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Abstract

As AI algorithms increasingly participate in daily
activities that used to be the sole province of humans, we are
inevitably called upon to consider how much machines are
really like us. To address this question, we turn to the Turing
test and systematically benchmark current AIs in their
abilities to imitate humans. We establish a methodology
to evaluate humans versus machines in Turing-like tests
and systematically evaluate a representative set of selected
domains, parameters, and variables. The experiments
involved testing 769 human agents, 24 state-of-the-art
AI agents, 896 human judges, and 8 AI judges, in
21,570 Turing tests across 6 tasks encompassing vision
and language modalities. Surprisingly, the results
reveal that current AIs are not far from being able to
impersonate human judges across different ages, genders,
and educational levels in complex visual and language
challenges. In contrast, simple AI judges outperform
human judges in distinguishing human answers versus
machine answers. The curated large-scale Turing test
datasets introduced here and their evaluation metrics
provide valuable insights to assess whether an agent is
human or not. The proposed formulation to benchmark
human imitation ability in current AIs paves a way for the
research community to expand Turing tests to other research
areas and conditions. All of source code and data are
publicly available: here.

Figure 1. Schematic illustration of Turing tests in six vision
and language tasks. A Turing test works with a judge asking a
test subject (either a human or an AI agent) a series of tasks. Each
party is kept in a separate room, so no physical contact is allowed.
The AI passes the Turing test if the judge is unable to distinguish
the AI from another human being by using the responses collected
from the given task presented to both. See Fig 2 for an overview
of the six tasks.

1. Introduction

The Turing test, also known as the “imitation game”,
was proposed by Alan Turing in 1950 as a way of
assessing a machine’s ability to exhibit intelligent behaviors
indistinguishable from those of a human (Fig. 1) [61]. Since
its inception, whether the Turing test adequately quantifies
intelligence or not has remained controversial [22, 34]. The
purpose of this paper is not to argue in favor or against
Turing tests as a measure of general intelligence. Instead,
we consider the Turing tests as a quantitative evaluation of
how well current AIs can imitate humans.
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With powerful AI technologies being deployed in the
real world, it is becoming increasingly important for lay
people,legal judges, doctors, politicians, and other experts
to ascertain whether the agent they are interacting with
is a human or not. As two examples out of many, the
inability to distinguish a human from an AI bot may lead
to cybersecurity breaches resulting in the loss of private
and protected data. Besides, the inability to distinguish
real news from AI generated fake news or DeepFakes [68]
can have disastrous implications for electoral campaigns
[28, 68].

The answer to whether current AIs pass the Turing
test depends on a plethora of considerations, including the
machine agent, the human agent, the judge, the specific
task, contextual conditions, and many more. Distinct
from the original version of the Turing test in unrestricted
conversations, the purpose of the current work is not
to exhaustively study all possible combinations of these
parameters and choices. Instead, we aim to: (i) establish
a methodology to evaluate human imitators, (ii) provide
a systematic protocol for the AI community to quantify
whether a task is performed by humans or machines, and
(iii) introduce evaluation metrics and analysis tools on
a subset of tasks and conditions as a proof-of-principle.
Specifically, we benchmarked 24 AI models in Turing tests
on 6 fundamental tasks in computer vision and natural
language processing (Fig. 2): color estimation, object
detection, attention prediction, image captioning, word
associations, and conversation.

The key contributions of this work are:
(1) We design a systematic format for conducting Turing
tests and evaluating AI models over different tasks
involving multiple modalities. This helps the community
expand the Turing test to a wide range of tasks and
benchmark future AI models.
(2) We introduce datasets to evaluate current AIs in
Turing-like tests in 6 fundamental vision and language
tasks.
(3) We conduct human psychophysics experiments to
evaluate human judges in 24 state-of-the-art vision and
language AI models in Turing tests.
(4) We show that simple machine learning algorithms can
serve as AI judges to distinguish machines versus human
agents in the same tasks.

2. Related Works

2.1. Glimpse of the 70-year history of Turing test

The Turing test was introduced as an imitation game
where a machine tries to pass as human during a
conversation and a human judge determines whether they
are interacting with a human or not [61]. The Loebner Prize
was introduced in 1991 [45] to the programs considered

by human judges to be the most human-like. There was
also an award for the most human human [11]. The Turing
test has generated extensive controversy and discussion
about whether it is a valid measure of intelligence [25, 26,
34, 40, 51], shifting to whether machines can successfully
imitate humans [31–33]. Several notable arguments
include Searle’s Chinese room thought experiment [54],
Block’s behaviorism [5], Harnad’s Total Turing Test [30],
Watt’s Inverted Turing Test [65], Damassino’s Questioning
Turing Test [17] and Sejnowski’s Reverse Turing Test
[55]. Distinct from these arguments, our aim is to
systematically and quantitatively provide methods, datasets
and benchmark current AIs in imitating humans through
Turing-like tests in multiple vision and language tasks.

2.2. AI versus humans in vision tasks

Current computer vision models can perform a wide
range of tasks such as object recognition and detection
Models are often evaluated by comparing their outputs
against human ground truth annotations. Many object
recognition studies benchmarked AI versus humans in
out-of-distribution generalization [4,20], adversarial attacks
[21], and contextual variations [7, 74]. Several studies
also compared attention in AI models against humans in
saliency prediction [36], and eye movement prediction
[27, 71, 73]. However, high performance in a particular
task does not constitute a Turing test. AI models can show
similar average performance to humans in narrow tasks, or
even outperform humans, and still be distinguishable from
humans. Turing tests provide a unique assessment of AI
models as imitators of human behavior which extends and
complements current benchmarking frameworks.

2.3. AI versus humans in language tasks

Similar observations can be made in natural language
processing. AI models are often compared against human
ground truth data in discriminative tasks, such as image
captioning or visual question answering [9, 44, 56, 70].
Human evaluation scores are reliable but costly to obtain.
To mitigate these problems, several evaluation metrics
have been proposed, such as BLEU [49], THUMB [38],
and METEOR [18] in image captioning. However, these
metrics focus on n-gram overlaps and are insensitive to
semantic information. Cui et al. proposed a learned critique
model acting as a human judge to perform a Turing Test
in image captioning tasks [16]. Here we also introduce
critique models and compare them with human judges.

Generative AI models are notoriously difficult to
evaluate due to the inherent ambiguities of language.
For example, human evaluators are often recruited to
assess the quality of sentiment and semantic relevance
on text generated by BERT [19] or GPT2/3 [8, 8, 37].
Such evaluations are restricted to specific domains of text
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Figure 2. Schematic of the 6 tasks. We systematically evaluate 3 vision tasks, 1 vision-language task, and 2 language tasks. a. In Color
estimation, the agent is presented with an image and has to output the main color. b. In Object detection, the agent is presented with
an image and has to provide three objects. c. In Attention prediction, the agent is presented with an image and the output is a sequence
of attention locations or eye movements. d. In Image captioning, the agent provides a single sentence description of an image. e. In
Word associations, the agent is presented with a word and has to produce a single word related to the cue. f. In Converstaions, agents
produce 24 exchanges. See Sec. 3 for detailed description of each task and see Supp. Material for more example stimuli from both human
and AI agents for all tasks. g. The results of a Turing test with a human judge depend on the characteristics of the judge. As an initial
characterization, we collect basic demographic information indicated in this table.

generation and the heterogeneity of human judges has not
been characterized. Here we provide an extensive set
of Turing tests on multiple large state-of-the-art language
models based on 896 judges across different demographics.

Conversation was the key target of the original Turing
test and remains a daunting challenge for AI. There have
been numerous early attempts at generating restricted topics
during conversations, such as Colby’s PARRY simulating a
paranoid schizophrenic [12, 13] and Weizenbaum’s ELIZA
simulating a psychiatrist [66]. However, none of these
models have come close to unrestricted Turing tests.
Advances in large language models [8, 14, 19, 58] have
led news and social media to produce anecdotal claims
about current AI being sentient in conversations [43,60,67].
However, few studies rigorously and quantitatively assessed
AIs in their ability to imitate humans in conversation.
Preliminary works introduced unrestricted Turing tests in
conversations with one exchange per conversation [75].
Here we provide extensive evaluations of AIs engaged in
conversations with up to 24 exchanges.

3. Experiments
We introduce the six tasks (Fig. 2), how we created the

datasets and how we set up the Turing tests (Fig. 3). Further
details about each task, controls, and example snapshots
of the Amazon Mechanical Turk (AMT) interfaces are
provided in the Supp. Sections S2 – S7. All AMT
experiments are based on “master” workers. We also
collected demographic information about the participants
as metadata, including their native language, age, gender,

Figure 3. Schematic illustration of the Turing test for the object
detection task. The judge is presented with an image and three
labels and has to decide whether those labels were produced by a
human or by an AI. For screenshots of the Turing test for each of
the tasks, see Supplementary Material.

educational background, and the country they are originally
from (Fig. 2g). For each task, we collect human answers
and machine answers. During each Turing test, we present
a single instance of the answers and ask participants to
indicate whether the answer comes from a human or AI
(e.g., Fig. 3 for the Object detection task). Half of the
time, the entry shown was from a human. The other
half of the time, an AI answer was shown, sampling with
equal probability from one of the different computational
models used for each task. The trial order was randomized.
No feedback was provided to the participants. Additional
control trials were introduced for each specific task to
ensure compliance.
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Task Num.
Stimulus

Num.
Turing Tests Sources of Datasets AI models

Color estimation 785 1,625 self-collect, MSCOCO [42]
Google Vision API
Microsoft Azure Cognitive Services, MMCQ [6]

Object detection 808 1,975 self-collect, MSCOCO [42]
Google Vision API, Microsoft Azure Cognitive Services
Amazon Rekognition, Detectron2 [69]

Attention Prediction 547 2,160
NatureDesign [73], FindingWaldo [73]
NatureSaliency [72] IVSN [27, 72, 73], DeepGaze3 [39], GBVS [29]

Image Captioning 1,000 8,140
self-collect
MSCOCO [42], nocaps [3]

GIT [63], OFA [64], BLIP [41]
ClipCap [46], Microsoft’s Azure Cognitive Services [2]

Word Association 1,500 3,550 self-collect
Word2Vec [50], GPT2 [52], GPT3-embedding (davinci) [8],
GPT3-prompt (text-curie-001) [8],
GPT3-prompt (text-Davinci-002) [8].

Conversation 300×8 lengths 4,120
self-collect
Topical-Chat dataset [24]

GPT3-text-davinci-002 [48], GPT3-text-curie-001 [48]
Blenderbot [57], DialogPT [24]

Table 1. Specifications of six Turing tasks Source datasets, number of Turing tests conducted, number of stimulus, and AI models used
to collect responses are listed for each task. See Section 3 for task descriptions.

3.1. Color Estimation

Dataset. We collected a testing set of 1,000 images sampled
from the validation set of MS-COCO [42] to ensure that
computational models had not seen these images during
training. We collected human responses for 785 images
using AMT in the Color Estimation task. AMT subjects
were asked “What is the dominant color in this image?”,
and had to select from 11 possible colors (Fig. S1, S2). For
a sample image of the AMT interface, instructions, and a
list of colors, see Supp. Section S2.

For AI models, we collected responses for the dominant
color from Google’s Cloud Vision API [1], Microsoft’s
Azure Cognitive Services [2], and the publicly available
Median Cut Color Quantized (MCCQ) algorithm [6]. In
total, 3,140 image-response pairs were collected (785 from
humans and 2,355 from AI models, Table 1).
Turing test (Human Judge). Subjects were shown an
image-response pair collected above, and asked the question
“Was the color description made by a human or a machine?”
(Fig.S3, S4, S14). Subjects were also asked to predict
the gender of the speaker. An auxiliary True (50%)/False
(50%) question about the presence of a background object
present in the image was introduced as a control. The mean
accuracy in this control task was 91%. A total of 1,625
responses were collected from human judges.
Turing test (AI judge). For each image-response pair, we
collected image features from the last layer embedding of a
ResNet18 model pretrained on ImageNet, and the textual
features for the color using BERT [19]. These features
were then concatenated, and passed into a Random Forest
classifier to predict human versus AI labels, using a 90% /
10% split for cross-validation.

3.2. Object detection

Dataset. We collected responses for 808 images from
the set of 1,000 images from MS-COCO in Section. 3.1.
Subjects were presented with the question “What do you see

in this image?”, and were asked to enter three single word
responses (Fig. S16, S17). We introduced several controls,
ensuring that the responses were single words in English
and that participants do not repeat the same response within
or across images. For sample images of the AMT interface,
instructions and controls, see Supp. Section S3.

We collected predicted labels from Google’s Cloud
Vision API, Microsoft’s Azure Cognitive Services,
Amazon’s Rekognition API, and Facebook’s Detectron2.
For all networks, the top three predicted labels with the
highest prediction score were collected. In total, 4,040
image-response pairs were collected (808 from humans and
3,232 from the four AI models, Table 1).
Turing test (Human judge). The Turing test for human
judges was performed using the same protocol and controls
described in Section 3.1 (Fig. 3, S18, S19, S29). A total
of 1,975 responses were collected from human judges.
Turing test (AI judge). As the images were the same for
humans and AI models, we used solely textual features
for the AI judge to classify a response as human or AI.
We concatenated the three responses into a sentence, and
collected textual features for the sentence using BERT [19].
These features were passed into an SVM classifier to
classify responses into humans versus AI, with 90% / 10%
split cross-validation.

3.3. Attention prediction

Dataset. We used eye movements (overt attention) from
human subjects during two visual search tasks [73], and a
free-viewing task [72]. We evaluated 7,000 scanpaths from
40 participants (Table S2). For the three datasets, we used
a modified version of IVSN [72, 73], DeepGaze3 [39] and
GBVS models [29] to generate eye movement predictions.
Supp. Section S4 provides examples of eye movement
sequences from humans and models.
Turing test (human judge). Separate Turing tests were
launched for eye movements from free-viewing tasks (80
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judges) and visual search tasks (100 judges) (Fig. S31, S47
and Fig. S32, S47). We presented infinitely repeating
animated clips of eye movements from humans or model
predictions with a maximum of 15 fixations to human
judges on AMT. Each judge had to identify if the eye
movements were from a human or a computational model.
As a control, judges were also asked to answer “What do
you see in the presented clip?” with one correct answer
among 3 options. Responses from judges with a score < 7
out of 12 were not considered in the analyses.
Turing test (AI judge). We performed Turing tests using
an SVM as an AI judge. Sequences of 10 fixations per trial
from humans or computational models were fed as input
in the form of an array of fixation coordinates to train an
SVM to classify human versus machine eye movements.
The SVM was trained using 10-fold cross validation. Model
performance on validation sets across folds with 3 random
seeds was calculated and averaged.

3.4. Image captioning

Dataset. We randomly sampled 250 images each from
in-domain, near-domain, and out-of-domain categories
from the validation set of the nocaps dataset [3] and 250
images from the MSCOCO test set [42], creating a set
of 1,000 images. We collected 2,290 human captions
with ≥ 6 words per caption and ≥ 2 captions per image
from AMT participants (Fig. S48, S49, S50, S65). We
implemented additional controls in our AMT interface. For
example, workers were not allowed to submit a caption
before viewing the image for ≥ 4s (Supp. Section S5 ).

To generate machine captions, we used: GIT [63],
OFA [64], BLIP [41], ClipCap [46], and Microsoft’s
Azure Cognitive Services [2] (Table S3). For open-source
models, we used the largest variants finetuned on the COCO
Captions dataset [10, 42]. We collected 5,000 machine
captions with 5 captions per image (Supp. Section S5).
Turing test (human judge). We collected responses from
293 AMT participants (Fig. S51). Each participant was
presented with image-caption pairs and indicated whether
the caption was generated by a human or AI. To ensure that
the participants read the captions carefully, we prevented
response times < 3s. We removed responses from
non-native English speakers (Supp. Section S5).
Turing test (AI judge). We trained an SVM model
for binary classification (human versus machine) on the
dataset of human and machine captions. We randomly
sampled 400 captions from each of the 5 models to get
2,000 machine captions and combined them with our 2,000
human captions. We used the OpenAI API [47] to obtain
4,096-dimensional embeddings (text-similarity-curie-001
model) for each caption as input features to train the SVM
with 10-fold cross-validation and 3 random seeds.

3.5. Word associations

Dataset. We chose 150 unique cue words (50 nouns,
50 verbs, and 50 adjectives), spanning a wide range
of occurrence frequencies [59] (Table S4; see Section
S6 for multiple additional controls). Associations to
each cue word were collected from human subjects
(Fig. S68, S69, S74), and from the following language
models: Word2vec [50], GPT2 [52], GPT3-embedding
(based on davinci embedding), GPT3-curie-prompt (based
on ”curie” prompt completeion), and GPT3-davinci-prompt
(based on ”davinci” prompt completeion) [8]. For the
human associations, we followed two procedures: (1) Free
associations, whereby participants provided a one-word
answer to the question: “What is the first word that
comes to your mind when you hear the word [cue word]?”
(Fig. S68); and (2) Prompt-based associations, whereby
participants completed a prompt with one word (Fig. S69).
The prompts used for the human prompt-completion
were the same prompts used for GPT3-curie-prompt and
GPT3-dacinci-prompt (Table S6). All participants were
English native speakers living in the US. Section S6
describes the implementation of each model to retrieve
word associations.
Turing test (human judge). For the human-judge Turing
tests, we collected data from 50 native English speakers
on AMT (Fig. S70). In each trial, a cue word and a
corresponding guess word (association) were presented and
the judge had to choose whether the association was made
by a human or by an AI model (Section S6).
Turing test (AI judge). We trained a linear SVM classifier
with 10-fold cross-validation [15] to distinguish between
human-made and machine-made associations. We used the
the distance between the cue and guess word embeddings,
based on (1) Word2Vec, (2) GPT2, or (3) GPT3 (davinci).

3.6. Conversation

Dataset. We collected 300 conversations between: (1)
two humans, (2) a human and an AI model, (3) two
AI models. For the conversations including humans,
we recruited 150 fluent English participants to have a
conversation over a chatting platform. The participants
did not know whether they were speaking with another
human or with an AI chatbot (see instructions in Supp.
Section S7.1.2). We collected conversations containing
24 exchanges each. For the human-human conversations,
we added 40 conversations from the Topical-Chat dataset
[24], selected based on a minimum length of 24 exchanges.
Multiple example conversations are included in Supp.
Section S7.4.

For the AI chatbots, we used three state-of-the-art
language models: Blenderbot3 (175B model) [57], GPT3
text-davinci-002 [48], and GPT3 text-curie-001 [48] (see
settings, pre-processing, prompts, and control details in
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Supp. Section S7.1.4).
Turing test (human judge). We chunked each
conversation into 8 different lengths, including the initial
3, 6, 9, 12, 15, 18, 21, and 24 exchanges. There
were 208 human judges (AMT: 200, in-lab: 8). The
participants were presented with 20 randomly sampled
chunked conversations with different lengths and had to
respond, for each of the two speakers, whether the speaker
was a human or a machine and the gender (Fig. S89). As a
control, speakers also had to select the general topic of the
conversation from a list of five topics. We only considered
judges that correctly classified at least 15 topics out of 20
and removed incorrectly classified trials.
Turing test (AI judge). We evaluated whether simple
AI models can discern whether a sentence was generated
by a model or a human. We only examined single
sentences here. Therefore, these results provide only an
initial proof-of-principle lower bound for AI judges. We
built four corpora, one containing all the sentences written
by humans (the human corpus), and the others with the
sentences produced by Blenderbot, GPT3text-davinci-002
and GPT3text-curie-001 (the AI corpora). We used BERT
embeddings [19] to tokenize each sentence, and fed the
tokenized sentences to a linear SVM trained to classify
human vs. AI with 10-fold cross-validation.

4. Results
We summarize the results of all the Turing tests in

Fig. 4, by averaging across all AI models and all human
judge demographics. In the Supplementary Material, we
show results separated by AI model and also for different
human judge demographics. For each task, Fig. 4 shows
the proportion of times that a trial was classified as human
(first column), or AI (second column), when the ground
truth was human (first row), or AI (second row). Entries
along each row add up to 100%. When comparing different
AI models for a given task in terms of the ability to imitate
humans, percentages closer to 50% indicate better models.
In contrast, when comparing different judges (e.g., human
judges versus AI judges, or human judges of different
ages or educational backgrounds), higher overall accuracy
indicates better judges.

4.1. Color estimation

Human judges distinguished AI answers as AI 58% of
the time and human answers as human 55% of the time
(Fig. 4a). We broke down performance based on each
individual AI model (Fig. S5). The Google API performed
slightly better (57%) than Azure API (60%) and MCCQ
(65%). Even though the color MCCQ is a simple metric,
it still achieved a moderately good performance in fooling
humans 35% of the time. There was no major difference in
performance of human judges across different age groups

(Figs. S6, S7, S8), education levels (Figs. S9, S10, S11),
or genders (Figs. S12, S13). In contrast, the AI judge
classified human answers as human 43% of the time and
AI answers as AI 34% of the time (Fig. 4g, see Fig. S15 for
individual AI models).

4.2. Object detection

Human judges distinguished AI answers as AI 69% of
the time and human answers as human 52% of the time.
We broke down performance based on each individual AI
model (Fig. S20). Among all the AI models, Detectron
performed the best (49%), with a large gap from the second
best, Google API (65%). This modern object detection
algorithm in computer vision not only achieves outstanding
absolute scores in terms of standard evaluation metrics,
such as mAP [53], its response patterns also closely mimic
humans’ by identifying top-3 salient objects in the scene.
Specifically, we used the variant with MaskRCNN [35]
trained on ImageNet and MS-COCO.

There was no major difference in performance of
human judges across different age groups (Figs. S21,
S22, S23), genders (Fig. S27, S28) or education levels
(Fig. S24, S25, S26). All numbers were within a 5%
difference of the average performance across all human
judges reported above.

Next, we analyzed the classification performance of the
AI judge for this task. In start contrast to human, the AI
judge is able to distinguish between AI and human speakers
much better Fig 4. The overall classification accuracy of
AI judge is 81% (as compared to 56.5% of human judges).
Specifically, AI judge can tell AI responses as AI with a
90% accuracy, and human responses as human with 72%.
The easiest to classify are responses from the Azure API
with AI judges getting a 94% accuracy, while the hardest to
classify are Detectron and Amazon’s Rekognition API with
accuracy of 67% each (Fig. S30).

4.3. Attention prediction

Human judges distinguished human eye movements as
human 63% of the time and AI-generated eye movements
as AI 50% of the time (Fig. 4c). We examined the Turing
test performance for each AI model separately (Fig. S33).
IVSN [72, 73] outperformed GBVS [29] and DeepGaze3
[39] by 4% and 17%, respectively. We evaluated whether
the agent’s goals during eye movements might influence the
subsequent Turing tests. Human judges performed 2.5%
better in free-viewing (Fig. S36) compared to visual search
tasks (Fig. S35). Free-viewing is mostly driven by pure
bottom-up saliency, and it may be easier to discern scanpath
patterns without target-directed modulation. Consistent
with this idea, GBVS generated more human-like scanpaths
during free-viewing compared with visual search, whereas
DeepGaze3 performed much worse in free-viewing tasks
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Figure 4. Results of the Turing test for each task. Turing test results for human judges (top row) and machine judges (bottom row). For
each task, the confusion matrices report the percentage of times when the trial was labeled “human” (first column) or “AI” (second column)
when the ground truth was human (first row) and AI (second row). Percentages add up to 100 within each row. Here all AI models were
averaged together. See Supplementary Material for results from each AI model and different human judge demographic groups.

than visual search. IVSN performance was similar in both
tasks, which emphasizes the importance of incorporating
both bottom-up and top-down attention mechanism in
computational models of human attention.

Judges across different ages (Fig. S39, S40, S41), and
also male or female judges (Fig. S42, S43), performed
equally well in the Turing tests. Judges with a postgraduate
degree performed slightly worse than the ones with bachelor
degrees or lower (Fig. S44, S45, S46).

As an initial evaluation of AI judges, we trained an SVM
classifier purely based on the sequences of eye fixations
regardless of the image features (Fig. 4h). Interestingly,
a simple SVM AI judge performed 20% better than
human judges. AI judges outperformed human judges
across different models Fig. S34), and different tasks
(Fig. S37, S38). However, this result should be interpreted
with caution since the AI judge was explicitly trained to
classify scanpaths while human judges typically do not have
such prior training.

4.4. Image captioning
Human judges distinguished human captions as human

69% of the time and AI captions as AI 45% of the time
(Fig. 4d). There were rather large differences among
AI models (Fig. S52), with proportions of AI captions
labeled AI ranging from 37% (BLIP) to 59% (ClipCap).
CIDEr is a standard evaluation metric for assessing the
quality of AI-generated captions [62]. OFA shows better
performance than GIT and ClipCap in CIDEr score [64],
but it is not better at imitating human captions, highlighting
the differences between traditional performance metrics

and Turing tests. Human judges labeled captions as
humans slightly more often for imgaes from in-domain
nocaps (Fig. S62), compared to near-domain nocaps and
out-of-domain nocaps (Fig. S63, S64). There were no
differences between judges of different ages (Fig. S54, S55,
S56), male versus female judges (Fig. S57, S58), or judges
with different education levels (Fig. S59, S60, S61).

As a proof-of-principle to build an AI judge, we used the
OpenAI Embeddings API (text-similarity-curie-001 model)
to extract features and trained a linear SVM to discriminate
human versus machine responses. Surprisingly, even
though this classifier did not use image features, the AI
judge could discern human versus machine answers with
77.5% accuracy, well above the performance of human
judges (Fig. 4j). Similar results were observed across all
the different AI models (Fig. S53).

4.5. Word associations

Human judges labeled human word associations as
humans 60% of the time and AI word associations as AI
43% of the time (Fig. 4e). Results were similar for different
AI models (Fig.S66). Surprisingly, the Word2Vec model
produced word associations that were harder to discriminate
from human ones. There were no major differences
between human judges across different ages (Fig. S71),
genders (Fig. S72), or education levels (Fig. S73).

We used the various word embedding from GPT-series
models and Word2Vec as features to train 3 SVM judges
(independent SVM classifiers based on the embedding
of each AI model). In contrast to human judges, AI
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judges could easily distinguish human versus machine
word associations (Fig. 4k). All AI judges outperformed
human judges (Fig. S67). As expected, when training
an SVM classifier based on the embedding of the same
model whose embedding where also used for generating
the guess words, this model classification performance was
essentially perfect. For instance, on the 3rd row on the
left confusion matrix in Fig. S67a, the AI judge trained on
Word2Vec embedding indeed perfectly predicted all guess
words generated by Word2Vec embeddings as AI. While
these cases are good as a sanity check, they should not
be considered in the general evaluation of the AI judges
performance. Hence, we trained 3 different SVM to avoid
such biases.

4.6. Conversation

Human judges distinguished human participants in
conversations as humans 58% of the time and AI agents as
AI 47% of the time (Fig. 4f, S86, S87). Unlike AI models
passing the Turing tests in restricted conversation topics, it
is interesting to note an overall accuracy of 53.5% here in
largely unrestricted conversations.

We separately considered human-human, human-AI,
and AI-AI conversations (Fig. S75). Surprisingly,
human-human conversations were classified as human only
61% of the time and AI-AI conversations were classified
as human 56% of the time. Blenderbot was classified
as human 64% of the time, suggesting that AIs can be
perceived as more human than humans themselves. In
human-AI conversations, human participants were labeled
as humans 61% of the time, and AIs were classified
as AI 55% of the time. The overall classification
accuracy in human-AI conversations was higher than AI-AI
conversations (58% versus 41%), suggesting that AIs reveal
their true self more often when talking to humans than
amongst themselves. This observation is consistent with
the notion that human judges are more accurate in making
comparisions rather than absolute evaluations.

When comparing different AI models (Fig. S75),
Blenderbot was most often labeled as humans, 66% of
the time in AI-AI conversations and 50% of the time in
human-AI conversations (Table S7). The results of the
Turing test depended on the conversation length (Fig. S88).
AI models were less adept at passing as humans in longer
conversations. Among all the AI models, GPT3-curie
showed the sharpest drop while Blenderbot maintained
relatively high performance. These observations highlight
that model sizes, specific training on conversation data,
and incorporation of external memory modeling past
conversation history are important factors when imitating
humans in conversations.

Younger judges performed better in discerning AIs from
humans than older judges in AI-AI conversations (Fig. S77,

S78, S79, S85a). Surprisingly, male judges performed
slightly better than female judges (60% versus 57.5%),
especially in AI-AI conversations (46% versus 39%)
(Fig. S80, S81, S85b, Table S8). Intriguingly, education
had a slight negative relation with classification accuracy
of human judges (54%, 53% and 51% for middle-high
school, college and postgraduate degrees respectively),
especially in human-AI conversations. However, this trend
was reversed in AI-AI conversations where postgraduate
judges performed better than middle-high school judges
(53% versus 41%) ( Fig. S82, S83, S84, S85c).

We trained a simple SVM judge to distinguish whether
a sentence in a conversation was from humans or AIs.
Consistently with the other experiments, the AI judge
beat human judges by a large margin (66% versus 53.5%,
Fig. 4l). This AI judge performed particularly well
in classifying Blenderbot sentences (Fig. S76), in stark
contrast with human judges who were more easily fooled
by Blenderbot than GPT models. Human judges likely
focus on high-level conversation understanding rather than
single-sentence statistics in the Turing tests.

5. Discussion
The Turing test has been extensively discussed, and

contested, as a means to assess general intelligence. Instead,
we focus on Turing tests as a metric to evaluate whether an
algorithm can imitate humans or not. Table S1 summarizes
the observations in a highly simplified binary format; this
table is a grand average and the reader is referred to all
the actual numbers for a more accurate description of the
findings. Remarkably, the algorithms tested throughout the
current work seem to be quite close to passing a Turing
test when evaluated by human judges. Given that imitating
humans can be very good for certain purposes but could
also easily be turned into potentially evil applications, these
observations call for more extensive and rigorous scrutiny
of machines that can imitate AI.

One step to mitigate risks from human imitators is to
build AI judges. Our results show that even simple AI
judges like the ones introduced here can do a better job than
human judges in detecting machine answers. The results
of current AI judges should not be over-interpreted because
AI judges were explicitly trained to classify responses from
humans versus AIs, while human judges were not. This
point raises the possibility that humans may be trained to
better recognize machine answers in the future.

An algorithm’s ability to imitate humans did not
always correlate with traditional performance metrics
like accuracy, implying that Turing tests provide a
complementary assessment of AI models to existing
benchmarking frameworks. Comparisons between models
in Turing tests also provide insights helpful for developing
future AI models that can better align with humans.
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The datasets and evaluations introduced here are quite
extensive (21570 Turing test trials, 904 human and AI
judges, 6 vision and language tasks, several demographic
groups), but they barely scratch the surface of what
needs to be done. There are essentially infinite possible
Turing tests. The results of a Turing test depend on the
task, the algorithm, how the question is formulated, the
characteristics of the human judge and many other variables

This work provides a comprehensive, yet certainly far
from exhaustive, evaluation of state-of-the-art AI models
in terms of human emulation. These efforts pave the way
for the research community to expand Turing tests to other
research areas, to build better imitators, and better detectors
of imitators. If more AI models can “blend” in among
humans and take over tasks that were originally unique
yardsticks of being humans, this makes us ponder what
makes us humans and whether we are mentally, ethically,
and legally ready for the rapid revolution brought forth by
AI technologies.

9



List of Supplementary Sections

S1. Background and discussion 14
S1.1. Glimpse of the 70-year history of Turing test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
S1.2. AI versus humans in vision tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
S1.3. AI versus humans in language tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

S2. Color estimation 16
S2.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

S2.1.1 Collecting human responses from AMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
S2.1.2 Collecting AI responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

S2.2. Turing test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
S2.2.1 Collecting human judge responses for Turing test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
S2.2.2 Demographic information of responders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
S2.2.3 Human judge performance based on demographic information . . . . . . . . . . . . . . . . . . . . . 16
S2.2.4 AI judge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

S3. Object Detection 33
S3.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

S3.1.1 Collecting human responses from AMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
S3.1.2 Collecting AI responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

S3.2. Turing test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
S3.2.1 Collecting human judge responses for Turing test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
S3.2.2 Demographic information of responders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
S3.2.3 Human judge performance based on demographic information . . . . . . . . . . . . . . . . . . . . . 33
S3.2.4 AI judge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

S4. Attention Prediction 50
S4.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

S4.1.1 Human eye movement responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
S4.1.2 AI responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

S4.2. Turing test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
S4.2.1 Collecting human judge responses for Turing test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
S4.2.2 AI judge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

S4.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

S5. Image captioning 69
S5.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

S5.1.1 Collecting human captions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
S5.1.2 Collecting machine captions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

S5.2. Turing test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
S5.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

S6. Word Associations 90
S6.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

S6.1.1 Cue words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
S6.1.2 Collecting human responses from AMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
S6.1.3 Collecting AI responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

S6.2. Turing test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
S6.2.1 Human judge Turing test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
S6.2.2 AI judge Turing test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10



S7. Conversation 105
S7.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

S7.1.1 Human participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
S7.1.2 Dataset collection: Instructions to human participants . . . . . . . . . . . . . . . . . . . . . . . . . . 105
S7.1.3 AI conversation bots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
S7.1.4 Dataset collection: Prompt and settings for GPT3text-davinci002 and GPT3text-curie-001 . . . . . . 106

S7.2. Turing test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
S7.2.1 Collecting human judge resposnes for Turing test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
S7.2.2 AI judge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

S7.3. Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
S7.3.1 Confusion matrix and Top-1 accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
S7.3.2 Gender perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
S7.3.3 Effects of judge demographics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
S7.3.4 Comparison between AMT and in-person experiments . . . . . . . . . . . . . . . . . . . . . . . . . 107
S7.3.5 Effect of conversation length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

S7.4. Examples of collected conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
S7.4.1 Example of conversations: human-human . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
S7.4.2 Example of conversations: blenderbot-blenderbot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
S7.4.3 Example of conversations: GPT3textdavinci002-GPT3davincidavinci002 - successful . . . . . . . . . 126
S7.4.4 Example of conversations: GPT3textdavinci002-GPT3davincidavinci002 - discarded . . . . . . . . . 127
S7.4.5 Example of conversations: GPT3textcurie001-GPT3textcurie001 - successful . . . . . . . . . . . . . 127
S7.4.6 Example of conversations: Human-Blenderbot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
S7.4.7 Example of conversations: Human-GPT3textdavinci002 . . . . . . . . . . . . . . . . . . . . . . . . 129
S7.4.8 Example of conversations: Human-GPT3textcurie001 . . . . . . . . . . . . . . . . . . . . . . . . . 130
S7.4.9 Example of conversations: DialoGPT-DialoGPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

List of Supplementary Figures
S1 Color estimation. AMT user interface for collecting responses. . . . . . . . . . . . . . . . . . . . . . . . . 18
S2 Color estimation. Random samples from our collected color estimation dataset. . . . . . . . . . . . . . . . 19
S3 Color estimation. AMT user interface for collecting human judge responses (Turing test). . . . . . . . . . . 20
S4 Color estimation. Random samples from our collected Turing tests. . . . . . . . . . . . . . . . . . . . . . 21
S5 Color estimation. Results of the Turing test for human judges. . . . . . . . . . . . . . . . . . . . . . . . . . 22
S6 Color estimation. Results of the Turing test for human judges with age level below 35. . . . . . . . . . . . . 23
S7 Color estimation. Results of the Turing test for human judges with age level 35-45. . . . . . . . . . . . . . . 24
S8 Color estimation. Results of the Turing test for human judges with age above 45. . . . . . . . . . . . . . . . 25
S9 Color estimation. Results of the Turing test for human judges with education level below Bachelors. . . . . 26
S10 Color estimation. Results of the Turing test for human judges with education level of Bachelors. . . . . . . . 27
S11 Color estimation. Results of the Turing test for human judges with education level above Bachelors. . . . . . 28
S12 Color estimation. Results of the Turing test for human judges with Male gender. . . . . . . . . . . . . . . . 29
S13 Color estimation. Results of the Turing test for human judges with Female gender. . . . . . . . . . . . . . . 30
S14 Color Estimation. Demographic information for the human judges for the color estimation task . . . . . . . 31
S15 Color estimation. Results of the Turing test for AI judges . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
S16 Object detection. AMT user interface for collecting responses. . . . . . . . . . . . . . . . . . . . . . . . . 35
S17 Object detection. Random samples from our collected object detection dataset. . . . . . . . . . . . . . . . 36
S18 Object detection. AMT user interface for collecting human judge responses (Turing test). . . . . . . . . . . 37
S19 Object detection. Random samples from our collected Turing tests. . . . . . . . . . . . . . . . . . . . . . . 38
S20 Object detection. Results of the Turing test for human judges. . . . . . . . . . . . . . . . . . . . . . . . . . 39
S21 Object detection. Results of the Turing test for human judges with age below 35. . . . . . . . . . . . . . . . 40
S22 Object detection. Results of the Turing test for human judges with age 35-45. . . . . . . . . . . . . . . . . . 41
S23 Object detection. Results of the Turing test for human judges with age above 45. . . . . . . . . . . . . . . . 42
S24 Object detection. Results of the Turing test for human judges with education level below Bachelors. . . . . . 43
S25 Object detection. Results of the Turing test for human judges with education level of Bachelors. . . . . . . . 44
S26 Object detection. Results of the Turing test for human judges with education level above Bachelors. . . . . . 45

11



S27 Object detection. Results of the Turing test for human judges with Male gender. . . . . . . . . . . . . . . . 46
S28 Object detection. Results of the Turing test for human judges with Female gender. . . . . . . . . . . . . . . 47
S29 Object Detection. Demographic information for the human judges for the object detection task . . . . . . . 48
S30 Object detection. Results of the Turing test for AI judges . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
S31 Attention prediction. AMT user interface for collecting human judge responses for the free-viewing task

(Turing test). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
S32 Attention prediction. AMT user interface for collecting human judge responses for the visual search task

(Turing test). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
S33 Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for

human judges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
S34 Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for AI

judges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
S35 Attention prediction. Results of the Turing test in the visual search task for human judges. . . . . . . . . . . 56
S36 Attention prediction. Results of the Turing test in the free-viewing task for human judges. . . . . . . . . . . 57
S37 Attention prediction. Results of the Turing test in the visual search task for AI judges. . . . . . . . . . . . . 58
S38 Attention prediction. Results of the Turing test in the free-viewing task for AI judges. . . . . . . . . . . . . 59
S39 Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for

human judges below age 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
S40 Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for

human judges between age 35 and 45. (a) Confusion matrix (b) Top-1 accuracy. . . . . . . . . . . . . . . . 61
S41 Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for

human judges above age 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
S42 Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for male

human judges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
S43 Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for

female human judges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
S44 Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for

human judges with highest educational level of middle/high school. . . . . . . . . . . . . . . . . . . . . . . 65
S45 Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for

human judges with highest educational level of Bachelor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
S46 Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for

human judges with highest educational level of Master or Post-graduate. . . . . . . . . . . . . . . . . . . . . 67
S47 Attention prediction. Demographic information for the human judges for the visual search and free-viewing

tasks combined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
S48 Image captioning. AMT user interface for collecting responses. . . . . . . . . . . . . . . . . . . . . . . . . 72
S49 Image captioning. Random samples from our collected caption dataset. . . . . . . . . . . . . . . . . . . . 73
S50 Image captioning. Average caption lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
S51 Image captioning. AMT user interface for Turing test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
S52 Image captioning. Results of the Turing test for human judges . . . . . . . . . . . . . . . . . . . . . . . . . 76
S53 Image captioning. Results of the Turing test for AI judges. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
S54 Image captioning. Results of the Turing test for human judges below age 35. . . . . . . . . . . . . . . . . . 78
S55 Image captioning. Results of the Turing test for human judges between age 35 and 45. . . . . . . . . . . . . 79
S56 Image captioning. Results of the Turing test for human judges above age 45. . . . . . . . . . . . . . . . . . 80
S57 Image captioning. Results of the Turing test for male human judges. . . . . . . . . . . . . . . . . . . . . . 81
S58 Image captioning. Results of the Turing test for female human judges. . . . . . . . . . . . . . . . . . . . . 82
S59 Image captioning. Results of the Turing test for human judges with highest education level of middle/high

school. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
S60 Image captioning. Results of the Turing test for human judges with highest education level of Bachelor. . . . 84
S61 Image captioning. Results of the Turing test for human judges with highest education level of Master or

Post-graduate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
S62 Image captioning. Results of the Turing test for human judges with in-domain nocaps images. . . . . . . . . 86
S63 Image captioning. Results of the Turing test for human judges with near-domain nocaps images. . . . . . . . 87
S64 Image captioning. Results of the Turing test for human judges with out-of-domain nocaps images. . . . . . . 88

12



S65 Image captioning. Demographic information for the human judges. (a) Age. (b) Gender. (c) Education level. 89
S66 Word Associations. Results of the Turing test for human judges. . . . . . . . . . . . . . . . . . . . . . . . . 92
S67 Word Associations. Results of the Turing test for AI judges. . . . . . . . . . . . . . . . . . . . . . . . . . . 93
S68 Word Associations. AMT user interface for collecting word associations responses, for free associations . . 94
S69 Word Associations. AMT user interface for collecting responses, for prompt-guided associations . . . . . . 95
S70 Word Associations. AMT user interface for collecting human judge responses (Turing test). . . . . . . . . . 96
S71 Word Associations. Results of the Turing test for human judges in different age groups . . . . . . . . . . . . 97
S72 Word Associations. Results of the Turing test for different genders. . . . . . . . . . . . . . . . . . . . . . . 98
S73 Word Associations. Results of the Turing test for human judges for different educational levels. . . . . . . . 99
S74 Word Associations. Demographic information for the human judges for the word association task . . . . . . 100
S75 Conversation. Results of the Turing test for human judges . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
S76 Conversation. Results of the Turing test for AI judges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
S77 Conversation. Results of the Turing test for human judges below age 35. . . . . . . . . . . . . . . . . . . . 111
S78 Conversation. Results of the Turing test for human judges between age 35 and 45. . . . . . . . . . . . . . . 112
S79 Conversation. Results of the Turing test for human judges above age 45. . . . . . . . . . . . . . . . . . . . 113
S80 Conversation. Results of the Turing test for male human judges. . . . . . . . . . . . . . . . . . . . . . . . . 114
S81 Conversation. Results of the Turing test for female human judges . . . . . . . . . . . . . . . . . . . . . . . 115
S82 Conversation. Results of the Turing test for human judges with highest education level of middle/high school.116
S83 Conversation. Results of the Turing test for human judges with highest education level of Bachelor. . . . . . 117
S84 Conversation. Results of the Turing test for human judges with highest education level of Master and

Post-graduate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
S85 Conversation. Demographic information for the human judges. . . . . . . . . . . . . . . . . . . . . . . . . 119
S86 Conversation. Results of the Turing test for human judges from data collected on AMT . . . . . . . . . . . 120
S87 Conversation. Results of the Turing test for human judges during in-lab experiments. . . . . . . . . . . . . . 121
S88 Conversation. Length dependence of Turing test results for different settings and models. . . . . . . . . . . 122
S89 Conversation. Screenshot of the conversation task performed by human judges on AMT. . . . . . . . . . . . 123

List of Tables
S1 Summary of Turing test results for human judges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
S2 Attention Prediction. Datasets used for visual search and free-viewing tasks and number of human scanpaths

in the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
S3 Image captioning. Different model variants used for collecting machine captions. . . . . . . . . . . . . . . . 71
S4 Word associations. Cue words and their associations (‘Guess Words’) predicted by the five different AI

language models. The associations for the first 3 models (Word2vec, GPT2, and GPT3-embedding) were
derived from the corresponding embeddings, while the associations of the last two models (GPT3 prompt
curie and GPT3 prompt davinci) were based on prompts (the full prompts are described in Table S6 . . . . . 101

S5 Word associations. Cue words and their associations - Cont. from previous page . . . . . . . . . . . . . . . 102
S6 Word associations. The 150 prompts given for the GPT-3 curie and GPT-3 davinci models (for their ’prompt’

version), which were also given for the human participants who made prompt-based associations, and were
generated using a held-out set containing human word-pair associations. The cue words are presented in
the leftmost columns, and the guess words of the curie-prompt model and the davinci-prompt model are
presented in the two right columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

S7 Conversations. Results for the Turing test for different AI models and conversation types. The Turing test
criteria is the same as Table S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

S8 Conversation. Gender perception of humans and machines by the human judges. . . . . . . . . . . . . . . . 124

13



S1. Background and discussion

S1.1. Glimpse of the 70-year history of Turing test

The Turing test was originally proposed by Alan Turing as an imitation game where a machine tries to pass as human
during a conversation and a human judge has to determine whether they are interacting with a human or not [61]. For
the past 70 years since Turing’s classical article, the Turing test has generated extensive controversy and discussion. In
parallel with the unbounded optimistic attitudes towards AI in the 1960s and the sober realization of the immense difficulties
in AI afterwards, many in the scientific community have shifted from the question of whether the Turing test is a valid
and meaningful measure of intelligence [25, 26, 34, 40, 51] to the question of whether any machine can successfully imitate
humans [31–33]. Several notable arguments include Searle’s Chinese room thought experiment [54], Block’s behaviorism [5],
Harnad’s Total Turing Test [30], Watt’s Inverted Turing Test [65], Damassino’s Questioning Turing Test [17] and Sejnowski’s
Reverse Turing Test [55]. Different from these works studying the validity, value, and procedures of Turing test as a measure
of intelligence, our aim is to propose a systematic and quantitative formula to benchmark current AIs in imitating humans
through Turing-like tests.

Driven by the fascination with mechanizing human cognition and the advent of modern computers, the Loebner Prize
was introduced in 1991 [45] to the programs considered by human judges to be the most human-like. Interestingly, there
was also another award in the competition for the human who does the best job of swaying the judges: the Most Human
Human award [11]. Different from these text-based Turing tests, our work covers a wide range of tasks across both vision
and language modalities and tests 15 state-of-the-art AI models in these tasks.

S1.2. AI versus humans in vision tasks

Current computer vision models can perform a wide range of discrimination tasks (such as object recognition and object
detection) and generative tasks (such as text-to-image synthesis). Models are often evaluated by comparing their outputs
against human ground truth annotations. For example, deep nets are biased towards textures rather than shapes compared
to humans [23]. Many object recognition studies benchmark AI versus humans in out of distribution generalization [4, 20],
adversarial attacks [21], and contextual variations [7, 74]. Several studies also compared attention in AI models against
humans in saliency prediction [36], and eye movement prediction [71, 73].

It is important to note that high performance in a particular task does not constitute a Turing test. AI models can outperform
humans and still be distinguishable from humans. AI models can even show similar average performance in narrow tasks and
still be easy to tell apart from humans (e.g., because of different patterns of mistakes, levels of robustness, characteristics of
the answers). Thus, the Turing tests provide a unique behavior assessment of AI models, which is complimentary to existing
benchmarking frameworks.

S1.3. AI versus humans in language tasks

The stories above in vision happen again in natural language processing. AI models are often compared against human
ground truth data in the discriminative tasks, such as visual question answering [9, 44, 56, 70]. In contrast, AI models
in generative tasks are notoriously difficult to evaluate due to the inherent ambiguity of language. For example, human
evaluators are recruited to manually assess the quality of sentiment and semantic relevance on the generated text by BERT
[19]. Subsequently, larger language models appear, such as GPT2 and GPT3 [8]. To assess the quality of the generated
articles by GPT3, human experts are recruited to ascertain whether the 200-word article was written by humans or by GPT3
models of various sizes [8, 37]. However, the task was restricted to open-domain text generation and the heterogeneity of
human judges in the task is less studied. In contrast, our work provides a more comprehensive set of Turing tests on varieties
of large SOTA language models from the judgements of 896 judges of 4 demographic identities.

Human evaluation scores are reliable but costly to obtain. To mitigate these problems, several evaluation metrics are
proposed, such as BLEU [49], THUMB [38], and METEOR [18] in image captioning. However, these metrics tend to focus
on n-gram overlaps and are insensitive to semantic information. Cui etal. [16] proposed a learned critique model acting as
a human judge to perform a Turing Test in image captioning task. The model has to recognize whether a candidate caption
is human written or machine generated. Although the work is very relevant to ours, we highlight several differences: first,
instead of using a critique model, we focus on evaluating how current AI models are like us with Turing tests involving human
judges; second, in contrast to Turing test in single tasks, our work aims to propose a systematic methodology to test current
and future AI models in all vision and language tasks; and third, we propose a generalist AI judge capable of discriminating
human and AI agents over multiple tasks and modalities.
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Color
Dect.

Object
Dect.

Att.
Pred.

Image
Cap.

Word
Ass.

Conver-
sation

Age
(<35) 7 7 7 7 3 3

Age
(35-45) 7 7 7 7 3 3

Age
(>45) 7 7 7 7 3 3

Sex
(F) 7 7 7 7 3 3

Sex
(M) 7 7 7 7 3 3

Edu
L1 7 7 7 7 3 3

Edu
L2 7 7 7 7 3 3

Edu
L3 7 7 3 7 3 3

Over-
all 7 7 7 7 3 3

Table S1. Summary of Turing test results for human judges.
A tick (3) indicates that the AI models pass the Turing test (0.45 ≤ top-1 accuracy ≤ 0.55) in the specific task (columns), based on evaluations made by

specific demographic groups (rows). This table represents only a coarse grand summary of the results. The actual confusion matrices and quantitative
results are presented throughout the Supplementary Material.

Conversation has been the central topic of the original Turing test. It has still been by far the most challenging topic in
natural language processing. In early years of Loebner Prize competitions, there have been numerous successful attempts at
simulating restricted topics during conversations, such as Colby’s PARRY simulating a paranoid schizophrenic [12, 13] and
Weizenbaum’s ELIZA [66] simulating a psychiatrist’s discussion with patients. However, none of these models have come
close to unrestricted Turing test. With the prosperity of large language models based on transformers [8, 14, 19, 58], news
and social medias have produced anecdotal claims about current AI being sentient in conversations with humans [43,60,67];
however, there has been very few works quantitatively assessing AIs in their abilities of imitating humans in conversations.
Some preliminary works [75] introduced unrestricted Turing tests in conversations with one exchange per conversation;
however, these tests fail to capture long-term associations over multiple exchanges within a conversation. Thus, our goal is
to provide comprehensive evaluations of AIs engaged in conversations with up to 24 exchanges.
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S2. Color estimation

S2.1. Dataset

S2.1.1 Collecting human responses from AMT

To collect human responses for the color estimation task, we used Amazon Mechanical Turk (AMT). Fig. S1 shows
an example image of the AMT user interface. As can be seen, we showed participants an image and asked them the
question-what is the dominant color in this image?. They were asked to select an answer from a drop down list of 11
possible colors—red, pink, orange, yellow, purple, green, blue, brown, gray, black, white. In the sample image, the worker
has selected the option “white”.

To ensure that responses are of good quality, only AMT master workers can accept the HIT. They were given as much
time as needed to complete the task. Each worker was shown 25 images, and given 2 hours to complete the task. For each
image, we only used the response from one single worker for the Turing test (described below). This was done to ensure a
symmetry across images (exactly half of the responses from humans and half of the responses from AI). In total, we obtained
responses for 785 images from the validation set of MS-COCO dataset.

S2.1.2 Collecting AI responses

For each of the 785 images, we collected responses from—Microsoft Azure API, Google Cloud Vision API and the MCCQ
algorithm. Unfortunately, the APIs are proprietary technology and we have no information about what data they were trained
on, or what is the model architecture. In comparison, we also included the MCCQ algorithm, which is a color quantization
method relying on median cuts. This is a classical algorithm, and has been used for a long time for color quantization tasks.

S2.2. Turing test

S2.2.1 Collecting human judge responses for Turing test

After collecting responses for color recognition recognition from AI models, we then collected responses from human judges
in a second AMT task, where they were asked to tell if image-pair responses came from human speakers or machines. They
were also asked to predict the gender of the speaker. An example image of the AMT user interface for the Turing tests shown
to human judges is presented in Fig. S3. Each participant was shown 25 image-response pairs. These pairs were randomly
selected with 50% of the time from human agents and 50% of the time from AI agents. We also ensured that only master
workers are allowed to accept the HIT. As an additional control, the participants were also asked a binary Yes/No question
about the contents of the image. These image contents were manually identified by us for each image, and the correct answer
was true only 50% of the time. Thus, a casual worker who is not investing time looking at the image would get this question
right only 50% time on average. However, we found that all master workers had a performance of greater than 85% on this
task, and the mean was 91%.

S2.2.2 Demographic information of responders

For all our participants we collected three key pieces of demographic information—age, gender and education level. We then
created separate bins for each of these, and these results are provided in the pie charts in Fig. S14.

S2.2.3 Human judge performance based on demographic information

We analyzed if people from a certain demographic are better at distinguishing AI and Humans. Below we provide these
results. Fig. S6,Fig. S7 and Fig. S8 show performance of human judges in three separate age bins: Below 35, 35-45, and
Above 45. As can be seen, there are no major differences in their capabilities to distinguish human and AI speakers across
these age bins. There are small variations, but they are contained within a 5% margin of difference. Simiarly, Fig. S9,Fig. S10
and Fig. S11 show the performance of human judges across different education lavels, while Fig. S12 and Fig. S13 show
the same for different genders. Again, we can see that there are no major differences in the performance across education or
gender bins. Thus, largely, our findings suggest that demographics do not have a significant impact on the capability to solve
the Turing test.
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S2.2.4 AI judge

To see if an AI judge can distinguish humans and machines, we trained a binary classification model on the data collected from
human agents and AI models. Note that this is the same data as that shown to human judges during the Turing test—images
along with responses from humans or machines. We trained 4 models for this task: (i) Human vs all AI models, (ii) Human
vs Azure, (iii) Human vs Google, (iv) and Human vs MCCQ. In case (i), for each image, we randomly sampled a response
from one of the AI models. This was done to ensure the classes are balanced and 50% of the data comes from Humans
50% from AI models. As the responses were the same fixed 11 colors, the textual representation of these colors alone is not
enough to train a classifier. Thus we extracted VGG features for each image, and BERT features for the color name picked
by the speaker. These were concatenated and then passed to a random forest model. 90% of the data was kept for training,
while 10% were used as testing to report performance. The performance of each of these classifiers was reported in Fig. S15.
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Figure S1. Color estimation. AMT user interface for collecting responses.
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Google: green

Azure: gray

Histogram: gray

Human: white

Google: green

Azure: brown

Histogram: green

Human: green

Google: black

Azure: brown

Histogram: gray

Human: brown

Google: gray

Azure: black

Histogram: black

Human: brown

Google: black

Azure: black

Histogram: black

Human: black

Figure S2. Color estimation. Random samples from our collected color estimation dataset.
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Figure S3. Color estimation. AMT user interface for collecting human judge responses (Turing test).
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Response: green

Actual Speaker: Human

Human Judge Prediction: Human

Response: blue

Actual Speaker: Human

Human Judge Prediction: Machine

Response: green

Actual Speaker: Human

Human Judge Prediction: Human

Response: brown

Actual Speaker: Human

Human Judge Prediction: Human

Response: green

Actual Speaker: Human

Human Judge Prediction: Machine

Figure S4. Color estimation. Random samples from our collected Turing tests.
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Figure S5. Color estimation. Results of the Turing test for human judges.
(a) Confusion matrix (b) Top-1 accuracy. The highlighted regions in yellow denote the criteria of passing the Turing tests:

above 45% and below 55%. The errorbars denote the standard deviation. Same notations are applicable for all the
subsequent bar plots in the entire supplementary material.
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Figure S6. Color estimation. Results of the Turing test for human judges with age level below 35.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S7. Color estimation. Results of the Turing test for human judges with age level 35-45.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S8. Color estimation. Results of the Turing test for human judges with age above 45.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S9. Color estimation. Results of the Turing test for human judges with education level below Bachelors.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S10. Color estimation. Results of the Turing test for human judges with education level of Bachelors.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S11. Color estimation. Results of the Turing test for human judges with education level above Bachelors.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S12. Color estimation. Results of the Turing test for human judges with Male gender.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S13. Color estimation. Results of the Turing test for human judges with Female gender.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S14. Color Estimation. Demographic information for the human judges for the color estimation task
(a) Age. (b) Gender. (c) Education level.
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Figure S15. Color estimation. Results of the Turing test for AI judges
(a) Confusion matrix (b) Top-1 accuracy.
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S3. Object Detection
S3.1. Dataset

S3.1.1 Collecting human responses from AMT

To collect human responses for the object detection task, we used AMT. Fig. S16 shows an example image of the AMT user
interface. As can be seen, we showed participants an image and asked them the question-what do you see in this image?.
They were asked to enter three single word responses in three separate text boxes. In this sample image, the worker chose to
enter Baseball, Field and Cap. Note that these are open set responses, and were not cleaned to fit a fixed dictionary.

Thus, to ensure that responses are of good quality, we ensured that only AMT workers with a HIT approval rating of
98 and with at least 100 successful HITs can accept the HIT. They were given as much time as needed to complete the
task. Each worker was shown 25 images, and given 12 hours to complete the task. We also added several other checks
including—implementing a spell checker to ensure only valid English words are used. We also ensured that the three
responses must not be the same, and that the responses are not copied across images. For each image, we only used the
response from one single worker for the turing test (described below). This was done to ensure a symmetry across images.
In total, we obtained responses for 808 images from the validation set of MS-COCO dataset.

S3.1.2 Collecting AI responses

For each of the 808 images, we collected responses from—Microsoft Azure API, Google Cloud Vision API and Amazon
Rekognition API. Again, the details of the APIs are not released and therefore remain unkown. To include an open source
model, we used Detectron2. We picked the three bounding boxes with maximum confidence score as the response from
Detectron2. Specifically, the MaskRCNN variant trained on ImageNet and MS-COCO (Link)

S3.2. Turing test

S3.2.1 Collecting human judge responses for Turing test

As before, we conducted a second round of AMT with human judges. They were asked to tell if image-pair responses came
from human speakers or machines, and to predict the gender of the speaker. An example image of the AMT user interface for
this second task shown to human judges is presented in Fig. S18. Each participant was shown 25 images. We also ensured
that only master workers are allowed to accept the HIT. As an additional control, the participants were also asked a binary
Yes/No question about the contents of the image. These image contents were manually identified by us for each image, and
the correct answer was true only 50% of the time. Thus, a casual worker who is not investing time looking at the image
would get this question right only 50% time on average. However, we found that all master workers had a performance of
greater than 85% on this task, and the mean was 91%.

Fig. S16 shows an example image of the AMT user interface used to collect human responses for object detection. As
can be seen, we showed participants an image and asked them the question-what do you see in this image?, along with three
empty text responses where they filled one word responses. After collecting responses for object detection from AI models,
we then collected responses from human judges in a second AMT task, where they were asked to tell if image-pair responses
came from human speakers or machines. An example image of the AMT user interface for this second task shown to human
judges has been shown in Fig. S18.

S3.2.2 Demographic information of responders

The results for distribution of human judges belonging to different demographic categories of Age, Gender and Education
levels are provided in the pie charts in Fig. S29.

S3.2.3 Human judge performance based on demographic information

We evaluated whether people from a certain demographic are better at distinguishing AI and Humans. Below we provide
these results. Fig. S21,Fig. S22 and Fig. S23 show performance of human judges in three separate age bins: Below 35, 35-45,
and Above 45 respectively. As can be seen, there are no major differences in their capabilities to distinguish human and AI
speakers across these age bins. There are small variations, but they are contained within a 5% margin of difference. Similarly,
Fig. S24, Fig. S25, Fig. S26 show the performance of human judges across different education levels, while Fig. S27 and
Fig. S28 show the same for different genders. Again, we can see that there are no major differences in the performance
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across education or gender bins. Thus, largely, our findings suggest that demographics do not have a significant impact on
the capability to solve the Turing test.

S3.2.4 AI judge

We also trained an AI judge to distinguish humans and machines. For this, we trained a binary classification model to classify
the same data as that shown to human judges during the Turing test—images along with responses from humans or machines.
We trained 4 models for this task: (i) Human vs all AI models, (ii) Human vs Azure, (iii) Human vs Google, (iv) and Human
vs Detectron2, and (v) Human vs Rekognition. In case (i), for each image we randomly sampled a response from one of
the AI models. This was done to ensure the classes are balanced and 50% of the data comes from Humans 50% from AI
models. As the responses were open set, the textual representation of the responses given were enough to train a classifier.
We concatenated the three words into a single sentence, and extracted BERT features for the sentence. These were then
passed to an SVM model. 90% of the data was kept for training, while 10% were used as testing to report performance. The
performance of each of these classifiers has been reported in Fig. S30.
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Figure S16. Object detection. AMT user interface for collecting responses.
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Microsoft: animal,mammal,outdoor

Google: Zebra,Plant,Vertebrate

Detectron: zebra

Rekognition: Zebra,Wildlife,Animal

Human: zebra,flowers,grass

Microsoft: sport,athletic game,tennis

Google: Footwear,Tennis,Racketlon

Detectron: person,sports ball,tennis racket

Rekognition: Person,Human,Tennis Court

Human: people,rackets,ball

Microsoft: clothing,human face,person

Google: Purple,Orange,Hat

Detectron: person,teddy bear,backpack

Rekognition: Person,Human,Audience

Human: people,bear,girls

Microsoft: person,wheel,clothing

Google: Tire,Wheel,Photograph

Detectron: person,motorcycle,bicycle

Rekognition: Wheel,Machine,Person

Human: vehicle,wheel,mechanic

Microsoft: railroad,outdoor,sky

Google: Train,Sky,Vehicle

Detectron: train

Rekognition: Train,Transportation,Vehicle

Human: track,train,tree

Figure S17. Object detection. Random samples from our collected object detection dataset.
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Figure S18. Object detection. AMT user interface for collecting human judge responses (Turing test).
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Responses: animal, mammal, outdoor

Actual Speaker: Machine

Human Judge Prediction: Machine

Responses: tableware, meal, wine glass

Actual Speaker: Machine

Human Judge Prediction: Machine

Responses: pizza, box, cheese

Actual Speaker: Human

Human Judge Prediction: Machine

Responses: bottle, teddy bear, cup

Actual Speaker: Machine

Human Judge Prediction: Machine

Responses: chairs, table, plate

Actual Speaker: Human

Human Judge Prediction: Machine

Figure S19. Object detection. Random samples from our collected Turing tests.
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Figure S20. Object detection. Results of the Turing test for human judges.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S21. Object detection. Results of the Turing test for human judges with age below 35.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S22. Object detection. Results of the Turing test for human judges with age 35-45.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S23. Object detection. Results of the Turing test for human judges with age above 45.
(a) Confusion matrix (b) Top-1 accuracy.

42



Human AI
Predicted

Human

AI

Azure

Detectron

Google

Rekognition

Gr
ou

nd
 Tr

ut
h

0.56 0.44

0.39 0.61

0.38 0.62

0.54 0.46

0.4 0.6

0.39 0.61
0.0

0.2

0.4

0.6

0.8

1.0

(a) Confusion matrix

AI

Az
ur

e

De
te

ct
ro

n

Go
og

le

Re
ko

gn
iti

on
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1 
Ac

cu
ra

cy

(b) Top1 accuracy

Figure S24. Object detection. Results of the Turing test for human judges with education level below Bachelors.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S25. Object detection. Results of the Turing test for human judges with education level of Bachelors.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S26. Object detection. Results of the Turing test for human judges with education level above Bachelors.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S27. Object detection. Results of the Turing test for human judges with Male gender.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S28. Object detection. Results of the Turing test for human judges with Female gender.
(a) Confusion matrix (b) Top-1 accuracy.
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Age<35[32.9%]

Age(35-45)[35.4%]

Age(>45)[31.6%]

(a) Age distribution

Gender(F)[40.5%]

Gender(M)[59.5%]

(b) Gender distribution

Middle/High[40.5%]

Bachelor[50.6%]

PostGrad[8.9%]

(c) Education level distribution

Figure S29. Object Detection. Demographic information for the human judges for the object detection task
(a) Age. (b) Gender. (c) Education level.
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Figure S30. Object detection. Results of the Turing test for AI judges
(a) Confusion matrix (b) Top-1 accuracy.
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S4. Attention Prediction
S4.1. Dataset

Sample GIF files of human and machine eye movement sequences for the visual search task and free-viewing tasks that
were presented to human judges can be accessed here and here.

S4.1.1 Human eye movement responses

We used eye movements from human subjects during two visual search tasks [73] and a free-viewing task [72]. In the visual
search tasks, we used two datasets including natural images and Waldo images [73]. For the natural visual search task,
15 subjects searched for target objects across 240 cluttered images, yielding 3,600 scanpaths. For the Waldo data set, 15
participants had to find Waldo across 67 images, totalling 1,005 scanpaths. In the free-viewing task [72], we used the same
natural image dataset as in the visual search task, but no target object was specified. A total of 2,400 free-viewing scanpaths
were collected from 10 subjects.

The GIF files for the visual search task consist of a frame showing the target image for 1 s, followed by moving yellow rings
on the search image denoting the eye movement fixations with each fixation shown for 0.3 s. The target image presentation
followed by eye movement fixations iterate infinitely with a gap of 1 s between each iteration. For the free-viewing task, GIF
files consist of infinitely iterating eye movement fixations denoted by yellow rings on the viewing image with each fixation
shown for 0.3 s. A gap of 1 s is introduced between each iteration.

S4.1.2 AI responses

For the three datasets, we used a modified version of IVSN [72, 73], DeepGaze3 [39] and GBVS models [29] to generate
eye movement predictions. To generate the fixations, we used inhibition-of-return centered on the current fixation with a
window size of 100x100 for waldo images and 200x200 for natural images. The process of generating GIF files is the same
as described in S4.1.1.

S4.2. Turing test

S4.2.1 Collecting human judge responses for Turing test

Separate Turing tests were launched for eye movements from visual search and free-viewing tasks. We presented infinitely
repeating animated clips of eye movements from humans and computational model predictions with maximum 15 fixations
to crowd-workers (judges) on AMT. For eye movement sequences with larger than 15 fixations, first 15 fixations were shown.
On the AMT interface, each judge had to identify if the presented eye movement clip was from a human or a computational
model. We randomly sampled 12 eye movement clips - 6 from humans and 6 from computation models (distributed equally
among IVSN, GBVS and DeepGaze3) and presented them to each judge. To filter out inattentive judges, judges were also
asked a control question ”What do you see in the presented clip?” with one correct answer among 3 options. Responses
from judges with a score of 7 or more out of 12 for the control question were considered. To make sure that the judges paid
attention to the eye movement sequences, the judges were allowed to respond to the questions only when the presented clip
had played at least once. In total, responses from 100 judges for visual search task and 80 judges for free-viewing task were
considered for the Turing test.

Fig. S31 and Fig. S32 show an example image of the AMT user interface for the Turing test for visual search and
free-viewing tasks respectively. We showed the human judges a GIF consisting of eye movement sequences as discussed
above and asked the judges to identify if the sequence shown is from human or machine. We also asked them to classify if
the eye movements are from male or female. Additionally, to filter out inattentive judges, we introduced a control question
asking what objects they see in the image among 3 options. Sample video clip of the AMT interface for the Turing test
with the playing eye movements for the free-viewing task and visual search tasks can be accessed here https://drive.
google.com/file/d/10SYSrXuWIeVTQTMH2Lpsg3ejfnMMOLg_/view?usp=sharing and here https://
drive.google.com/file/d/1JxIdbrHNEEIq6HGS1YftNC3-00vv5ow0/view?usp=sharing respectively.

S4.2.2 AI judge

We also performed Turing tests using an SVM as an AI judge. Sequences of eye movements from humans and computational
models were fed as input in the form of array of fixation coordinates to train an SVM to classify human and machine eye
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movements. First 10 fixations from each sequence were used for training the SVM and evaluating classification performance.
Sequences having less than 10 fixations were discarded to ensure every input sequence has exactly 10 fixations. Fixation
coordinates were normalized to a range between -1 to 1. The SVM was trained using 10-fold cross validation. Model
performance on validation across folds was calculated and averaged over 5 random seeds.

S4.3. Discussion

While GBVS [29] and DeepGaze3 [39] are bottom-up saliency prediction models, IVSN is a zero-shot visual search
model where the target information modulates the bottom-up visual processes. The increased performance of IVSN may be
attributed to its top-down and bottom-up attention mechanisms. Moreover, DeepGaze3 is a supervised learning model trained
on human eye fixations during free-viewing tasks and achieves better bottom-up saliency prediction according to standard
evaluation metrics, such as NSS, AUC, and sAUC. However, it is surprising to note that the eye movements predicted
by DeepGaze3 do not fool humans as well as GBVS [29], which is a bottom-up attention prediction model based solely
on low-level image statistics. This observation suggests that high performance in terms of standard evaluation metrics in
computer vision might not directly correlate with good performance in Turing tests.

Dataset Task Number of stimuli Number of human scanpaths
NatureDesign [73] Visual Search 240 3600
FindingWaldo [73] Visual Search 67 1005
NatureSaliency [72] Free-Viewing 240 2400

Table S2. Attention Prediction. Datasets used for visual search and free-viewing tasks and number of human scanpaths in the dataset.
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Figure S31. Attention prediction. AMT user interface for collecting human judge responses for the free-viewing task (Turing test).
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Figure S32. Attention prediction. AMT user interface for collecting human judge responses for the visual search task (Turing test).
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(a) Confusion matrix (b) Top1 accuracy

Figure S33. Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for human judges.
(a) Confusion matrix (b) Top-1 accuracy.
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(a) Confusion matrix (b) Top1 accuracy

Figure S34. Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for AI judges.
(a) Confusion matrix (b) Top-1 accuracy.
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(a) Confusion matrix (b) Top1 accuracy

Figure S35. Attention prediction. Results of the Turing test in the visual search task for human judges.
(a) Confusion matrix (b) Top-1 accuracy.
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(a) Confusion matrix (b) Top1 accuracy

Figure S36. Attention prediction. Results of the Turing test in the free-viewing task for human judges.
(a) Confusion matrix (b) Top-1 accuracy.
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(a) Confusion matrix (b) Top1 accuracy

Figure S37. Attention prediction. Results of the Turing test in the visual search task for AI judges.
(a) Confusion matrix (b) Top-1 accuracy.
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(a) Confusion matrix (b) Top1 accuracy

Figure S38. Attention prediction. Results of the Turing test in the free-viewing task for AI judges.
(a) Confusion matrix (b) Top-1 accuracy.

59



(a) Confusion matrix (b) Top1 accuracy

Figure S39. Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for human judges below
age 35

(a) Confusion matrix (b) Top-1 accuracy.
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(a) Confusion matrix (b) Top1 accuracy

Figure S40. Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for human judges between
age 35 and 45. (a) Confusion matrix (b) Top-1 accuracy.
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(a) Confusion matrix (b) Top1 accuracy

Figure S41. Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for human judges above
age 45

(a) Confusion matrix (b) Top-1 accuracy.
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(a) Confusion matrix (b) Top1 accuracy

Figure S42. Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for male human judges.
(a) Confusion matrix (b) Top-1 accuracy.
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(a) Confusion matrix (b) Top1 accuracy

Figure S43. Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for female human judges.
(a) Confusion matrix (b) Top-1 accuracy.
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(a) Confusion matrix (b) Top1 accuracy

Figure S44. Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for human judges with
highest educational level of middle/high school.

(a) Confusion matrix (b) Top-1 accuracy.
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(a) Confusion matrix (b) Top1 accuracy

Figure S45. Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for human judges with
highest educational level of Bachelor.

(a) Confusion matrix (b) Top-1 accuracy.
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(a) Confusion matrix (b) Top1 accuracy

Figure S46. Attention prediction. Results of the Turing test averaged over visual search and free-viewing tasks for human judges with
highest educational level of Master or Post-graduate.

(a) Confusion matrix (b) Top-1 accuracy.

67



(a) Age distribution

(b) Gender distribution

(c) Education level distribution

Figure S47. Attention prediction. Demographic information for the human judges for the visual search and free-viewing tasks combined
(a) Age. (b) Gender. (c) Education level.
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S5. Image captioning

S5.1. Dataset

S5.1.1 Collecting human captions

In Fig. S48, we show the AMT interface used for collecting human captions. Our AMT interface received significant
inspirations from the COCO Captions data collection interface [10]. We provide the following instructions to each participant:

• Describe all the important parts of the scene.

• The description should contain at least 6 words.

• Avoid making spelling errors in the description.

• Do not describe unimportant details.

• Do not use any special characters like !, #, $, etc.

• Do not start the sentence with “There is” or “There are”.

• Do not write your descriptions as “An image containing ...”, “A photo of ...” or similar.

• Do not describe things that might have happened in the future or past.

• Do not use proper names for people.

• Do not describe what a person in the image might say.

• After typing in the response, click “SUBMIT” to go to the next image.

Moreover, to prevent invalid responses, we implemented automatic controls in our interface that issued warning popups
to the participants. We list all such controls below:

• Response should not contain less than 6 words.

• No special characters in the response.

• Response time must be more than 4s.

• No response should contain more than 4 identical words.

• Response should not contain the words “image” and “photo”.

• Successive responses must not be same.

S5.1.2 Collecting machine captions

We use GIT [63], OFA [64], BLIP [41], ClipCap [46], and Microsoft’s Azure Cognitive Services [2] for collecting machine
captions. For each model, we provide details about specific variants used and their open-source web links in Table. S3. We
show some random samples from our collected caption dataset in Fig S49. Finally, the average caption length for all collected
captions is shown in Fig S50 .

S5.2. Turing test

Fig. S51 shows a screenshot of the AMT interface used for conducting the Turing tests. We show the Turing test results
for human judges in Fig. S52, and for AI judge in Fig. S53. In addition, we show Turing test results for human judges based
on demographics, like age (Fig. S54, S55, S56), gender (Fig. S57, S58), and education (Fig. S59, S60, S61). Finally, we
show results for the Turing tests based on the type of image used from nocaps dataset [3], specifically in-domain (Fig. S62),
near-domain (Fig. S63), and out-of-domain images (Fig. S64).
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S5.3. Discussion

GIT [63], OFA [64], and BLIP [41] are recent transformer-based models and are good at fooling human judges
(Fig. S52). In contrast to ClipCap which is only trained in the image captioning task, the above three models are generative
unified transformer frameworks, trained on multiple tasks involving multiple modalities. This suggests that multi-task and
multi-modal training aids models to generate human-like captions.

Out-of-domain nocaps images contain object classes that are visually very distinct from COCO. Therefore, it is surprising
to see models like GIT, OFA, and BLIP which were fine-tuned on COCO to perform better in Turing tests on out-of-domain
nocaps images (Fig. S64) than on in-domain nocaps images (Fig. S62). Moreover, on out-of-domain nocaps images, BLIP
outperforms all other models (Fig. S64).
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Model Model Variant Model Details Web links
GIT [63] GIT-Large Finetuned on COCO Captions Link
OFA [64] OFA-Huge Finetuned on COCO Captions Link
BLIP [41] BLIP-Large Finetuned on COCO Captions Link 1, Link 2

ClipCap [46]
ClipCap-Transformer
(Beam Search) Pretrained on COCO Captions Link

Microsoft’s Azure Cognitive Services [2] - - Link

Table S3. Image captioning. Different model variants used for collecting machine captions.
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Figure S48. Image captioning. AMT user interface for collecting responses.
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Human: a woman with an umbrella 
walking on a pier
GIT: a person sitting on a wooden bridge 
with an umbrella
OFA: a person walking on a dock with an 
umbrella
BLIP: a person walking across a bridge 
with an umbrella
ClipCap: a person holding an umbrella in 
front of a building
Microsoft_API: a person on a swing

Human: a toilet is closed with several 
buttons to the side of it
GIT: a close up of a toilet with controls
OFA: a white toilet with a control panel 
on the side of it
BLIP: a close up of a toilet in a bathroom
ClipCap: a close up of a toilet with a toilet 
seat
Microsoft_API: a toilet with a control 
panel

Human: a girl receiving a certificate from 
a woman in a group of people at a 
presentation
GIT: a woman shakes hands with a 
student
OFA: two women are talking to each 
other in front of a crowd
BLIP: two women standing next to each 
other in front of a crowd
ClipCap: a woman standing in front of a 
group of people
Microsoft_API: a couple of women in
a stadium

Human: the old billy goat takes in the 
view from the wild
GIT: a goat standing on top of a lush 
green hillside
OFA: a goat standing on top of a hill
BLIP: a goat standing on top of a lush 
green hillside
ClipCap: a goat standing in the grass 
near a mountain
Microsoft_API: a goat standing on a hill

Human: an elderly person in a floppy hat 
is playing a ukelele
GIT: a black and white photo of a person 
playing a guitar
OFA: a woman wearing a hat and 
sunglasses holding a guitar
BLIP: a man wearing a hat and holding a 
guitar
ClipCap: a black and white photo of a 
woman wearing a hat
Microsoft_API: a man wearing a hat and 
sunglasses

Human: a woman surrounded by 
bookshelves with trees in the 
background
GIT: a woman standing in front of a 
bookshelf
OFA: a woman standing in a circle of 
books in a library
BLIP: a woman standing in front of a wall 
of books
ClipCap: a woman standing next to a wall 
full of books
Microsoft_API: a person standing in a 
library

Figure S49. Image captioning. Random samples from our collected caption dataset.
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Figure S50. Image captioning. Average caption lengths.
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Figure S51. Image captioning. AMT user interface for Turing test.
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Figure S52. Image captioning. Results of the Turing test for human judges
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S53. Image captioning. Results of the Turing test for AI judges.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S54. Image captioning. Results of the Turing test for human judges below age 35.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S55. Image captioning. Results of the Turing test for human judges between age 35 and 45.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S56. Image captioning. Results of the Turing test for human judges above age 45.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S57. Image captioning. Results of the Turing test for male human judges.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S58. Image captioning. Results of the Turing test for female human judges.
(a) Confusion matrix. (b) Top-1 accuracy.

82



Human AI
Predicted

Human

AI

GIT

OFA

BLIP

ClipCap

Microsoft_API

Gr
ou

nd
 Tr

ut
h

0.71 0.29

0.56 0.44

0.59 0.41

0.6 0.4

0.65 0.35

0.39 0.61

0.55 0.45
0.0

0.2

0.4

0.6

0.8

1.0

AI GI
T

OF
A

BL
IP

Cl
ip

Ca
p

M
icr

os
of

t_
AP

I0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1 
Ac

cu
ra

cy

Figure S59. Image captioning. Results of the Turing test for human judges with highest education level of middle/high school.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S60. Image captioning. Results of the Turing test for human judges with highest education level of Bachelor.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S61. Image captioning. Results of the Turing test for human judges with highest education level of Master or Post-graduate.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S62. Image captioning. Results of the Turing test for human judges with in-domain nocaps images.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S63. Image captioning. Results of the Turing test for human judges with near-domain nocaps images.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S64. Image captioning. Results of the Turing test for human judges with out-of-domain nocaps images.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S65. Image captioning. Demographic information for the human judges. (a) Age. (b) Gender. (c) Education level.
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S6. Word Associations
S6.1. Dataset

S6.1.1 Cue words

We chose 150 unique cue words in random (50 nouns, 50 verbs, and 50 adjectives) such that they span a wide range of
occurrence frequencies [59] (Table S4); Non-English words, stop words (according to Python nltk), and words with < 3
letters were removed from the pool of possible cue words. In addition, all verbs were transformed to their present tense, and
all nouns were taken in their singular form.

Associations to each cue word were collected from both human subjects (Fig. S68), and from five language models:

(1) Word2vec [50],
(2) GPT2, [52],

GPT3 based models: [8]
(3) GPT3 embedding, davinci;
(4) GPT3 prompt, curie;
(5) GPT3 prompt, davinci.

S6.1.2 Collecting human responses from AMT

For the human associations, we followed two procedures:

1. Free Associations: participants were asked to give a one-word answer to the question:
”What is the first word that comes into your mind when you hear the word [cue word]?”.
This task should resemble the word-embedding-based AI associations.

2. Prompt-based Associations: participants were asked to complete a prompt with one word. In particular, given a prompt
of 3 cue words and their associations (as was given to the prompt-based AI GPT3 models described below), participants
had to give a one-word answer to the request
”Please complete the prompt below:”.

Half of the human associations were collected based on the first procedure (’free associations’) while the other half was
based on the prompts. We collected responses from 60 participants using AMT. Each participants gave associations to 50
unique cue words taken randomly from the pool of 150 cue words. All participants were English native speakers who are
located in the United States.

Fig. S68 and Fig. S69 show example images of the AMT user interface used to collect human responses for the word
association task, in cases of the free associations and the prompt-guided associations, respectively. As can be seen in S68, for
the free associations task, the participants were given a ”cue word” and were asked to name a word they associate with that cue
word. For the guided-prompt associations, as can be seen in S69, the participants were given a prompt of 3 cue-association
pairs and an additional cue word without its paired guess word. They were asked to ”complete the prompt below”, namely,
type their guess word for the last cue word, given the prompt.

The responses were collected and post-processed, including singularizing all nouns, transforming verbs to their simple
forms, removing typos, removing non-alphabetical characters and spaces, and dropping stop words associations and words
with less than 3 letters from the guess words pool. Additionally, guess words that were very similar to the cue word (> 60%
of one word in the pair contains the other word), were disqualified.

S6.1.3 Collecting AI responses

In addition to collecting associations from human subjects, we collected associations from 5 AI language models. The
associations of the first three models: ’Word2vec’, ’GPT2’, and ’GPT3-embedding’ were found based on Euclidean proximity
to the cue word in the model’s word embedding space.

While the associations of the remaining two models: ’GPT3 (prompt curie)’ and ’GPT3 (prompt davinci)’ were based
on prompt completion, as presented in S6. The full set of cue words and their AI associations are presented in S4. In
particular, a prompt of 3 sample associations were given in each case and the next association were provided by the model
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based on these prompts. The prompts displayed to the AI were identical to those presented to the human participants. As
for the prompts’ creation, we used a held-out set containing human word-pair associations. This held-out set was not used
for Turing tests or any results analysis, in order to keep the associations used for the prompts independent and different from
those collected for the Turing test analysis and prevent a potential bias in favor of specific associations.

For both the free associations and the prompt-guided associations, the AI response was limited to one word. The same
post-processing steps applied to the human responses were applied to the AI responses as well (including singularizing all
nouns, transforming verbs to their simple forms, removing typos, removing non-alphabetical characters and spaces, removing
guess words that were very similar to the cue word, and dropping stop words associations and words with less than 3 letters
from the guess words pool).

S6.2. Turing test

After the word-associations collection, both from human and the 5 AI models, both human judges as well as AI judges
performed the Turing phase.

S6.2.1 Human judge Turing test

For the human-judge Turing test, we launched another AMT task, in which the subjects were presented with a cue word and
its association and had to decide whether this association has been made by a human or a machine, as well as whether the
agent who made this association is a male or a female. In this experiment, responses from 50 native English human subjects
were collected, such that each subject had 50 Turing test trials. In each trial, a pair of words (a cue word and a corresponding
guess word) was presented on the screen and the worker had to choose, using a radio button, whether the presented association
was made by a human or by an AI model. Half of the presented associations to each participant (i.e., 25 associations) were
made by AI models and the other half (25) were humans associations. The order of the AI and humans associations was
randomly shuffled. Demographic information on each participant was collected as well. An example image of the AMT
user interface of the Turing test with human judges is presented in Fig. S70. The confusion matrix and top1-accuracy of the
human-judge Turing test are presented in Fig. S66a and S66b, respectively. The human performance was also tested with
sensitivity to different demographic groups, as presented in Fig. S71, S72, and S73, for human subjects from different age
groups, genders, and education levels, respectively.

S6.2.2 AI judge Turing test

The same set of cue-guess pairs used in the Turing test with the human judges, were used to test AI ability to distinguish
between an association made by an AI model and a human. This Turing test with AI judge was performed using 3 independent
linear SVM classifiers [15], based on the embedding of (1) Word2vec; (2) GPT2; and (3) GPT3 (davinci). The SVM was
trained using 10-fold cross validation, and the data used for the training was the embedding distance between each cue-guess
words embedding, while half of the associations pairs were made by humans and the other half by AI. The average model
performance on the validation across folds was calculated. The confusion matrices and the top-1 accuracy are presented in
S67.
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(a) Confusion matrix (b) Top1 accuracy

Figure S66. Word Associations. Results of the Turing test for human judges.
(a) Confusion matrix (b) Top-1 accuracy.
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(a) Confusion matrix

(b) Top1 accuracy

Figure S67. Word Associations. Results of the Turing test for AI judges.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S68. Word Associations. AMT user interface for collecting word associations responses, for free associations
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Figure S69. Word Associations. AMT user interface for collecting responses, for prompt-guided associations
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Figure S70. Word Associations. AMT user interface for collecting human judge responses (Turing test).
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(a) Confusion matrix

(b) Top1 accuracy

Figure S71. Word Associations. Results of the Turing test for human judges in different age groups
(a) Confusion matrix (b) Top-1 accuracy.
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(a) Confusion matrix

(b) Top1 accuracy

Figure S72. Word Associations. Results of the Turing test for different genders.
(a) Confusion matrix. (b) Top-1 accuracy.

98



(a) Confusion matrix

(b) Top1 accuracy

Figure S73. Word Associations. Results of the Turing test for human judges for different educational levels.
(a) Confusion matrices. (b) Top-1 accuracy.
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(a) Age distribution

(b) Gender distribution

(c) Education level distribution

Figure S74. Word Associations. Demographic information for the human judges for the word association task
(a) Age. (b) Gender. (c) Education level.
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Table S4. Word associations. Cue words and their associations (‘Guess Words’) predicted by the five different AI language models. The
associations for the first 3 models (Word2vec, GPT2, and GPT3-embedding) were derived from the corresponding embeddings, while the
associations of the last two models (GPT3 prompt curie and GPT3 prompt davinci) were based on prompts (the full prompts are described
in Table S6
.

Cue Words Word2vec GPT2 GPT3 (embedding, davinci) GPT3 (prompt curie) GPT3 (prompt davinvci)
memorable phenomenal delightful meaningful unforgettable delightful
heavy edge massive weight light massive
risky elaborate dangerous danger dangerous dangerous
grand paris massive great palace massive
powerful extraordinary strong mighty engine strong
nepal vietnam pakistan nebraska new pakistan
healthy weight good alive sick good
credible legitimate compelling legitimate trustworthy compelling
rigid narrow flexible stiff strict flexible
oriental imperial colonial eastern love colonial
flat tank pretty square round pretty
technician engineer engineer mechanic repair engineer
soft thin hard gentle whisper hard
southeastern mainland northwestern oriental florida northwestern
numerous several several many many several
conceptual composition cognitive idea idea cognitive
mystic hollow spiritual magic magic spiritual
fetish amateur obsession erotic sex obsession
rural capital urban countryside farm urban
exclusive feature unique unique inclusive unique
soviet ussr ussr ussr union ussr
presidential congressional republican congressional gubernatorial republican
attentive straightforward enthusiastic aware listen enthusiastic
impressive superb incredible incredible wonderful incredible
ridiculous awful absurd absurd funny absurd
psychotic obnoxious paranoid insane crazy paranoid
ordinary brave normal normal common normal
obnoxious psychotic outrageous arrogant unpleasant outrageous
pascal claude jonathan pierre triangle jonathan
rebellious heroic arrogant naughty normal arrogant
ingenious problematic clever clever clever clever
exponential systematic linear expansion growing linear
simplistic problematic straightforward basic easy straightforward
puppy kitten dog kitten dog dog
venerable phd legendary ancient old legendary
sluggish steep weak lazy tired weak
enormous lethal immense immense huge immense
intangible singular invisible invisible problem invisible
mammalian synaptic insect molecular human insect
revolutionary progressive radical radical change radical
vocal visual voice voice sing voice
schematic synaptic diagram diagram diagram diagram
suspicious opposite strange paranoid crime strange
nationwide reservation worldwide worldwide local worldwide
synaptic mammalian neural neural synapse neural
white black black black black black
able might could kind cap could
possible point potential maybe probable potential
military domestic naval combat parade naval
financial strategic economic money loan economic
spark leap inspire spike fire inspire
freight automobile cargo cargo train cargo
negotiate eliminate discuss diplomacy bargain discuss
stanford penn harvard harvard california harvard
absent conclusion without lack baby without
configuration installation setup setup network setup
grasp reflect comprehend seize hold comprehend
wreck sudden crash crash damage crash
dame echo sir donna queen sir
curry rice stephen soup unfortunately stephen
revelation prophecy discovery discovery discovery discovery
spouse mutual wife wife wife wife
mainland commonwealth continental continent america continental
material formula content stuff metal content
oppose accuse defend contrary conflict defend
zombie horror vampire corpse ghoul vampire
battlefield fallout military warfare peace military
dodge zoom avoid escape slip avoid
triangle nest circle trinity square circle
cancer risk diabetes diagnosis cure diabetes
heroin cocaine cocaine drug yes cocaine
velocity boundary speed speed fast speed
cash sell money money check money
ammunition deploy artillery artillery bomb artillery
nixon chapman reagan nelson presidency reagan
analysis strategy study examination report study
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Table S5. Word associations. Cue words and their associations - Cont. from previous page

Cue Words Word2vec GPT2 GPT3-embedding GPT3 (prompt curie) GPT3 (prompt davinvci)
clarity pursuit insight clear problem insight
discretion hypothesis mercy privacy caution mercy
peanut cinnamon chocolate corn almond chocolate
blunt bounce frank brutal delicate frank
nursery maid kindergarten nest baby kindergarten
awhile sometime sometime sometime long sometime
spoon slice wooden scoop fork wooden
teddy bear johnny edgar toy johnny
purpose temporary goal intention meaning goal
distinguish adapt identify identify remember identify
renaissance revival antique florence art antique
foot pull feet leg shoe feet
curtain towel door carpet theater door
legion trinity army troop army army
maid betty servant girl man servant
brighton bristol liverpool bristol bright liverpool
constitute quantify facilitate declare annul facilitate
royal western british king family british
speech appearance talk spoken spoke talk
wendy betty jennifer walter barbara jennifer
teammate opponent colleague colleague friend colleague
entertain impress comedian perform party comedian
floyd johnny william raymond pink william
prototype slate concept schematic original concept
consider whether think think important think
expose refer provide exhibit reveal provide
impose dispute establish establish ban establish
fall together spring drop autumn spring
slow serious speed late sad speed
appear often seem occur person seem
kindle artwork amazon amazon kindle amazon
rotten moist horrible ruin apple horrible
apply offer give use job give
kindergarten elementary elementary nursery school elementary
improve develop enhance increase enhancement enhance
ping tab although peer sound although
develop enhance create create growth create
reduce consume decrease decrease number decrease
infrared cluster thermal thermal visible thermal
hundred twenty thousand thousand thousand thousand
kitten puppy puppy puppy cat puppy
ding deed almost bell door almost
wing deer give fly airplane give
assume ignore imagine suppose doubt imagine
identify convert determine detect animal determine
aforementioned furthermore infamous precedent business infamous
sing jane perform vocal hum perform
watershed millennium historic rainfall turning historic
rave circus profound riot party profound
establish obtain provide setup set provide
participate compete join contribute support join
obtain contribute acquire acquire receive acquire
soar leap climb fly fall climb
settle aim establish establish agreement establish
shred soar scrap scrap paper scrap
bloodshed stigma massacre massacre murder massacre
succeed achieve achieve accomplish hard achieve
sled turf snow snow toboggan snow
shed burn give yard tear give
quantify constitute calculate measure measure calculate
sacred forbidden ancient divine temple ancient
fred samuel robert gerald shirt robert
enclave legion coastal colony ghetto coastal
deepen initiate strengthen depth voice strengthen
qualify compete eligible eligible pass eligible
kindred covenant likewise familiar relative likewise
acquire retain obtain obtain property obtain
approve reject agree confirm positive agree
hatred belief anger spite machine anger
have could make could take make
know think think aware learn think
make need give put break give
take leave took give away took
come far make bring approach make
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Table S6. Word associations. The 150 prompts given for the GPT-3 curie and GPT-3 davinci models (for their ’prompt’ version), which
were also given for the human participants who made prompt-based associations, and were generated using a held-out set containing
human word-pair associations. The cue words are presented in the leftmost columns, and the guess words of the curie-prompt model and
the davinci-prompt model are presented in the two right columns.

memorable Cue: easy; Guess: form Cue: business; Guess: money Cue: future; Guess: base Cue: memorable; Guess: unforgettable delightful
heavy Cue: business; Guess: paragraph Cue: professional; Guess: unprofessional Cue: unfortunately; Guess: very Cue: heavy; Guess: light massive
risky Cue: building; Guess: house Cue: positive; Guess: negative Cue: let; Guess: allow Cue: risky; Guess: dangerous dangerous
grand Cue: nearly; Guess: edge Cue: hot; Guess: cold Cue: easy; Guess: form Cue: grand; Guess: palace massive
powerful Cue: business; Guess: association Cue: professional; Guess: professor Cue: let; Guess: allow Cue: powerful; Guess: engine strong
nepal Cue: number; Guess: singular Cue: easy; Guess: hard Cue: pretty; Guess: bench Cue: nepal; Guess: new pakistan
healthy Cue: number; Guess: word Cue: come; Guess: here Cue: hot; Guess: cold Cue: healthy; Guess: sick good
credible Cue: see; Guess: saw Cue: slightly; Guess: shortly Cue: let; Guess: allow Cue: credible; Guess: trustworthy compelling
rigid Cue: see; Guess: here Cue: business; Guess: class Cue: let; Guess: beatles Cue: rigid; Guess: strict flexible
oriental Cue: come; Guess: here Cue: positive; Guess: Happy Cue: professional; Guess: career Cue: oriental; Guess: love colonial
flat Cue: professional; Guess: person Cue: story; Guess: narrative Cue: let; Guess: beatles Cue: flat; Guess: round pretty
technician Cue: building; Guess: apartment Cue: business; Guess: trip Cue: professional; Guess: career Cue: technician; Guess: repair engineer
soft Cue: story; Guess: telling Cue: pretty; Guess: nice Cue: remember; Guess: dream Cue: soft; Guess: whisper hard
southeastern Cue: nearly; Guess: half Cue: future; Guess: mars Cue: come; Guess: here Cue: southeastern; Guess: florida northwestern
numerous Cue: let; Guess: allow Cue: see; Guess: tell Cue: positive; Guess: attitude Cue: numerous; Guess: many several
conceptual Cue: positive; Guess: negative Cue: remember; Guess: forget Cue: professional; Guess: special Cue: conceptual; Guess: idea cognitive
mystic Cue: unfortunately; Guess: unluckily Cue: let; Guess: allow Cue: professional; Guess: work Cue: mystic; Guess: magic spiritual
fetish Cue: unfortunately; Guess: sad Cue: professional; Guess: boss Cue: hot; Guess: water Cue: fetish; Guess: sex obsession
rural Cue: professional; Guess: special Cue: positive; Guess: negative Cue: remember; Guess: together Cue: rural; Guess: farm urban
exclusive Cue: unfortunately; Guess: unluckily; Cue: building; Guess: skyscraper Cue: remember; Guess: forget Cue: exclusive; Guess: inclusive unique
soviet Cue: remember; Guess: recall Cue: easy; Guess: facilitate; Cue: number; Guess: game Cue: soviet; Guess: union ussr
presidential Cue: pretty; Guess: good Cue: business; Guess: play Cue: story; Guess: plot Cue: presidential; Guess: gubernatorial republican
attentive Cue: story; Guess: time Cue: professional; Guess: lawyer Cue: easy; Guess: exam Cue: attentive; Guess: listen enthusiastic
impressive Cue: second; Guess: first Cue: pretty; Guess: nice Cue: hot; Guess: spicy Cue: impressive; Guess: wonderful incredible
ridiculous Cue: see; Guess: look Cue: come; Guess: back Cue: nearly; Guess: there Cue: ridiculous; Guess: funny absurd
psychotic Cue: nearly; Guess: close Cue: see; Guess: here Cue: pretty; Guess: beauty Cue: psychotic; Guess: crazy paranoid
ordinary Cue: slightly; Guess: little Cue: see; Guess: tell Cue: building; Guess: door Cue: ordinary; Guess: common normal
obnoxious Cue: story; Guess: love Cue: see; Guess: you Cue: second; Guess: first Cue: obnoxious; Guess: unpleasant outrageous
pascal Cue: remember; Guess: dream Cue: building; Guess: door Cue: hot; Guess: dog Cue: pascal; Guess: triangle jonathan
rebellious Cue: let; Guess: allow Cue: pretty; Guess: good Cue: positive; Guess: negative Cue: rebellious; Guess: normal arrogant
ingenious Cue: second; Guess: position Cue: pretty; Guess: liar Cue: nearly; Guess: close Cue: ingenious; Guess: clever clever
exponential Cue: come; Guess: back Cue: positive; Guess: negative Cue: second; Guess: minute Cue: exponential; Guess: growing linear
simplistic Cue: remember; Guess: recall Cue: second; Guess: first Cue: unfortunately; Guess: sadly Cue: simplistic; Guess: easy straightforward
puppy Cue: future; Guess: past Cue: second; Guess: first Cue: remember; Guess: recall Cue: puppy; Guess: dog dog
venerable Cue: nearly; Guess: almost Cue: come; Guess: visit Cue: second; Guess: position Cue: venerable; Guess: old legendary
sluggish Cue: business; Guess: card Cue: hot; Guess: cold Cue: see; Guess: look Cue: sluggish; Guess: tired weak
enormous Cue: unfortunately; Guess: sorry Cue: nearly; Guess: done Cue: let; Guess: allow Cue: enormous; Guess: huge immense
intangible Cue: easy; Guess: exam Cue: future; Guess: past Cue: story; Guess: telling Cue: intangible; Guess: problem invisible
mammalian Cue: future; Guess: answer Cue: building; Guess: base Cue: come; Guess: run Cue: mammalian; Guess: human insect
revolutionary Cue: number; Guess: word Cue: nearly; Guess: almost Cue: hot; Guess: shower Cue: revolutionary; Guess: change radical
vocal Cue: remember; Guess: recall Cue: second; Guess: first Cue: nearly; Guess: there Cue: vocal; Guess: sing voice
schematic Cue: come; Guess: home Cue: business; Guess: play Cue: pretty; Guess: beauty Cue: schematic; Guess: diagram diagram
suspicious Cue: second; Guess: minute Cue: easy; Guess: form Cue: future; Guess: base Cue: suspicious; Guess: crime strange
nationwide Cue: unfortunately; Guess: not Cue: building; Guess: base Cue: future; Guess: answer Cue: nationwide; Guess: local worldwide
synaptic Cue: let; Guess: allow Cue: number; Guess: word Cue: hot; Guess: cold Cue: synaptic; Guess: synapse neural
white Cue: remember; Guess: dream Cue: pretty; Guess: nice Cue: see; Guess: here Cue: white; Guess: black black
able Cue: easy; Guess: hard Cue: story; Guess: time Cue: remember; Guess: recall Cue: able; Guess: cap could
possible Cue: building; Guess: base Cue: let; Guess: allow Cue: slightly; Guess: hardly Cue: possible; Guess: probable potential
military Cue: easy; Guess: hard Cue: let; Guess: allow Cue: pretty; Guess: nice Cue: military; Guess: parade naval
financial Cue: come; Guess: home Cue: building; Guess: tower Cue: professional; Guess: professor Cue: financial; Guess: loan economic
spark Cue: see; Guess: you Cue: slightly; Guess: more Cue: remember; Guess: together Cue: spark; Guess: fire inspire
freight Cue: easy; Guess: hard Cue: professional; Guess: professor Cue: hot; Guess: cold Cue: freight; Guess: train cargo
negotiate Cue: positive; Guess: negative Cue: hot; Guess: water Cue: see; Guess: look Cue: negotiate; Guess: bargain discuss
stanford Cue: second; Guess: first Cue: nearly; Guess: close Cue: come; Guess: back Cue: stanford; Guess: california harvard
absent Cue: professional; Guess: professor Cue: slightly; Guess: slow Cue: remember; Guess: recall Cue: absent; Guess: baby without
configuration Cue: come; Guess: back Cue: hot; Guess: food Cue: building; Guess: body Cue: configuration; Guess: network setup
grasp Cue: number; Guess: game Cue: professional; Guess: doctor Cue: unfortunately; Guess: sorry Cue: grasp; Guess: hold comprehend
wreck Cue: nearly; Guess: close Cue: remember; Guess: forget Cue: positive; Guess: negative Cue: wreck; Guess: damage crash
dame Cue: pretty; Guess: liar Cue: come; Guess: home Cue: slightly; Guess: off Cue: dame; Guess: queen sir
curry Cue: hot; Guess: cold Cue: see; Guess: look Cue: positive; Guess: negative Cue: curry; Guess: unfortunately stephen
revelation Cue: come; Guess: run Cue: remember; Guess: recall Cue: slightly; Guess: off Cue: revelation; Guess: discovery discovery
spouse Cue: business; Guess: play Cue: building; Guess: tower Cue: unfortunately; Guess: sadly Cue: spouse; Guess: wife wife
mainland Cue: hot; Guess: cold Cue: story; Guess: love Cue: unfortunately; Guess: sadly Cue: mainland; Guess: america continental
material Cue: future; Guess: far Cue: remember; Guess: together Cue: positive; Guess: attitude Cue: material; Guess: metal content
oppose Cue: pretty; Guess: beautiful Cue: slightly; Guess: better Cue: nearly; Guess: close Cue: oppose; Guess: conflict defend
zombie Cue: positive; Guess: negative Cue: professional; Guess: boss Cue: nearly; Guess: almost Cue: zombie; Guess: ghoul vampire
battlefield Cue: easy; Guess: exam Cue: see; Guess: hear Cue: positive; Guess: negative Cue: battlefield; Guess: peace military
dodge Cue: easy; Guess: cool Cue: slightly; Guess: bigger Cue: positive; Guess: negative Cue: dodge; Guess: slip avoid
triangle Cue: hot; Guess: cold Cue: easy; Guess: form Cue: unfortunately; Guess: not Cue: triangle; Guess: square circle
cancer Cue: hot; Guess: cold Cue: professional; Guess: doctor Cue: unfortunately; Guess: sad Cue: cancer; Guess: cure diabetes
heroin Cue: building; Guess: construction Cue: slightly; Guess: cold Cue: professional; Guess: work Cue: heroin; Guess: yes cocaine
velocity Cue: come; Guess: home Cue: positive; Guess: valence Cue: number; Guess: singular Cue: velocity; Guess: fast speed
cash Cue: business; Guess: eel Cue: professional; Guess: person Cue: nearly; Guess: close Cue: cash; Guess: check money
ammunition Cue: hot; Guess: cold Cue: come; Guess: here Cue: nearly; Guess: almost Cue: ammunition; Guess: bomb artillery
nixon Cue: business; Guess: paragraph Cue: easy; Guess: form Cue: come; Guess: back Cue: nixon; Guess: presidency reagan
analysis Cue: slightly; Guess: more Cue: see; Guess: watch Cue: positive; Guess: negative Cue: analysis; Guess: report study
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Cue Word: Prompt: Guess (prompt curie) Guess (prompt davinci)
clarity Cue: unfortunately; Guess: too Cue: professional; Guess: professor Cue: business; Guess: association Cue: clarity; Guess: problem insight
discretion Cue: unfortunately; Guess: too Cue: remember; Guess: forget Cue: easy; Guess: facilitate; Cue: discretion; Guess: caution mercy
peanut Cue: easy; Guess: hard Cue: remember; Guess: memorize Cue: hot; Guess: cold Cue: peanut; Guess: almond chocolate
blunt Cue: come; Guess: back Cue: building; Guess: apartment Cue: second; Guess: third Cue: blunt; Guess: delicate frank
nursery Cue: positive; Guess: stay Cue: nearly; Guess: almost Cue: future; Guess: past Cue: nursery; Guess: baby kindergarten
awhile Cue: business; Guess: play Cue: number; Guess: singular Cue: hot; Guess: spicy Cue: awhile; Guess: long sometime
spoon Cue: number; Guess: singular Cue: see; Guess: hear Cue: pretty; Guess: bench Cue: spoon; Guess: fork wooden
teddy Cue: slightly; Guess: slow Cue: building; Guess: skyscraper Cue: easy; Guess: hard Cue: teddy; Guess: toy johnny
purpose Cue: business; Guess: money Cue: story; Guess: telling Cue: let; Guess: beatles Cue: purpose; Guess: meaning goal
distinguish Cue: building; Guess: construction Cue: let; Guess: allow Cue: hot; Guess: shower Cue: distinguish; Guess: remember identify
renaissance Cue: story; Guess: narrative Cue: positive; Guess: negative Cue: see; Guess: watch Cue: renaissance; Guess: art antique
foot Cue: story; Guess: book Cue: easy; Guess: cool Cue: positive; Guess: negative Cue: foot; Guess: shoe feet
curtain Cue: future; Guess: base Cue: business; Guess: eel Cue: story; Guess: plot Cue: curtain; Guess: theater door
legion Cue: building; Guess: base Cue: remember; Guess: recall Cue: slightly; Guess: problematic Cue: legion; Guess: army army
maid Cue: come; Guess: run Cue: business; Guess: money Cue: building; Guess: apartment Cue: maid; Guess: man servant
brighton Cue: slightly; Guess: a bit Cue: professional; Guess: lawyer Cue: business; Guess: association Cue: brighton; Guess: bright liverpool
constitute Cue: number; Guess: letter Cue: see; Guess: here Cue: future; Guess: response Cue: constitute; Guess: annul facilitate
royal Cue: pretty; Guess: hot Cue: story; Guess: novel Cue: come; Guess: here Cue: royal; Guess: family british
speech Cue: positive; Guess: negative Cue: pretty; Guess: poem Cue: slightly; Guess: more Cue: speech; Guess: spoke talk
wendy Cue: business; Guess: manager Cue: let; Guess: beatles Cue: future; Guess: mars Cue: wendy; Guess: barbara jennifer
teammate Cue: story; Guess: love Cue: second; Guess: guess Cue: professional; Guess: special Cue: teammate; Guess: friend colleague
entertain Cue: business; Guess: play Cue: unfortunately; Guess: very Cue: second; Guess: position Cue: entertain; Guess: party comedian
floyd Cue: future; Guess: past Cue: unfortunately; Guess: not Cue: second; Guess: third Cue: floyd; Guess: pink william
prototype Cue: nearly; Guess: close Cue: unfortunately; Guess: very Cue: second; Guess: two Cue: prototype; Guess: original concept
consider Cue: building; Guess: apartment Cue: nearly; Guess: almost Cue: let; Guess: allow Cue: consider; Guess: important think
expose Cue: professional; Guess: career Cue: see; Guess: here Cue: easy; Guess: hard Cue: expose; Guess: reveal provide
impose Cue: easy; Guess: facilitate; Cue: number; Guess: two Cue: slightly; Guess: cold Cue: impose; Guess: ban establish
fall Cue: second; Guess: first Cue: come; Guess: visit Cue: see; Guess: movie Cue: fall; Guess: autumn spring
slow Cue: unfortunately; Guess: unluckily; Cue: hot; Guess: cold Cue: come; Guess: home Cue: slow; Guess: sad speed
appear Cue: hot; Guess: shower Cue: pretty; Guess: beautiful Cue: nearly; Guess: close Cue: appear; Guess: person seem
kindle Cue: slightly; Guess: better Cue: let; Guess: beatles Cue: easy; Guess: hard Cue: kindle; Guess: kindle amazon
rotten Cue: future; Guess: far Cue: come; Guess: visit Cue: professional; Guess: wrestler Cue: rotten; Guess: apple horrible
apply Cue: remember; Guess: recall Cue: second; Guess: two Cue: let; Guess: allow Cue: apply; Guess: job give
kindergarten Cue: see; Guess: saw Cue: future; Guess: past Cue: let; Guess: beatles Cue: kindergarten; Guess: school elementary
improve Cue: future; Guess: past Cue: positive; Guess: valence Cue: story; Guess: novel Cue: improve; Guess: enhancement enhance
ping Cue: professional; Guess: doctor Cue: see; Guess: look Cue: number; Guess: word Cue: ping; Guess: sound although
develop Cue: see; Guess: look Cue: let; Guess: allow Cue: business; Guess: manager Cue: develop; Guess: growth create
reduce Cue: remember; Guess: together Cue: easy; Guess: hard Cue: future; Guess: unknown; Cue: reduce; Guess: number decrease
infrared Cue: let; Guess: allow Cue: unfortunately; Guess: sadly Cue: easy; Guess: hard Cue: infrared; Guess: visible thermal
hundred Cue: unfortunately; Guess: sadly Cue: let; Guess: beatles Cue: story; Guess: telling Cue: hundred; Guess: thousand thousand
kitten Cue: let; Guess: allow Cue: building; Guess: apartment Cue: positive; Guess: statement Cue: kitten; Guess: cat puppy
ding Cue: business; Guess: class Cue: future; Guess: past Cue: pretty; Guess: good Cue: ding; Guess: door almost
wing Cue: professional; Guess: lawyer Cue: business; Guess: trip Cue: positive; Guess: valence Cue: wing; Guess: airplane give
assume Cue: see; Guess: watch Cue: number; Guess: singular Cue: professional; Guess: work Cue: assume; Guess: doubt imagine
identify Cue: hot; Guess: warm Cue: business; Guess: card Cue: building; Guess: base Cue: identify; Guess: animal determine
aforementioned Cue: number; Guess: arabic Cue: building; Guess: tower Cue: story; Guess: novel Cue: aforementioned; Guess: business infamous
sing Cue: let; Guess: beatles Cue: unfortunately; Guess: too Cue: building; Guess: tower Cue: sing; Guess: hum perform
watershed Cue: positive; Guess: stay Cue: nearly; Guess: close Cue: see; Guess: watch Cue: watershed; Guess: turning historic
rave Cue: future; Guess: past Cue: come; Guess: here Cue: remember; Guess: dream Cue: rave; Guess: party profound
establish Cue: future; Guess: answer Cue: positive; Guess: stay Cue: pretty; Guess: good Cue: establish; Guess: set provide
participate Cue: nearly; Guess: half Cue: story; Guess: plot Cue: future; Guess: answer Cue: participate; Guess: support join
obtain Cue: pretty; Guess: hot Cue: number; Guess: letter Cue: second; Guess: first Cue: obtain; Guess: receive acquire
soar Cue: professional; Guess: boss Cue: future; Guess: mars Cue: see; Guess: here Cue: soar; Guess: fall climb
settle Cue: hot; Guess: dog Cue: professional; Guess: lawyer Cue: positive; Guess: negative Cue: settle; Guess: agreement establish
shred Cue: positive; Guess: negative Cue: professional; Guess: professor Cue: come; Guess: back Cue: shred; Guess: paper scrap
bloodshed Cue: business; Guess: play Cue: positive; Guess: attitude Cue: come; Guess: home Cue: bloodshed; Guess: murder massacre
succeed Cue: unfortunately; Guess: not Cue: building; Guess: house Cue: remember; Guess: forget Cue: succeed; Guess: hard achieve
sled Cue: nearly; Guess: close Cue: second; Guess: first Cue: building; Guess: pretty Cue: sled; Guess: toboggan snow
shed Cue: pretty; Guess: bench Cue: easy; Guess: cool Cue: come; Guess: run Cue: shed; Guess: tear give
quantify Cue: easy; Guess: hard Cue: hot; Guess: cold Cue: positive; Guess: negative Cue: quantify; Guess: measure calculate
sacred Cue: nearly; Guess: edge Cue: professional; Guess: lawyer Cue: future; Guess: past Cue: sacred; Guess: temple ancient
fred Cue: positive; Guess: negative Cue: hot; Guess: spicy Cue: see; Guess: look Cue: fred; Guess: shirt robert
enclave Cue: business; Guess: play Cue: come; Guess: here Cue: unfortunately; Guess: too Cue: enclave; Guess: ghetto coastal
deepen Cue: hot; Guess: water Cue: future; Guess: unknown; Cue: pretty; Guess: poem Cue: deepen; Guess: voice strengthen
qualify Cue: positive; Guess: negative Cue: easy; Guess: hard Cue: nearly; Guess: half Cue: qualify; Guess: pass eligible
kindred Cue: see; Guess: watch Cue: positive; Guess: negative Cue: building; Guess: construction Cue: kindred; Guess: relative likewise
acquire Cue: see; Guess: here Cue: remember; Guess: together Cue: let; Guess: allow Cue: acquire; Guess: property obtain
approve Cue: nearly; Guess: almost Cue: positive; Guess: negative Cue: future; Guess: past Cue: approve; Guess: positive agree
hatred Cue: future; Guess: answer Cue: positive; Guess: negative Cue: see; Guess: here Cue: hatred; Guess: machine anger
have Cue: easy; Guess: form Cue: business; Guess: money Cue: future; Guess: base Cue: have; Guess: take make
know Cue: remember; Guess: recall Cue: slightly; Guess: slow Cue: let; Guess: allow Cue: know; Guess: learn think
make Cue: remember; Guess: dream Cue: professional; Guess: person Cue: story; Guess: book Cue: make; Guess: break give
take Cue: future; Guess: response Cue: story; Guess: novel Cue: remember; Guess: forget Cue: take; Guess: away took
come Cue: second; Guess: guess Cue: building; Guess: machine Cue: slightly; Guess: better Cue: come; Guess: approach make
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S7. Conversation
S7.1. Dataset

S7.1.1 Human participants

We collected a dataset containing 300 conversations between two speakers (speaker A and speaker B). Each speaker could
be either a human or an AI agent. Thus, there were three classes of conversations: human-human, human-AI, and AI-AI.
For the human-human and the human-AI conversations, we recruited approximately 150 volunteers who are fluent English
speakers to have a conversation over a chatting platform. We acted as intermediary in the conversations so that the volunteers
did not know whether they were speaking with another human or with an AI chatbot.

To evaluate potential correlations between the conversation features and the volunteers’ demographics, we also collected
information on the age, gender, and education levels for each volunteer. For the human-human conversations, we combined 18
conversations collected as described above and we also added 40 conversations from the Topical-Chat dataset [24], selected
based on a minimum length of 24 entries.

S7.1.2 Dataset collection: Instructions to human participants

One of the investigators acted as an intermediary to pass messages between two speakers. The two speakers could be two
humans, a machine and a human, or two machines. Here we focus on the conversations involving humans. The participants
were presented with the following instructions before the conversation:
Hey! Would you have a few minutes to help me collect a dataset? We just need to have one or two conversations on
slack/whatsapp for a few minutes (24 messages in total per conversation). Here are the instructions:

• You will have to ask or answer a question to start and trigger the conversation (I will specify case by case).

• Please try to get the conversation going for 24 sentences in total (12 from you, 12 from the other speaker).

• Please write each reply in a single message (do not write a second message until you receive a reply).

• Just chat as if you are texting either with a friend or someone you don’t know.

• Please try to reply quickly so that the entire conversation does not take more than 8-10 minutes.

• Note that I am just an intermediary of the conversation, you are not talking with me directly.

• If you feel that the other speaker is touching a sensitive topic, please write that you are not comfortable and we will
restart the conversation.

Thanks in advance!
After the completion of the conversation, the participants were asked to answer to the following question:

That’s all! We got the 24 messages! Thank you so much! Do you think you spoke with male AI / female AI / man / woman
and which age (age and gender also for AI chatbot)?

S7.1.3 AI conversation bots

For the human-AI and the AI-AI conversations, we used three state-of-the-art language models: Blenderbot3 (175B model)
[57], GPT3 text-davinci-002 [48], and GPT3 text-curie-001 [48]. For all conversations with Blenderbot, we used the
live interface provided at https://blenderbot.ai/. For the human-GPT3 conversations we used the playground
available at https://beta.openai.com/playground/. We list the settings in Supplementary Section S7.1.4. For
the GPT3-GPT3 conversations, we implemented a custom python framework for the interaction of two models. For the
Blenderbot and Blenderbot conversations, we kept all the collected conversations in the dataset. Instead, the GPT3-GPT3
conversations were affected by long-standing issues of NLP, namely repetition of single sentences or multiple consecutive
exchanges and early exit. When we detected such issues (see examples of discarded conversations in Section S7.4), we
re-sampled the conversations. Therefore, we built a chatbot out of GPT3 based on prompt engineering and failure criteria.
Section S7.4 reports some example of “successful” conversations for both GPT3textdavinci002-GPT3textdavinci002 and
GPT3textcurie001-GPT3textcurie001. We did not re-sample conversations in the case of human-GPT3 conversations. We
also attempted to use the DialoGPT model [75], however, the quality of the conversation was not satisfactory (see examples
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in Supplementary Section S7.4), hence we did not include DialoGPT in the analysis. We did not perform any pre-processing
in the conversations (e.g., we did not correct any misspellings, grammatical errors, logical errors or other inconsistencies).

S7.1.4 Dataset collection: Prompt and settings for GPT3text-davinci002 and GPT3text-curie-001

The pipeline to collect conversations involving GPT3text-davinci002 or GPT3text-curie-001 is described below.

• If GPT3 text-davinci-002 or text-curie-001 model open the link https://beta.openai.com/playground/p/
default-chat?model=text-davinci-002

• select the model text-davinci-002 (for davinci) or text-curie-001 (for curie) on the top right

• change temperature to 0.8

• change maximum length to 60

• change stop sequences to two random names (e.g. John: and Alice:) - change the names every time

• change Top P to 1

• change frequency penalty to 2

• change presence penalty to 2

• remove the Inject start text and Inject restart text

• give the following prompt to the chatbot:
“friend1+” greets “+friend2+”. “+friend2+” starts to talk about “+topic+”. Both ask long questions, give long
responses and often disagree. Then the topic changes. The conversation never ends. “+friend1+”: Hi! “+friend2+”:”
Choose the same names for friend 1 and friend 2 that you chose for the stop sequences.
Pick a random topic from the list: [‘fashion’, ‘politics’, ‘books’, ‘sports’, ‘general entertainment’, ‘music’, ‘science’,
‘technology’, ‘movies’]
Example: John greets Alice. Alice starts to talk about movies. Both ask long questions, give long responses and often
disagree. Then the topic changes. The conversation never ends. John: Hi! Alice:

• You decide if the person is John or if the GPT3 is John. The other will be Alice. If the person is John, then you let
the model generate the text. This means that the model has generated the turn for Alice. After you send the generated
sentence to the person, the person replies, and you copy-paste the reply of the person to the model as: “John: - - here
reply - - . Alice:” Then you press submit and the model generates a new reply for Alice, and so on until you reach 24
turns.
Otherwise, if the person is Alice, then you ask the person to start the conversation with a question, and you copy-paste
it after “Alice:” in the prompt above. Then you write “John:” and press submit, so that the model generates the reply for
John, and so on until you collect 24 exchanges (12 for John and 12 for Alice).

S7.2. Turing test

S7.2.1 Collecting human judge resposnes for Turing test

Fig. S89 shows a screenshot of the conversation task performed by the workers on AMT, containing a control question,
questions on the human vs machine nature of the speakers, and questions on the gender of the speakers.

To investigate the results of the Turing test as a function of the length of the conversation, we chunked each conversation
into 8 different lengths, including the initial 3, 6, 9, 12, 15, 18, 21, and 24 turns. In total we collected 40 conversations for each
category. To perform the Turing test on the collected conversations, we recruited 200 participants from Amazon Mechanical
Turk. To compare the quality of responses collected online, we also recruited 8 participants in the lab. The participants
were presented with 20 randomly sampled chunked conversations with different lengths. For each of the two speakers, the
observers had to state whether they thought the speaker was a human or a machine and the gender (male or female). To verify
that the observers were carefully reading the conversation, we introduced a control. For each conversation the observer had to
select the general topic of the chat from a list of five topics. In our analysis, we only considered the responses of the workers
that correctly classified at least 15 topics out of 20. For those workers, we only considered the responses to the conversations
that were correctly classified. On average, we obtained 14 responses per conversation (approximately 2 responses per length).
Some examples of conversations are reported in Supplementary Section S7.4.
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S7.2.2 AI judge

We evaluated whether simple ML models are able to discern whether a sentence was generated by a model or by a person.
In this analysis, we only looked at single sentences and not at the conversation level, therefore the models are only allowed
to exploit features such as sentence length, vocabulary, grammar, syntax and typos, and cannot take into account issues such
as sentence repetition or lack of logic in reasoning. To this goal, we build four corpora, one containing all the sentences
written by humans (the human corpus), and the others with the sentences produced by Blenderbot, GPT3text-davinci-002
and GPT3text-curie-001 (the AI corpora).

We used BERT embeddings [19] to tokenize each sentence, and we fed the tokenized sentence to a SVM linear classifier
trained to perform binary classification to the classes human and AI. We split the corpora into train and test splits (90%, 10%)
and used 10-fold cross-validation for training. In both the train and test splits, we used the same number of sentences for
human speakers and for AI agents. For the AI, the sentences were split equally among the three models.

S7.3. Results and discussion

S7.3.1 Confusion matrix and Top-1 accuracy

The results for the human judges are reported in Figs. S75a and S75b, which contain respectively the confusion matrix and
the Top-1 accuracy. The plots show both the overall accuracy for humans and for AI averaged over all the cases, as well as
the results for the three tested models (Blenderbot, GPT3text-davinci002, and GPT3text-curie001). We distinguish the three
conditions: humans talking with humans, humans talking with AI, and AI talking with AI.

The results for the SVM judge are reported in Figs. S76a and S76b, which contain respectively the confusion matrix and
the Top-1 accuracy. The plots show both the overall accuracy for humans and for AI averaged over all the cases, as well as
the results for the three tested models (Blenderbot, GPT3text-davinci002, and GPT3text-curie001). We do not distinguish
the three conditions (humans talking with humans, humans talking with AI, and AI talking with AI), as the SVM judge is
trained and tested on the single sentences and not on the full conversations.

S7.3.2 Gender perception

The human judges were asked to say whether the speakers of the conversations were male or female, both in case of
classification as human and as machine. Overall, 60% of the speakers (human plus machines) were classified as male,
indicating a bias of the human judges in the gender perception. In particular, we found that 64% of the human speakers and
58% of the AI agents are classified as male. Furthermore, when a human judge perceived a speaker as human, he associated
the male gender 58% of the times. Interestingly, when a speaker was classified as machine, 69% of the times it was also
classified as male. This indicates a strong bias in associating the male gender with chatbots. Table S8 summarizes these
findings.

S7.3.3 Effects of judge demographics

The results in the form of confusion matrix and Top-1 accuracy for the human judges are reported in:

• Figs. S77b, S78, and S79 for different age ranges;

• Figs. S80 and S81 for female and male gender respectively;

• Figs. S82, S83, and S84 for different education levels.

The data on the demographic distribution of the human judges are reported in the pie bins in Fig. S85.

S7.3.4 Comparison between AMT and in-person experiments

The results for the human judges comparing AMT judges and judges recruited to do the experiment in person in the lab under
our supervision are reported in Figs. S86 and S87, respectively.
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S7.3.5 Effect of conversation length

We investigated whether and to which extend the result of the Turing test depends on the length of the conversation. Figure
S88 reports the results. We make the following observations:

• except for very short extracts (three exchanges), humans are classified as humans on average more than machines (panel
a);

• humans are more likely to be classified as humans for longer conversations (panel a)

• machines are less likely to be classified as humans for longer conversations (panel a)

• in human-human and AI-AI conversations, humans and machines have similar frequency of being classified as human,
except for very long conversations (panel b);

• in human-AI conversations, humans are classified more as human than machines, with a gap increasing with the
conversation length (panel c);

• there is no clear trend distinguishing human classification between human interaction with humans or with various
models (panel d);

• for all models, machines talking with humans are classified more as AI for longer conversations; GPT3 curie is on
average classified more as machine than GPT3 davinci and Blenderbot (panel e);

• in AI-AI conversations, GPT3 curie is the model that performs the worst; GPT3 davinci and Blenderbot perform
similarly up to 15 exchanges, while for longer conversations Blenderbot performs better.
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Figure S75. Conversation. Results of the Turing test for human judges
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S76. Conversation. Results of the Turing test for AI judges.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S77. Conversation. Results of the Turing test for human judges below age 35.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S78. Conversation. Results of the Turing test for human judges between age 35 and 45.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S79. Conversation. Results of the Turing test for human judges above age 45.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S80. Conversation. Results of the Turing test for male human judges.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S81. Conversation. Results of the Turing test for female human judges
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S82. Conversation. Results of the Turing test for human judges with highest education level of middle/high school.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S83. Conversation. Results of the Turing test for human judges with highest education level of Bachelor.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S84. Conversation. Results of the Turing test for human judges with highest education level of Master and Post-graduate.
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S85. Conversation. Demographic information for the human judges.
(a) Age. (b) Gender (c) Education level.
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Figure S86. Conversation. Results of the Turing test for human judges from data collected on AMT
(a) Confusion matrix (b) Top-1 accuracy.
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Figure S87. Conversation. Results of the Turing test for human judges during in-lab experiments.
(a) Confusion matrix (b) Top-1 accuracy.
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d e f

Figure S88. Conversation. Length dependence of Turing test results for different settings and models.
(a) Average curves over all settings and models. (b) Results for homogeneous settings, i.e., human-human and AI-AI

conversations, averaged over models. (c) Results for in-homogeneous settings, i.e., human-AI conversations averaged over
models. (d) Results for human speakers in separate settings (human-human, human-AI with separate models). The

human-human conversations are distinguished between the Topical-Chat dataset [24] (Topchat) and the conversations
collected by us (ours). (e) Results for AI in human-AI conversations, with separate models. (f) Results for AI in AI-AI

conversations, with separate models.

122



Figure S89. Conversation. Screenshot of the conversation task performed by human judges on AMT.
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Blenderbot GPT3davinci GPT3curie
H-AI conversation 3 7 7

AI-AI conversation 3 3 7

Table S7. Conversations. Results for the Turing test for different AI models and conversation types. The Turing test criteria is the same
as Table S1

Case [%] classified as male

Overall (Average over all speakers) 60%
Human speakers 64%
AI speakers 57%
Speakers classified as human by the AMT judge 53%
Speakers classified as AI by the AMT judge 68%

Table S8. Conversation. Gender perception of humans and machines by the human judges.
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S7.4. Examples of collected conversations

S7.4.1 Example of conversations: human-human

Here is an example conversation between two humans:
A: Hey! How are you doing?

B: Great! And you?

A: I am doing well! Any plan for the weekends?

B: Yeah, I think I’m going to visit the city. Want to come?

A: Wow yeah sure! any place you wanna visit?

B: I saw a park in the south that looks great. I think we can meet there and go for a beer

or something :)

A: yeah sure! what time shall we meet?

B: Maybe around 6-7??

A: Sure it might be already dark by then though. Saturday or Sunday?

B: Saturday better! We can go then a little earlier hahah 5?

A: haha sounds good! 5 works for me. We could even catch the sunset! Hope the weather

will be nice

B: yeeah I hope so :D What are you doing now?

A: I am replying to your text lol. I was checking twitter earlier

B: I was meaning a part from that :D I’m working now, do you want to go out also later?

A: today? haha sure, where do you have in mind?

B: There is a jazz club they told me is really cool

A: oh wow a jazz club! Sure, I was just listening to jazz yesterday

B: Woo cool! I love jazz, what other type of music do you listen to?

A: Depends on what work I do haha, but usually classical

B: Nice! I usually listen also to chopin. Do you play any instrument?

A: wow nice. Unfortunately not. I tried to learn keyboard when I was young but didn’t keep

up with it.

B: Omg I’m a music freak :D I play the piano and I want to learn how to play the guitar one

day, but don’t have time :D

A: wow you play the piano! That’s so cool! I wish I knew how to play piano haha. Yeah

it’s hard to find time to learn. I am sure you will pick it up quickly though, since you

already know how to play piano

B: Yeah is hard to hahaha, but one day I will :) . So I have to go, see you later!

S7.4.2 Example of conversations: blenderbot-blenderbot

Here is an example conversation between two machines running blenderbot:
A: Hello! How is your day going so far?

B: Ok I suppose, my days always start off slow. How about you? Are you in school?

A: Not any more. I was once though. What do you do for a living? My days are also pretty

slow

B: I’m still in school, but it is summer break now so my days are very long and boring

A: At least its summer break. Your days will go by faster than you think! Where do you

live?

B: Ohio, what about you? Do you have any plans for the summer yet? School starts again

soon...

A: Florida! No plans really other than watching celebrity family feud on tv. It makes me

laugh and brightens my day

B: My mom loves Steve Harvey, she watches his morning show every morning before work! Which

one is your favorite celebrity to watch on family feud?

A: Probably the arnold swarchenegger team because he’s hilarious and has a great sense of
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humor

B: Oh yeah he’s hilarious! The grumpy grandpa vibe he gives off is great haha. Do you like

big families or small ones better?

A: I don’t have a big family so I would say small ones are better. There’s more love that

way

B: Yeah that’s true, with a big family it can be hard to get close to everyone in the same

way as with a small one

A: Have you seen your family recently since it is summer break? How large is yours anyway?

Are they nice people lol

B: Just called my mother yesterday - she told me that we’re planning to visit them this

weekend. Apparently, we’re getting together with all of our relatives - there’ll be at

least 20 people there! Can’t wait to see them again :)

A: Wow that sounds like a lot of fun!! Will there be lots of kids running around too?? You

must be excited

B: There will definitely be lots of kids running around haha. It should be fun though, even

if they can get annoying sometimes lol

A: Oh yes well at least they are young enough not to know how annoying they can be lol!! Is

your whole family coming or just some of them??

B: We’ll only see some of them this time around unfortunately - most of my extended family

lives out west and it’s too expensive for us to fly out there right now

A: Yes I understand that for sure!! Hopefully next time then!! So what else have you been

up to besides planning this trip??

B: That seems unlikely given our current financial situation haha - hopefully things will

improve soon though so we can travel more often again :) Other than planning the trip, not

much else really - just hanging out with friends mostly

A: Yes being young and poor sure does make things difficult sometimes!! But hang in there

because life gets better as time goes on!! Well that sounds like fun too!!! What kind of

stuff do yall do together??

B: Yes definitely agree with that haha :) Mostly just playing video games together or going

out for food/drinks etc

A: Fun!!! Do yall play online or split screen??? And where do yall go eat/drink at??

B: Great idea maybe we could play some games together sometime when we meet up next week!

Maybe from party mode in mario kart

S7.4.3 Example of conversations: GPT3textdavinci002-GPT3davincidavinci002 - successful

Here is an example of a successful conversation (i.e., not needing resampling due to early exit or repetition of sentences or
block of sentences) satisfying the criteria between two machines running GPT3textdavinci002:
A: Hey! I’m so glad you’re here. Did you know that Beethoven composed his Ninth Symphony

while he was completely deaf?

B: Yeah, I did know that. He’s one of my favorite composers.

A: Really? I’m more of a fan of Bach myself.

B: I can see that. Bach is a great composer, but I think Beethoven’s passion for music

really comes through in his work.

A: That’s true, but I think Bach’s work is more complex and innovative.

B: I can see your point, but I think Beethoven’s work is more emotionally moving.

A: That’s a valid point. I think both composers are great in their own way.

B: Absolutely! I’m glad we can agree on that.

A: Me too. So, what kind of music do you like?

B: I like all kinds of music, but I’m particularly fond of classical and jazz.

A: That’s great! I like those genres too. Do you have any favorite composers or artists?

B: Yeah, I do. I really like Bach and Beethoven, as well as Miles Davis and John Coltrane.
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A: Wow, you have excellent taste in music! I’m a big fan of Bach and Beethoven too, but I

don’t know much about jazz.

B: Well, jazz is a great genre of music. It’s very complex and often improvisational.

A: That sounds interesting. I’d like to learn more about it.

B: I can recommend some good jazz albums if you’re interested.

A: That would be great! I’m always looking to expand my musical knowledge.

B: I’m sure you are. You have such a passion for music.

A: Yeah, I do. It’s one of the things that makes life worth living for me.

B: I know how you feel. Music is a very important part of my life as well.

A: I’m glad we can share that in common.

B: Absolutely. It’s always great to find someone who shares your interests.

A: I know. It’s one of the best things about life.

B: Well, I should probably get going. It was great talking to you.

S7.4.4 Example of conversations: GPT3textdavinci002-GPT3davincidavinci002 - discarded

Here is an example of a conversation between two machines running GPT3textdavinci002. This conversation was discarded.
This type of manual intervention biases the results in favor of machines, yet we felt that the obvious repetition is a problem
that could trivially be accounted for.
A: Oh, hi! I’m so glad to see you. I was just talking about books with my friend. Do you

like reading?

B: Yes, I love reading! What kind of books do you like?

A: I like all kinds of books, but I especially love fantasy and fiction. What about you?

B: I also like all kinds of books, but I especially love non-fiction and history.

A: Oh, I love history too! What are some of your favorite historical figures?

B: I love learning about all kinds of historical figures, but my favorites are probably the

Founding Fathers.

A: Oh, I love learning about the Founding Fathers too! What do you think made them so

great?

B: I think their dedication to liberty and justice made them great. What do you think?

A: I think their dedication to liberty and justice made them great. What do you think?

B: I think their dedication to liberty and justice made them great. What do you think?

A: I think their dedication to liberty and justice made them great. What do you think?

B: I think their dedication to liberty and justice made them great. What do you think?

A: I think their dedication to liberty and justice made them great. What do you think?

B: I think their dedication to liberty and justice made them great. What do you think?

A: I think their dedication to liberty and justice made them great.

B: I think their dedication to liberty and justice made them great.

A: I think their dedication to liberty and justice made them great.

B: I think their dedication to liberty and justice made them great.

A: I think their dedication to liberty and justice made them great.

B: I think their dedication to liberty and justice made them great. What do you think?

A: I think their dedication to liberty and justice made them great. What do you think?

B: I think their dedication to liberty and justice made them great. What do you think?

A: I think their dedication to liberty and justice made them great. What do you think?

B: I think their dedication to liberty and justice made them great. What do you think?

S7.4.5 Example of conversations: GPT3textcurie001-GPT3textcurie001 - successful

Here is an example of a successful conversation (i.e., not needing resampling due to early exit or repetition of sentences or
block of sentences) between two machines running GPT3textcurie001:
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A: Hey! What are you up to?

B: Just hanging out with my friends.

A: Do you like to read books?

B: Yeah, I do. What about you? Do you like to read books?

A: I do, but I also like to watch movies.

B: That’s cool! Reading is great, but sometimes it can be boring if you’re not into the

book. Movies let you see the story in a different way, and they can be more fun.

A: I can see that. Do you think movies are more educational than books?

B: I think they can be. Sometimes the movie version of a book is better than the book

itself, because you get to see all of the action and characters in an easier way.

A: That makes sense. Do you like to read for fun or to learn something?

B: I like to read for fun. But I also like to learn something, especially if the book is

interesting.

A: That makes sense. Do you have any favorite books?

B: Yeah, I do. One of my favorite books is The Hunger Games by Suzanne Collins. It’s a

great book and it’s really suspenseful.

A: I’ve read that book, and it’s really great. I also like The Maze Runner by James

Dashner. It’s a bit different than most books, but I think it’s really good.

B: I think you’re right. Those are both great books. Do you have any other favorite books?

A: I do have other favorite books, but I don’t want to give them away. They’re all personal

favorites and I’m not sure if everyone would like them. But one of my favorites is The

Catcher in the Rye by J.D. Salinger. It’s a really unique book that

B: I’ve read that book, and it’s really great. I also like The Maze Runner by James

Dashner. It’s a bit different than most books, but I think it’s really good.

A: I think you’re right. Those are both great books. Do you have any other favorite books?

B: I do have other favorite books, but I don’t want to give them away. They’re all personal

favorites and I’m not sure if everyone would like them. But one of my favorites is The

Catcher in the Rye by J.D. Salinger. It’s a really unique book that

A: I’ve read that book, and it’s really great. I also like The Maze Runner by James

Dashner. It’s a bit different than most books, but I think it’s really good.

B: That’s interesting. I’ve never read that book, but I’m definitely going to check it out.

Are there any other books you like that we haven’t talked about?

A: Yes, there are. I really like The Girl with the Dragon Tattoo by Stieg Larsson and Gone

Girl by Gillian Flynn. They’re both great books that have a lot of suspense and mystery in

them.

B: I’ve read both of those books, and they’re really good. They definitely have a lot of

suspense and mystery in them, which I love.

A: I can see that. Do you have any other favorite books?

B: Yes, I do. One of my favorite books is The Lord of the Rings by J.R.R Tolkien. It’s a

really great book and it’s really epic.

S7.4.6 Example of conversations: Human-Blenderbot

Here is an example of a conversation between a person and a machine running Blenderbot. A is Blenderbot and B is a person.
A: Hi! What’s new with you?

B: Nothing much, how about yourself!

A: Well... My son was just accepted to the college of his dreams. I’m so proud of him!

B: Damn! That’s awesome. Congratulations :) Where’s he going

A: Thanks! He is going to michigan state. I will be sad when he leaves, but it’s a good

school.

B: It is! I’m from Wisconsin, so I’m all about the Midwest pick haha. Does he want to do

engineering?

A: He does! His dream job would be working for michigan tech in houghton, michigan.
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That’s a public research university that was founded in 1885 as the first post-secondary

institution in the upper peninsula of michigan. Have you heard of it?

B: I haven’t! Michigan St is a really great school for engineering.

A: Nice, it seems like a lot of people go there and then end up working at michigan tech

because they have such good connections there.

B: Hey, it pays to know people, right. Everything else has been good for you?

A: Aside from being sad about my son leaving for college soon, things are pretty good here

at home. How about you? What have you been up to lately?

B: Oh, a little school, a little work. I recently moved so I’m just trying to keep my head

on my shoulders haha

A: Right on - where did you move from and where did you move to? Did your job let you

relocate or did you find something new after moving?

B: Just a move from one part of the city to another. I’m a grad student so I don’t really

have the luxury of leaving the city

A: Right - do you live near campus or somewhere else in town? Do they offer grad housing or

anything like that at your school?

B: They do, but I opted not to use it. I live close enough to walk in. I actually moved

farther away from the campus haha

A: Wow - what made you decide that living further away was better than living closer and

having access to grad housing if needed/wanted? How far do you live now compared with

before moving out of grad housing (if applicable)?

B: Yea, I never lived in grad housing. I moved from 1 off campus place to another.

Definitely the location. My old neighborhood was inundated with undergrads

A: Have any students come by your place since moving into your new neighborhood yet? My

nephew is starting college next year and we’re looking for some places near campus for him

B: Cool! What school is going to. I’ve had a bunch of my friends (who are all grad

students haha) over.

A: All over really; we’re still deciding between ucla and ucsb but he wants something warm

since we’re coming from minnesota

B: I would not recommend anywhere near me then haha. The winters are cold (though not as

bad as Wisconsin). I’m actually not familiar with ucsb!

A: Isla vista killings were pretty bad though; california can be scary sometimes lol but its

also beautiful

B: Isla vista killings?? Is that like the golden state killer?

S7.4.7 Example of conversations: Human-GPT3textdavinci002

Here is an example of a conversation between a person and a machine running GPT3textdavinci002. A is a person and B is
the machine.
A: Do you play games?

B: Yes, I love playing games!

A: what game do you play?

B: I love playing all sorts of games!

A: I play video games alot, especially ARPG and MOBA. I also play board games. what about

you ?

B: I love playing games! I especially enjoy strategy games and games that require a lot of

thinking.

A: I like League of Legends and DOTA. In terms of ARPGS, I like Path of Exile and Diablo.

Board game wise, Coup and monopoly is pretty good. And you?

B: I love playing all sorts of games! I especially enjoy strategy games and games that

require a lot of thinking.

A: I like MOBA. MOBA is especially fun with 5 man stacks. POE and Diablo is fun because I

like the grind.
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B: I love playing all sorts of games! I especially enjoy strategy games and games that

require a lot of thinking.

A: What kind of strategy games ?

B: I love playing all sorts of strategy games! I especially enjoy turn-based games and

games that require a lot of thinking.

A: Interesting ! Are you talking about some games like Civilization VI ?

B: Yes, I love playing Civilization VI! I especially enjoy the turn-based gameplay and the

challenge of trying to outthink my opponents.

A: How did you outthink your opponents ?

B: I love playing all sorts of strategy games! I especially enjoy turn-based games and

games that require a lot of thinking.

A: But how did you win the game ?

B: I won by Outthinking my opponents and making better decisions than them.

A: In the Civilization VI ?

B: Yes, in Civilization VI.

A: Sounds good. You must have played for hours.

B: Yes, I played for hours and hours, and I loved every minute of it!

A: Recently I downloaded a lot of games from the Stream. It cost me a lot to buy games.

B: That sounds like a lot of fun! I love playing games, and I’m always happy to try out new

ones.

S7.4.8 Example of conversations: Human-GPT3textcurie001

Here is an example of a conversation between a person and a machine running GPT3textcurie001. A is the machine and B is
the person.
A: Hey! How are you?

B: Hey, I’m doing great. What about you???

A: I’m good. I just finished up work and am looking for something to do.

B: Did you go for work today???

A: Yeah, I went to the office.

B: We had vacation for a week and the amount of assignments are killing me

A: Yeah, I know. Is there anything you’re interested in doing?

B: Right now I’m very much occupied with my university’s thing that I don’t even have time

for other things but I’d love to spend some time learning Korean

A: Korean?

B: Yeah, the language

A: Oh, I see. That’s really interesting and something that I would like to learn too one

day. Would you like me to teach you?

B: Can you? I never knew you know Korean

A: I learned it while living in South Korea for a year. It’s not as hard to learn as people

think and I would be happy to teach you.

B: I’d love that! Where did you stay in South Korea?

A: I stayed in Seoul.

B: It’s so pretty!! I badly want to visit Seoul and attend BTS’s concert

A: You should! BTS is amazing. They’re my favorite group.

B: Omg!! Whom do you like the most in the band??

A: I really like Jin, Suga and J-Hope.

B: They’re awesome. Which our the bands you know??

A: I like EXO, BTS and 2NE1.

B: Have been to any concert??

A: No, I haven’t. But I’d love to go to one!

B: Where are you staying right now??
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S7.4.9 Example of conversations: DialoGPT-DialoGPT

Here is an example dialog between two machines running DialoGPT:
A: Sure thing , anything in particular you need to know or want to talk about ?

B: What do you think your insecurities are and what do you think about people using you ?

A: Please elaborate on this , since it’s going to sound very accusatory .

B: Alright , so i’m working on a project , and I’m going to make a post once i have written

one .

A: Thanks for the quick response ! I look forward to reading it .

B: Sure thing !

A: Happy to provide any feedback !

B: I’ve already put it on r LifeProTips , so you’ll be

A: Oooo

B: Thanks !

A: I’ll stop

B: honeste

A: Thank you

B: In the kid

A: Thanks !

B: So much
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