responses from a Mechanical Turk subject
were included if they attained the minimum in-laboratory accuracy, even if the
subject did not finish the whole experiment. Each image received at least 25
responses. Details about each experiment are provided in the next sections.

In experiments 1, 2, 4, 5, and 6, generated images were split into eight sets of
about 180 images each. Every set included all of the natural images. Each subject
completed trials on one image set. In experiment 3, subjects responded to trios
of images for 189 to 190 trials. Each subject completed only one experiment. The
order of image presentation was randomized in all experiments.

Images were presented in color at a size of 256 × 256 pixels. No attempt
was made to monitor eye movements in the Mechanical Turk experiments,
but the images were flashed for 200 ms, thus minimizing the effects of eye
movement during image presentation. Subjects provided informed consent and
were compensated for participating in these studies. There was no time limit to
respond in any of the experiments. Subjects were not allowed to give the same
response (e.g., pressing the “1” key) more than five times in a row. No feedback
was provided to the subjects.

To avoid introducing bias, we did not inform the subjects of the underlying
hypotheses or questions addressed in this study. The experiments were defined
by the minimal instructions listed next for each experiment and are shown
schematically in Fig. 1 A–C. In particular, no definition of the word “face” was
provided, and we left it to participants to interpret the word when it was part of
the instructions (experiments 5 and 6).

Experiment 1. A schematic of the experiment is shown in Fig. 1A. A fixation
cross in a 500- × 500-pixel gray box was shown for 1,000 ms. Then, the test
image was flashed for 200 ms. After image presentation, subjects were asked
to type one word to describe the image. The answer was accepted during the
experiment if it was contained in a set of 6,801 commonly used nouns pulled
from the American National Corpus Project (34, 35); otherwise, the subject was
prompted to check the spelling and try again. Subjects were excluded from
analysis if they responded to under 25% of the questions or gave the same
answer over 25% of the time. Example responses are shown in Fig. 2 A–C and
SI Appendix, Fig. S2 A–C.

Experiment 2. A schematic of the experiment is shown in Fig. 1A. A fixation
cross in a 500-×500-pixel gray box was shown for 1,000 ms. Then, the test image
was flashed for 200 ms. After image presentation, subjects were asked to “choose
the most appropriate category” from five options by typing in the corresponding
number. For natural images, the correct category was always an option, while
the other four options were chosen randomly from the other nine categories. For
abstract drawings and evolved images, all five options were chosen randomly.
Subjects were excluded from analysis if their accuracy was less than 84% on
natural object images.

Experiment 3. A schematic of the experiment is shown in Fig. 1B. In this ex-
periment, subjects were presented with three images: a test image in the center
and two choice images on either side. Subjects were instructed to choose whether
the left or right image was more similar to the center image in a two-alternative
forced choice manner. The images remained on the screen until subjects made
their choice. Subjects pressed the 1 key to select the left image as more similar
or 2 for the right image. The test images were always evolved images. The two
choice images were randomly chosen from two different categories. Each evolved
image was tested at least once for each option pair (10 choose 2 = 45 pairs). Each
subject saw 10 control trials where one of the choice images matched the test
image. Subjects were excluded from analysis if they matched fewer than 90% of
the control trials correctly.

Experiment 4. A schematic of the experiment is shown in Fig. 1C. In this
experiment, subjects were asked to “click on the mouth (if unsure, make your
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best guess).” No further instructions were provided. In the case of nonface object
images (e.g., chairs), subjects still had to click somewhere in the image. The
image remained on the screen until the subjects clicked on it. Subjects were
excluded from analysis if they failed to click on a region around the mouth in
more than one of the normal face photos. (We did not use a percentage accuracy
cutoff due to the low number of images tested in the laboratory.)

Experiment 5. A schematic of the experiment is shown in Fig. 1A. A fixation
cross in a 500-×500-pixel gray box was shown for 1,000 ms. Then, the test image
was flashed for 200 ms. After image presentation, subjects were asked, “Is there
a face in this image?” They responded by pressing the “y” key for “yes” or the “n”
key for “no.” Subjects were excluded from analysis if they answered yes to fewer
than 90% of control face photos.

Experiment 6. A schematic of the experiment is shown in Fig. 1A. A fixation
cross in a 500-×500-pixel gray box was shown for 1,000 ms. Then, the test image
was flashed for 200 ms. After image presentation, subjects were asked to “rate the
faceness of this image on a scale of 1 to 5.” They responded by typing a number
from one to five. No further instructions were provided. Subjects were excluded
from analysis if they gave an average rating of less than four to face photos.

Word Similarity Quantified by WP or LexVec Word Embedding–Based
Metrics. Given two words w1, w2, the WP similarity (WPS) is defined as

WPS =
depth (LCS(w1, w2))

1
2 (depth(w1) + depth(w2))

,

where depth indicates the number of nodes from the top to arrive at the word in
the WordNet hierarchy and LCS refers to the least common subsumer: in other
words, the most specific shared category. WP similarity ranges from zero (no
relation) to one (identity). In the WordNet hierarchy, a word can have multiple
hierarchical definitions; in this case, the highest WPS over all definitions was
used. For example, a WPS of 0.31 between “woman” and “face” is calculated
as follows: woman = entity → physical entity → causal agent → person →
adult → woman; face = entity → physical entity → thing → part → body
part → external body part → face; 2/(0.5 × (7 + 6)) ≈ 0.308. A WPS of 0.57
between “woman” and “butterfly” is calculated by the following: woman = entity
→ physical entity → object → whole → living thing → organism → person
→ adult → woman; butterfly = entity → physical entity → object → whole
→ living thing → organism → animal → invertebrate → arthropod → insect

→ lepidopterous insect → butterfly; 6/(0.5 × (9 + 12)) ≈ 0.571. The LCS is the
same between “woman” and “tree” or “dog” while the latter two have shallower
hierarchical definitions (depth = 10 and 9, respectively) than butterfly, resulting
in even higher WP similarity to “woman” [6/(0.5× (9 + 10))≈ 0.632 and 6/(0.5
× (9 + 9)) ≈ 0.66, respectively].

LexVec word embedding maps each word to a vector such that the vectorial
dot product between two word vectors approximates, conceptually, the log odds
(or enhancement in probability) on one word occurring given that the other
word occurs nearby (36). We used precalculated word embeddings from Salle
and Villavicencio (25), where each word is mapped to a 300-dimensional vector.
LexVec similarity between two words was calculated as the dot product between
the two corresponding word vectors, and thus, the value can be interpreted as
approximate log odds as defined above. The log odds were lower bounded by
zero, so the minimum dot product value was approximately zero.

Entropy in Experiment 4. Entropy was calculated by putting x and y coordi-
nates of click locations into 121 bins (11 × 11 grid on the image). For each bin
i in each image, the click probability pi was calculated as the number of clicks in
the bin divided by the total number of clicks on the image. The entropy for each
image was calculated as

∑
i(−pi log pi).

Statistical Tests. We conducted pairwise permutation tests by permuting im-
age assignment to categories for 10,000 permutations. P values associated with
Pearson’s r (experiment 6) were calculated using the exact distribution for the null
hypothesis that the two variables were drawn from a bivariate normal distribution
with zero covariance, as implemented in the Python library “scipy” (37). One
or two tailedness of tests and other types of tests are noted in the text and
were implemented using the Python library “scipy.stats.” P values for multiple
comparisons were corrected to control false discovery rate at the level of 0.05
using the two-stage Benjamini–Krieger–Yekutieli procedure (38) as implemented
in the Python library “statsmodels” (39).

Data Availability. Psychophysics and neural recording data have been
deposited on the lab website and are publicly accessible (https://klab.tch.
harvard.edu/resources/whatisafaceneuron.html), including part of data that were
collected in previous work (18).
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