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Abstract

A tiny object in the sky cannot be an elephant.
Context reasoning is critical in visual recognition, where
current inputs need to be interpreted in the light of
previous experience and knowledge. To date, research
into contextual reasoning in visual recognition has
largely proceeded with supervised learning methods.
The question of whether contextual knowledge can be
captured with self-supervised learning regimes remains
under-explored.  Here, we established a methodology
for context-aware self-supervised learning. We proposed
a novel Self-supervised Learning Method for Context
Reasoning (SeCo), where the only inputs to SeCo
are unlabeled images with multiple objects present in
natural scenes. Similar to the distinction between
fovea and periphery in human vision, SeCo processes
self-proposed target object regions and their contexts
separately, and then employs a learnable external
memory for retrieving and updating context-relevant target
information.  To evaluate the contextual associations
learned by the computational models, we introduced
two evaluation protocols, lift-the-flap and object priming,
addressing the problems of “what” and “where” in
context reasoning. In both tasks, SeCo outperformed all
state-of-the-art (SOTA) self-supervised learning methods
by a significant margin. Our network analysis revealed
that the external memory in SeCo learns to store prior
contextual knowledge, facilitating target identity inference
in lift-the-flap task. Moreover, we conducted psychophysics
experiments and introduced a Human benchmark in Object
Priming dataset (HOP). Our quantitative and qualitative
results demonstrate that SeCo approximates human-level
performance and exhibits human-like behavior. All our
source code and data are publicly available here.
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Figure 1. Schematic illustration of learning to reason via
self-supervised training on natural images with multiple
objects present in the scene. Two protocols are introduced to
evaluate contextual reasoning ability: (a) Lift-the-flap task (left
branch) and (b) Object priming task (right branch). In (a), the
task is to reason about the scene context and infer what a target
object hidden behind a flap (black patch) is in a natural image. The
original image (bottom left) reveals the target object ("keyboard”)
which was not shown in the actual experiments. In (b), the task is
to decide where to put the given object in the scene, e.g. to put the
cup (at the bottom left) in the study room scene.

1. Introduction

Humans are adept at exploiting contextual cues to fill
in information gaps in their sensory input. For example,
in Fig. 1a, based on the scene context, one can infer that
the hidden object on the table can be a keyboard or a
book but never a private jet. To establish these kinds of
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associations between a hidden or occluded object and scene
context, humans rely on prior knowledge and experiences
with various objects and their mutual relationships.

To date, context reasoning capacity has been studied
with supervised learning methods [4, 60]. However,
the question of whether contextual knowledge can be
captured in a self-supervised way remains under-explored.
In the self-supervised learning (SSL) literature, most
works [2, 8,9, 11, 13,26, 27, 47, 59] focus on learning
image-level representations by pre-training neural networks
on natural images, such as ImageNet [16], where objects
of interest are monotonously large, salient, and centered.
In contrast, natural scenes always contain multiple objects
with complex context. Recent research [40, 56] draws
attention to instance-level pre-training on natural images
containing multiple objects in the scene, such as COCO
[39] datasets. Yet, there are still missing links in
associating scene-level representations with instance-level
representations in a scene. Studies on establishing these
missing links would unleash the reasoning capabilities of
SSL methods in complex context.

As an initial effort in this direction, we established a
methodology to study context-aware SSL. Given unlabeled
images containing multiple objects in natural scenes, the
objective of context-aware SSL is to learn object-context
associations. To evaluate the context reasoning capabilities
of all computational models, we introduced two evaluation
protocols, lift-the-flap and object priming, addressing the
problems of “what” and “where” in context reasoning.
Specifically, lift-the-flap task (Fig. 1a) requires all the
models to utilize the scene context to infer the class of the
hidden target object behind a flap (a given black patch).
In the object priming task (Fig. 1b), given an image and
a target object (not already present in the image), models
are expected to predict contextually correct image regions
for placing the target object.

To tackle these problems, we propose a Self-Supervised
Learning Method for Context Reasoning (SeCo), where
the pre-training objective is to learn to associate objects
and their contexts in the embedding space. Briefly,
SeCo first uses unsupervised methods to discover region
proposals containing potential target objects of interests.
Next, the target object of interest and its surrounding
context are processed separately by two independent image
encoders. To store learned contextual priors, we introduced
a learnable external memory in SeCo. We gain insights
about the role of our external memory from intensive
network analysis. We stress-tested SeCo and SOTA SSL
methods on in-domain and out-of-domain test sets of
three datasets in lift-the-flap and object priming tasks.
SeCo achieved remarkable performance and beats SOTA
SSL methods in all the experiments. To benchmark the
model performance in object priming, we conducted human

psychophysics experiments on the same dataset we used
for testing the models. Our results suggest that SeCo
achieves human-level performance and exhibits human-like
behaviors.

We summarize our key contributions below:

e We established a methodology for the community to
study context-aware SSL. We introduced lift-the-flap
and object priming protocols to benchmark contextual
reasoning ability of current and future SSL methods.

* We proposed a novel SSL method (SeCo) to learn
associations between objects and their context. SeCo
beats SOTA SSL methods by a large margin on
in-domain and out-of-domain test sets of three datasets
in lift-the-flap and object priming tasks.

* We contributed a new object priming dataset (HOP)
and human benchmarks on HOP with psychophysics
experiments. Our achieves human-level performance
and exhibits human-like behaviors.

2. Related works
2.1. Role of context in computer vision

The context of a scene can be described in various ways,
including global scene context [52], geometric context [31],
relative location [18], 3D layout [38] and spatial support
and geographical information [19]. The ability to reason
about objects and relations in context is crucial to computer
vision, such as object recognition [4, 60], place recognition
[54], scene recognition [24,35,57], object detection [ 14,4 1],
semantic segmentation [44], and visual question answering
[49]. To tackle the problem of context-aware computer
vision tasks, statistical optimization tools [10, 24, 35, 57],
graph neural networks [3, 15, 17,32], and transformer-based
methods [4,6] are proposed in the literature. Breaking away
from all these previous works which require supervised
training on labelled images, we investigated the problem of
context reasoning in the SSL setting.

2.2. Self-supervised learning

Since supervised learning requires ground truth labels
which are labor-intensive and costly to collect, SSL has
recently become popular. To improve the quality of learned
object representations, various handcrafted pretext tasks
have been designed [30, ]. Another group of works
[11,28,30,43,55,58] highlight the advantage of contrastive
learning in SSL by pulling positive samples together and
pushing negative samples away. Several non-contrastive
methods are proposed to learn image-level representations
solely based on positive samples [2, 9, 13, 26, 51, 59].
With the success of transformer-based models in NLP and
vision tasks [20], there has also been a trend in SSL



of reconstructing images from randomly masked image
patches [12,27]. However, all these previous methods focus
on learning image-level representations from monotonously
large, salient, and centered objects. They often fail to
capture instance-level association in the scene. Unlike all
these works, our SeCo is capable of learning object-context
associations from complex images where there could be
multiple objects in the scene.

Another line of research in SSL is deep clustering
methods [1, 7, 8, 33, 37, 61]. Several methods [8, 37]
use external memories to store trainable object prototypes
and use them to assign similar images to distinct clusters.
In contrast to these models with external memories, our
external memory specifically addresses the problem of
context reasoning as it serves as a memory buffer storing
prior knowledge on object-context associations and flexibly
retrieves useful object information from context cues in the
visual scenes.

3. Method

We propose a Self-Supervised Learning Method for
Context Reasoning (SeCo) which learns associations
between objects and their contexts in natural images
(Fig. 2). SeCo consists of three components: (a)
target discovery module, (b) two-stream visual processor,
and (c) external memory. First, the target discovery
module uses unsupervised region proposal methods to
locate potential objects of interest on the full image Iy.
Each region proposal together with the full image Iy is
subsequently converted to pairs of target images I; and
context images I. (Sec. 3.1). Second, the two-stream
visual processor consists of two independent pairs of CNN
encoders and projectors, extracting information from Iy
and I. respectively (Sec. 3.2). Third, SeCo employs a
trainable external memory (Sec. 3.3) to store knowledge
priors about target-context associations learned during the
training phase (Sec. 3.4). Features from I. serves as
queries to retrieve context-relevant prior knowledge from
the external memorywith an attention mechanism. The
retrieved information provides complementary signal to
the context stream and gets compared with the target
features from I; of the object stream to maximize the
agreement between the stored prior knowledge and the
context-relevant object in the embedding space. Refer to
Supp. for PyTorch-style pseudocode of SeCo’s training
algorithm.

3.1. Context-Object Pair Discovery

Objects play an important role in context reasoning [21].
To learn object-object and object-context associations, we
propose a context-object pair discovery module to exploit
regions containing objects of interest.

We adopt the selective search algorithm [53] to
generate regions of interest (Rol) that potentially contain
objects. It is worth noting that the selective search is
an unsupervised learning algorithm. It performs heuristic
searches on hundreds of anchor boxes and proposes Rols
by hierarchically grouping similar regions based on color,
texture, size and shape compatibility.

To reduce false positives among many Rols, we filter
out resultant regions according to their area ratio (with
maximum as 0.1) and aspect ratio (within 0.2 and 5).
Moreover, we merge Rols with heavy overlaps by setting
the threshold of IoU(intersection over union) as 0.3. For
each selected Rol, we generate a pair of target image I;
and context image I.. I; is cropped out of full image Iy.
The entire image with the Rol blacked out with zero pixels,
forms the context image /...

3.2. Feature Extraction with CNN

Due to the eccentricity dependence, human vision has
the highest acuity at the fovea and the resolution drops
sharply in the far periphery with increasing eccentricity.
For example, while we are fixating at the mug on the
table, the mug is often perceived in high resolution while
the context gist of the kitchen scene is processed at low
resolution in the periphery. Seeking inspirations from this,
we propose a two-stream visual processor, with one object
stream dedicated at encoding the target image I; and the
other context stream dedicated at encoding the context
image /.. The encoded representations are denoted as h, =
E.(I.) and hy = E;(I;), where E;(-) and E.(-) are target
and context encoders respectively and h; and h, € RP.
Assuming that the features useful for context reasoning and
object recognition are different, we do not enforce weights
sharing between the encoders. We demonstrate its benefit
in Sec. 5.3.

3.3. Training With An External Memory

As suggested by cognitive and neuroscience works [48,

, 60], the context processing often happens very fast in
the brains. The perceived scene gist serves as queries
to retrieve prior knowledge from the semantic memory
to module object recognition in a top-down manner. To
mimic this underlying mechanism of context modulation
in the biological brains, we introduce an external memory
with trainable parameters, accumulating prior knowledge
of context-object associations. Here, we introduce math
notations and formulations of our memory mechanism in
knowledge retrieval. See the subsection below for how prior
knowledge are learned with self-supervised losses.

We define the external memory as a 2D matrix with
trainable parameters, which consists of K memory slots
of H dimension, denoted as M = {mq,..,mg}, M €
RZ*K  Each memory slot is associated with a key, where
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Figure 2. The architecture overview of our Self-supervised learning for Context reasoning (SeCo). The architecture is comprised
of three components: target discovery module, two-stream visual processor, and external memory. SeCo uses an unsupervised method to
discover potential targets. The discovered targets are then converted to multiple context-object pairs (Sec. 3.1). SeCo leverages non-shared
networks to encode targets and contexts separately (Sec. 3.2). In addition, SeCo uses a trainable external memory to store the contextual
priors learned during the training phase, which can then be used as a complementary signal during inference (Sec. 3.3). Finally, we
use a joint loss which maximizes agreement between target and context with L,, .. in the embedding space and regularizes the learned

representations with L¢o, and L,qr, increasing diversity (Sec. 3.4).

ér(-) : RH — RH defines the linear mapping from
the memory content to the keys ¢x(M). The encoded
representation h,. from the context stream serves as queries
to the external memory after a linear projection operation
be(+) : RP — R, The retrieved prior knowledge s, € R
from M can then be represented as

¢c(hc)¢k (M)T
VvH

where SOFTMAX(-) is the standard softmax operation.

sc = SOFTMAX( M (1)

3.4. Loss Components

To encourage M to learn rich and meaningful
context-object associations, we introduce three types of
losses. Ideally, given only the scene gist, the retrieved
prior s. from M should represent useful object information
related to the given context (i.e. “what could be the target
object given the scene gist” versus “the actual object seen in
the scene”). Thus, we apply a mean squared error 10Ss 1, 5¢
to maximize the agreement between s. and h;. To make the
vector dimension comparable, h; is projected to s, € R
in the embedding space via ¢;(-).

As shown by previous works in non-contrastive learning
[2], maximizing the agreement between two-stream visual
processors alone may lead to model collapses. For example,
the external memory stores and outputs trivial knowledge
of all zeros, while the visual processor trivially encodes all
the images to representations of all zeros. In this case, the
agreement between s, and s; aligns perfectly; however, the
encoded object representations and the content in M are
meaningless.

Thus, to prevent model collapses, we enforce covariance
L., and variance L,,,, regularization losses on both object
and context streams respectively. While L,,, maintains
the variance of different representations of data samples
within a batch (e.g. a batch of images should represent
diversified object classes), L., de-correlates channel-wise
variables to diversify attributes of an embedding (e.g. use
as many attributes as possible to represent objects and each
attribute should be independent from each other). Our SeCo
is jointly trained with the total loss:

Ltotal = aLmse(Sca St) + B[Lvar(sc) + Lvar(st)] (2)
+'_Y[Lcm)(5c) + Lcov(st)}

where = 25, 8 = 25 and v = 1 are hyper-parameters
weighting different loss components (see Supp. for the
hyper-parameter analysis).

3.5. Implementation Details

Augmentations. Data augmentation techniques are widely
used at image levels in SSL. We applied standard
image augmentations on both I; and I., including color
jitter, grayscale, horizontal flip, gaussian blur, and color
normalization. Moreover, random resized crop is another
effective technique in SSL. However, directly applying
this approach is not feasible in our case. Thus, we
extended the standard approach to context-object image
pairs with context-aware crops by ensuring that the relative
locations among objects are preserved and the bounding
box encompassing the target object is always intact and
present on I, after geometric transformations.
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Figure 3. Human psychophysics experiments in object priming
task. (a) Subjects were presented with a natural image along with
a target object and were asked to put the object at appropriate
locations by making 10 non-overlapping mouse clicks (red dots).
(b) Left image shows the different mouse clicks made by 3 human
subjects (colored dots) for cup as the target object. On the right,
we show the corresponding human priming map from consolidated
clicks. Higher density of clicks translates to higher probability in
the priming map. See the colorbar for probability values.

Network architecture. We use ResNet-50 [29] with D =
2048 output units as our encoders E.(-) and Ei(-). We
set the size of M as K x H = 200 x 512 and initialize
M by the Xavier uniform initializer [23]. We demonstrate
the benefit of the external memory and vary its sizes in
the ablation study (Sec. 5.3). For fair comparison with
all baselines (Sec. 4.2) which are pre-trained on ImageNet
[16], we initialize our encoders with weights pre-trained on
ImageNet by VICReg [2].

Training. We set the base learning rate to Ir = 0.2 x
batch_size /256 [25]. The learning rate grows linearly from
0 to base value during first 10 epochs and then decays with
a cosine scheduler [42] for the rest epochs with a minimum
value of 0.0002.

4. Experiments

4.1. Datasets

COCO-Stuff Dataset [5] contains 160K natural images
from MSCOCO dataset [39] with 80 thing classes (e.g.

car, person) and 91 stuff classes (e.g. grass, sky) in total.
Importantly, this dataset captures complex relationships
between multiple objects, and their contexts.
PASCAL VOCO07 Dataset [22] contains 9,963 images of
realistic scenes with total 20 object classes.
Out-of-Context Dataset (OCD) [4] contains 15,773
synthetic test images of indoor scenes with 36 classes under
6 different contextual conditions. In our work, we only
consider normal context condition with 2,309 test images.
To evaluate whether the learned contextual knowledge
from SSL methods can generalize well in out-of-domain
settings, we come up with two custom regimes on pretext
training, fine-tuning, and testing:
COCO-VOC contains those images from COCO-Stuff
where the object classes present in the scene overlap with
the object classes from PASCAL VOCO07 dataset. Overall,
20 classes overlap between COCO-Stuff and PASCAL
VOCO7 dataset. Refer to the Supp. for the list of selected
20 classes. We used the training set of COCO-VOC for
pre-text training and fine-tuning and then tested all the
models on the test set of COCO-VOC (in-domain) and
PASCAL VOCO07 dataset (out-of-domain).
COCO-0OCD includes those images from COCO-Stuff
where the object classes in the scene overlap with the object
classes from OCD dataset. Here, in total 15 classes overlap
between COCO-Stuff and OCD dataset. Refer to the Supp.
for the list of selected 15 classes. We used the training
set of COCO-OCD for pretext training and fine-tuning and
then tested all the models on the test set of COCO-OCD
(in-domain) and OCD dataset (out-of-domain).

4.2. Baselines

We compare our SeCo against a list of SSL methods
introduced below: Context Encoder [47], SimCLR [11],
SimSiam [13], DINO [9], and VICReg [2]. Context
Encoder reconstructs randomly masked image regions to
learn representations. SimCLR learns useful visual features
using contrastive learning, while SimSiam, DINO, and
VICReg use non-contrastive methods for representation
learning. For Context Encoder, since it was originally
trained with AlexNet [34], we re-implement it with the
standard ResNet-50 backbone for fair comparison with
SeCo and other baselines. We use the default settings for
the remaining baselines. See Supp. for further details.

4.3. Evaluation Protocols for Context-aware SSL

Lift-the-Flap. We introduce lift-the-flap task to address
the problem of “what” in context reasoning. In the task,
all models are required to rely only on context information
to infer the class identity of the hidden target object. To
adapt the model trained with SSL to this task, we freeze the
model weights for feature extraction and then only fine-tune
a linear classifier to output predicted class labels for the



hidden target object. We report the performance in Top-1
accuracy of all baselines in Tab. 1.

Object Priming. We introduce the object priming task
to address the problem of “where” in context reasoning.
Specifically, the model is given an image and a target object
as inputs, and the model has to predict contextually correct
locations for placing the target object. As there was no
object priming dataset in the literature, we curated our own
dataset.

[Stimulus designs] We curated semantically relevant 864
unique image-object pairs on 206 images from the test set of
MSCOCO-OCD dataset (Sec. 4.1). Eggs tend to be nearby
other eggs. To avoid this “crowding” effect that could
bias humans and models in placing same target objects in
the same locations, for each image-object pair in object
priming, we made sure that there are no object instances
present on the context image whereby these object instances
belong to the same class as the given target object. See
Supp. for details about selecting these image-object pairs.
[Human response collection] We followed standard
Institutional Review Board protocols and used Amazon
Mechanical Turk (AMT) to collect responses from total 437
human subjects. For quality controls, we only recruited
participants with master qualification and a minimum of
95% approval rate. For each subject, we randomly sample
20 image-object pairs and present the 800x 800 image along
with the question “Where would you put this [obj]?” where
[obj] corresponds to the sampled target object. The subjects
are required to make non-repeated 10 mouse clicks at
relevant regions of the given image. For each image-object
pair, we collect responses from exactly 3 human subjects
which gives us 30 unique clicks in total per image-object
pair. We show the schematic for the human psychophysics
experiment in Fig. 3a (see Supp. for AMT interface and
further details).

[Post-processing] For each image, we consolidated all 30
click coordinates and generated the attention map of size
25x25, where the intensity at each location of the attention
map denotes the click counts. We then applied Gaussian
smoothing, upscaling, and min-max normalization on these
maps to generate the final human priming maps (Fig. 3b).
See Supp. for further details.

[Model-human comparisons] To predict priming maps
for all the models, we converted the object priming task
to a series of lift-the-flap tasks with the following steps:
(1) we divide the context image into patches. (2) We
covered a single image patch with a flap (black pixels)
while the remaining patches remain intact. (3) We tested
all models fine-tuned on COCO-OCD from lift-the-flap task
in (2) and recorded the predicted classification probability
of the model for the given target object class in the object
priming task. (4) We iterated through (2) and (3) until
we exhaustively performed “lift-the-flap” tasks over all

Method In Domain Out Of Domain
O Context Encoder [47] 15.78 14.82
O SimCLR[11] 32.78 37.65
g SimSiam [13] 39.79 45.76
O DINO [9] 42.06 48.07
S VICReg 2] 44.89 52.58

SeCo (Ours) 52.31 57.27
A Context Encoder [47] 20.55 10.68
O SimCLR[11] 35.78 15.51
Q  SimSiam [13] 42.46 19.36
S DpINO[9] 4321 1534
S VICReg[2] 44.34 24.31

SeCo (Ours) 52.43 31.37

Table 1. SeCo outperforms all baselines in lift-the-flap task.
We test all the SSL methods (Sec. 4.2) on in-domain and
out-of-domain images over 3 datasets (Sec. 4.1) and report top-1
accuracy averaged over 5 runs (Sec. 4.3).

the image patches. (5) For each image patch, we then
have a classification score indicating how confidently the
model would put the given target object in that patch. We
consolidated all the probabilities for all the patches and
generated the priming map for each model. As the model
predictions were sensitive to the patch sizes, we varied
the patch sizes and normalized the final priming map over
all patch sizes (see Supp. for details). We compare the
similarity between human priming maps and the priming
maps generated by all models using root mean-squared
errors (RMSE) and reported the results in Tab. 2.

5. Results
5.1. Lift-the-flap task

We report the top-1 target inference accuracy of all
models in lift-the-flap task (Tab. 1). SeCo achieves an
overall accuracy of 52.31% and 52.43% on the test sets of
COCO-VOC and COCO-OCD, surpassing all the baselines
by a large margin. Context Encoder [47] is trained
with the hand-crafted pretext task by reconstructing the
masked region at the pixel level. However, its performance
is inferior to other baselines and our SeCo, implying
that pixel-level reconstruction focuses on details of visual
features, discarding the local contextual associations,
such as object co-occurrences. Next, we observed that
contrastive methods like SimCLR [11] performed worse
compared with non-contrastive methods like SimSiam [13],
DINO [9], and VICReg [2]. It suggests that multiple
objects could co-occur in the same context and making
selection of negative samples is non-trivial and challenging
in context-aware SSL.

Bird flies in the sky regardless of whether the scene
is depicted in Picasso or Monet styles. Contextual
associations should be invariant to domain shifts of visual
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Figure 4. SeCo priming maps highlight contextually relevant regions of the image and closely approximate human choices in the
object priming task. The leftmost column shows the input image and the given target object class label used for priming. The rest of the
columns from left to right are priming maps from humans, predicted by our SeCo and predicted by all baselines (Sec. 4.2).

Method RMSE
Human Agreement 0.17 £0.05
Context Encoder [47] 0.41 £ 0.06
SimCLR [11] 0.44 £+ 0.07
SimSiam [13] 0.43 + 0.09
DINO [9] 0.42 +0.07
VICReg [2] 0.40 £+ 0.09
SeCo (Ours) 0.32 + 0.06

Table 2. Root mean square error (RMSE) between human
priming maps and maps predicted by computational models
in object priming task. Lower is better. Error bars show standard
deviation calculated across samples. RMSE for human agreement
was calculated by comparing priming maps across the 3 human
subjects for individual image-object pairs.

features. We test all models in out-of-domain datasets,
PASCAL VOCO07 and OCD. SeCo outperforms previous
approaches on out-of-domain images, with top-1 accuracy
of 57.27% and 31.37% on PASCAL VOCO07 and OCD,
respectively. Compared across domains, we noted that all
methods achieve slightly better performance in PASCAL
VOCO07 than COCO-VOC, because both COCO-VOC
and PASCAL VOCO7 contain natural images, and the
context-associated object pairs on these images are more
prevalent on VOC. On the contrary, when the domain shifts
from natural images in COCO-OCD to the synthetic images
in OCD, we saw a big performance drop for all the models.
Yet, our model gets less impaired due to domain shifts,
highlighting that our SeCo learns context associations rather
than correlations of visual features.

5.2. Object priming task

We compare human priming maps with the maps
predicted by all models and report RMSE scores in Tab. 2.
As alower bound, we calculated the between-human RMSE
score (0.17) by comparing maps from pairs of humans.
SeCo achieves the lowest RMSE of 0.32 compared to all
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Figure 5. Analysis on external memory of SeCo. We report
the top-1 accuracy for varying number of slots (left) and varying

memory dimensionality per slot (right) in the lift-the-flap task.

baselines, emphasizing that SeCo predicts more human-like
priming maps than all the baselines. In general, we also
noticed that there still exists a big gap between model and
human agreements in object priming.

To assess the quality of the predicted priming maps
by all models, we also visually examined qualitative
examples (Fig. 4). In contrast to all the baselines which
tend to generate relatively uniform flat priming maps,
our SeCo manages to predict semantically reasonable
locations to place the target objects. Note that we do
not train or fine-tune any methods to fit human priming
maps, it is quite remarkable that our SeCo can transfer
the knowledge in context-object associations to infer
target-relevant semantically-correct locations in the scene.

5.3. Ablation and memory analysis

We assessed the importance of design choices by training
and testing ablated versions of SeCo on COCO-OCD.

First, we replaced the object-context image pairs
generated by selective search [53] with randomly generated
object-context image pairs (Tab. 3, RG). There is a



Ablations  Accuracy
SS 5243
I GT 49.61
RG 36.95
I NSA 49.61
SA 37.48
I w/ Mem. 49.61

w/o Mem. 44.07

Table 3. Ablation Study. Top-1 accuracy in lift-the-flap on
COCO-OCD of (I) different Rol generation strategies: selective
search (SS), annotated bounding boxes (GT), random generation
of boxes (RG); (II) different architecture: non-shared architectures
of two-stream visual processors (NSA), shared architecture (SA);
and (III) with or without the external memory. In experiments
(II) and (III), we directly use annotated bounding boxes as Rols
(GT) to remove randomness in selecting target objects for better
controls. Default settings of our SeCo are highlighted .

decrease of 16% in top-1 accuracy, highlighting that the
“objectiveness” in generated regions helps learn contextual
associations. We also trained SeCo on the object-context
image pairs from annotated ground truth bounding boxes
(Tab. 3, GT). Surprisingly, SeCo performs better with GT
by 3%. It is possible that the exploited Rols by the selective
search contain small objects which are hardly labelled by
human annotators but useful for context-aware SSL.

Next, we trained two separate encoders E;(-) and E.(-)
in SeCo (Sec. 3.2). Here, we enforced weight-sharing
encoders (Tab. 3, SA). SA achieved a lower top-1 accuracy
of 37.48% than SeCo, suggesting that the same features for
both target and context streams are insufficient to reason
about context.

To study the effect of the external memory in context
reasoning, we remove the external memory from our default
SeCo (Tab. 3, w/o Mem). The performance of w/o
Mem drops by around 5% on average over all object
sizes, demonstrating that the external memory enhances the
reasoning ability of SeCo.

We also vary the number of memory slots (Fig. 5, left)
from 100 to 800. There is a moderately positive increase
of 2.5% in Top-1 accuracy in lift-the-flap. ~However,
we observed non-monotonic trend in Top-1 accuracy,
when we vary the feature dimension of the external
memory (Fig. 5, right). The top-1 accuracy peaks
when the feature dimension equals 512. It suggests
that larger memory capacity in general helps learn and
store richer context-object associations; however, an overly
large-sized memory may hurt context reasoning abilities,
as the memory fails to generalize the learned contextual
knowledge due to over-fitting.

We further probe what the external memory has learned

[[bicycle, car]||[dog, cat]|[[horse, sheepl]|

le-5
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cwow

bottle
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Figure 6. Pairwise KL divergence of attention scores over
memory slots of the external memory in SeCo for object
categories in COCO-VOC. Dark grids show that targets sharing
similar context in both categories retrieve information from similar
memory slots. Colored boxes pointed by arrows denote different

supercategories in PASCAL VOCO7, such as , animal |,

indoor |.

by visualizing the pairwise KL divergence of attention score
over memory slots for object categories in COCO-VOC
(Sec. 4.1). Each cell in the matrix denotes the distance of
attended memory slots to retrieve information from, given
the pair of contexts where the two object classes are present.
The darker grids denote that object classes are more likely
to share the same context. See Supp. for implementation
details. ~We highlighted several context-relevant pairs
of object classes from various supercategories, such as
vehicles, animals and indoor objects. For example, though
the tv and the potted plants are not visually similar but
they are contextually relevant. This suggests that the
external memory in SeCo learns meaningful object-context
associations.

6. Conclusions

We set out to determine whether SSL methods can
capture the statistics of associations in natural images.
To this end, we introduced SeCo, a novel self-supervised
learning method for context reasoning, which learns
object-context associations from unlabeled images. Like
humans, while learning, SeCo relies on external memory
to develop priors through repeated encounters with objects
and their contexts, which it subsequently uses for reasoning
by retrieving information from these knowledge priors.
To evaluate the contextual associations learned by all
models, we introduced two testing protocols, Lift-the-Flap
and Object Priming. In addition, we conducted human
psychophysics experiments and introduced HOP, a human



benchmark dataset for contextual reasoning.

We then

used it to quantitatively and qualitatively evaluate different
models on the object priming task. Finally, we performed
a series of ablations and analytic experiments to assess
the relevance of different components of our model. Our
work provides new insights into how to perform contextual
reasoning via self-supervised learning.
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Algorithm 1: PyTorch-style pseudocode for SeCo

# Ec, Et: context and target enc

# pc, pt: context and target projectors

# M: external memory shaped in K-by-H

# pk: key projection of external memory

# mse: mean square error loss

# var_loss: variance loss

# cov_loss covariance loss

# alpha, beta, gamma: 0Ss component
#

# load a batch of N images

for x in loader:
# randomly augmented target and context
t, c = augment (x)

# encode and project contex
hc, ht = Ec(x), Et(x) # # N
sc, st = pc(hc), pt(ht) # #
# compute keys of memory

m = pk(M) # # K x H

t, target stream
x D
N x H

# retrieve memory
softmax (dot (sc, m))/sqgrt (H) # # N x K
sc =p x M# # N x H

o]
Il

# calculate loss and update

loss = alpha » mse(sc,st) + beta x (var_loss(sc) + var_loss(st)) / 2 + gamma
* (cov_loss(sc)+ cov_loss(st))

loss.backward ()

S1. Method

We provide PyTorch-style pseudocode for SeCo in Algo. 1. In practice, we randomly sample 4 target-context pairs for
each image in each iteration and average the loss value over these sampled pairs. We resize the context images to 224 x224
and the target images to 96x96.

S2. Experiments
S2.1. Datasets

To evaluate whether the learned contextual knowledge from SSL methods can generalize well in out-of-domain settings,
we design two custom regimes for our experiments COCO-VOC and COCO-OCD in Sec. 4.1. Overlapped classes are as
follows:

COCO-VOC contains the same 20 classes in hierarchy of superclass and subclass as defined in PASCAL VOCO07 [22].

* Person: person
* Animal: bird, cat, cow, dog, horse, sheep
» Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train
* Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor
COCO-0OCD contains the same 15 classes as in OCD dataset [4]: wine glass, cup, knife, bowl, apple, cake, mouse, remote,

keyboard, cell phone, microwave, book, toothbrush, pillow, towel.
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Figure S1. The architecture of Context Encoder [47] with ResNet-50 [29] as backbone encoder. Aligned with its original work, we
use a channel-wise fully connected layer followed by a five-layer decoder to reconstruct masked central region from the encoder output.

S2.2. Baselines

We use ResNet-50 [29] as encoder for Context Encoder [47] for fair comparisons with other works (Sec. 4.2). Following
its original work, we use an asymmetric decoder with five up-convolution layers to reconstruct the masked central region.
See (Fig. S1) for the architecture design. We pre-trained the model on ImageNet-1K [16] with mean square error loss for 100
epochs. We set the learning rate as 0.001. Starting from weights obtained on ImageNet-1K, we further fine-tuned the model
on COCO-VOC and COCO-OCD (Sec. 4.1) respectively.

S2.3. Object Priming

[Stimulus designs] Here, we describe the steps we used to curate semantically relevant image-object pairs for the object
priming experiment. First, we wanted to select images that were semantically relevant to the 15 classes of the COCO-OCD
dataset (Sec. 4.1). To accomplish this, we sampled images from the test set of COCO-OCD dataset that contained at least 3
object classes from the 15 objects classes. Next, for each image ¢ in the sampled images, we manually select a subset C; of
semantically meaningful target classes from the 15 classes ensuring that the target class is not already present in the image.
Finally, using the above steps, we ended up with 206 images and 864 unique image-object pairs.

[Human response collection] In Fig. S2, we show a screenshot of the AMT interface used for human object priming
experiments. All the psychophysics experiments were conducted with the subjects’ informed consent and according to
the protocols approved by our Institutional Review Board. Each participant received 15 USD per hour for participation in the
experiments, which typically took 6 mins to complete.

[Post-processing] Here, we describe the post-processing of human object priming responses in detail. Specifically, we first
created a 3232 attention map by dividing the 800x 800 stimuli image into 1,024 individual grids of size 25x25. We then
aggregate the clicks made in each grid such that the pixel intensity in the attention map corresponds to the number of clicks.
To this 32x 32 attention map, we then apply Gaussian smoothing using a 11x 11 filter, followed by resizing to 224 x 224, and
min-max normalization to generate final human priming maps.

[Model-human comparisons] We briefly introduce the process of generating priming maps for computer vision models in
Sec. 4.3 and provide its pseudocode in Algo. 2. We use 5 grid sizes to generate priming maps in different scales (8 8, 14x 14,
28x%28, 56x56, 112x112) and normalize over these maps to obtain the final map. We provide more qualitative examples of
model-human comparison in Fig. S3.
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Figure S2. AMT user interface for human object priming experiment. Red dots indicate the past click locations.
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Figure S3. SeCo priming maps highlight contextually relevant regions of the image and closely approximate human choices in the
object priming task. The leftmost column shows the input image and the given target object class label used for priming. The rest of the

columns from left to right are priming maps from humans, predicted by our SeCo and predicted by all baselines (Sec. 4.2). See Fig. 4 for
the colorbar.
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S3. Ablation and memory analysis
S3.1. Analysis of Loss Components

As defined in Sec. 3.4, SeCo has a joint loss of MSE loss, covariance loss and variance loss. Here, we remove each
component respectively to analyze its effectiveness on pretraining. We report top-1 accuracy on COCO-OCD in Tab. S1.
The result demonstrates that without variance loss, SeCo reached information collapse, aligning with the trend in VICReg [2].
Without covariance loss, performance drops 2% in accuracy. Different from the observations made in VICReg [2], without
MSE loss, SeCo manages to achieve 41.72% in accuracy without collapses. One possible reason is that starting from weights
obtained on ImageNet, the encoder has captured useful visual features. Thus, adding information regularization during
pre-training on COCO-OCD can avoid collapse even without enforcing association between contexts and targets.

o B v Accuracy
25 25 1 49.61

1 1 0 47.72

0 25 1 41.72
25 0 1 collapse
1 0 0 collapse

Table S1. Ablation study on loss components. «, 3, v are weightages of MSE loss, variance loss, covirance loss respectively.

S3.2. Probing External Memory

In Sec. 5.3, we probe what the external memory has learned by visualizing the pairwise KL divergence of attention score
over memory slots for object categories in COCO-VOC. Here, we provide the pseudocode of obtaining the matrix in Algo. 3.
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Algorithm 2: PyTorch-style pseudocode for generating priming maps.

# Ec: trained context network with an encoder and a linear classifier
# patch_sizes: patch sizes when making erased contexts
#

# load a batch of N images
for x, label in loader:
maps = []

# calculate priming maps in multiple scales
for patch_size in patch_sizes:
# iteratively erase a patch from image
contexts = make_context (x, patch_size)

# retrieve probability w.r.t location for a given object category
p = softmax (Ec(x) [:,label])

# normalize so that priming maps in different scale can add up
p=(p - p.min()) / (p.max() - p.min())

# upsample to the size of input image
patch.num = x.size[l] // patch_size

p = p.view((patch_num,patch_num))

p = upsample (p)

maps.append (p)

# finalize priming maps by averaging and normalizing over different scales
maps = torch.stack (maps) .mean (0)
maps = (maps - maps.min()) / (maps.max() — maps.min())
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Algorithm 3: PyTorch-style pseudocode for calculating pairwise KL divergence of attention score over memory
slots for object categories in COCO-VOC.

# Ec: context encoders

# pc: context projector

# M: external memory shaped in K-by-H

# F: frequency matrix shaped in C-by-K

# D: pair-wise KL-divergence matrix shaped in C-by-C
# product: cartesian product of two sets

# kld: KL-divergence function

for x, label in loader:
# obtain erased context
c = erase(x)

# encode and project context stream
hc = Ec(x) # # 1 x D

sc = pc(hec) # # 1 x H

# compute keys of memory

m = pk(M) # # K x H

# retrieve attention score over memory slots
p = softmax(dot (sc, m))/sgrt(H) # # 1 x K

# sharpen the distribution

topl = p.max(0) [1]

Fl[label, topl] += 1

# calculate pairwise KL-divergence
for i,J in product (range (C), range(C)):

Fli] (F[1] - F[i]l.min()) / (F[i]l.max() - F[i].min())
F[3] = (F[J] - F[Jl.min()) / (F[3j]l.max() - F[3].min())
ri, pj = softmax(F[i]), softmax(F[j])

D[i,3] = kld(pi, p3J)
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