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Abstract

As Al algorithms increasingly participate in daily
activities that used to be the sole province of humans, we are
inevitably called upon to consider how much machines are
really like us. To address this question, we turn to the Turing
test and systematically benchmark current Als in their
abilities to imitate humans. We establish a methodology
to evaluate humans versus machines in Turing-like tests
and systematically evaluate a representative set of selected
domains, parameters, and variables. The experiments
involved testing 769 human agents, 24 state-of-the-art
Al agents, 896 human judges, and 8 Al judges, in
21,570 Turing tests across 6 tasks encompassing vision
and language modalities. Surprisingly, the results
reveal that current Als are not far from being able to
impersonate human judges across different ages, genders,
and educational levels in complex visual and language
challenges. In contrast, simple Al judges outperform
human judges in distinguishing human answers versus
machine answers. The curated large-scale Turing test
datasets introduced here and their evaluation metrics
provide valuable insights to assess whether an agent is
human or not. The proposed formulation to benchmark
human imitation ability in current Als paves a way for the
research community to expand Turing tests to other research
areas and conditions. All of source code and data are
publicly available: here.
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Figure 1. Schematic illustration of Turing tests in six vision
and language tasks. A Turing test works with a judge asking a
test subject (either a human or an Al agent) a series of tasks. Each
party is kept in a separate room, so no physical contact is allowed.
The Al passes the Turing test if the judge is unable to distinguish
the Al from another human being by using the responses collected
from the given task presented to both. See Fig 2 for an overview
of the six tasks.

1. Introduction

The Turing test, also known as the “imitation game”,
was proposed by Alan Turing in 1950 as a way of
assessing a machine’s ability to exhibit intelligent behaviors
indistinguishable from those of a human (Fig. 1) [01]. Since
its inception, whether the Turing test adequately quantifies
intelligence or not has remained controversial [22, 34]. The
purpose of this paper is not to argue in favor or against
Turing tests as a measure of general intelligence. Instead,
we consider the Turing tests as a quantitative evaluation of
how well current Als can imitate humans.
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With powerful Al technologies being deployed in the
real world, it is becoming increasingly important for lay
people,legal judges, doctors, politicians, and other experts
to ascertain whether the agent they are interacting with
is a human or not. As two examples out of many, the
inability to distinguish a human from an Al bot may lead
to cybersecurity breaches resulting in the loss of private
and protected data. Besides, the inability to distinguish
real news from Al generated fake news or DeepFakes [68]
can have disastrous implications for electoral campaigns
[28, 68].

The answer to whether current Als pass the Turing
test depends on a plethora of considerations, including the
machine agent, the human agent, the judge, the specific
task, contextual conditions, and many more. Distinct
from the original version of the Turing test in unrestricted
conversations, the purpose of the current work is not
to exhaustively study all possible combinations of these
parameters and choices. Instead, we aim to: (i) establish
a methodology to evaluate human imitators, (ii) provide
a systematic protocol for the Al community to quantify
whether a task is performed by humans or machines, and
(iii) introduce evaluation metrics and analysis tools on
a subset of tasks and conditions as a proof-of-principle.
Specifically, we benchmarked 24 AI models in Turing tests
on 6 fundamental tasks in computer vision and natural
language processing (Fig. 2): color estimation, object
detection, attention prediction, image captioning, word
associations, and conversation.

The key contributions of this work are:

(1) We design a systematic format for conducting Turing
tests and evaluating AI models over different tasks
involving multiple modalities. This helps the community
expand the Turing test to a wide range of tasks and
benchmark future AI models.

(2) We introduce datasets to evaluate current Als in
Turing-like tests in 6 fundamental vision and language
tasks.

(3) We conduct human psychophysics experiments to
evaluate human judges in 24 state-of-the-art vision and
language AI models in Turing tests.

(4) We show that simple machine learning algorithms can
serve as Al judges to distinguish machines versus human
agents in the same tasks.

2. Related Works
2.1. Glimpse of the 70-year history of Turing test

The Turing test was introduced as an imitation game
where a machine tries to pass as human during a
conversation and a human judge determines whether they
are interacting with a human or not [61]. The Loebner Prize
was introduced in 1991 [45] to the programs considered

by human judges to be the most human-like. There was
also an award for the most human human [1 1]. The Turing
test has generated extensive controversy and discussion
about whether it is a valid measure of intelligence [25, 26,
, 40, 51], shifting to whether machines can successfully
imitate humans [31-33]. Several notable arguments
include Searle’s Chinese room thought experiment [54],
Block’s behaviorism [5], Harnad’s Total Turing Test [30],
Watt’s Inverted Turing Test [65], Damassino’s Questioning
Turing Test [17] and Sejnowski’s Reverse Turing Test
[55]. Distinct from these arguments, our aim is to
systematically and quantitatively provide methods, datasets
and benchmark current Als in imitating humans through
Turing-like tests in multiple vision and language tasks.

2.2. AI versus humans in vision tasks

Current computer vision models can perform a wide
range of tasks such as object recognition and detection
Models are often evaluated by comparing their outputs
against human ground truth annotations. Many object
recognition studies benchmarked AI versus humans in
out-of-distribution generalization [4,20], adversarial attacks
[21], and contextual variations [7, 74]. Several studies
also compared attention in Al models against humans in
saliency prediction [36], and eye movement prediction
[27,71,73]. However, high performance in a particular
task does not constitute a Turing test. Al models can show
similar average performance to humans in narrow tasks, or
even outperform humans, and still be distinguishable from
humans. Turing tests provide a unique assessment of Al
models as imitators of human behavior which extends and
complements current benchmarking frameworks.

2.3. Al versus humans in language tasks

Similar observations can be made in natural language
processing. Al models are often compared against human
ground truth data in discriminative tasks, such as image
captioning or visual question answering [9, 44, 56, 70].
Human evaluation scores are reliable but costly to obtain.
To mitigate these problems, several evaluation metrics
have been proposed, such as BLEU [49], THUMB [3§],
and METEOR [18] in image captioning. However, these
metrics focus on n-gram overlaps and are insensitive to
semantic information. Cui et al. proposed a learned critique
model acting as a human judge to perform a Turing Test
in image captioning tasks [16]. Here we also introduce
critique models and compare them with human judges.

Generative Al models are notoriously difficult to
evaluate due to the inherent ambiguities of language.
For example, human evaluators are often recruited to
assess the quality of sentiment and semantic relevance
on text generated by BERT [19] or GPT2/3 [8, 8, 37].
Such evaluations are restricted to specific domains of text
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Figure 2. Schematic of the 6 tasks. We systematically evaluate 3 vision tasks, 1 vision-language task, and 2 language tasks. a. In Color
estimation, the agent is presented with an image and has to output the main color. b. In Object detection, the agent is presented with
an image and has to provide three objects. ¢. In Attention prediction, the agent is presented with an image and the output is a sequence
of attention locations or eye movements. d. In Image captioning, the agent provides a single sentence description of an image. e. In
Word associations, the agent is presented with a word and has to produce a single word related to the cue. f. In Converstaions, agents
produce 24 exchanges. See Sec. 3 for detailed description of each task and see Supp. Material for more example stimuli from both human
and Al agents for all tasks. g. The results of a Turing test with a human judge depend on the characteristics of the judge. As an initial
characterization, we collect basic demographic information indicated in this table.

generation and the heterogeneity of human judges has not
been characterized. Here we provide an extensive set
of Turing tests on multiple large state-of-the-art language
models based on 896 judges across different demographics.

Conversation was the key target of the original Turing
test and remains a daunting challenge for Al. There have
been numerous early attempts at generating restricted topics
during conversations, such as Colby’s PARRY simulating a
paranoid schizophrenic [12, 3] and Weizenbaum’s ELIZA
simulating a psychiatrist [66]. However, none of these
models have come close to unrestricted Turing tests.
Advances in large language models [8, 14, 19, 58] have
led news and social media to produce anecdotal claims
about current Al being sentient in conversations [43,60,67].
However, few studies rigorously and quantitatively assessed
Als in their ability to imitate humans in conversation.
Preliminary works introduced unrestricted Turing tests in
conversations with one exchange per conversation [75].
Here we provide extensive evaluations of Als engaged in
conversations with up to 24 exchanges.

3. Experiments

We introduce the six tasks (Fig. 2), how we created the
datasets and how we set up the Turing tests (Fig. 3). Further
details about each task, controls, and example snapshots
of the Amazon Mechanical Turk (AMT) interfaces are
provided in the Supp. Sections S2 - S7. All AMT
experiments are based on “master” workers. We also
collected demographic information about the participants
as metadata, including their native language, age, gender,

Turing test (object detection)

Figure 3. Schematic illustration of the Turing test for the object
detection task. The judge is presented with an image and three
labels and has to decide whether those labels were produced by a
human or by an Al For screenshots of the Turing test for each of
the tasks, see Supplementary Material.

educational background, and the country they are originally
from (Fig. 2g). For each task, we collect human answers
and machine answers. During each Turing test, we present
a single instance of the answers and ask participants to
indicate whether the answer comes from a human or Al
(e.g., Fig. 3 for the Object detection task). Half of the
time, the entry shown was from a human. The other
half of the time, an Al answer was shown, sampling with
equal probability from one of the different computational
models used for each task. The trial order was randomized.
No feedback was provided to the participants. Additional
control trials were introduced for each specific task to
ensure compliance.



Num. Num.
Task Stimulus Turing Tests Sources of Datasets Al models
A e Google Vision API
Color estimation 785 1,625 self-collect, MSCOCO [42] Microsoft Azure Cognitive Services, MMCQ [6]
. . Google Vision API, Microsoft Azure Cognitive Services
Object detection 808 1,975 self-collect, MSCOCO [42] Amazon Rekognition, Detectron2 [60]
Attention Prediction | 547 2,160 NatureDesign [73], FindingWaldo [75] | 1y g\ 15775 73], DeepGaze3 [391, GBVS [29]
NatureSaliency [
- self-collect GIT [63], OFA [64], BLIP [41]
Image Captioning 1,000 8,140 MSCOCO [42], nocaps [3] ClipCap [46], Microsoft’s Azure Cognitive Services [2]
Word2Vec [50], GPT2 [52], GPT3-embedding (davinci) [£],
Word Association 1,500 3,550 self-collect GPT3-prompt (text-curie-001) [&],
GPT3-prompt (text-Davinci-002) [8].
. ) self-collect GPT3-text-davinci-002 [48], GPT3-text-curie-001 [48]
Conversation 3008 lengths | 4,120 Topical-Chat dataset [ Blenderbot [57], DialogPT [24]

Table 1. Specifications of six Turing tasks Source datasets, number of Turing tests conducted, number of stimulus, and Al models used
to collect responses are listed for each task. See Section 3 for task descriptions.

3.1. Color Estimation

Dataset. We collected a testing set of 1,000 images sampled
from the validation set of MS-COCO [42] to ensure that
computational models had not seen these images during
training. We collected human responses for 785 images
using AMT in the Color Estimation task. AMT subjects
were asked “What is the dominant color in this image?”,
and had to select from 11 possible colors (Fig. S1, S2). For
a sample image of the AMT interface, instructions, and a
list of colors, see Supp. Section S2.

For Al models, we collected responses for the dominant
color from Google’s Cloud Vision API [1], Microsoft’s
Azure Cognitive Services [2], and the publicly available
Median Cut Color Quantized (MCCQ) algorithm [6]. In
total, 3,140 image-response pairs were collected (785 from
humans and 2,355 from Al models, Table 1).

Turing test (Human Judge). Subjects were shown an
image-response pair collected above, and asked the question
“Was the color description made by a human or a machine?”
(Fig.S3, S4, S14). Subjects were also asked to predict
the gender of the speaker. An auxiliary True (50%)/False
(50%) question about the presence of a background object
present in the image was introduced as a control. The mean
accuracy in this control task was 91%. A total of 1,625
responses were collected from human judges.

Turing test (Al judge). For each image-response pair, we
collected image features from the last layer embedding of a
ResNet18 model pretrained on ImageNet, and the textual
features for the color using BERT [19]. These features
were then concatenated, and passed into a Random Forest
classifier to predict human versus Al labels, using a 90% /
10% split for cross-validation.

3.2. Object detection

Dataset. We collected responses for 808 images from
the set of 1,000 images from MS-COCO in Section. 3.1.
Subjects were presented with the question “What do you see

in this image?”, and were asked to enter three single word
responses (Fig. S16, S17). We introduced several controls,
ensuring that the responses were single words in English
and that participants do not repeat the same response within
or across images. For sample images of the AMT interface,
instructions and controls, see Supp. Section S3.

We collected predicted labels from Google’s Cloud
Vision API, Microsoft’s Azure Cognitive Services,
Amazon’s Rekognition API, and Facebook’s Detectron2.
For all networks, the top three predicted labels with the
highest prediction score were collected. In total, 4,040
image-response pairs were collected (808 from humans and
3,232 from the four Al models, Table 1).

Turing test (Human judge). The Turing test for human
judges was performed using the same protocol and controls
described in Section 3.1 (Fig. 3, S18, S19, S29). A total
of 1,975 responses were collected from human judges.
Turing test (AI judge). As the images were the same for
humans and AI models, we used solely textual features
for the AI judge to classify a response as human or Al
We concatenated the three responses into a sentence, and
collected textual features for the sentence using BERT [19].
These features were passed into an SVM classifier to
classify responses into humans versus Al, with 90% / 10%
split cross-validation.

3.3. Attention prediction

Dataset. We used eye movements (overt attention) from
human subjects during two visual search tasks [73], and a
free-viewing task [72]. We evaluated 7,000 scanpaths from
40 participants (Table S2). For the three datasets, we used
a modified version of IVSN [72, 73], DeepGaze3 [39] and
GBVS models [29] to generate eye movement predictions.
Supp. Section S4 provides examples of eye movement
sequences from humans and models.

Turing test (human judge). Separate Turing tests were
launched for eye movements from free-viewing tasks (80



judges) and visual search tasks (100 judges) (Fig. S31, S47
and Fig. S32, S47). We presented infinitely repeating
animated clips of eye movements from humans or model
predictions with a maximum of 15 fixations to human
judges on AMT. Each judge had to identify if the eye
movements were from a human or a computational model.
As a control, judges were also asked to answer “What do
you see in the presented clip?” with one correct answer
among 3 options. Responses from judges with a score < 7
out of 12 were not considered in the analyses.

Turing test (Al judge). We performed Turing tests using
an SVM as an Al judge. Sequences of 10 fixations per trial
from humans or computational models were fed as input
in the form of an array of fixation coordinates to train an
SVM to classify human versus machine eye movements.
The SVM was trained using 10-fold cross validation. Model
performance on validation sets across folds with 3 random
seeds was calculated and averaged.

3.4. Image captioning

Dataset. We randomly sampled 250 images each from
in-domain, near-domain, and out-of-domain categories
from the validation set of the nocaps dataset [3] and 250
images from the MSCOCO test set [42], creating a set
of 1,000 images. We collected 2,290 human captions
with > 6 words per caption and > 2 captions per image
from AMT participants (Fig. S48, S49, S50, S65). We
implemented additional controls in our AMT interface. For
example, workers were not allowed to submit a caption
before viewing the image for > 4s (Supp. Section S5 ).

To generate machine captions, we used: GIT [63],
OFA [64], BLIP [41], ClipCap [46], and Microsoft’s
Azure Cognitive Services [2] (Table S3). For open-source
models, we used the largest variants finetuned on the COCO
Captions dataset [10, 42]. We collected 5,000 machine
captions with 5 captions per image (Supp. Section S5).

Turing test (human judge). We collected responses from
293 AMT participants (Fig. S51). Each participant was
presented with image-caption pairs and indicated whether
the caption was generated by a human or Al To ensure that
the participants read the captions carefully, we prevented
response times < 3s. We removed responses from
non-native English speakers (Supp. Section S5).

Turing test (Al judge). We trained an SVM model
for binary classification (human versus machine) on the
dataset of human and machine captions. We randomly
sampled 400 captions from each of the 5 models to get
2,000 machine captions and combined them with our 2,000
human captions. We used the OpenAl API [47] to obtain
4,096-dimensional embeddings (text-similarity-curie-001
model) for each caption as input features to train the SVM
with 10-fold cross-validation and 3 random seeds.

3.5. Word associations

Dataset. We chose 150 unique cue words (50 nouns,
50 verbs, and 50 adjectives), spanning a wide range
of occurrence frequencies [59] (Table S4; see Section
S6 for multiple additional controls).  Associations to
each cue word were collected from human subjects
(Fig. S68, S69, S74), and from the following language
models: Word2vec [50], GPT2 [52], GPT3-embedding
(based on davinci embedding), GPT3-curie-prompt (based
on “curie” prompt completeion), and GPT3-davinci-prompt
(based on “davinci” prompt completeion) [8]. For the
human associations, we followed two procedures: (1) Free
associations, whereby participants provided a one-word
answer to the question: “What is the first word that
comes to your mind when you hear the word [cue word]?”
(Fig. S68); and (2) Prompt-based associations, whereby
participants completed a prompt with one word (Fig. S69).
The prompts used for the human prompt-completion
were the same prompts used for GPT3-curie-prompt and
GPT3-dacinci-prompt (Table S6). All participants were
English native speakers living in the US. Section S6
describes the implementation of each model to retrieve
word associations.

Turing test (human judge). For the human-judge Turing
tests, we collected data from 50 native English speakers
on AMT (Fig. S70). In each trial, a cue word and a
corresponding guess word (association) were presented and
the judge had to choose whether the association was made
by a human or by an Al model (Section S6).

Turing test (AI judge). We trained a linear SVM classifier
with 10-fold cross-validation [15] to distinguish between
human-made and machine-made associations. We used the
the distance between the cue and guess word embeddings,
based on (1) Word2Vec, (2) GPT2, or (3) GPT3 (davinci).

3.6. Conversation

Dataset. We collected 300 conversations between: (1)
two humans, (2) a human and an Al model, (3) two
Al models. For the conversations including humans,
we recruited 150 fluent English participants to have a
conversation over a chatting platform. The participants
did not know whether they were speaking with another
human or with an AI chatbot (see instructions in Supp.
Section S7.1.2). We collected conversations containing
24 exchanges each. For the human-human conversations,
we added 40 conversations from the Topical-Chat dataset
[24], selected based on a minimum length of 24 exchanges.
Multiple example conversations are included in Supp.
Section S7.4.

For the AI chatbots, we used three state-of-the-art
language models: Blenderbot3 (175B model) [57], GPT3
text-davinci-002 [48], and GPT3 text-curie-001 [48] (see
settings, pre-processing, prompts, and control details in



Supp. Section S7.1.4).

Turing test (human judge). We chunked each
conversation into 8§ different lengths, including the initial
3, 6, 9, 12, 15, 18, 21, and 24 exchanges. There
were 208 human judges (AMT: 200, in-lab: 8). The
participants were presented with 20 randomly sampled
chunked conversations with different lengths and had to
respond, for each of the two speakers, whether the speaker
was a human or a machine and the gender (Fig. S89). As a
control, speakers also had to select the general topic of the
conversation from a list of five topics. We only considered
judges that correctly classified at least 15 topics out of 20
and removed incorrectly classified trials.

Turing test (AI judge). We evaluated whether simple
Al models can discern whether a sentence was generated
by a model or a human. We only examined single
sentences here. Therefore, these results provide only an
initial proof-of-principle lower bound for Al judges. We
built four corpora, one containing all the sentences written
by humans (the human corpus), and the others with the
sentences produced by Blenderbot, GPT3text-davinci-002
and GPT3text-curie-001 (the Al corpora). We used BERT
embeddings [19] to tokenize each sentence, and fed the
tokenized sentences to a linear SVM trained to classify
human vs. AI with 10-fold cross-validation.

4. Results

We summarize the results of all the Turing tests in
Fig. 4, by averaging across all Al models and all human
judge demographics. In the Supplementary Material, we
show results separated by Al model and also for different
human judge demographics. For each task, Fig. 4 shows
the proportion of times that a trial was classified as human
(first column), or Al (second column), when the ground
truth was human (first row), or Al (second row). Entries
along each row add up to 100%. When comparing different
Al models for a given task in terms of the ability to imitate
humans, percentages closer to 50% indicate better models.
In contrast, when comparing different judges (e.g., human
judges versus Al judges, or human judges of different
ages or educational backgrounds), higher overall accuracy
indicates better judges.

4.1. Color estimation

Human judges distinguished Al answers as Al 58% of
the time and human answers as human 55% of the time
(Fig. 4a). We broke down performance based on each
individual AI model (Fig. S5). The Google API performed
slightly better (57%) than Azure API (60%) and MCCQ
(65%). Even though the color MCCQ is a simple metric,
it still achieved a moderately good performance in fooling
humans 35% of the time. There was no major difference in
performance of human judges across different age groups

(Figs. S6, S7, S8), education levels (Figs. S9, S10, S11),
or genders (Figs. S12, S13). In contrast, the Al judge
classified human answers as human 43% of the time and
Al answers as Al 34% of the time (Fig. 4g, see Fig. S15 for
individual AI models).

4.2. Object detection

Human judges distinguished Al answers as Al 69% of
the time and human answers as human 52% of the time.
We broke down performance based on each individual Al
model (Fig. S20). Among all the Al models, Detectron
performed the best (49%), with a large gap from the second
best, Google API (65%). This modern object detection
algorithm in computer vision not only achieves outstanding
absolute scores in terms of standard evaluation metrics,
such as mAP [53], its response patterns also closely mimic
humans’ by identifying top-3 salient objects in the scene.
Specifically, we used the variant with MaskRCNN [35]
trained on ImageNet and MS-COCO.

There was no major difference in performance of
human judges across different age groups (Figs. S21,
S22, S23), genders (Fig. S27, S28) or education levels
(Fig. S24, S25, S26). All numbers were within a 5%
difference of the average performance across all human
judges reported above.

Next, we analyzed the classification performance of the
Al judge for this task. In start contrast to human, the Al
judge is able to distinguish between Al and human speakers
much better Fig 4. The overall classification accuracy of
Al judge is 81% (as compared to 56.5% of human judges).
Specifically, Al judge can tell Al responses as Al with a
90% accuracy, and human responses as human with 72%.
The easiest to classify are responses from the Azure API
with Al judges getting a 94% accuracy, while the hardest to
classify are Detectron and Amazon’s Rekognition API with
accuracy of 67% each (Fig. S30).

4.3. Attention prediction

Human judges distinguished human eye movements as
human 63% of the time and Al-generated eye movements
as Al 50% of the time (Fig. 4¢). We examined the Turing
test performance for each Al model separately (Fig. S33).
IVSN [72, 73] outperformed GBVS [29] and DeepGaze3
[39] by 4% and 17%, respectively. We evaluated whether
the agent’s goals during eye movements might influence the
subsequent Turing tests. Human judges performed 2.5%
better in free-viewing (Fig. S36) compared to visual search
tasks (Fig. S35). Free-viewing is mostly driven by pure
bottom-up saliency, and it may be easier to discern scanpath
patterns without target-directed modulation. Consistent
with this idea, GBVS generated more human-like scanpaths
during free-viewing compared with visual search, whereas
DeepGaze3 performed much worse in free-viewing tasks
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Figure 4. Results of the Turing test for each task. Turing test results for human judges (top row) and machine judges (bottom row). For
each task, the confusion matrices report the percentage of times when the trial was labeled “human” (first column) or “AI” (second column)
when the ground truth was human (first row) and Al (second row). Percentages add up to 100 within each row. Here all Al models were
averaged together. See Supplementary Material for results from each Al model and different human judge demographic groups.

than visual search. IVSN performance was similar in both
tasks, which emphasizes the importance of incorporating
both bottom-up and top-down attention mechanism in
computational models of human attention.

Judges across different ages (Fig. S39, S40, S41), and
also male or female judges (Fig. S42, S43), performed
equally well in the Turing tests. Judges with a postgraduate
degree performed slightly worse than the ones with bachelor
degrees or lower (Fig. S44, S45, S46).

As an initial evaluation of Al judges, we trained an SVM
classifier purely based on the sequences of eye fixations
regardless of the image features (Fig. 4h). Interestingly,
a simple SVM Al judge performed 20% better than
human judges. Al judges outperformed human judges
across different models Fig. S34), and different tasks
(Fig. S37, S38). However, this result should be interpreted
with caution since the Al judge was explicitly trained to
classify scanpaths while human judges typically do not have
such prior training.

4.4. Image captioning

Human judges distinguished human captions as human
69% of the time and Al captions as Al 45% of the time
(Fig. 4d). There were rather large differences among
Al models (Fig. S52), with proportions of Al captions
labeled Al ranging from 37% (BLIP) to 59% (ClipCap).
CIDEr is a standard evaluation metric for assessing the
quality of Al-generated captions [62]. OFA shows better
performance than GIT and ClipCap in CIDEr score [64],
but it is not better at imitating human captions, highlighting
the differences between traditional performance metrics

and Turing tests. Human judges labeled captions as
humans slightly more often for imgaes from in-domain
nocaps (Fig. S62), compared to near-domain nocaps and
out-of-domain nocaps (Fig. S63, S64). There were no
differences between judges of different ages (Fig. S54, S55,
S56), male versus female judges (Fig. S57, S58), or judges
with different education levels (Fig. S59, S60, S61).

As a proof-of-principle to build an Al judge, we used the
OpenAl Embeddings API (text-similarity-curie-001 model)
to extract features and trained a linear SVM to discriminate
human versus machine responses.  Surprisingly, even
though this classifier did not use image features, the Al
judge could discern human versus machine answers with
77.5% accuracy, well above the performance of human
judges (Fig. 4j). Similar results were observed across all
the different Al models (Fig. S53).

4.5. Word associations

Human judges labeled human word associations as
humans 60% of the time and Al word associations as Al
43% of the time (Fig. 4e). Results were similar for different
Al models (Fig.S66). Surprisingly, the Word2Vec model
produced word associations that were harder to discriminate
from human ones. There were no major differences
between human judges across different ages (Fig. S71),
genders (Fig. S72), or education levels (Fig. S73).

We used the various word embedding from GPT-series
models and Word2Vec as features to train 3 SVM judges
(independent SVM classifiers based on the embedding
of each AI model). In contrast to human judges, Al



judges could easily distinguish human versus machine
word associations (Fig. 4k). All Al judges outperformed
human judges (Fig. S67). As expected, when training
an SVM classifier based on the embedding of the same
model whose embedding where also used for generating
the guess words, this model classification performance was
essentially perfect. For instance, on the 3rd row on the
left confusion matrix in Fig. S67a, the Al judge trained on
Word2Vec embedding indeed perfectly predicted all guess
words generated by Word2Vec embeddings as Al. While
these cases are good as a sanity check, they should not
be considered in the general evaluation of the Al judges
performance. Hence, we trained 3 different SVM to avoid
such biases.

4.6. Conversation

Human judges distinguished human participants in
conversations as humans 58% of the time and Al agents as
Al 47% of the time (Fig. 4f, S86, S87). Unlike Al models
passing the Turing tests in restricted conversation topics, it
is interesting to note an overall accuracy of 53.5% here in
largely unrestricted conversations.

We separately considered human-human, human-Al,
and AI-AI conversations (Fig. S75). Surprisingly,
human-human conversations were classified as human only
61% of the time and AI-AI conversations were classified
as human 56% of the time. Blenderbot was classified
as human 64% of the time, suggesting that Als can be
perceived as more human than humans themselves. In
human-Al conversations, human participants were labeled
as humans 61% of the time, and Als were classified
as Al 55% of the time. The overall classification
accuracy in human-Al conversations was higher than AI-Al
conversations (58% versus 41%), suggesting that Als reveal
their true self more often when talking to humans than
amongst themselves. This observation is consistent with
the notion that human judges are more accurate in making
comparisions rather than absolute evaluations.

When comparing different AI models (Fig. S75),
Blenderbot was most often labeled as humans, 66% of
the time in AI-AI conversations and 50% of the time in
human-Al conversations (Table S7). The results of the
Turing test depended on the conversation length (Fig. S88).
Al models were less adept at passing as humans in longer
conversations. Among all the Al models, GPT3-curie
showed the sharpest drop while Blenderbot maintained
relatively high performance. These observations highlight
that model sizes, specific training on conversation data,
and incorporation of external memory modeling past
conversation history are important factors when imitating
humans in conversations.

Younger judges performed better in discerning Als from
humans than older judges in AI-AI conversations (Fig. S77,

S78, S79, S85a). Surprisingly, male judges performed
slightly better than female judges (60% versus 57.5%),
especially in AI-AI conversations (46% versus 39%)
(Fig. S80, S81, S85b, Table S8). Intriguingly, education
had a slight negative relation with classification accuracy
of human judges (54%, 53% and 51% for middle-high
school, college and postgraduate degrees respectively),
especially in human-Al conversations. However, this trend
was reversed in AI-AI conversations where postgraduate
judges performed better than middle-high school judges
(53% versus 41%) ( Fig. S82, S83, S84, S85c¢).

We trained a simple SVM judge to distinguish whether
a sentence in a conversation was from humans or Als.
Consistently with the other experiments, the AI judge
beat human judges by a large margin (66% versus 53.5%,
Fig. 41). This Al judge performed particularly well
in classifying Blenderbot sentences (Fig. S76), in stark
contrast with human judges who were more easily fooled
by Blenderbot than GPT models. Human judges likely
focus on high-level conversation understanding rather than
single-sentence statistics in the Turing tests.

5. Discussion

The Turing test has been extensively discussed, and
contested, as a means to assess general intelligence. Instead,
we focus on Turing tests as a metric to evaluate whether an
algorithm can imitate humans or not. Table S1 summarizes
the observations in a highly simplified binary format; this
table is a grand average and the reader is referred to all
the actual numbers for a more accurate description of the
findings. Remarkably, the algorithms tested throughout the
current work seem to be quite close to passing a Turing
test when evaluated by human judges. Given that imitating
humans can be very good for certain purposes but could
also easily be turned into potentially evil applications, these
observations call for more extensive and rigorous scrutiny
of machines that can imitate Al.

One step to mitigate risks from human imitators is to
build AI judges. Our results show that even simple Al
judges like the ones introduced here can do a better job than
human judges in detecting machine answers. The results
of current Al judges should not be over-interpreted because
Al judges were explicitly trained to classify responses from
humans versus Als, while human judges were not. This
point raises the possibility that humans may be trained to
better recognize machine answers in the future.

An algorithm’s ability to imitate humans did not
always correlate with traditional performance metrics
like accuracy, implying that Turing tests provide a
complementary assessment of Al models to existing
benchmarking frameworks. Comparisons between models
in Turing tests also provide insights helpful for developing
future Al models that can better align with humans.



The datasets and evaluations introduced here are quite
extensive (21570 Turing test trials, 904 human and Al
judges, 6 vision and language tasks, several demographic
groups), but they barely scratch the surface of what
needs to be done. There are essentially infinite possible
Turing tests. The results of a Turing test depend on the
task, the algorithm, how the question is formulated, the
characteristics of the human judge and many other variables

This work provides a comprehensive, yet certainly far
from exhaustive, evaluation of state-of-the-art AI models
in terms of human emulation. These efforts pave the way
for the research community to expand Turing tests to other
research areas, to build better imitators, and better detectors
of imitators. If more Al models can “blend” in among
humans and take over tasks that were originally unique
yardsticks of being humans, this makes us ponder what
makes us humans and whether we are mentally, ethically,
and legally ready for the rapid revolution brought forth by
Al technologies.
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