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Abstract

The attempt to decode the human brain using computers is not novel, however, doing it dynam-
ically in an uncontrolled environment with many external confounding factors has been deemed to
be very challenging computationally, and hence, yet to be explored in depth. This study aims to pre-
dict the continuous human physiological behaviors using machine learning and invasively recorded
intracranial field potentials received through electroctrocortigography (ECoG) procedure from the
brain surface in an uncontrolled real life setting. After a rigorous feature engineering process I show-
case that the well-defined behaviors such as sleeping, eating and video gaming can be decoded with
greater than 0.95 AUCs, and the noisier behaviors such as movements, spoken and heard speech are
decoded with AUCs higher than 0.80. To ensure that the classification results are reliable I run a
series of experiments with different controls and find that despite the drop in AUCs the behaviors
are still robustly classified better than the random for all of the tests. I also explore the specific brain
regions responsible for the high performance of the classifications. Not only does this research show
that it is possible to classify twelve natural continuous human behaviors with high performance, it
also confirms many of the prior literature findings which state that certain brain region activities
correspond to specific human physiological actions.
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0
Introduction

Decoding brain activity in relation to physiological behaviors can be the key to advancing medical

practices to solve many health-related problems which yet to be addressed. For example, understand-

ing how and which brain parts correspond to certain eating behaviors can lead to successful medical

therapies for curing eating disorders. Additionally, the ability to predict how and when the person

wants to move and which type of movement they want to undertake from the neuronal activity can

be translated into smart wearable devices - brain computer interfaces (BCI) - for giving mobility to
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those who lost their limbs. However, the successful application of any classification model in brain

computer interfaces requires that the underlying research, and hence, the technology is robust to

the challenges and the noise of the dynamic world. My research complies with the modern BCI

demands of studying the brain in a dynamic uncontrolled environment making its results directly

applicable to real-life problems.

In this study I work with data received from three human subjects who underwent an electro-

corticography procedure prior to surgery for severe epilepsy and had electrodes implanted on the

surface of their brain for at least a day. During this time the patients have also been video and audio-

recorded making it possible to know what they have been doing at any second. The knowledge of

their physiological behaviors during the time when their brain activity has been recorded makes

it possible to formulate the challenge of this study as a supervised learning problem which is the

framework used throughout the paper. To set the grounds for a successful demonstration of the

series of results, the rest of the introduction is dedicated to defining the common concepts as they

relate to the neuroscience context of this problem and shedding light on the previous literature for

this study specifically.

0.1 Neuroscience Context and Brain Computer Interface

Neuroscience, the scientific field which is concerned with understanding the brain’s physical, chem-

ical and electrical structure, has been reaching major milestones in the past decades due to the phe-

nomenal technological advances.12 In the 1970s the research on Brain Computer Interfaces (BCI)

started in the University of California leading to a new wave of innovations in the field.27 BCI is

a computer interface that establishes a full pipeline of acquiring the brain signals, analyzing and

translating them into commands that can be carried out by an output device. In 2004, Wolpaw et al

showed that using computers it is possible to translate the electrical brain waves into physical activity
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Figure 1: The figure demonstrates the different methods of recording field potentials from the brain and their exact
placements.

such as moving a cursor on the screen.45 A study published in August, 2021 demonstrated the use

of nearly 50 autonomous wireless microimplants for recording rodent’s neural activity which was

a step towards addressing the brain and spinal injuries from within.24 The most recent survey on

data science and machine learning techniques in BCIs stresses the importance of the computational

tools in handling brain activity data, feature extraction and classification, as the new problems posed

for BCIs require working with big volumes of data and implementing sophisticated computational

algorithms.35 The current aim of BCIs is to restore the physical functionalities which are caused by

neuromuscular disorders, but it also largely implies understanding the biology of the brain.

The improvements of non-invasive and invasive data collection methods driven by BCIs ended

the cycle of seeing the brain as a blackbox mystery caused by the limitations of objectively studying

its activity and biological structures. One such way to look into the brain is through Electrocor-

ticography (ECoG), also known as intracranial electroencephalography (iEEG), which is defined to

be the process of recording the electrical activity invasively by placing the electrodes in direct con-
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Figure 2: Shown above are the four lobes in human brain and their relative placements.

tact with the surface of the brain.40Norcliffe-Kaufmann et al. Not only do the intracranial field potentials

(IFPs) received through ECoG have excellent spatial and spectral resolution, but also the ability to

maintain high signal-to-noise ratio due to the close proximity of electrode placements to the source

of activity.26 Since the process of obtaining iEEG data requires open-cut placement of implants in

the scalp, currently, the procedure is mainly used in the clinical setting for pre-surgical epileptic pa-

tients.6 The IFPs are analyzed during the pre-surgical procedure to locate the epileptic foci and after

the surgery to assess the completeness of the treatment. Other major ways of accessing the brain ac-

tivity include but are not limited to Electroencephalogram (EEG) which requires placing electrodes

non-invasively on the scalp; and through intracortical neural microelectrodes which are implanted

directly in the cortex for both recording and stimulating neural activity.

The human brain has two hemispheres and 4 sections associated with them which are called

lobes: the frontal lobe which is generally associated with personality, decision making and move-
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ment; the parietal lobe which supports humans to identify objects, understand spatial relationship,

respond to touch and interpret spoken language; the occipital lobe which is linked to vision; and

the temporal lobe which is responsible for short-termmemories, speech, rhythm and smell.2 The

outermost neural tissue sheet of our brain is called the cerebral cortex and it is also exactly where the

electrodes for ECoG procedure are implanted.3 The cerebral cortex has 1010 neurons and is deemed

to be the place where higher-order computations are performed.34 A cerebral cortex has a wrinkled

appearance and consists of gyri(the ridges or bumps) and sulci(the grooves).1

0.2 Literature Review

The net voltages recorded by ECoG and the various frequencies of their oscillations have been

linked to distinct human physiological behaviors, serving as good grounds for researching how

to decode those behaviors from the brain activity further.10 Using ECoG data with paired video

recordings obtained from implanted electrodes in pre-neurosurgical diagnostics of epilepsy patients

Deris et al. started linking the spontaneous real-world speech to so-called cognitive “idea” units

(IUs).15 Deris et al. used invasive neuronal recordings for brain activity and video-recordings for

tracking the dynamic human behavior, but the main aim of their study remained to be very dif-

ferent frommine, as their goal was to explore human speech. ECoG data are also used widely for

studying the brain parts and their functionalities, for example the experiment by Tang et al. where

15 epileptic patients were studied while they were performing a Stroop task revealed that the four

regions of the frontal cortex responded to altered colors and word meanings in their task.39

In 2011 Z. Wang et al published results about decoding the onset and direction of movements us-

ing ECoG, showing that the ECoG signals contain valuable information for understanding the initi-

ations of different movement types.44 iEEG data were shown to be valuable also for understanding

mental states and predicting mental fatigue by Yao et al in 2020.46 The particular study with Yao et
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al worked with non-human primates(NHP) where they tracked the NHPs over extended periods of

time and had them execute mentally demanding tasks in a controlled environment. While the study

established good grounds for the possibility of exploring mental fatigue from within, it struggled to

generalize to humans without further research and investigations with human subjects.

N. X. R. Wang’s research on clustering the ECoG data via hierarchical clustering and then using

computer vision with video-recordings for characterizing the general clusters with human behavior

related features such as speech and movement is the closest literature to my study.43 However, even

though the studies have a similar data set up, uncontrolled experimental design and similar moti-

vations of decoding human behaviors from ECoG, their adopted methodology is different from

the one in this study. In fact, the authors state themselves that their approach of implementing un-

supervised learning and computer vision for extracting features from the video recordings lack the

specificity and precision in decoding the behaviors, which I hope to add in my study with a super-

vised learning problem-solving framework.

Finally, according to a 2021 survey of neural decoding papers the state of machine learning usage

in BCI related research using EEG data follows the trend of engineering domain-specific informative

features and keeping the algorithms simple as long as they achieve good classification results.36 In

fact, Random Forests, k-NNs, SVMs and simple CNNs are the best performing models for most

of the decoding tasks. In this study I also adopt similar approach of performing a rigorous feature

engineering and using more interpetable models.
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A typical neuron makes about ten thousand connections

to neighboring neurons. Given the billions of neurons,

this means there are as many connections in a single cubic

centimeter of brain tissue as there are stars in theMilky

Way galaxy.

David Eagleman

1
Data andMethods

1.1 Data

The data used in this paper are recorded from three human subjects at Boston Children’s Hos-

pital (BCH) and were approved for research by BCH Institutional Review Board. All of the subjects

have been patients in the hospital undergoing a neurosurgical procedure to remove the seizure foci
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in the brain. The patients vary in age and gender including one female and two males and ranging

from age 11 to 32. In order to intraoperatively confirm the location and extent of epileptic tissue the

patients were implanted with electrodes in direct contact with the surface of the cerebral cortex - a

procedure known as ECoG.37 The implanted electrodes had a diameter size of 1.3 mm. Hence, the

data of this research are the electrical activity, or more formally the intracranial field potentials (IFP),

received from the invasive electrodes measured in microvolts (µV). The sampling rate of the original

data collection was 500 Hz, but later the data were undersampled to roughly 250 samples per second

to make it easy and efficient when it comes to storage and distribution. The data were also notch

filtered at 20 Hz as well as 60 Hz and harmonics as shown in the Figure 1.1. This was done to get rid

of any additional interference in the signal recording process such as the AC current in the electrical

devices.14

Figure 1.1: The figure shows the power spectrum of the field potentials for Subject 2.

In modern EEG/iEEG, there are two types of commonly used electrode configurations: unipo-

lar and bipolar. In a bipolar configuration, two electrodes are placed on the head, and the resulting

signal is the difference between those two electrodes.25 In a unipolar configuration, multiple elec-

trodes are placed at different locations and one of them serves as a reference for the rest of the elec-

trodes. The majority of the implanted electrodes for all of our patients have a reference electrode

8



which could be used for bipolar re-referencing. The locations and the quantities of the implanted

electrodes vary for each patient as the electrodes were implanted based on the needs of the surgical

procedures.

The Tables 1.1, 1.2 and 1.3 below show the brain regions and the corresponding number of elec-

trodes implanted for each of the patients respectively. The tables also include the conventional in-

ternational abbreviations of the brain region names which are used in the figures in later sections

of this research paper. The Figure 1.2 shows the electrode placements in the brain for each of the

subjects. Generally, most of the electrodes for Subject 1 were implanted in the temporal lobe. For

Subject 2 the most number of electrodes were placed in the frontal lobe. Lastly, the majority of Sub-

ject 3’s electrodes were from the occipital lobe.
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Figure 1.2: This figure was produced with MATLAB and shows the electrode locations in the brain for each of the sub‐
jects.
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Table 1.1: Number of Electrode Placements in Each Brain Region for Subject 1

Brain Region International Abbreviation #Electrodes
Superior Temporal Gyrus - Lateral G_temp_sup-Lateral 7
Temporal Pole Pole_temporal 6
Middle Temporal Gyrus G_temporal_middle 5
Middle Occipital Gyrus G_occipital_middle 4
Inferior Temporal Gyrus G_temporal_inf 3
Inferior Occipital Gyrus and Sulcus G_and_S_occipital_inf 3
Inferior Parietal Lobe - Supramarginal Gyrus G_pariet_inf-Supramar 3
Inferior Frontal Gyrus - Opercular G_front_inf-Opercular 2
Inferior Parietal Lobe - Angular Gyrus G_pariet_inf-Angular 2
Fusiform Gyrus (Lateral Occipitotemporal Gyrus) G_oc-temp_lat-fusifor 2
Subcentral Gyrus and Sulcus G_and_S_subcentral 1
Occipital Pole Pole_occipital 1
Lingual Gyrus (medial Occipitotemporal gyrus) G_oc-temp_med-Lingual 1

Table 1.2: Number of Electrode Placements in Each Brain Region for Subject 2

Brain Region International Abbreviation #Electrodes
Superior Frontal Gyrus G_front_sup 37
Middle Frontal Gyrus G_front_middle 13
Precentral Gyrus G_precentral 12
Postcentral Gyrus G_postcentral 8
Inferior Parietal Lobe - Supramarginal Gyrus G_pariet_inf-Supramar 6
Anterior Cingulate Cortex G_and_S_cingul-Ant 4
Inferior Frontal Gyrus - Opercular G_front_inf-Opercular 4
Paracentral Gyrus and Sulcus G_and_S_paracentral 4
Precuneus Gyrus G_precuneus 4
Inferior Parietal Lobe - Angular Gyrus G_pariet_inf-Angular 3
Mid-Posterior Cingulate Cortex G_and_S_cingul-Mid-Post 2
Mid-Anterior Cingulate Cortex G_and_S_cingul-Mid-Ant 2
Middle Temporal Gyrus G_temporal_middle 1
Inferior Frontal Gyrus - Triangularis G_front_inf-Triangul 1
Subcentral Gyrus and Sulcus G_and_S_subcentral 1
Superior Temporal Gyrus - Lateral G_temp_sup-Lateral 1
Cuneus Gyrus G_cuneus 1
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Table 1.3: Number of Electrode Placements in Each Brain Region for Subject 3

Brain Region International Abbreviation #Electrodes
Lingual Gyrus (medial Occipitotemporal gyrus) G_oc-temp_med-Lingual 35
Cuneus Gyrus G_cuneus 21
Inferior Parietal Lobe - Angular Gyrus G_pariet_inf-Angular 20
Occipital Pole Pole_occipital 17
Precuneus Gyrus G_precuneus 10
Inferior Occipital Gyrus and Sulcus G_and_S_occipital_inf 10
Middle Occipital Gyrus G_occipital_middle 8
Inferior Parietal Lobe - Supramarginal Gyrus G_pariet_inf-Supramar 8
Middle Temporal Gyrus G_temporal_middle 7
Superior Temporal Gyrus - Lateral G_temp_sup-Lateral 5
Inferior Temporal Gyrus G_temporal_inf 5
Superior Occipital Gyrus G_occipital_sup 4
Intraparietal Sulcus S_intrapariet_and_P_trans 4
Superior Parietal Gyrus G_parietal_sup 4
Fusiform Gyrus (Lateral Occipitotemporal Gyrus) G_oc-temp_lat-fusifor 4
Subcentral Gyrus and Sulcus G_and_S_subcentral 3
Superior Occipital Gyrus S_oc_sup_and_transversal 2
Collateral Sulcus S_collat_transv_ant 2
Superior Temporal Sulcus S_temporal_sup 2
Unknown Unknown 1
Lateral Occipitotemporal Sulcus S_oc-temp_lat 1
Postcentral Sulcus S_postcentral 1
Lingual Sulcus (medial Occipitotemporal sulcus) S_oc-temp_med_and_Lingual 1
Superior Temporal Gyrus - Planum Temporale G_temp_sup-Plan_tempo 1
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While the patients were undergoing the ECoG procedure, they were also being video recorded

meaning that both their physiological behaviors and neuronal recording information could be

synced and analyzed together. The audio-visual recordings have been manually annotated with a

millisecond (ms) precision level using Neuro NatusWorks software and matched with the neuronal

recordings as shown in the Figure 1.3.

Figure 1.3: The figure is a screenshot from the process of producing the annotations with Neuro NatusWorks showing
how the patient’s video was superimposed with the brain activity.

The annotated behaviors are:

• Body Movement: The patient is moving. This includes any movement but a head move-

ment which is a separate annotation on its own.

• ArmMovement: The patient is moving their arms. Both left and right armmovements are

captured with this annotation.
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• Leg Movement: The patient is moving their legs. Both left and right leg movements are

captured with this annotation.

• Head Movement: The patient is moving their head and neck. The facial movements are not

included.

• Contact: The patient comes in contact with someone else. The annotation covers all the

physical contacts with another human regardless of who initiated it.

• Someone is Talking: Someone else in the room is talking other than the patient. The patient

does not necessarily need to engage in the conversation.

• Patient is Talking: The patient is engaging in a conversation or makes requests.

• Sleep: The patient is sleeping or relaxing with their eyes closed.

• Quiet: There is no noise in the room and the patient is typically not engaging in any activi-

ties.

• Eating: The patient is actively consuming food or drinking.

• Video Games: The patient is playing video games on the computer.

• Watching TV: The patient is actively watching the TV.

Please note that even though the majority of the annotated behaviors overlap across the patients,

not all of the patients have the same set of annotated behaviors. The Table 1.4 demonstrates what

the exact annotated behaviors are for the three subjects analyzed in this research paper.
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Table 1.4: The annotated behavior distributions among the subjects

Subject 1 Subject 2 Subject 3
Body Movement Yes Yes
ArmMovement Yes
Leg Movement Yes
Head Movement Yes Yes Yes
Contact Yes Yes Yes
Someone is Talking Yes Yes Yes
Patient is Talking Yes Yes Yes
Sleep Yes Yes Yes
Quiet Yes Yes
Eating Yes Yes Yes
Video Games Yes Yes Yes
Watching TV Yes Yes Yes

All the behaviors were annotated in a linear fashion with binary ON and OFF labels. For exam-

ple, once the patient would start eating the annotations for EATING behavior would be marked

ON for each sample of neuronal recording until the patient would stop eating and the annotations

would become OFF. To summarize, the neuronal recordings make a tabular Xi withmixni where

i ∈ {1, 2, 3} is the subscript corresponding to the subject,mi is the number of samples and ni is

the total number of electrode channels for the ith subject. The annotations make a tabular Yi matrix

with kix10, where ki is the number of total annotated samples and 10 is the number of annotated

behaviors for the ith subject. The details about the ECoG data for each of the subjects is provided

in the Table 1.5 which contains information about the patient’s gender, age, total number of elec-

trodes, total number of bipolar electrodes, the total number of available ECoG samples and the

sampling rate.
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Table 1.5: Details about the ECoG data received from the three subjects.

Subject Gender Age #Electrodes #Bipolar Electrodes Total Samples Sampling Rate
1 Male 32 40 35 82235127 250
2 Male 11 104 91 134834457 250
3 Female 16 176 154 12889503 256

1.2 Feature Engineering

Before performing any classification tasks the data have been carefully processed and the features

have been engineered to decode meaningful information from the time-series of signals. The general

idea was to divide the time series into time windows/intervals and calculate an aggregative metric

corresponding to the signal in that time window, e.g. binning one second of iEEG samples in one

window and calculating the maximum amplitude. Firstly, this would achieve aggregation of the

data from a millisecond precision to a second precision to alleviate human reaction errors while

annotating. Secondly, the feature engineering process allows us to denoise the data and incorporate

domain specific knowledge on time-series, signal processing and neuroscience. Lastly, this approach

makes the data computationally more efficient to process.

A few methodologies of feature engineering have been implemented to present different ap-

proaches and sets of assumptions, specifically, about how to choose the windows which will divide

the neuronal recordings with respect to behavioral annotations’ ON and OFF intervals. Further-

more, both bipolar and original referencing were considered resulting in fours different sets of fea-

tures.

The main approach with the window selection was to create one-second windows which, de-

pending on the sampling rate, correspond to either 250 samples per second for Subject 1 and 2, and

256 samples for Subject 3. As a classification sensitivity analysis two-second windows were also cal-

culated for the best set of features and the classification results can be found in the results section.
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1.2.1 Equally SpacedWindows

The main question for implementation was deciding how the starts of the windows should be cho-

sen given the time series of neural recordings and the behavior annotations. The easy, more obvious,

technique is to divide the entirety of the series into equally spaced one-second intervals. The dia-

gram below (Figure 1.4) shows how the signal which has corresponding consecutive periods of ON

and OFF labels for the behavior annotations is divided into equally spaced one-second windows.

For the purposes of reducing the ambiguity in the classification, the windows which had samples

from both ON and OFF annotations were discarded, even though one might argue that the most

interesting information is contained at the change points of the behaviors.

Figure 1.4: The graphic portrays the methodology of dividing the signal into equally spaced windows for feature engi‐
neering. The blue lines represent the part of neuronal signals which were annotated ON as the given behavior and the
orange line represents the consecutive OFF parts of the signal.The grey squares are the equal time windows.
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1.2.2 Windows Adjusted to the Start of Behavior Change

As discussed in the previous approach, the discarded windows which are at the intersection of be-

havior changes - e.g. the second which contains the state of the person starting to consume food

- might contain valuable information which is being lost with the initial approach. Hence, an al-

ternative approach was developed to adjust for the start of behavior changes. In this approach, the

starts of window intervals reset with the start of ON or OFF annotation periods. For example, the

one-second windows will start when the person starts eating and will be equally spaced until the

person stops eating. Then the window start will be reset to match the exact second when the person

stopped eating and will continue until the person will start eating again, for which the start will be

reset again to match the new behavior change. The neuronal samples at the end of each behavior

ON or OFF annotation interval will be discarded if they do not make a full one second window.

This methodology is visually presented in the Figure 1.5.

Since this approach is very behavior specific, each behavior ends up having its own separate one-

second windows of neuronal samples and, hence, the downside of this method is that it requires to

compute different sets of features for each behavior and is computationally very costly.
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Figure 1.5: The graphic portrays the methodology of adjusting the start of windows selection to the beginning of the
behavior change. The blue lines represent the part of neuronal signals which were annotated ON as the given behavior
and the orange line represents the consecutive OFF parts of the signal.The grey squares are the equal time windows.
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1.2.3 Referencing

A common way to process the iEEG/EEG electrode voltages is by introducing a reference montage.

Using a reference montage means to get the potential difference between the electrode and a ref-

erence point which will ideally be a static reference value but often is another electrode. The most

common reference method is bipolar montaging. The bipolar reference is when the potential dif-

ference is calculated from the pair of electrodes where one serves as a reference for another. In my

case, I used the neighboring electrode pairs for bipolar re-referencing, as the information about the

electrode locations is available. Bipolar reference is defined asVbip
ij = Vi − Vj, whereVi andVj

are the voltage signals from ith and jth neighboring electrode pairs at a given time. This allowed me

to capture the local changes in the voltage potentials, canceling out the signals which are the same

throughout the brain areas. However, bipolar re-referencing might result in loss of information, as

it only captures the local changes in potential and not global. For this reason and as a case study, I

also considered the raw voltage signals in my feature engineering process.

The re-referencing choices combined with the two methodologies of window start selection re-

sulted in four main feature sets which are:

• Methodology A: equally spaced windows with bipolar referencing

• Methodology B: equally spaced windows without bipolar referencing

• Methodology C: windows adjusted to the behavior change with bipolar referencing

• Methodology D: windows adjusted to the behavior change without bipolar referencing.

Please, note, that for the clarity and simplicity of this paper, the main figures in the results sec-

tion are based on the features derived throughMethodology A, except in the subsection where the

classification results are reported and compared for the different feature sets.
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1.3 Feature Calculation

1.3.1 Time Series Features

After the windows were chosen, the main objective of the feature engineering phase was to choose

metrics/features to capture the most relecant information from the channels. Since the data is a time

series of voltage samples it made sense to calculate typical times-series features. In my case, I chose

to calculate the root mean squared (RMS), mean absolute value (MAV), the minimum amplitude

(MIN) and the maximum amplitude (MAX) of the one-second windows. The general overview of

what type of information these features capture for the raw signals is presented in Figure 1.6.

• RMS

RootMean Squared for a window of 250 samples is calculated by squaring all the values,

averaging them and then taking the square root of the mean. The equation is shown below

where vi is the individual IFP.

RMS(v) =
√

1
n
∑

v2i

RMS is widely used for exploring the time series of electrical signals, especially, when it

comes to defining and working with sinusoidal voltages.11 Since the iEEG data also has an

oscillatory nature, RMS values will allow me to capture information about the amplitude of

the wave. The various amplitudes of the waves are hypothesized to be associated with differ-

ent human behaviors which makes it even more of an attractive feature for this study.

• MAV

Mean Absolute Value (MAV) is computed by taking the absolute values of the individual
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voltages and then taking the average for the window as defined below:

MAV(v) =
1
n
∑

|vi|

TheMAVwill capture the average values of the voltages without letting the positive and neg-

ative values cancel each other out. In this way, for each window I will maintain the average

voltage intensity information.

• MIN

Minimum value is computed in a very straightforward way: I take the minimum of the volt-

ages for the given window.

MIN(v) = min(vi)

I wanted to keep information about all the extreme activities as it will illustrate the drops

which may be caused by stimulation. The minimum values as a feature keep track of how

deep the lows of the IFPs can get.

• MAX

The purpose of computing the maximum values is very similar to the minimum values, ex-

cept this feature keeps track of the signal voltage peaks.

MAX(v) = max(vi)
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Figure 1.6: The figure compares the original signal with the RMS, MAV, MIN, MAX features received for the 10 second
interval.

1.3.2 Frequency Features

ECoG data used in this study has an oscillatory nature and can be thought of as a sinusoidal elec-

trical wave which could be represented in a frequency domain. Neuroscientists commonly use five

different frequency bands when working with brain waves: ALPHA, BETA, DELTA, THETA,

GAMMA. The research showed that the various frequency bands are associated with different phys-

iological states and behaviors. Hence, naturally, the frequency features become very valuable tools

in decoding the behaviors in this research. The detailed description for each of the bands and their

calculations follows in the subsections. Moreover, the Figure 1.7 shows the overview of the general

information captured from the raw signal by contrasting the features computed with the original

signal.

• DELTA

Relaxation, deep and restorative sleep are the key states that come to mind when discussing

Delta waves. Delta wave frequencies range from 0.5-3 Hz. These waves are usually promi-
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nent among infants’ brain activity and those who have brain injuries, inability to think or

severe ADHD.38 The DELTA feature is calculated by approximating the power spectrum

withWelch’s method and measuring the density over the 0.5-3 Hz range. For DELTA and

the following frequency band calculations the spectral power density estimation is carried

out with Python’s Scipy package’s signal.welch method.42

• THETA

Theta activity is a normal EEG feature which covers less than 10% of the recording.13 It

spans the frequency range of 3-8Hz. In 2017, Thitz et al showed that the theta-burst stimu-

lation could improve the episodic memory. As mentioned in “Functional Neuromarkers for

Psychiatry” by D. Kropotov there is only one theta rhythm in the healthy brain—the frontal

midline theta.23 The presence of theta activity in other parts is deemed to be an abnormality.

This type of abnormality is usually seen in autistic patients. THETA feature in this study is

calculated by finding the density of frequencies in the range of 3-8Hz from a spectrogram

estimated byWelch’s approach.

• ALPHA

Alpha waves are those frequencies which span the range from 8 to 12 Hz and usually peak

at 10 Hz. Mindfulness, focused relaxation, the ability to mentally coordinate and access to

controlled knowledge are states which are linked with Alpha waves as suggested in “Alpha-

band oscillations, attention, and controlled access to stored information” byW. Klimesch.22

Moreover, Alpha frequencies were shown to dominate when the person was resting with eyes

open and disappear during the sleep.29 Alpha waves vanish when the person is performing

active tasks. The ALPHA feature in this study is calculated by estimating the spectral power

density byWelch’s method over the specified time window and then taking the average den-

sity of the corresponding frequency range from 8Hz to 12Hz.
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• BETA

Beta waves are the high-frequency, low-amplitude waves ranging from 12-30Hz (in some

literature it may be defined to reach 40Hz).30 They are associated with conscious thoughts,

logical thinking and are observed mostly when the person is fully awake. Too much of Beta

frequencies is shown to cause anxiety and, too little leads to ADHD and poor cognition.4

Even within the BETA band, the neuroscientists differentiate three subcategories: low beta

waves(12-15Hz) of quiet and focused states; mid-range beta waves(15-20Hz) signifying in-

crease in energy and performance; and high beta waves(20-30Hz) showing very high en-

ergy, stress and anxiety. The BETA feature of this study was calculated using the Welch peri-

odogram for the one second windows ranging from 12Hz-30Hz.

• GAMMA

Gamma waves are the fastest oscillating waves to be observed in our brain activity. The

Gamma band is usually defined to be greater than 30Hz and includes frequencies up to

100Hz. The prominence of fast oscillating waves can lead to anxiety but the suppression

can also lead to loss of attention span and learning disabilities. When obtained in normal

amounts, the presence of Gamma activity is associated with consciousness and multidimen-

sional activities such as binding of the senses (smell, touch, sight, taste).4 GAMMA feature,

as all the other frequency features, is also calculated using the Welch’s method for approxi-

mating the spectral density over the time window and getting the density over the specified

Gamma range (30-100Hz). Please note that the frequencies at 60Hz are not taken into ac-

count as they were previously Notch filtered to avoid the recording device’s electrical oscilla-

tions.
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Figure 1.7: The figure compares the original signal with the ALPHA, BETA, GAMMA, DELTA, THETA features received
for the 10 second interval.

1.4 Feature Exploration

Before diving into any of the classification results, I wanted to see if my engineered features are of

any meaning, so I used dimensional reduction algorithms such as Principal Component Analysis

(PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) for visualizing and interpreting

my features in 2D and 3D. Principal Component Analysis is a technique of computing the principal

components of the dataset in such a way that the information loss is minimized.20 In a nutshell, the

principal components constitute an orthonormal basis for the data where the different dimensions

of data are linearly independent from each other. After the principal component analysis is carried

out the principal components are ordered from the highest information variance to the lowest. So

for the dimensional reduction purposes the set of the first few principal components usually in-

cludes most of the variance of the dataset and can be used to visualize the information in the lower
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dimensional space.

T-distributed Stochastic Neighbor Embedding (T-SNE) is a nonlinear dimensionality reduc-

tion tool where the data points are assigned values in such a way that the similar data points end up

close to each other in the reduced dimensional space.41 Essentially, it assigns a distribution for the

data points in the original high dimensional space and another distribution in the specified lower

dimensional space, and minimizes the Kullback-Leibler divergence (KL divergence) between these

two distributions. Both t-SNE and PCA dimensionality reduction methods were utilized to visu-

alize my features in the lower dimensional space and the figures are reported in the results section. I

have used the open source sklearn library in Python for t-SNE(sklearn.manifold.TSNE) and PCA

(sklearn.decomposition.PCA).33

1.5 Model Selection

In machine learning, the models which learn functions based on already observed and annotated

examples of feature-outcome pairs are called supervised learning models. From that perspective the

decoding of human physiological behaviors given the neuronal recordings (observed data/features)

and video annotations (outcomes) can be formulated as a supervised learning problem. There are

many commonmodels used for supervised learning tasks presenting different levels of theoretical

complexities from Logistic Regression, k-NN (k Nearest Neighbors) to neural network based mod-

els such as CNNs (convolutional neural networks) and attention based transformers. While I tried

many models and I reported some of their results in one of the subsections, most of the main results

presented in the paper are accomplished by Random Forests. The full list of the models used in this

paper is: Logistic Regression, Random Forests, k-NN, SVMwith stochastic gradient descent, Gra-

dient Boosting Classifier). All of the classification is performed in Python with the utilities of its

sklearn library.33

27



1.5.1 Random Forests andModel Tuning

The objective of this research was not only reaching high classification performance but also be

able to interpret the results and formulate hypothesis about the biological drivers of the decoding

success for each behavior. Hence, I chose to use Random Forests as a main classifier throughout the

paper because it allows to capture non-linear classification boundaries while also providing room for

interpetability of feature importances.

Random forests is a decision tree based ensemble learning algorithm used both for classification

and regression supervised learning tasks. During the training phase the model constructs multiple

bootstrapped decision trees and ensembles the most popular vote for a classification outcome.8 The

different design choices during the training process include but are not limited to the number of es-

timator trees, the maximum depth of the trees, the criterion of the decision split (Gini impurity in-

dex is the most common one) and maximum number of features to be used in the classification for

each tree. In order to obtain the best possible classification results, in this paper the random forests

of the main results are fine-tuned using a hyperparameter grid search. The main two tuned hyper-

parameters are the number of estimators and the maximum depth of the trees. Random forests

are more efficient computationally and more explainable than the neural networks but still achieve

great classification results. With a dataset as complex as this one I prioritized having a model which

could be easily tuned and explained. To ensure the stability of the classification results, all of the

models in this study are fitted 10 times with 5-fold cross validation.

1.6 Class Imbalance

The training process in classification is very sensitive to the class distribution in the data. Class im-

balance in the dataset is the scenario when one of the classes has more observations that the other

class and it can lead to an incorrect interpretation of accuracy results. In our case the data is heavily
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imbalanced for all of the classes. To address this issue, I use a sampling procedure: they either under-

sample the dominant class or oversample the class which does not have a good representation in the

dataset. Sometimes a technique of generating synthetic data is used if we know the data generation

distribution. Since the underlying data generating distribution of neuronal signals is not known to

humankind, yet, synthetic data generation was not appropriate for this study. On the other hand,

the data is big and oversampling would mean adding to the computational costs of obtaining classi-

fication results. Hence, for this study purposes I chose to implement undersampling techniques.

1.6.1 Undersampling through Simple Random Sampling

Simple random sampling (SRS) is a probability sampling method where each member of the selec-

tion population has an equal chance to be chosen for a sample. Simple random sampling is used

widely in experimental research as it is shown to form a sample which is representative to the pop-

ulation - a characteristic which makes the SRS an attractive undersampling option for this paper

as well. Since there are 10 behaviors to be classified, a different SRS was undertaken for each of the

behaviors, where I would find the number of nondominant class points and sample the exact same

number of points from the dominant class. Hence, before each classification procedure I would

have perfectly balanced classes.

Please note that all the undersampling techniques suffer from the drawback of possible valuable

information loss, and for this study we move forward with this option as the data is big and I hy-

pothesize that the undersampled samples are representative of the population trends.

1.7 EvaluationMetrics

The classification results are only as good as the evaluation metrics show at the end, so it is very im-

portant to choose prompt evaluation metrics. The most obvious and common evaluation metric is
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the classification accuracy, which is defined as the proportion of the sum of true positives(TP) and

true negatives(TN) over the number of predictions (Npred).

Acc =
(TP+ TN)

Npred

1 or 100% is a perfect accuracy score, while 0.5 or 50% means that the model predicts at random.

While accuracy gives a good measure about the data points which were classified correctly, it lacks

the ability to communicate where and why the errors occurred. That is why the data scientists al-

ways look into other metrics such as False Positive Rate, True Positive Rate and/or the area under

receiver operating characteristic curve (ROC-AUC or simply AUC in this paper). The receiver op-

erating characteristic curve is a plot portraying the relationship between false positive rates and true

positive rates as the decision threshold changes. Area Under the Curve (AUC) is a measure of how

well the two classes in the binary classification can be distinguished from each other.7 1 or 100% is

the best AUC score that can be possibly achieved meaning that the two classes can be perfectly dis-

tinguished from each other. 0.5 or 50% means that the model is very poor in distinguishing from

each other and predicts at random.

Even though, the AUC is not strictly better than the accuracy as a measure, it is still a different

and more robust way of evaluating the classifier, as it does not directly apply to a single decision

threshold, but shows how robust the classifier would be in differentiating between the classes even

when the threshold varies incrementally. It also shows the probability of the randomly chosen ON

example being ranked above the OFF example. I report both Accuracy and AUC for the main clas-

sification results. For the simplicity of the paper, the supplemental figures and analysis are only with

the model AUCs.
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1.8 Sensitivity and Control Analysis

Since the research problem involves very challenging settings and noisy data, it is important to run

model sensitivity and control analysis with different limiting considerations and ensure that the

results are significant and not by chance. The controls discussed in this section are the shuffle test

(1.9.1), priority adjacent ON and OFF sampling(1.9.2), time invariance analysis(1.9.3), feature engi-

neering design choices(1.9.4), window selection size (1.9.5).

1.8.1 Shuffle Test

In this study, the shuffle test is defined to be the process where the classification model is fitted to

the randomly shuffled annotations. This test makes sure that when the annotations are randomly

shuffled the classification model does not decode the behaviors well. The expectation for the clas-

sification model is to have around 50% accuracy/AUC, as this model should be only as good as the

random prediction generator. Performing a successful shuffle test ensures that the real classification

results are not due to random chance and that there are no obvious underlying biases detectable by

this test.

1.8.2 Priority Adjacent ON andOFF Sampling

In the previous sections, I have discussed the importance of class imbalance and stated that as a main

technique to correct the class imbalance I used an undersampling technique through a simple ran-

dom sampling. While simple random sampling has many advantages, in this study it may lack the

ability to capture the most interesting and sensitive data points: the adjacent ON and OFF points. It

is a valuable question to consider whether the classifier is able to correctly decide whether the behav-

ior has changed at the very first second of the behavior change. For example, can I correctly classify

that the person is speaking the moment they started uttering the words? To answer this question,
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I have implemented a custom sampling algorithm which is prioritizing the adjacent ON and OFF

pairs while undersampling. The algorithm is implemented through a priority queue, where the pri-

ority is defined to be the minimum distance between the dominant class (the class to be sampled

from) and the closest nondominant class representative point. Using this priority queue the samples

which are directly adjacent to the non dominant behavior have the highest chance of appearing in

the sample; and the samples which are the farthest away from the behavior change moment have the

lowest probability to appear in the sample.

1.8.3 Time Invariance Analysis

One might think that the behaviors over time change meaning that the events annotated as part of

the same behavior actually have different representations in the brain as the time progresses. For ex-

ample, eating lunch in the afternoon is not the same as eating dinner in the evening or watching TV

at 3pmmight be different from watching TV at 9pm. Not only the activities and environmental

confounding variables might be different (the meals are distinct with their sensory palettes), but also

there is a sense of time progression that needs to be taken into account in our sensitivity analysis.

To control for this case, the ON and their adjacent OFF events have been divided into train and test

groups in such a way, that the training group includes the activities only from the first part of the

day and the test group spans the last part of the day. In this way, the models will be trained with the

information from the activities at an earlier times of the day and tested with the later ones. This test

will uncover if any of our hypothesis about inhomogeneous event distributions within the anno-

tated behaviors is close to reality as in this time-dependent division the test set will have the chance

to act as an out of distribution sample for the train.
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1.8.4 Sensitivity of Feature Engineering Design Choices

The feature engineering process requires many design choices. In the earlier sections, I described

the 4 sets of features I have calculated for this study. The main design choices discussed were the

selection of reference montages and the beginning and ends of the one second windows. While most

of the results are presented using only Methodology A features, the fourth part of my sensitivity

analysis presents classification results with all the feature sets. The purpose of this sensitivity analysis

is to ensure that the decoded results are somewhat robust among the different design choices and

avoid the notion of “if you torture your data long enough it will confess”. With this test I expect to

see robustness among all the feature sets, because only in that case I can be sure that there was a true

separability in my classification dataset.

1.8.5 Window Selection Size

The features in this study are mainly engineered around 250 samples per second window. While one

second window is an easy conventional choice for interpretation and for precision, an interesting

question stands on how robust the classification would be if 500 samples were selected per window.

For this sensitivity test, I perform classifications with features computed with 500 samples per win-

dow scheme and compare the results with the main classification results in the paper.
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There’s an ancient connection between movement and

music. Most languages don’t make a distinction between

the words ’music’ and ’dance.’ And we can see that in the

brain. When people are lying perfectly still but listening

to music, the neurons in the motor cortex are firing.

Daniel Levitin

2
Results

2.1 Annotations

Before presenting any of the classification results it is important to have a look at the

data which will be used in the classification. The Figure 2.1 shows the behaviors over time as they

interchange between being ON and OFF. For Subject 1 and Subject 2 there are roughly 24 hours
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of annotated behaviors, while for Subject 3 I have around 13 hours of annotated behavior. The

key statistical summary tables (Tables 2.1, 2.2, 2.3) contain key information about the behaviors,

specifically the ON events, and their time distributions. The event here and for the rest of the paper

is defined to be a period of activity which was uninterruptedly ON or OFF and the event changes

when the behavior changes. Both from the table and the figure you can see that SLEEP, QUIET,

WATCHTV can be characterized by a fewer but longer events, while behaviors like BODYMOVE-

MENT, LEGMOVEMENT, ARMMOVEMENT and HEADMOVEMENT happen more

frequently but last shorter. The behaviors like EATING or VIDEOGAMES have a low number of

events throughout the annotation period.

Table 2.1: The descriptive statistics of ON Events for Subject 1

Behavior Mean Time(s) Median Time(s) SD Time(s) #ON Events
ARMMOVEMENT 21.7 6.8 90.6 447
CONTACT 20.7 10.7 26.6 43
EATING 103.6 3.3 217.6 20
HEADMOVEMENT 25.4 4.7 111.8 343
LEGMOVEMENT 7.8 4.7 12.3 153
PATIENT IS TALKING 81.2 20.8 230.0 211
SLEEP 8939.4 9993.5 4073.3 4
SOMEONE IS TALKING 170.7 30.3 402.9 122
VIDEOGAMES 449.8 470.2 147.7 3
WATCHTV 2045.9 1279.0 2296.5 8

35



Table 2.2: The descriptive statistics of ON Events for Subject 2

Behavior Mean Time(s) Median Time(s) SD Time(s) #ON Events
BODYMOVEMENT 13.0 6.8 21.4 1025
CONTACT 24.8 6.4 65.7 239
EATING 37.1 16.4 44.4 27
HEADMOVEMENT 7.9 3.5 22.8 1032
PATIENT IS TALKING 8.3 2.7 60.8 388
QUIET 1545.9 1036.0 1714.0 10
SLEEP 1583.5 1638.3 946.7 16
SOMEONE IS TALKING 33.2 8.9 100.4 679
VIDEOGAMES 925.6 873.3 481.6 7
WATCHTV 1124.7 605.6 1289.3 19

Table 2.3: The descriptive statistics of ON Events for Subject 3

Behavior Mean Time(s) Median Time(s) SD Time(s) #ON Events
BODYMOVEMENT 41.3 10.5 112.2 290
CONTACT 104.8 20.2 186.6 90
EATING 232.3 63.0 236.3 13
HEADMOVEMENT 6.3 3.5 7.1 59
PATIENT IS TALKING 5.1 2.7 6.6 399
QUIET 1268.8 1062.1 1010.2 6
SLEEP 1886.6 1886.6 1171.6 2
SOMEONE IS TALKING 66.5 9.1 845.1 514
VIDEOGAMES 86.6 87.3 37.3 5
WATCHTV 1903.9 1903.9 0.0 1
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Figure 2.1: The figure illustrates how the events of various physiological behaviors vary over time for the three subjects.
The blue color‐codes the ON events, while the red shows the OFF events.

Having a look at the overall ON and OFF class distributions for the behaviors on the Figure 2.2

it is clear why the undersampling balancing techniques are essential before performing the classifi-

cations. As presented in the figure, the classes for all of the subjects are heavily imbalanced. In some

of the cases, such as CONTACT, LEGMOVEMENT, VIDEOGAMES for the Subject 1; EAT-

ING and PATIENT IS TALKING for Subject 2; HEADMOVEMENT and VIDEOGAMES for
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the Subject 3; the number of ON events compared to the OFF events is so drastically small that my

classifier could reach 95% accuracy and better just by classifying OFF for all the points.
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Figure 2.2: The figure illustrates the class imbalance for all of the physiological behaviors for the three subjects. Please
note that the y axis is normalized to show the proportions instead of the counts.

39



2.2 Features

The entire process of feature extraction produces 9 distinct feature sets for 35 bipolar electrodes in

the case of Subject 1, totalling 315 features; in the case of Subject 2 I have 91 bipolar electrodes, so

9*91 = 819 features; and finally for Subject 3 I have 154 bipolar electrodes and as a result 9*154=1386

total features. Please note that these reported numbers correspond to the Methodology A of the fea-

ture engineering designs. Methodology A will be the feature set used to produce the main results

and all the other feature sets will serve as controls in Section 1.8.

The main question that I was interested in concerning my features was how well they show sep-

arability among the classes. Below in the Figure 2.3 I show the 3D scatterplot of the first three prin-

cipal components of 91 GAMMA features for Subject 1 color coded by the EATINGON and OFF

behavior. The first scatterplot shows the entirety of the three principal component dimensions and

is entirely red, meaning that the ON points can not be distinguished in the transformed space - the

red colorcodes the OFF points. However, after zooming in, the right plot shows the ON (blue)

points all grouped together in the space. This shows that in the space of GAMMA features EAT-

ING behavior is very well defined and there is some logical but nonlinear separability between ON

and OFF points.
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Figure 2.3: The figure illustrates the 3D scatterplot of the first three principal components of GAMMA features’ PCA
colorcoded for the EATING behavior.

Another example of a good separability is the T-SNE plots of RMS feature sets for Subject 2

SLEEP and SOMEONE IS TALKING behaviors in 2D. For the SLEEP, there is an obvious sepa-

ration between ON(blue) and OFF(red) points. It is interesting to note that there is one big group

of blue points on the right of the plot for SLEEP but there are also smaller groups of blue points

towards the left. The annotations for SLEEP were chosen to be marked ONwhen the person would

have their eyes closed since there is no real way of understanding if the person is asleep or just resting

eyes closed from the video recording. However, in neuroscience the deep sleep state is different from

the eyes closed relaxation, so the smaller groups of ON points could be the results of the mentioned

imprecision in annotations.

The plot on the right is the 2D T-SNE dimensionality reduction of RMS features for SOME-

ONE IS TALKING behavior for Subject 2. From the first sight it might not be apparent but there

is an interesting nonlinear separation between ON(blue) and OFF(red) points in the plot. Looking

closely, one might notice that all the red points are grouped together and the blue points are clus-
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tered at the edges of the red points. While the SLEEP behavior has very well defined ON and OFF

states, SOMEONE IS TALKING is not as well-defined and, in fact, many confounding variables

may happen in parallel. For example, while someone is talking in the room, the TVmight be on

or the person might be eating. The fact that there is a notable pattern in the T-SNE distribution

and the blue points are still clustered together is remarkable and signals the possibility of successful

decoding of the behavior.

Figure 2.4: The figures illustrate the 2D scatterplots of RMS features’ T‐SNE projections colorcoded for the SLEEP (on
the left) and SOMEONE IS TALKING (on the right) behaviors.

Lastly, I wanted to see how unique the information captured by each of the features was. For this

reason I have calculated the pairwise correlation scores for all the features averaged over the number

of channels. From the correlation plots one can see that for all of the subjects the RMS andMAV

are highly correlated, which makes sense, as mathematically they both get some variation of the

average voltage value from the signal in the defined window. MIN features are consistently nega-

tively correlated with RMS, MAV and with the frequency features, even though, for the frequency
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features the correlation strength varies from patient to patient. For subject 3, RMS features have

considerably stronger correlation with DELTA and THETA features. The majority of frequency

features have positive correlations among each other.
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Figure 2.5: The figure shows the average correlations among features for the three subjects.
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2.3 Main Results

Taking into account the complexity and noise of the dataset my engineered features reach very im-

pressive classification results in decoding the ten physiological behaviors for the three subjects. Fol-

lowing I present the accuracies(Figure 2.7) and AUCs(Figure 2.8) for all the subjects and each of the

behaviors. All of the results in the figures are obtained after equalizing the classes via simple random

sampling and fitting a Random Forests model which were fine-tuned for number of estimators and

maximum tree depth. After the hyperparameter search I found that the optimal maximum depth to

be used in the model was 20 and the corresponding optimal number of estimators was 600 visually

presented in Figure 2.6. Given the continuous essence of the features, it makes sense why the deeper

trees maximize the accuracy, and given the noisiness of the data it is apparent why the larger number

of estimators ensure higher classification performance.
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Figure 2.6: The plots show how the maximum depth and number of estimators impact the accuracy and AUC in the
classification of behaviors.

From the first sight you can see that EATING and VIDEOGAMES are the two behaviors that

are decoded the best ranging from 0.95-0.98 AUCs for all of the subjects, meaning that the classi-

fier is very robust in differentiating between ON and OFF annotations for these behaviors. SLEEP

and QUIET are decoded very well for Subject 3 with 0.95 Accuracy and 0.97 AUC. The behav-

iors which are decoded the worst are the behaviors that involve movement (BODYMOVEMENT,

HEADMOVEMENT, ARMMOVEMENT, LEGMOVEMENT) and CONTACT for Subject

1. Even the aforementioned worst-decoded behaviors reach 0.8 and higher AUCs, showing that the

classification models really capture the difference between ON and OFF states.
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Figure 2.7: The plots showcase the classification accuracies for all the physiological behaviors for each subject. The blue
parts of the bars indicate the results received through the shuffle test. The orange part for each bar is the additional
cross‐validated accuracy. 47



Figure 2.8: The plots showcase the classification AUCs for all the physiological behaviors for each subject. The blue
parts of the bars indicate the results received through the shuffle test. The orange part for each bar is the additional
cross‐validated accuracy. 48



2.4 Classification Result Comparisons for VariousModels

As mentioned in the Section 1.5 , before deciding to choose Random Forests as the main decod-

ing algorithm I have experimented with various algorithms, and in this section I am presenting the

results of those experiments. The Figure 2.9 shows the AUC comparison for Logistic Regression,

Random Forests, Gradient Boosting Classifier, Support Vector Machines (SVM) with stochastic

gradient descent (SGD) and k Nearest Neighbors (k-NN). Consistently, the two worst perform-

ing algorithms in the decoding tasks were SVMwith SGD and k-NN, and the best two performing

classifiers were Logistic Regression and Random Forests. Gradient Boosting Classifier has been ex-

hibiting average results for all the behaviors. It is worthy to note that none of the algorithms had

been fine tuned for this experiment and have been run with sklearn’s default parameters. While the

Logistic Regression and Random Forests have been performing very closely in this experiment, I de-

cided to move forward with Random Forests as the main classifier for this paper as Random Forests

would allow me to capture non-linear classification boundaries, which I hypothesized exist in a task

as complex as this. Moreover, Random Forests had more design parameters which could be tuned

for a better performance than Logistic Regression. And finally, Logistic Regression was requiring at

least 10000 maximum iterations to converge with the initial feature set, and it ended up being more

computationally costly than the Random Forests.

The overall picture of the behavior decoding has remained the same as presented in the main

results section before. EATING and VIDEOGAMES are still the best behaviors to be decoded for

all the subjects while CONTACT has the lowest classification performance among all the models.
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Figure 2.9: The plots showcase the classification AUCs for all the physiological behaviors for various models.
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2.5 Classification Comparisons with Time and Frequency Features

Since our feature engineering process involved calculating features based on either the underlying

time series characteristics of the voltage waves or the frequency based features, it was natural to run

classifications with those two groups of features and see which feature group had the most decod-

ing power. Figure 2.10 below shows the results of these classifications and, unfortunately, there is

no easy answer of which feature groups perform better. For Subject 3 the frequency based features

perform worse than the time-series features across all the behaviors. For Subject 1 and Subject 2,

EATING behavior is decoded better with the frequency-based features. In fact, for Subject 2, the

only two behaviors that are decoded better with frequency-based features are EATING and BODY

MOVEMENT. All the other behaviors fr Subject 2 are classified better with time series based fea-

tures. If I were to analyze only Subject 2 and Subject 3 I would somewhat conclude that the time-

series based features decode more information than the frequency based features. However, Subject

1 shows a different trend, where most of the behaviors except CONTACT and LEGMOVEMENT

are predicted better with frequency-based features. Hence, it is very hard to draw any final conclu-

sions on which feature group is better based on these performances.
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Figure 2.10: The plots showcase the classification AUC comparisons for time vs frequency features among all the physi‐
ological behaviors.

52



2.6 Sensitivity and Control Analysis

2.6.1 Priority Adjacent ON andOFF Sampling

The role of sensitivity analysis is very important in the research as it ensures that the classification

performance is not merely due to chance or the result of lucky circumstances. In Section 1.6.1, I

discuss that the drawback of the simple random sampling is that it does not necessarily sample the

adjacent OFF points to the ON events and, hence, the classification results might be inflated. In this

section I present the results of the classification performances after the custom sampling algorithm

was applied which prioritized adjacent ON and OFF events as described in Section 1.8.2. The ob-

vious and expected trend is that the classification AUCs for this control are lower than the original

classification AUCs in the main figures. One of the contributors to this decrease in performance

can be the fact that the annotations of this study are nowhere perfect and the adjacent ON and OFF

points might be spuriously annotated. Another logical explanation is that the features (the electrical

wave characteristics) do not drastically change at the second the behavior changes and rather flow

to the next state gradually. The Figure 2.11 illustrates that even in this controlled setting most of

the behaviors are decoded with 0.80 and higher AUCs. The best decoded behaviors remain to be

EATING, VIDEOGAMES and SLEEP. The two worst decoded behaviors which have 0.7 AUCs

are CONTACT for Subject 1 and PATIENT IS TALKING for Subject 3. Both these behaviors

are very sparse and with short durations which might be the prime reason why they are not being

decoded well.
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Figure 2.11: The plots showcase the classification AUCs after the data was sampled through a custom designed sam‐
pling method to prioritize the adjacent ON and OFF samples.
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2.6.2 Time Invariance Analysis

In this section, I present the results of the analysis where the events were divided into two groups

depending on whether they belonged to the first part of the day or the second. The events of the

first part of the day are used for the training and the events of the second part of the day are used for

testing. Please note that not all of the behaviors had enough events spread out during the day, so this

test was possible only with the select number of behaviors which had good coverage during the day.

The usual practices in Brain Computer Interfaces require training models in advance and use them

to predict the outcomes for the future unseen events. For this reason, the models need to be tested

for their robustness to handle the new events. Moreover, the annotations of this study are very gen-

eral buckets for physiological behaviors. In fact, the behavior annotations might be too broad that

the different events among these annotation buckets might not have homogeneous distributions

over time. For example, BODYMOVEMENT includes both arm and leg movements which might

have very distinct representations in the brain. If the training data has only leg movements and the

test data has only armmovements, then the test classification quality may turn out much worse than

expected. Or EATING breakfast might have a very different representation from EATING dinner.
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Figure 2.12: The plots show the comparisons of the original results for the behaviors and the classification results re‐
ceived for the time invariance analysis.
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2.6.3 Sensitivity of Feature Engineering Design Choices

One major concern in the beginning of my research was to make sure the feature engineering is

as precise and informative as possible. I wanted to make sure that I capture all the valuable infor-

mation while also denoising the data as much as possible. As a result I came up with 4 different

feature engineering methodologies where all of them had the valid justification to have sufficient

decoding power. The first methodology, to which I refer as Methodology A in this paper, is where

the windows were selected to be equally spaced and bipolar re-referencing was applied to the chan-

nels. Methodology B is similar to Methodology A, except I do not re-reference the channels. Both

Methodology C and D adjust the windows to the start of the behavior changes where Methodology

C also has bipolar re-referencing andMethodology D does not have re-referencing. In this section,

I am presenting the classification AUC comparisons for the features calculated by the four afore-

mentioned methodologies. As shown in Figure 2.13, the classification performance is not drastically

different among the features, but Methodology A consistently outperforms the other methodolo-

gies. I expected that Methodology C andMethodology D will perform comparatively worse, as

the window selection adjusted for the start of the behavior changes will increase the complexity of

decoding, in the form of adding ambiguous and imperfectly annotated in-between behavior data

points. Regarding the impact of re-referencing, I think bipolar re-referencing is marginally better

than the original reference of the channels as Methodology A results are consistently better than

those of Methodology B, andMethodology C is almost always better thanMethodology D. Over-

all, it is reassuring to see that the different feature sets have comparable decoding performances, as it

establishes once more that the classification results were not due to a lucky chance.
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Figure 2.13: The plots show the comparisons of the classification results among the four engineered feature sets.

2.6.4 Window Selection Size

Selecting the windows to be roughly one second in the feature engineering process is another arbi-

trary choice which I made in my problem-solving process. Choosing one second as a length of the

window was intuitive and easily interpretable, however, other reasonable choices for the window

length were also available such as 2-second windows or half-second windows. If I chose two second

windows, the data would be more denoised at the cost of losing precision. In this section, I test the

sensitivity of my classification against a different window length selection. Figure 2.14 shows that

in fact almost for all of the behaviors one second windows achieve better performance with their

precision. However, the behaviors such as BODYMOVEMENT, HEADMOVEMENT and PA-

TIENT IS TALKINGwhich are very noisy, with short event lengths and hard to annotate, the two
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second windows achieve better results. For these behaviors more denoising increases the classifica-

tion AUCs.

Figure 2.14: The plots show the comparisons of the classification results for the features calculated with one second
windows vs features calculated with two second windows.

2.7 Feature Importance Analysis

Decoding human physiological behaviors also implies understanding the underlying driving factors

which contribute to the classifier from the computational, feature engineering perspective, and from

biological, brain region importance perspective. In this section I am demonstrating my feature im-

portance analysis based on the Random Forest classifiers from the main results section. As discussed

in Section 1.5.1 I use the Gini impurity score as my main feature importance metric, since the Ran-

dom Forest models used that metric for the training optimization. Firstly, I wanted to know which
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features had the highest impact in decoding the distinct behaviors. Since I have calculated all of the

nine features for each of the channels, I had to aggregate the Gini impurity scores across the chan-

nels for the corresponding feature. The Gini impurity scores are normalized across all the features

such that the sum of all the importance scores over all the features is 1. Because of this normalization

and the fact that all the features have equal number of corresponding channels to aggregate over, I

simply summed the impurity scores for each feature across the channels. The results of this analysis

are presented with heatplots in the Figures 2.15, 2.16, 2.17 where the y axis represents the behav-

iors and the x axis represents the features. Unfortunately, there is no consistent trend of feature

importance across the subjects, as Subject 3 seems to rely entirely on RMS, MAV,MAX,MIN fea-

tures; while Subject 1, on contrary, relies on mostly frequency-based features; and Subject 2 equally

spreads the importance scores among time series and frequency-based features. These heatplots are

also in sync with the time-series vs frequency-based classification results, where Subject 3 was the

only patient for whom time-series based feature classifications were consistently outperforming

frequency-based classification results for all the behaviors. However, I should also note that compar-

ing the feature importance results for the subjects is hard, because each of the subjects has a different

set/number of electrodes placed in different regions of the brain.
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Figure 2.15: The heatmap in the figure illustrates the average importance of each feature in decoding the specific behav‐
iors for Subject 1. The feature importance intensity is colorcoded and the scale is shown on the right.

Diving deeper into these results I have noticed some interesting patterns such as the fact that

the GAMMA feature is very important for decoding EATING behavior for Subject 2 and 3, and

also somewhat important for Subject 1. SLEEP behavior for Subject 1 is mainly decoded by AL-

PHA and BETA features, for Subject 2 the main importance is based on DELTA,MAX andMIN

features; and Subject 3 seems to equally utilize GAMMA,MAX,MIN,MAV and RMS features.

Generally, it seems that Subject 2 and Subject 3 share more similar feature importance score distri-

bution than Subject 1. Even withWATCHTV behavior one can see that RMS has very high impact

for Subject 2 and Subject 3, and almost no impact for Subject 1.

61



Figure 2.16: The heatmap in the figure illustrates the average importance of each feature in decoding the specific behav‐
iors for Subject 2. The feature importance intensity is colorcoded and the scale is shown on the right.

Moving forward I wanted to scrutinize some of the behavior-feature pairs based on the brain

regions where the channels were located. With this analysis I was mainly interested to see if the dif-

ference among the feature importances across the subjects was caused by the different number and

placements of the initial electrodes. The first pair I had a look at was EATING-GAMMA, which

was a strong pair for Subject 1 and Subject 2, and not that strong for Subject 3. The Figure 2.18 vi-

sualizes the brain regions on x axis labeled by their international abbreviations, the subjects on y axis

and the feature importance score by the color intensity.
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Figure 2.17: The heatmap in the figure illustrates the average importance of each feature in decoding the specific behav‐
iors for Subject 3. The feature importance intensity is colorcoded and the scale is shown on the right.

Moreover, the white denotes the areas where the subject did not have electrode placements. Since

for some of the regions there were a few channels, I aggregated the feature importance scores. This

time I aggregated the scores by averaging because the number of channels for each brain region var-

ied heavily from region to region and from subject to subject. From the first sight it becomes clear

howmuch discrepancy there is in between the brain region placements for the subjects where Sub-

ject 3 has the most coverage(154 bipolar channels) and Subject one has the least coverage (35 bipolar

channels). Looking further you will observe that the most important GAMMA features for Subject

2 were placed at the postcentral gyrus and both Subject 1 and Subject 3 miss electrodes in this brain

region. The strongest GAMMA impact is observed from Subject 1 at the region of subcentral gyrus

and sulcus. Subject 3 has no high GAMMA feature areas.
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Figure 2.18: The heatmap in the figure illustrates the average importance of GAMMA features in decoding EATING
behavior as it corresponds to brain regions. The feature importance intensity is colorcoded and the scale is shown on
the right.

The next pair of analysis is the SLEEP-BETA pair as I was intrigued by how strong the BETA

feature set was for decoding the SLEEP behavior for Subject 1 and how other subjects were not

showing any feature importance for SLEEP-BETA. In fact Figure 2.19 one can see how the high

importance BETA regions in Subject 1 exclusively do not exist for Subject 2. Subject 2 has almost no

importance on BETA for decoding SLEEP and Subject 3 has very little. The high BETA importance
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areas for Subject 1 are occipital lobe sulci and gyri, fusiform gyrus or lateral occipitotemporal gyrus,

lingual gyrus or the medial occipitotemporal gyrus, middle occipital gyrus and occipital pole.

Figure 2.19: The heatmap in the figure illustrates the average importance of BETA features in decoding SLEEP behavior
as it corresponds to brain regions. The feature importance intensity is colorcoded and the scale is shown on the right.

I have also investigated theWATCHTV - RMS pair, as in the overall behavior-feature impor-

tance score heatmaps the RMS features had high importance scores for Subject 2 and Subject 3, but

not for Subject 1. The highest importance score occurs for Subject 3 at the precuneus gyrus and

that area had no electrode placements for Subject 1. Having said that even though Subject 2 had
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electrode placements in that area, the feature importance score from that area is very low for RMS

features. Moreover, all the other high impact RMS areas for Subject 3, such as cuneus gyrus, trans-

verse occipital sulcus and postcentral sulcus, also miss from Subject 1’s and partially from Subject

2’s electrode placements. This shows that the difference in electrode placements makes it really diffi-

cult to compare the feature importances among the patients.

Figure 2.20: The heatmap in the figure illustrates the average importance of RMS features in decoding WATCH TV
behavior as it corresponds to brain regions. The feature importance intensity is colorcoded and the scale is shown on
the right.
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Finally, I was curious to see howmuch each brain region contributed to the classification success

for each of the behaviors, so I visualized Figures 2.21-23 for all the subjects where y axis represents

the behaviors, x axis represents the brain region and the color intensity represents the average feature

importance scores. When interpreting the figures vertically, the occipital gyrus and sulcus, superior

temporal gyrus and occipital pole have on average higher impact for most of the behavior for Sub-

ject 1. The region behavior pairs that stand out the most from Subject 1 are the subcentral gyrus

and sulcus impact on the EATING behavior; the lingual gyrus and VIDEOGAMES; the middle

occipital gyrus and LEGMOVEMENTS; occipital pole andWATCHTV.

Figure 2.21: The heatmap in the figure illustrates the averaged feature importance scores by brain regions for Subject 1.
The feature importance intensity is colorcoded and the scale is shown on the right.
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For Subject 2 each behavior seems to have brain regions that clearly contribute more than the

other regions. Paracentral gyrus and sulcus and postcentral gyrus contribute the most among the

brain regions to BODYMOVEMENT decoding. Anterior midcingulate gyrus and sulcus, subcen-

tral gyrus and sulcus, postcentral gyrus and temporal middle gyrus are all high feature importance

areas for EATING behavior. According to the figure, HEADMOVEMENT has high importance

scores at the region of paracentral gyrus and sulcus and postcentral gyrus. Postcentral, precentral

and subcentral gyrus are active in decoding SLEEP. Lastly, the frontal superior gyrus has high im-

pact for VIDEOGAMES behavior in Subject 2 classifications.

Figure 2.22: The heatmap in the figure illustrates the averaged feature importance scores by brain regions for Subject 2.
The feature importance intensity is colorcoded and the scale is shown on the right.

Since our third patient had the largest number of implanted electrodes the Figure 2.23 has more
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brain region coverage. Cuneus and precuneus giri in Subject 3 analysis seem to have higher than

average impact for all the behavior classifications. Cuneus and precuneus giri were also the regions

where 20% of the electrode implants were placed, so one can imagine that there was a lot of infor-

mation obtained from these regions. The CONTACT behavior seems to be decoded well from the

information received from subcentral gyrus and sulcus. The superior occipital gyrus is the region

with the highest feature importance score for HEADMOVEMENT. The postcentral sulcus with

middle occipital gyrus have high impact on QUIET and SLEEP behaviors. Lastly, WATCHTV has

high importance scores for precuneus gyrus and postcentral sulcus.

Figure 2.23: The heatmap in the figure illustrates the averaged feature importance scores by brain regions for Subject 3.
The feature importance intensity is colorcoded and the scale is shown on the right.
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When I look at the human brain I’m still in awe of it.

Ben Carson

3
Discussion

3.1 Main takeaways

Throughout the results section I have presented the decoding performance results for

the various behaviors across all the three subjects, and most importantly, my results showed that it

is possible to dynamically classify the continuous human physiological behaviors over time. The
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annotated behaviors can be divided into two groups: behaviors that are characterized with longer

lasting events such as SLEEP, QUIET, SOMEONE IS TALKING andWATCHTV; and short

but more frequent events such as the movement based behaviors of BODYMOVEMENT, LEG

MOVEMENT, ARMMOVEMENT, HEADMOVEMENT. Generally, the longer lasting events

get decoded better since there is less noise in both annotation precisions and from the brain activity

perspective these states are better defined since they last longer for our sampling frequency to cap-

ture their unique features. Some examples of these good performances are 0.90 and higher AUCs

obtained while decoding SOMEONE IS TALKING andWATCHTV behaviors, 0.92 and higher

AUCs for decoding SLEEP, 0.93 and higher AUCs for decoding QUIET. The movement based be-

haviors are usually around 0.9 AUCs even though for some cases such as BODYMOVEMENT for

Subject 3 is decoded with 0.93 AUC.

The two outliers that do not comply with the aforementioned discussed pattern are EATING

and VIDEOGAMES behaviors. From the figure which shows the ON and OFF annotations for be-

haviors over the time (Figure 2.1), one can see that neither EATING, nor VIDEOGAMES happen

often or last longer, and yet, they are decoded with the highest AUCs (0.97 and 0.95 respectively).

Both behaviors require engaging multiple sensory receptors simultaneously creating rich sensory

stimuli for the brain and a component of consciously acting on the input information. From the

prior literature it is shown that the sensory stimuli, in fact, are linked and have high correlations

with brain activity at certain brain regions which are responsible for the successful processing of this

input information.18 EATING kindles visual, olfactory and gustatory systems to work all together,

while VIDEOGAMES requires the patient to process the audio-visual input and put a conscious

mental effort on deciding what to do in the game according to the input information. All these

considerations might have created distinct neural representations in the brain which helped with

decoding these activities with higher AUCs. In the series of experiments I tried to test the sensitiv-

ity of my models introducing various controls to which my models decreased their AUCs but still
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remained significant showing that the decoding success was not due to a lucky chance. After im-

plementing the adjacent ON and OFF sampling discussed in Section 1.8.2, the classification AUCs

decreased on average by 7% across the behaviors, but this average is a little misleading since this de-

crease is mainly due to the drastic decrease in short/more frequent behaviors such as the movements.

SLEEP, SOMEONE IS TALKING, EATING and VIDEOGAMES were more robust to the ad-

jacent sampling and had decreased by at most 3%. These results were not at all surprising, because

since the beginning I knew that movement based activities were noisy, and prioritizing the samples

which were right in between ON and OFF events would introduce even more noise in the classifica-

tion process, worsening the performance.

The sensitivity tests on comparing the classification performances using different window sizes

(one second vs two second windows) and the different feature sets were robust across all the be-

haviors and subjects ensuring once again that the results of this research capture a real effect. It is

noteworthy to mention that increasing the window size implied losing precision but also had the ef-

fect of additional denoising, which is consistent with the results of this sensitivity test (Figure 2.14)

where the frequent/noisy behaviors were the only behaviors to see increase in their classification

performances for the features computed with two second windows.

Lastly, since my motivations for this research were to get as close as possible to possible real-life

deployments of these classifiers I have introduced a test which mimicked a scenario similar to BCI

model testing process (Section 1.8.2). In this experiment I test if my model can robustly classify

the future events which can be out of distribution for my training pool (OOD), if the training data

comes only from one part of the day. The results of this test are humbling as there is a huge drop in

classification AUCs (by 2.6.3). I was expecting to see a decrease in performance as since the begin-

ning of this research one of the concerns was that the chosen buckets for behavior annotations were

not specific enough, and hence, might have resulted in an inhomogeneous distribution of events.

For example, BODYMOVEMENT behavior itself is defined to be very broad - it can be leg move-
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ment, armmovement. And even for ARMMOVEMENT and LEGMOVEMENT there might

be a differentiation in our brain motor system for the right and left movements which are not taken

into account. Moreover, for the behaviors which engage with sensory information such as EAT-

ING, the EATING in the morning might be a different sensory experience from the EATING in

the evening. All of these considerations are examples of out of distribution problems in machine

learning. Furthermore, not having enough of these events during our day will hinder the classifier

from learning the high level general patterns for EATING and fail in the testing process. Despite

all the concerns and the decrease in the performance AUCs, I should state that the classification

performances are still significant meaning that the classifiers are still able to differentiate among the

ON and OFF behaviors significantly better than the randommodel. The general pattern is that the

behaviors which were frequent and had many events throughout the day get decoded better under

this experiment constraint. However, an interesting outlier in this test is the EATING behavior

for which the classifier not only decreases the accuracy but performs even worse than the random

model. The reason behind this anomaly might be that the EATING behavior events in the train

set have a different representation in the brain compared to the EATING events in the test set and

the classifier fails to predict those out of distribution events. Gathering more data and tracking the

subjects over longer periods of times to get more EATING events will alleviate this problem.

3.2 Feature Importance

While showing that different physiological behaviors can be successfully decoded is one of the main

aims of this paper, it also strives to understand the how and why behind the achieved results. From

the computational point of view it is important to validate which features were the most effective

in representing useful information from the noisy voltage waves that we started from. For example,

if there was a consistent pattern in the feature importance scores for certain groups of features (e.g.
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RMS, DELTA), I could recommend the future researchers to calculate those features in their feature

engineering process. However, as the feature importance heatmaps showed in Section 2.7 there is

no clear pattern across the subjects or behaviors about dominantly important feature sets that could

be a point of recommendation. Given that all of my subjects had different numbers and locations

of electrode placements, the comparisons of the feature importances are not very trustworthy across

the subjects. Observing the subjects and behaviors on a case by case basis, I found that for Subject

1 the more important features across the behaviors were ALPHA, BETA and GAMMA. Subject 2

had a mix of important features depending on the decoded behavior. And finally, for Subject 3 the

time-series based features were the most effective.

3.3 Brain Regions

From the prior literature it is known that different regions in the human brain correspond to dif-

ferent biological functions. Even though the implanted electrodes did not cover all the regions of

the cerebral cortex for all the patients, there is still good coverage of the cortex which can be used

for exploring which brain regions contributed to the decoding success of the different physiological

behaviors. As an overview, the majority of the electrodes for Subject 1 were implanted in the tem-

poral lobe, which is linked with speech, short-termmemory and smell recognition. Most of Subject

2’s electrodes were placed in the frontal lobe, which is mainly associated with decision making and

movement. And finally, the vast majority of Subject 3’s electrodes were implanted in the occipital

lobe, the part of the brain that is responsible for vision.

When analyzing the feature importance scores based on the brain regions I found that to decode

EATING behavior for Subject 1 the most importance was put on the Subcentral Gyrus which in

various researches was linked to speech-related mouth movements.16 While EATING behavior in

our annotations does not imply any kind of speech, it definitely implies mouth movements for food
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consumption, so the heavy importance of this region can be somewhat justified and linked to the

previous research studies. For Subject 2 the most important features in decoding EATINGwere

from Postcentral and Subcentral Gyrus. Postcentral Gyrus is known to be the main brain region

responsible for the sense of touch, which explains why EATING behavior being one of the rich-

est sensory experiences would benefit from information provided by this region.19 EATING for

Subject 3 equally placed importances on Cuneus Gyrus, Precuneus Gyrus and Superior Occipital

Gyrus. Cuneus Gyrus is known for its basic visual processing functionalities.9 Precuneus Gyrus

is involved in complex functions such as recollection of memories and integration of information

relating to the perception of the environment.21 Superior Occipital Gyrus is mainly connected

with object recognition but recent research has shown that this gyrus also plays roles in reaching

and grasping an object of desire.17 Since EATING implies that there were food objects which could

serve as visual stimuli, for the classifier to place importance on the gyri responsible for visual infor-

mation processing is justified, especially, given the fact that most of the electrodes for Subject 3 were

placed in the occipital cortex and there was not that much choice of diversity.

The VIDEOGAMES behavior in Subject 1 put a lot of emphasis on Lingual gyrus, which is a

region associated with the global shape processing of the visual stimuli, especially when it is a word

or letter.28 Since gaming is all about receiving visual stimuli and responding to it, these were not

surprising. For Subject 2 VIDEOGAMES were best decoded by using the information from Supe-

rior Frontal Gyrus which is thought to be a major contributor to working memory, a functionality

necessarily used in gaming.17 Lastly, for Subject 3 Cuneus, Precuneus and Superior Occipital Gyri

had equally average importance scores. As mentioned before all of these regions are in one way or

another linked to object detection and visual information processing which are again intuitively

important in VIDEOGAMES behavior.

While SLEEP is not a behavior that is localized in any of the brain regions, its characteristics such

as having eyes closed, no visual inputs and minimal movement are clues that can be used by the
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classifier while utilizing the corresponding motor and visual information processing regions of the

brain. Additionally, for the SLEEP I looked at the frequency based features since it was shown that

the SLEEP is positively associated with DELTA frequencies and, hence, negatively correlated with

all the frequency bands that are associated with being awake such as BETA or GAMMA.5 Among

all three subjects the main feature importance areas were Inferior, Middle, Superior Occipital Gyri,

Postcentral gyrus and Subcentral gyrus. Additionally, when looking at SLEEP-BETA pairs, Subject

1 showcases very high BETA importance in Pole Occipital. Occipital complex, as mentioned be-

fore, was responsible for object detection, so with the inverse logic, no object being detected could

be successfully associated with the SLEEP state by the classifier. Lastly, among the classifiers of the

movement related behaviors only Subject 2 has highly differentiated brain region areas of impor-

tance for BODYMOVEMENT. Specifically, Paracentral Gyrus and Postcentral Gyrus are where

the highest feature importance scores are located on average. As mentioned earlier, the Postcentral

Gyrus is the main area for the sense of touch, which will be an active component for the type of

movements the patient does, since they lie in the bed and most of the movements are limited: they

either reach for something or move in the bed. Paracentral Gyrus is the continuation of the Post-

central and Precentral gyri and is responsible for important motor innervations as it relates to lower

limbs and perineum.32 In fact, Subject 2 is the only subject that had electrodes implanted in this

area, which makes sense why this brain region’s importance was emphasized only for Subject 2.

3.4 Sources of Error in Classifications

I mentioned multiple times in the paper that the ECoG recordings used in decoding the physio-

logical behaviors were very noisy, and potentially, caused a lot of uncertainty in the classification

process. Additionally, the annotations which were paired with the iEEG data and used for super-

vised learning came with a lot of errors. The most obvious error could be due to human reaction
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time, as I did not expect the annotators to have a perfect millisecond precision. In fact, the feature

engineering design for aggregating the neuronal recordings in one second windows and getting the

main characteristics of the voltage wave in that window was a design choice to alleviate the afore-

mentioned error. The annotations also suffered from imprecisions such that the ON event for a be-

havior would be followed with another ON event without having an OFF interruption in between.

Even though these human errors were not a substantial part of the annotations, they still could be a

potential source of error in the classification. Another problematic factor in the classifications was

the choice of annotated behaviors and how homogenous the different ON events were for those

behaviors. As discussed before, BODYMOVEMENT includes many types of movements which

are represented differently in the brain and create inhomogeneous event distributions for BODY

MOVEMENT.With this problem the classifier might not be able to generalize well on the events

of BODYMOVEMENTwhich were not present in the training set. When thinking of the ECoG

data, something that came up a lot in the discussion of the results was the fact that the patients had

electrodes implanted only in one part of their brain so it was hard to compare the results across the

patients and draw conclusions. In general there was not enough coverage of the brain regions for all

of the subjects which could also serve as a source of error in classification of the behaviors. Finally,

even though my data was very generous spanning 24 hours there were behaviors which had only a

few occurrences during the day such as EATING. To have a better confidence on the model and the

results, it would be more preferable to track the subject for a longer period of time and collect more

events of the underrepresented behaviors.

3.5 Time and Efficiency

This study has been very computationally costly as the intracranial field potentials data combined

for the three patients occupied more than 150 GBmemory to start with. Despite all the paralleliza-

77



tion efforts the feature engineering took a significant amount of time: the computation time for cal-

culating a single feature for a single channel took on average 20 minutes. For the comprehensiveness

of this study, I have designed and calculated 9 sets of features (RMS, MAV,MIN,MAX, ALPHA,

BETA, GAMMA, DELTA, THETA) with 4 different Methodologies. Each feature set was calcu-

lated for 35, 91 and 154 channels corresponding to Subject 1, Subject 2 and Subject 3 respectively

with bipolar re-referencing, and 40, 104 and 176 channels without the re-referencing. The feature

engineering designs of aggregating of 250 samples per one window was also aimed at making the

decoding computationally more efficient. Even though the dataset was largely reduced after the fea-

ture computations, it was still computationally heavy for Random Forests to fit 800 estimators with

depth 20, so the model training took a sizable amount of time as well.

3.6 Data Ethics

Since the study involves data directly received from human subjects it is important to note that all of

the subjects have been anonymized and no personally identifiable information(PII) was used in the

study which could put the patients’ privacy under a risk. Moreover, the data was approved for the

research study by the Institutional Review Boards at Boston Children’s Hospital and the patients

consented to be video recorded. The main motivation of this study has been and remains to take a

step forward in BCI research for its medical and health-related applications.
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4
Conclusion and Future Work

This study establishes that the decoding of various continuous physiological behaviors from the

information received directly from the brain is possible in uncontrolled environments. It also con-

firms the consistency of representations of these physiological processes in their corresponding brain

regions as supported in prior literature. The well-defined behaviors which lasted for longer periods

of time were generally classified with higher performance than the behaviors with quicker and more

frequent events. All of the physiological behaviors among the three subjects have demonstrated
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consistently robust decoding performance for the various sensitivity tests discussed in Section 2.6.

These findings suggest that the success of the classifiers is not merely due to chance but through

extracting and analyzing relevant information from the brain.

To develop the study further and increase the confidence of the results the data preprocessing will

need to establish a more rigorous annotating process. This can be achieved by having more annota-

tors for the same video-recordings or by deploying a combination of human-AI annotating system.

New experiments working on similar decoding tasks should include more coverage of the brain

to get a better understanding of which brain regions are relevant in decoding the certain behav-

iors. Moreover, the study should be conducted with more subjects and for longer periods of time to

make sure the discovered patterns are generalizable and representative of a larger population. Lastly,

both data acquisition and analysis are very computationally costly for this experiment, so optimizing

the usage of computational resources is vital for advancing the state of the art models in these types

of research.There is still a long way to go until this study could be fully applied in BCI solutions but

its findings hold a promise of a path for more robust brain decoding.
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