
Unveiling Principles of Neural Computations:

From Biological to Artificial Intelligence, and Back

Dissertation

zur

Erlangung der Doktorwürde

(Dr. sc. UZH ETH Zürich)

vorgelegt der

Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich

und der

Eidgenössischen Technischen Hochschule Zürich

von

Giorgia Dellaferrera

Aus

Italien

Promotionskommission

Giacomo Indiveri

Valerio Mante

Evangelos Eleftheriou

Angeliki Pantazi

Emre Neftci

Wulfram Gerstner

Zürich, 2023

Giorgia Dellaferrera

Unveiling Principles of Neural
Computations: From Biological to
Artificial Intelligence, and Back

Doctoral Thesis

Institute of Neuroinformatics
Universität Zürich & ETH Zürich

PhD committee members

Prof. Dr. Giacomo Indiveri
Prof. Dr. Valerio Mante

Prof. Dr. Evangelos Eleftheriou
Dr. Angeliki Pantazi

Prof. Dr. Wulfram Gerstner
Prof. Dr. Emre Neftci

January 2023

Abstract

The algorithms of deep learning have their roots grounded in simplified models of brain circuits.
With the advent of powerful computational resources, the design of artificial neural networks de-
parted from their biological inspiration to focus on engineering powerful machines able to solve
complex tasks with accuracy comparable to or even exceeding human performance. However, in
the past decade, neuroscience and artificial intelligence have found again their initial symbiotic
relationship. Neural mechanisms are used as a source of inspiration for the development of deep
network architectures and training algorithms, to find computational models with improved ro-
bustness to noise, the ability to generalize, and to perform continual learning. On the other hand,
biologically inspired networks offer a new perspective on understanding how the brain learns and
processes information, potentially leading to innovative therapeutic applications. Additionally,
standard deep learning models have been successfully applied to the analysis and understanding
of neural data. A remarkable example is the possibility of using artificial networks as models of
some areas of the brain, to predict, and even drive, neural activity from sensory stimuli. In this
thesis, I delve into the interplay between deep learning and neuroscience. First, I introduce the
basic concepts of artificial neural networks from a biological perspective, and I overview existing
literature on biologically plausible learning and computational models of the cortex. Second, I
present my contributions to the field of brain-inspired learning, including an optimizer inspired
by synaptic integration, a learning rule solving the biologically unrealistic aspects of backpropaga-
tion, and the application of self-supervised spiking networks to the task of blind source separation.
Third, I introduce a comparative analysis of the robustness of cortical neurons and artificial neu-
ral networks to adversarial noise, showing how deep learning can be used to manipulate neural
activity toward prescribed patterns. Fourth, I present a framework to quantify the gap between
the performance of humans and state-of-the-art artificial models, focusing on the field of language.
Finally, I reflect on the future steps of artificial intelligence and more specifically on the debate on
whether neuroscience is necessary to drive breakthrough progress for deep learning.

i

Contents

Abstract i

Part 1 Introduction 1

1 Introduction to the Thesis Structure 2
1.1 The context . 2
1.2 Thesis contribution . 4

2 Artificial Neural Networks: Methods, Success and Limitations from a biolog-
ical perspective 5
2.1 Biological roots of artificial neural networks . 5
2.2 Plasticity and learning . 6

2.2.1 Learning in biology . 7
2.2.2 Learning in artificial neural networks . 8

2.3 Network architectures under a biological lens . 13
2.3.1 Similarities between biological circuits and artificial networks 13
2.3.2 Fully connected neural networks . 17
2.3.3 Convolutional neural networks . 17
2.3.4 Recurrent neural networks . 21
2.3.5 Transformers . 23

2.4 Representative examples of state-of-the-art achievements 24
2.4.1 Computer vision benchmarks . 25
2.4.2 Playing games: AlphaGo . 26
2.4.3 Writing human-like text: GPT3, LaMDA 26
2.4.4 Driving plasma fusion: Tokamak and reinforcement learning 26
2.4.5 Predicting protein structure: AlphaFold . 27
2.4.6 Medical diagnosis: predicting pathologies before onset 28
2.4.7 Generating art: image and music . 30

2.5 Longstanding challenges of artificial neural networks 31
2.5.1 Catastrophic forgetting . 31
2.5.2 Lack of out-of-distribution generalization 33
2.5.3 Susceptibility to adversarial attack . 35
2.5.4 Temporal and spatial credit assignment problem 35
2.5.5 Energy and data-hungry models . 37

3 Biologically Inspired Algorithms for Neural Networks 40
3.1 Principles of biological computations . 40
3.2 Addressing catastrophic forgetting with biologically inspired strategies 41

3.2.1 Approaches inspired by synaptic consolidation 41
3.2.2 Approaches inspired by the replay mechanism 42

3.3 Towards bio-plausible training for ANNs . 44
3.3.1 The neural gradient representation by activity differences (NGRAD) frame-

work and predictive coding . 45

ii

3.3.2 Supervised learning . 47
3.3.3 Self supervised learning . 58

3.4 Addressing energy consumption: spiking neural networks 60
3.4.1 The potential in the efficiency of SNNs compared to ANNs 62
3.4.2 Neuronal dynamics and elements of neuronal systems 62
3.4.3 Leaky integrate and fire neuron models . 63
3.4.4 Spike encoding . 64
3.4.5 Power efficiency of spiking neural networks 64
3.4.6 The spiking neural unit . 65

4 Modeling the Mind 66
4.1 Digital twins of the brain . 66

4.1.1 The encoding and the decoding problems 66
4.1.2 Examples of ANNs to study biological vision 67
4.1.3 Brain-Score . 68
4.1.4 Substitute models to drive perception . 68

4.2 Limitations of deep learning applied to neuroscience 69
4.2.1 No free lunch from deep learning in neuroscience 69
4.2.2 A roadmap for neuroscience research . 70
4.2.3 The brain as a highly social network . 70

Part 2 Results 72

5 GRAPES: a Biologically Inspired Optimizer 73
5.1 Introduction . 73
5.2 Results . 75

5.2.1 The GRAPES algorithm . 75
5.2.2 Convergence analysis of GRAPES applied to SGD 82
5.2.3 Main steps of the convergence analysis . 84
5.2.4 Simulation results on handwritten digit classification 86
5.2.5 Performance under various learning rules and data sets 87
5.2.6 Mitigation of catastrophic forgetting . 91
5.2.7 Application of GRAPES to biologically inspired neural networks 93
5.2.8 Behaviour of GRAPES under hardware constraints 95

5.3 Discussion . 95
5.4 Methods . 99

6 PEPITA: a Biologically Plausible Training Scheme 105
6.1 Introduction . 105
6.2 Background and related work . 106

6.2.1 Credit assignment in conventional networks 106
6.2.2 Credit assignment without random feedback path 107

6.3 Error-driven input modulation . 107
6.3.1 Overview of the proposed learning rule . 107
6.3.2 The learning rule . 108
6.3.3 Extension to convolutional layers . 109

6.4 Results . 110
6.4.1 Methods . 110
6.4.2 Experimental results . 110
6.4.3 Analytic results . 113
6.4.4 Final weight distribution . 118

6.5 Discussion . 119

7 Dendritic Learning for Blind Source Separation 121

7.1 Introduction . 121
7.2 Results . 122

7.2.1 Learning of repeated input patterns by a two-compartment neuron model . 122
7.2.2 Synthesized and natural auditory stimuli 124
7.2.3 Learning of mixture sounds in the network model 126
7.2.4 Experiment 1: sound segregation with single and multiple mixtures of syn-

thesized sounds . 127
7.2.5 Experiment 2: sound segregation with alternating multiple mixtures of syn-

thesized sounds . 130
7.2.6 Experiment 3: effect of temporal delay in target presentation with synthe-

sized sounds . 131
7.2.7 Experiment 4: sound segregation with single and multiple mixtures of real-

world sounds . 133
7.2.8 Experiment 5: image segregation with single and multiple mixtures of real-

world images . 133
7.3 Discussion . 135
7.4 Materials and methods . 138

7.4.1 Datasets . 138
7.4.2 Neuron model . 138
7.4.3 Network architecture . 139
7.4.4 Experimental settings and performance measure 140

8 Fooling the Primate Brain with Small, Targeted Image Manipulation 142
8.1 Introduction . 142
8.2 Results . 143

8.2.1 Deceptive images of human faces evoked monkey face-like neuronal responses 143
8.2.2 Deceptive images also led to target category-like responses in two other di-

rections . 148
8.2.3 Deceptive images reveal mismatch between primate vision and ANNs . . . 149

8.3 Discussion . 153

9 Human or Machine? Turing Tests for Vision and Language 156
9.1 Introduction . 156
9.2 Related Works . 157

9.2.1 Glimpse of the 70-year history of Turing test 157
9.2.2 AI versus humans in vision tasks . 158
9.2.3 AI versus humans in language tasks . 158

9.3 Experiments . 159
9.3.1 Color Estimation . 160
9.3.2 Object detection . 160
9.3.3 Attention prediction . 161
9.3.4 Image captioning . 161
9.3.5 Word associations . 161
9.3.6 Conversation . 162

9.4 Results . 162
9.4.1 Color estimation . 163
9.4.2 Object detection . 163
9.4.3 Attention prediction . 164
9.4.4 Image captioning . 164
9.4.5 Word associations . 164
9.4.6 Conversation . 165

9.5 Discussion . 165
9.6 Methods and Additional Results for the Conversation Task 166

9.6.1 Results . 167

9.6.2 Results comparing AMT and in-person experiments 169
9.6.3 Results for the human judge on different length of conversations 169
9.6.4 Dataset collection: instructions to human participants 175
9.6.5 Dataset collection: prompt and settings for GPT3text-davinci002 and GPT3text-

curie-001 . 177
9.6.6 Human judges responses collection . 178
9.6.7 Example of collected conversations . 178

Part 3 Discussion 185

10 Discussion 186
10.1 Summary and Outlook . 186
10.2 A parallel quest: the design of neuromorphic hardware 187
10.3 How crucial is neuroscience for the progress of AI 188
10.4 How crucial is AI for the progress of neuroscience 188
10.5 Some unanswered, and possibly unanswerable, questions 189

11 Author Contributions 191

Bibliography 192

Part 1

Introduction

1

Chapter 1

Introduction to the Thesis Structure

This thesis addresses the complex and increasingly entangled interplay between artificial intelli-
gence (AI) and biological networks. It is composed of two main topical areas: “from neuroscience
to AI” and “from AI to neuroscience” (Figure 1.1). The first part focuses on biologically inspired
algorithms for training both artificial and spiking neural networks. The second part focuses on
neural prediction and control using artificial neural networks, mapped in particular to the visual
cortex of rodents and primates. The organization of the introduction reflects the topical structure
of the thesis. I first present an overview on renowned and recent biologically inspired algorithms
to both improve the performance of BP and to train neural networks by avoiding the biologically
unrealistic aspects of BP. Then, I present milestone works in which artificial network models have
been successfully employed to predict and control neural activity, in particular in the visual cortex
of rodents and primates. Before delving into the technical aspects of bio-inspired neural networks
and neural networks for investigating neuroscience, I give a general introduction on the basic con-
cepts of machine learning, outlining the connections with biological circuits. I also point out some
of the impressive achievements obtained with artificial intelligence on very complex tasks. I em-
phasise these results and constrast them with the failure on seemingly easy tasks such as generalize
to different input samples or remember sequences of tasks, related to longstanding limitations of
neural networks, such as adversarial attack and catastrophic forgetting.
The introduction serves to give the basis for understanding the technical chapters of the thesis.
Chapters 5, 6 and 7 introduce original ideas developed during my Ph.D. to train neural networks
based on principles of synaptic integration, local computation, and dendritic computation, respec-
tively. Next, Chapter 8 introduces how deep networks can be used to investigate robustness to
adversarial noise in the primate brain. The quest for learning algorithms that can be implemented
by the brain is undeniably motivated by trying to answer one of the greatest problems in science:
understanding how the brain computes. Additionally, a deeper understanding of learning in the
brain could help guide the treatment of human brain diseases. Furthermore, the development of
biologically inspired algorithms is often motivated as crucial to narrow the gap in performance
between AI and the animal brain, but how can we evaluate this gap under a general framework?
Chapter 9 proposes a novel methodology resorting to the Turing test to quantify the gap in per-
formance between humans and machines, focusing in particular in conversational tasks.

1.1 The context

Artificial neural networks (ANNs) are learning models inspired by the biological circuits that consti-
tute the animal brain. The Backpropagation of the Error (BP) algorithm [Rumelhart et al., 1995]
is the most commonly used training scheme for ANNs. Since the introduction of BP, neurosci-
entific principles have been proposed as a fertile source of ideas to push forward the design of
ANNs by either enriching the dynamics of BP or devising alternative training schemes. Introduc-
ing principles of biological learning in the training of ANNs has been demonstrated to address
issues commonly faced by BP, such as overfitting and catastrophic forgetting. A striking ex-

2

Chapter 1. Introduction to the Thesis Structure 3

ample is dropout, the regularization process preventing overfitting, which was motivated by the
theory of sexual reproduction [Srivastava et al., 2014]. A second example is replay, a mechanism
inspired by the reactivation in the animal brain of neuronal activity patterns representing mem-
ories, which has been proven effective in mitigating the phenomenon of catastrophic forgetting
[van de Ven et al., 2020]. In parallel, studies of underlying mechanisms of biological learning have
motivated criticisms of BP as a biologically unrealistic strategy of training [Crick, 1989]. In-
deed, several key aspects of BP cannot be implemented by biological neurons: symmetric and
bidirectional connectivity paths, non-local parameter updates, freezing of network activity during
plasticity, and lack of online learning. Motivated by these reasons, the community has proposed
several biologically inspired learning schemes alternatives to BP to alleviate some of the above-
mentioned issues [Lillicrap et al., 2016, Nokland, 2016, Frenkel et al., 2019]. In this context, this
thesis presents both an original way to integrate principles of biological learning in the optimiza-
tion process of BP – the GRAPES optimizer [Dellaferrera et al., 2022b], inspired by dendritic
integration – and a biologically plausible training scheme for ANNs – the PEPITA algorithm
[Dellaferrera and Kreiman, 2022].
On the other hand, although ANNs are extremely simplified models compared to biological net-
works, they offer an unprecedented tool to investigate the mechanisms underlying brain dynamics.
ANNs are the current best models of cortical activity and the finest predictors of neural activ-
ity in the ventral stream [Yamins et al., 2014, Cadena et al., 2019]. Groundbreaking paradigms
have demonstrated that ANN “substitute models” fitted to neural activity can be used to synthe-
size images that guide small neural populations toward a specific response [Bashivan et al., 2019,
Walker et al., 2019]. In my Ph.D. work, I have contributed to strengthening this research line
in three main directions: understanding the patterns of neural activity that drive perception re-
sponses in primates [Yuan et al., 2020], reconstructing visual stimuli from hidden activations, and
predicting neural activity in the rodents’ visual cortex in absence of visual stimulation. In this
thesis, I describe in particular how artificial models mapped to the monkey brain can be used to
fool perception in the primate brain, and how this paradigm can be used to rigorously compare
the robustness to adversarial noise between biological and artificial brains.

Principles of
biological
systems

Incorporate brain
principles into training
- Chapter 5: GRAPES, a
biologically inspired
optimizer

Biologically plausible
training schemes
- Chapter 6: PEPITA, an

ANN training strategy
- Chapter 7: dendritic

neurons for BSS

AI-based strategies to
control neural activity
- Chapter 8: fooling the
primate brain with
image manipulation

Mechanisms
of artificial
networks

The Turing test
- Chapter 9: evaluating the gap
between humans and machines

Figure 1.1: Biological intelligence to artificial intelligence, and back: the framework of this thesis.

4 1.2. Thesis contribution

1.2 Thesis contribution
This thesis summarizes the research I performed during my Ph.D. at the Institute of Neuroinfor-
matics in the group of G. Indiveri (University of Zurich and ETH Zurich) and IBM Research Zurich
in the group of E. Eleftheriou and A. Pantazi between 2020 and 2022. My doctoral studies also
included a research visit at the Harvard Medical School and Boston Children’s Hospital, a summer
school at the Brain Mind and Machine institute mentored by M. Zhang (Harvard and MIT), as
well as the continuation of a collaboration with the group of T. Fukai at the Okinawa Institute
for Science and Technology started in 2019. The ideas and results presented in this thesis are the
fruit of my interaction and work with all these groups.
My Ph.D. research lies at the intersection between Deep Learning and Neuroscience. Specifically, I
worked in two directions. On one hand, my work aimed at designing biologically inspired learning
algorithms for neural networks, both spiking and non-spiking. On the other hand, I investigated
how deep neural networks can be applied to neuroscience research, to gain a better understanding
of the mechanisms governing information processing and learning in the brain.
In Chapter 1 I provide a general introduction to the interplay of Artificial Intelligence and Neu-
roscience. I explain the biological roots of artificial neural networks, give an overview of the basic
concept of machine learning and state-of-the-art architectures providing links with neuroscience,
and introduce existing biologically inspired training algorithms. Furthermore, I review existing
literature on artificial models of the brain, their design choices, achievements and limitations.
The first part of the thesis contains three chapters on neuroscience-inspired artificial intelligence.
In Chapter 5 I present a biologically inspired optimizer that can be applied to both artificial neural
networks trained with Backpropagation or with other biologically inspired training schemes and to
spiking neural networks. This optimizer is shown to lead to improved accuracy, convergence rate,
mitigated catastrophic forgetting and improved robustness to noise and reduced precision. This
work was published in Nature Communications in 2022 as a result of my work at IBM Research
Zurich and the Institute of Neuroinformatics in Zurich [Dellaferrera et al., 2022b].
In Chapter 6 I propose a novel training scheme for artificial neural networks which solves the
biologically nonrealistic aspects of Backpropagation. The algorithm relies on using only forward
computations, leading to a learning rule which is local and not affected by the weight transport
problem. This work was performed during my research stay in the Kreiman Lab and has been
published at ICML 2022 [Dellaferrera and Kreiman, 2022].
In Chapter 7 I present an application of a self-supervised learning scheme for multi-compartmental
spiking neurons to the task of blind source separation. Our results show that a simple learning
model embedded in a simple architecture is able to reproduce some of the behaviors in audio
experiments obtained with human subjects. This work was started as part of an internship in the
Fukai unit and later completed during my Ph.D.. It has been published in Frontiers of Neuroscience
in 2022 [Dellaferrera et al., 2022a].
In the second part of the thesis, I investigate neuroscientific open questions. Specifically, in Chapter
8 I describe how machine learning models can be used to investigate the robustness of neurons
in the visual cortex with respect to minimal perturbation of the visual stimuli. We compare the
vulnerability to adversarial attack between artificial and biological neural networks, and we find
that much larger perturbation budgets are needed to change the perception in the primate brain
compared to artificial circuits. This work has been started by L. Yuang and W. Xiao and I later
worked on expanding the computational findings of the paper, which is currently unpublished
[Yuan et al., 2020].
Finally, in Chapter 9 I focus on quantifying the gap between human and state-of-the-art deep
learning models on the task of conversation. I propose a novel framework to implement the Turing
test for chatbots, using Amazon Mechanical Turk to recruit human judges. This work started as a
collaboration with M. Zhang and G. Kreiman at the BMM summer school in 2022 and continued
as a larger collaboration project involving several tasks. The results are currently unpublished
[Zhang et al., 2022b].
To conclude, in the Discussion I propose some considerations on the future of the interplay of Deep
Learning and Neuroscience, and on the concept of intelligence applied to artificial neural networks.

Chapter 2

Artificial Neural Networks:
Methods, Success and Limitations
from a biological perspective

Biological roots of artificial in-
telligence. DALL·E prompt: A
painting of a robot that has green
leaves on the head and tree roots as
legs, standing on top of a book.

Here I review the impressive achievements of artificial net-
works and the current challenges of AI. I start with a brief
introduction to the most commonly used strategy to train
ANNs, the backpropagation of the error algorithm (BP) and
common architectures in Machine Learning (ML), highlight-
ing their connections to biological circuits. To enable reading
of the core chapters of the thesis to readers unfamiliar with
machine learning, I provide an overview of the basic concepts
that will be used in the technical sections. I will then sum-
marize some of the state-of-the-art results obtained with BP-
trained networks in different domains, including computer
vision and natural language processing. Finally, I will ana-
lyze the current main challenges of ML: catastrophic forget-
ting, out-of-distribution generalization, adversarial attack,
high power consumption, and lack of biological plausibility.
In contrast, the animal brain is able to perform continual
learning, generalize to different distributions, and is robust
to noise. Additionally, the brain operates using very limited
energetic resources. This strongly motivates the community
to get inspiration from how the brain learns and processes
information to model and improve strategies to train neural networks.

2.1 Biological roots of artificial neural networks

The field of computational neuroscience and neuromorphic computing lies at the intersection of
biology, machine learning and neural network theory. While the research line focusing on the
development of biologically plausible AI algorithms has been enhanced only in the past decade,
the roots of neural networks are grounded in biology. Artificial neural networks were originally
proposed as an abstract and simplified mathematical description of the mechanisms of learning and
input processing taking part in biological circuits [Wythoff, 1993]. In 1943, McCulloch, a neuro-
physiologist, and Pitts, a logician, proposed a simplified mathematical model of a neuron working
in discrete time and with boolean values. The basic assumption is that, as the nervous activity
presents an ‘all-or-none’ behavior, neural events can be treated by means of propositional logic.
The so-called MCP neuron model served as a basic cell of a wired network and was introduced

5

6 2.2. Plasticity and learning

a b

Figure 2.1: (a) Headline of the original backpropagation paper [Rumelhart et al., 1986]. (b)
Schematics of the BP in [Rumelhart et al., 1986]

with the goal of understanding how the brain produces complex patterns by using many intercon-
nected cells. [McCulloch and Pitts, 1943a]. The next step in modeling circuit learning was taken
by Rosenblatt, a psychologist, in 1958, when he proposed the single-layer perceptron by building
on the MCP neuron model. The perceptron, now considered the first modern neural network, is a
hierarchical structure composed of layers of neurons in which the output of each neuron is given
by the weighted sum of its input, compared to a fixed threshold [Rosenblatt, 1958]. With the
perceptron, Rosenblatt demonstrated that mathematical models of neurons can learn from data
by adjusting the synaptic weights. In particular, the perceptron could solve classification tasks for
linearly separable classes. The interest in neural network learning escalated a couple of decades
later when in 1986 Rumelhart proposed the backpropagation (BP) algorithm to train fully con-
nected networks [Rumelhart et al., 1986]. Figure 2.1 shows (a) the headline of the original paper
proposing the BP algorithm and (b) a sketch of the forward and backward computation as illus-
trated in the manuscript [Rumelhart et al., 1986]. Section 2.2.2 provides an introduction to the
BP algorithm in supervised learning settings. In supervised settings, training consists in learning
a mapping between an input x and an output y, so that the output of the network matches the
target (t) - or label- associated with the input. For example, supervised tasks include mapping an
image or a video to a class, a caption, a region of interest (ROI), or a command, or mapping a
sound sample to text or a picture.
In Rumelhart’s work, neural networks stopped serving as tools to model biological plausible prop-
erties, and their role shifted to working as a tool in pursuing the actual goal of optimizing the
performance of a model for an application [Gregory Ashby and Helie, 2011]. Following the intro-
duction of backpropagation, neural network theory rapidly diverged from rigorously modeling and
explaining the operating principles of biological circuits and rather focused on designing highly
accurate and specialized machines to solve increasingly complex and narrow tasks. The driving
force of machine learning development quickly became the design of algorithms that could perform
close to - or even better than - humans in highly specific tasks. As a consequence of this role
shift, while neural networks present features that retain similarities with biological circuits – e.g.,
learning occurs through modification of connection strength among neurons –, they rely on several
requirements that are incompatible with the dynamics of neurons in the brain.

2.2 Plasticity and learning

Learning in the brain occurs through the adjustment of the connections between neurons, i.e.
the synapses. Analogously, learning in artificial networks consists in updating the parameters
connecting the nodes in order to minimize a loss function. Credit assignment refers to the process
of modifying the synaptic strength between neurons - or nodes - in a network to minimize the

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 7

network’s output error in a specific task. Here, I review learning rules governing the dynamics of
weight change in biology, spiking neural networks, and artificial neural networks

2.2.1 Learning in biology

Unveiling the mechanisms through which the animal brain learns and adapts to new tasks and
contexts is an intriguing open challenge in neuroscience. While a comprehensive understanding
of how learning and the formation of new memories occur in complex biological systems remains
elusive, both experimental and computational progress has been made in studying principles of
biological computations. Two fundamental aspects of plasticity in biological circuits are the locality
of modulatory signals and spike-based information propagation. The review in [Khacef et al., 2022]
provides a comprehensive overview of spike-based learning models. In the following sections, I
report a selection of the fundamental rules and requirements studied in computational neuroscience.

Locality of learning rules The principle of locality in biological systems requires that all the
information necessary to compute the update of a synapse is directly accessible in space and in
time to the synapse. The local nature of computations emerges from the physical constraints of
biological circuits. The local information may be related to the spike time or spike frequency
of the pre- and post-synaptic neurons to which the synapse is directly connected. When the
synaptic update depends only on the activity of the pre- and post-synaptic neurons, the plasticity
dynamics are referred to as ‘two-factor learning rule’. Other plasticity schemes take into account
an additional third factor which presents a feedback signal (e.g., reward, punishment, or novelty)
that modulates the weight update prescribed by the neuronal activity. The third factor, which
hence is not local, plays the role of neuromodulators, such as dopamine, that modulate plasticity
in the brain [Khacef et al., 2022].

Spike-based computations and Hebbian learning In the first half of the 20-th century,
studies on the chemical synapses revealed that neural information processing occurs in the form
of spikes. Synaptic inputs are integrated into the soma of the neurons, which emits an output
spike once the membrane potential reaches a threshold value, propagating along the axon. The
information flow among neurons goes from the pre-synaptic axons to the post-synaptic dendrites
[Khacef et al., 2022].

Inspecting the brain. DALL·E
prompt: A painting of a scientist
that looks at a microscope with
many neurons, on a background of
a painting with a brain.

In 1949 Hebb published his formal postulate for the neu-
ral mechanisms of learning and memory: When an axon
of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased
[Hebb, 1949]. The principle of increasing synaptic strength
between two co-active neurons was hence defined Hebbian
plasticity. It is also referred to as Long-Term Potentia-
tion (LTP). In Hebb’s postulate, the time-dependency of
the spike is taken into account in the directionality (i.e., A
fires before B).
Expanding on Hebb’s postulate, other Hebbian-like rules
were proposed to take into account mechanisms of synap-
tic weakening. Among these, the Oja’s rule introduces
a ‘forgetting’ parameter and solves the stability problem
with a form of local multiplicative normalization for synap-
tic weights [Oja, 1982]. In this direction, the Bienenstock
Cooper Munro (BCM) learning rule states that during pre-
synaptic stimulation, the low-frequency activity of the post-
synaptic neuron leads to Long-Term Depression (LTD) while high-frequency activity would lead
to LTP [Bienenstock et al., 1982].

8 2.2. Plasticity and learning

Experimental and computational evidence supports the hypothesis that synapses have local access
to the timings of pre-synaptic and postsynaptic neurons spikes, and that information is contained
in the timing of the spikes rather than in their rate [Gerstner et al., 1993, Markram et al., 1995,
Khacef et al., 2022]. Specifically, a pre/post pairing with a time difference of 10 ms leads to
LTP, while using the same time difference of 10 ms in an inverted post/pre pairing leads to LTD
[Markram et al., 1997]. This result led to the development of the Spike-Timing Dependent Plastic-
ity (STDP) rule, which models long-term synaptic plasticity as dependent on the relative timing
of pre- and postsynaptic action potentials [Song et al., 2000]. If the post-synaptic neuron spikes
after the pre-synaptic one (∆t < 0), the synapse is potentiated. If instead the pre-synaptic neuron
spikes after the post-synaptic neuron (∆t ≥ 0), the connection is weakened. The time window in
which the spike interaction leads to adjustments in synaptic weight is defined by the time constants
τ+ and τ−, respectively. Given these elements, the synaptic update of STDP is described by:

∆WSTDP =

{
A+exp(

∆t
τ+

) if ∆t < 0

−A−exp(
−∆t
τ−

) if ∆t ≥ 0
(2.1)

where A+ and A− are the maximum amounts of synaptic change.
To take into account the dependence on the repetition frequency of the pairs of spike, Pfister and
Gerstner [Pfister and Gerstner, 2006] later introduced the Triplet rule, in which LTP and LTD
depend on a combination of three pre- and post-synaptic spikes. Two pre- and one post- lead to
triplet depression, while one pre- and two post- lead to triplet potentiation. The Triplet-based
STDP (T-STDP) is shown to fit experimental data from visual cortical slices as well as from hip-
pocampal cultures and can be mapped to a BCM learning rule. Furthermore, the T-STDP is
able to model the spike-rate dependence, which is correlated with the Calcium concentration of
the postsynaptic neuron. In particular, the rate-dependency of learning leads LTP to dominate
over LTD at high frequencies regardless of precise spike-timing. In biological circuits, the precise
spike-timing dependence could be implemented through local processes in the synapses that have
access to both the timing information of pre-synaptic spikes and to the postsynaptic spike times.
The information on the spike-timing can be received through sensing the neuron’s local membrane
voltage changes or by receiving large depolarizations caused by APs that are actively backpropa-
gated in the dendritic tree [Stuart and Sakmann, 1994, Khacef et al., 2022]. A further extension of
the STDP rule is the so-called Voltage-based STDP (V-STDP) [Clopath and Gerstner, 2010]. The
V-STDP model unifies multiple experimental observations such as post-synaptic membrane voltage
dependence, pre-post spike-timing dependence, and post-synaptic rate dependence. Specifically,
synaptic changes depend on presynaptic spike arrival and the postsynaptic membrane potential,
filtered with two different time constants. Hence, in the V-STDP rule, depression and potentiation
are two independent mechanisms whose sum produces the total synaptic change. This plasticity
rule leads both to the development of localized receptive fields and to connectivity patterns that
reflect the neural code.

2.2.2 Learning in artificial neural networks

Gradient-based learning In 1998, LeCun and colleagues [Lecun et al., 1998a] wrote “There are
several approaches to automatic machine learning but one of the most successful approaches popu-
larized in recent years by the neural network community can be called numerical or gradient-based
learning”. Today, more than 30 years later, gradient-based learning is still the most popular – and
successful – method to train neural networks. Indeed, Artificial Neural Networks trained with the
backpropagation algorithm are a successful example of a gradient-based learning technique. Given a
network architecture, gradient-based learning algorithms synthesize a complex decision surface that
can classify high dimensional patterns such as handwritten characters [LeCun and Cortes, 2010].
A neural network computes a function yp = F (xp,W), where xp is the p-th input pattern, yp
is the associated p-th network output, and W is the collection of adjustable parameters in the
system, also called weights. In a classification task, the network’s output is the class predicted for
the input pattern, or the vector of probabilities associated to each class. Given a target response

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 9

tp, the discrepancy between the target and the network’s output is measured by a loss function
Lp = D(tp, F (W,xp). The learning problem consists in finding the parameters W that minimize
the loss function over a set of labeled examples held out from the training set, i.e., the test set.
In order to minimize the loss function, gradient-based learning relies on estimating the impact
of small variations of the parameter values on the loss function, by computing the gradient of
the loss function with respect to the parameters. The loss function is associated with an energy
landscape curvature. In the case of deep neural networks, the such landscape is non-convex and
features global minima, local minima and saddle points. At initialization, the network is initialized
at one point of the landscape curvature. The goal of the training is to move the network’s state
towards the minimum points of the landscape. In the gradient descent algorithm, the network’s
parameters are iteratively adjusted by following the steepest path downward at each step. This
can be described by the following update rule:

Wij,t =Wij,t−1 − η
∂L(W)

∂Wij,t
(2.2)

The gradient of the loss function is the first-order derivative of high-dimensional variables. The
optimization involves finding a point where the gradients have a very small magnitude (ideally
zero). The gradient gives the direction of the maximum increase of the function. By updating
the network’s parameters along that direction, the training steps decrease the magnitude of the
gradient.
Several loss functions can be employed to train DNNs. In the context of regression tasks, some
common loss functions are:

• the mean absolute error, i.e., the difference between actual and predicted values
L(y, f(x)) = |y − f(x)|;

• the mean square error or quadratic loss, i.e., the mean of the square of the difference between
actual and predicted values
L(y, f(x)) = 1

2 (y − f(x))2;

• the root mean squared error, i.e., the square root of the mean square error L(y, f(x)) =√
1
2 (y − f(x))2;

• absolute deviation

• ϵ-insensitive loss, in which the error is taken into account only if smaller than a threshold ϵ
max((|y − f(x)| − ϵ), 0).

In the context of binary classification, some standard losses are:

• 0-1 loss, which is related to the accuracy; it amplifies false negatives and is not differentiable
L(y, f(x)) = 1

N

∑N
i=1 δf(xi

̸= yi);

• the square loss, i.e., the mean of the square of the difference between actual and predicted
values
L(y, f(x)) = 1

N

∑N
i=1(yi − f(xi))

2;

• the binary cross-entropy loss, which evaluates a score that summarizes the average difference
between the actual and predicted probability distribution for predicting the correct class
L(y, f(x)) = 1

N

∑N
i=1 ti · log(yi) + (1− ti) · log(1− yi); ;

• the Hinge loss, which is used when the target values are in the set {−1, 1};
L(y) =

∑N
i=0max(0, 1− f(x) · y;

• the squared Hinge loss, i.e., the square of the Hinge loss.

The parameter initialization is crucial to obtain good accuracy in training. The goal of initialization
techniques is to initialize the networks in a place of the energy landscape which facilitates the
optimization process. Some strategies to choose the initial weight matrices are:

10 2.2. Plasticity and learning

• Constant initialization, in which all parameters are initialized to the same values. The
drawback is that, if the weights are set all to the same values, in the deep layers all the
gradients are the same, preventing learning.

• Random initialization, in which the parameters are initialized with a Normal distribution
with a given mean and standard deviation. The choice of the standard deviation is key to
ensuring learning. the drawback of this technique is that the output of the layer scales with
the number of input neurons at each layer, therefore the variance of the activations becomes
very large in the deeper layers.

• The Xavier initialization scheme [Glorot and Bengio, 2010], which was introduced to alleviate
the issue of random initialization. It scales the variance of the initialization by the input image
dimension in the first layer and by the dimension of the preceding layer in deeper layers. This
allows keeping the same variance as that of the input at each hidden layer. This strategy is
used with the tanh non-linearity.

• The He initialization strategy [He et al., 2015], which is similar to the Xavier initialization,
but it also takes into account the fan-out of the hidden layers. It is used specifically with
ReLU non-linearity.

Delta rule The delta rule is a gradient descent learning rule for supervised learning proposed by
Widrow and Hoff [Widrow and Hoff, 1960]. It is also called the Least Mean Square (LMS) method.
The delta rule is applied to adjust the weights of the inputs to artificial nodes in a single-layer
neural network. For each input vector, the output vector is compared to the target response. If
the difference is zero, the weights are not updated. If the output is different from the target, the
weights are updated to minimize the difference. The change in weight from the input node ui to
the output node uj is given by:

∆Wij = η · ai · ej , (2.3)

where η is the learning rate, ai represents the activation of ui and ej is the difference between
the target and the actual output of uj . In practice, the delta rule implements gradient descent by
moving the weight vector from the point on the surface of the paraboloid down toward the lowest
point, the vertex.
The delta rule has been hypothesized to be implemented by pyramidal spiking neurons with den-
dritic prediction of somatic spiking [Urbanczik and Senn, 2014]. It is a special case of the more
general backpropagation algorithm, which is applied to train multi-layer networks.

BackPropagation and supervised learning The backpropagation of the error (BP) algorithm
is the most popular and commonly used strategy of credit assignment to train neural networks.
BP was introduced in the framework of supervised learning, i.e., the setting in which each training
sample is accompanied by labels. The scope of BP-based learning is to approximate a unidirectional
mapping from a n-dimensional input space, where n is the number of input variables, to an m-
dimensional space, where m is the number of output variables. Such learning is implemented
during a training phase by modifying the strength of the weights connecting the network’s node
based on error feedback on training samples. [Wythoff, 1993]
Figure 2.2 reports the schematics of a fully-connected network with the key terminology needed to
understand the technical chapters that will follow.

• The nodes are point-like neuron models. organized in a multi-layer hierarchical structure.

• The input layer is the bottom layer of the network and encodes an input signal x, e.g., an
image. It does not perform any processing on the signal.

• The hidden layers hi progressively extract mode complex features from the input signal, that
travels from the bottom to the top layers of the network. The term hidden indicates that
such layers do not receive input from not deliver output to the ’outside world’. The subscript
i indicates the layer index.

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 11

x

h1

h2

y

t e

W1

W2

W3

W2
T

W3
T

Backpropagation

(1) Forward Pass

- Input to Output

- Input signal travels

- the network is active

(2) Backward Pass

- Output to Input

- Error travels

- the activity is frozen

Input layer

Hidden layers

Output layer

Target
Error

Weights /
Parameters

Weight
transpose

Figure 2.2: Schematics of a fully connected 2-hidden layer network reporting keywords. Circles
denote nodes and arrows denote connections. Illustration of forward and backward pass.

• The output layer is at the top layer of the network y and delivers the network’s output to
the ’outside world’ or the ’user’.

• The network’s learnable parameters, i.e., the weights Wi, connect neurons in contiguous
layers.

• The output y of the network is compared to a target or label to compute an error.

The BP training scheme entails two alternating phases per input signal – or batch of input signals:
the Forward pass, or activation flow, and the Backward pass, or error flow.

• In the Forward pass, the input signal x travels from the bottom to the top layers through
the network’s weights Wi. At each node an activation (floating value) is computed, based
on the weighted sum of the node’s input: ai = Wixi−1. A non-linear monotonic function σ
(e.g., sigmoid, hyperbolic tangent, or REctified Linear Unit for hidden layers, softmax for
output layers) is applied to the nodes activations: hi = σ(ai). The role of the non-linearity
is to allow a multilayer neural network to perform nonlinear functional mappings.

• In the Backward pass, the error signal computed at the output layer is propagated from the
top to the bottom layers, through the transpose of the weights used in the forward pass. As
the error travels through the network, the network’s activity is frozen. This is the learning
phase is the algorithm. The error signal at each layer is computed by applying the chain rule
of calculus. This is also known as automatic differentiation - reverse mode differentiation.
The update of each parameter is proportional to the derivative of the loss function with
respect to the parameters. The updates are computed and applied in a backward fashion.

The equations describing the computations performed for the updates are:

• computing the weight change ∆Wij,t = η ∂L
∂Wij

• applying the update Wij,t =Wij,t−1 −∆Wij,t

where t is the current time step, η is the learning rate (i.e., the update step size) and L is the loss
function.

12 2.2. Plasticity and learning

Optimization strategies The networks parameters can be updated;

• once per epoch, computing the gradient for all training samples. This is the gradient de-
scent (GD) strategy, which is stable for small datasets, but too slow for big datasets. It is
computationally inefficient.

• once per sample, computing and applying the gradient at each training sample. This is
stochastic gradient descent (SGD). It requires less memory than GD and it is faster, however,
it is more affected by noise and consequently is less stable. On the other hand, it helps with
generalization.

• once per subset of training samples, the so-called mini batch. This is known as mini-batch
gradient descent, which combines the advantages of GD and SGD in terms of memory re-
quirement, convergence rate, and stability. In practice, this strategy updates the weights
based on the average gradient over the mini-batch.

The gradient descent-based algorithms may converge to local minima when the loss landscape is
non-convex. To overcome such a limitation, the optimization can take momentum into account.
This technique modifies the basic gradient descent updates by retaining information about previous
updates and combining it with the gradient computed at the current step. The mathematical
description of the momentum optimizer is:

∆Wij,t =

(
η ∂Lt

∂Wij

)
+ (λ∆Wij,t−1)

where λ is the momentum factor that weighs how much of the previous update should be retained.
Typically, λ = 0.9. Introducing momentum in the optimization allows increasing the learning
speed, avoid converging to local minima and smooth the update variation. This is possible as
the introduction of momentum dampens the oscillations in GD/SGD. Indeed the current update
mostly uses information from previous updates and only some information from the current update.
The choice of the learning rate needs to take into account that, if the step size is

• too large, at each step the loss oscillates between opposite “sides” of the minimum on the loss
landscape, possibly leading to divergence;

• too small, the learning requires an intractable number of steps and, additionally, it might get
stuck in local minima.

The Learning Rate Schedule is a strategy to mitigate these issues. It makes use of decaying learning
rate, through schemes such as step decay, cosine or exponential decay. Generally, this keeps the
learning rate big for the first few epochs and reduces it afterwards. In practice, the choice of the
learning rate depends inversely on the curvature of the convex function. The steeper the function,
the lower the learning rate that can be used. Another scheme for the learning rate is the so-called
one-cycle learning rate, in which the learning rate initially is small, then it is gradually increased,
and finally it is gradually decreased. Interestingly, this strategy has a connection to how children
learn, sometimes focusing on small details, and other times exploring a lot.
New techniques for optimization in this thesis: Chapter 5

Preventing overfitting One issue of training neural networks is overfitting, the phenomenon by
which the model learns details and noise of the training samples, rather than the general features.
This impairs the generalization to the testing samples, thereby leading to poor test accuracy.
In practice, in the first phase of training, both the error on the training samples and the error
on the testing samples decreases. However, in the second phase, the network learns spurious and
misleading regularities on the training set, leading the test error to increase, while the training error
continues to decrease [Reed, 1993]. Regularization schemes modify learning algorithms to prevent
overfitting. Some popular regularization techniques are dropout, weight decay, early stopping and
data augmentation can be applied.

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 13

Dropout [Hinton et al., 2012] is a training algorithm for neural networks, which is designed to
regularize neural networks in order to improve their generalization performance. Dropout training
is implemented as a modification to standard SGD training. During learning, at each presentation
of a training sample, the input states and hidden unit states of the network are multiplied by a
binary mask with values 0 or 1. The zeros in the mask cause some units to be removed from the
network. This mask is generated randomly each time an example is presented. Each element of
the mask is sampled independently of the others, using some fixed probability p, termed dropout
keep rate. At test time, no units are dropped, and the weights are multiplied by the dropout keep
rate to compensate for that unit being present more often than it was during training. The effect
of dropout is equivalent to training exponentially many neural networks that share weights, then
averaging together their outputs. Therefore, dropout acts as a very effective regularizer, thereby
enabling the training of very large networks [Srivastava et al., 2013].
Weight decay is another effective approach to reducing overfitting. It relies on penalizing large
weights, by adding extra terms to the loss function, for example through L1 or L2 regularization.
Avoiding large weights prevents relying too much on the content of a few single pixels or nodes.
Furthermore, early stopping can be used to determine when overfitting is starting. In early stop-
ping, the training samples are split into a training and validation set and, when the validation
accuracy starts decreasing, indicating that overfitting has begun, training is stopped.
Finally, the approach of data augmentation is used to generate more data points from the existing
data set. It entails the transformation of data through different methods including rotations,
translations, reflections, scaling, cropping, adding Gaussian noise, and adding occlusion. The
models trained with data augmentation are more robust to the deformations applied to the training
images and generalize better to testing images.

2.3 Network architectures under a biological lens

The BP algorithm has been applied to train increasingly complex neural network models on pro-
gressively more challenging tasks. Here I review some common model architectures in ML and
outline some connections with biological circuits in the brain. Among the wide zoology of models,
I will focus on the architectures that are employed in the technical chapters (Chapters 5 to 9) of
the thesis.

2.3.1 Similarities between biological circuits and artificial networks

The structure of several neural network architectures exhibits undeniable similarities with the
organization of biological circuits. Five essential principles are shared between neuroscience and AI:
hierarchical organization, plasticity at the level of connection strength, non-linearity, normalization,
and sparsity.

Hierarchy The topological organization of the brain is characterized by the interplay of differ-
ent levels each playing a specific and specialized functional role. In particular, the cerebral cortex
of the mammalian brain exhibits connectivity patterns organized into a hierarchy, which encom-
passes the microscopic cellular level, the mesoscopic level of local neural circuits and columns,
and the macroscopic level of nerve fiber projections between brain areas [Zhou et al., 2007]. The
highest structural level consists of the systems level of corticocortical connections. The cortical
areas process the sensory stimuli in a hierarchical fashion, which means that the response prop-
erties change systematically from lower- to higher-level areas. In the visual stream, for instance,
receptive fields have been found experimentally to become larger and the topographic (retinotopic)
organization less pronounced. Therefore, neurons at lower levels are activated by simple features,
such as edge orientation and simple shapes, while neurons at higher levels respond to global, in-
variant, and semantic image features, such as faces and complex motion features. In particular,
the ventral pathway of the visual cortex is composed of the following areas. The lateral geniculate
nucleus (LGN) performs a sort of multi-scale high-pass filtering and contrast normalization, V1

14 2.3. Network architectures under a biological lens

contains pooled oriented edge detectors with local receptive fields, V2 and V4 detect more com-
plex local motifs, and the inferro-temporal cortex that encodes object categories [LeCun, 2012].
This multi-stage pathway of information flow is known as the visual cortical hierarchy (VCH).
[Hilgetag and Goulas, 2020].
Similarly to biological circuits, ANNs exploit depth. Deep neural networks are formed by staking
several layers or blocks of layers. An essential empirical feature of BP, is its ability to learn useful
internal representations of inputs [Lillicrap et al., 2020]. Such representations take the form of low-
level features in the early layers, such as edges orientation, colors and fragments of shapes, and are
combined into semantic features at higher levels. Such intermediate representations allow the mod-
els to grasp several concepts as a combination of shared features [Illing et al., 2021, LeCun, 2012].
An essential feature of high-level representation is that they are invariant (or robust) to irrelevant
variations of the input, such as translation, scaling, mild rotation, and illumination change in the
case of images [LeCun, 2012].
In the next sections, I will outline the main types of layers and their connections with neuroscience.

Neural networks under a bio-
logical lens. DALL·E prompt: An
oil painting of a brain with eyes and
arms that looks into a magnifying
glass, on a background of mathe-
matical formulas.

Plasticity at the level of connection strength Learn-
ing in the brain occurs through experience-driven adjust-
ment of synaptic strength of connections among neurons.
Neural plasticity refers to the ability of the nervous sys-
tem to change its activity and structure in response to in-
trinsic or extrinsic stimuli by reorganizing its connections.
Synaptic plasticity constitutes the premise of the develop-
ment of the brain and to its ability to learn and store mem-
ory [Mateos-Aparicio and Rodríguez-Moreno, 2019].
Analogously, training neural networks consists of updating
initially random parameters, i.e., weights and biases, so that
the models learn to perform a specific task. During training,
as the weights are modified, the error on the training pat-
terns is decreased. The process of designing the dynamics
governing the weight updates is termed the Credit Assign-
ment problem.

Nonlinearity As mentioned above, each level of a hierar-
chical model includes a fixed non-linear transformation layer,
which can be a multinomial logistic or a winner-take-all or a
point-wise non-linear mapping (e.g. logistic, tanh, shrinking
function, or half-rectifier). The choice of introducing a non-linearity in the first computational
models of brain mechanisms was originally inspired by the transfer functions of biological neurons.
For instance, the perceptron model [Rosenblatt, 1958] relied on a step function as non-linearity.
The threshold of a step function is a critical input boundary above which outputs are fully ac-
tivated, which is reminiscent of ‘all-or-none’ properties of neurons [Hodgkin and Huxley, 1952].
However, to allow nodes to have analog values, sigmoidal tuning curves [Dayan and Abbott, 2005]
and functions with a linear component in the positive polarity [Glorot et al., 2011] have substituted
the step functions. Therefore, the most commonly used nonlinear functions in state-of-the-art ML
models do not reflect the input-output relation in biological neurons. The most commonly used
point-wise non-linear functions are:

• sigmoid function f(x) = 1
1+e−x , with output in the range [0,1]. The gradient is positive close

to the zero, but decays to zero away from the zero.

• hyperbolic tangent (tanh) f(x) = ex−e−x

ex+e−x , with output in the range [-1,1]. As for the sigmoid,
the gradient is positive close to the zero, but decays to zero away from the zero.

• rectified linear unit (ReLU) f(x) = max(x, 0), with output in the range [0,inf). The gradient
is 0 for negative values of the input and 1 for positive values.

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 15

• Leaky ReLU, f(x) = max(x, αx). The gradient is α for negative values of the input and 1
for positive values.

• softmax, generally for the output layer, f(xi) = exi∑
j exj , with output in the range [0,1]

Recently, some biologically inspired activation functions have been proposed, however, they have
not had a significant impact in the community [Bhumbra, 2018].

Normalization Homeostatic plasticity includes a set of mechanisms that stabilize and normal-
ize network activity to lie within certain ranges or to have a certain distribution, independent of
input statistics or network parameters. This ensures that normal brain function is maintained
[Shen et al., 2020]. Among these mechanisms, divisive normalization is a canonical computa-
tion in various areas of the brain [Carandini and Heeger, 2011]. It consists of dividing the initial
input-driven activity of a neuron by the summed activity of a large pool of neighboring neurons
[Louie et al., 2013]. In the brain, normalization occurs across four spatial scales: normalization of a
single neuron’s activity, which brings closer the firing rate of two neurons; normalization of synaptic
weights of a neuron, which multiplicatively adjusts the strength based on firing rates; normalization
of a layer of neurons, which ensures that the mean of the cumulative distribution for neurons in a
layer is kept constant; normalization of an entire network of neurons, to maintain stable the global
distributions of firing rates and synaptic weights for the network [Shen et al., 2020]. Normalization
was originally proposed to explain nonlinear responses in the primary visual cortex. In the lower
stage of the ventral pathway of the visual cortex, the lateral geniculate nucleus performs a contrast
normalization operation on the input [LeCun, 2012]. Furthermore, divisive normalization has been
found to play a role in other areas of sensory systems in mechanisms such as contrast gain control
in the retina and thalamus, surround suppression in the middle temporal area, and gain control in
the auditory cortex. Additionally, normalization explains neural responses underlying higher-order
processes such as multisensory integration and visual attention [Louie et al., 2013].
Analogously, artificial neural networks heavily rely on normalization. ML normalization is func-
tionally equivalent to normalization in the brain: both drive activation patterns of hidden units
toward a homeostatic state, where all neurons are equally used [Shen et al., 2020]. Normalization
is a standard component of state-of-the-art architectures. A general multi-stage architecture for
hierarchical feature learning at each level contains a normalization layer, a linear filtering (e.g.,
convolution), a non-linear transformation, and a pooling layer. The normalization layer may be a
whitening operation, or in the case of spatial signals, a high-pass filtering with local energy nor-
malization at a single scale or multiple scales [LeCun, 2012]. Normalization can be implemented
through whitening activations at every training step or at some interval, either by modifying the
network directly or by changing the parameters of the optimization algorithm to depend on the net-
work activation values [Wiesler et al., 2014]. However, if these computations are combined with
the optimization steps, the gradient descent step may not take into account the normalization
[Ioffe and Szegedy, 2015]. To address this issue, some more sophisticated normalization techniques
have been proposed, including batch normalization, layer normalization, and weight normalization
[Lin, 2021]. These techniques and their variants help to stabilize hidden unit activity and accelerate
network training [Shen et al., 2020].
The batch normalization (BN) performs a global normalization along the batch dimension such that
for each neuron in a layer, the activation over all the mini-batch training cases follows a standard
normal distribution. This approach ensures that, for any parameter values, the network always
produces activations with the desired distribution. As a result, BN reduces the internal covariate
shift, which is the change in the distribution of network activations due to the change in network
parameters during training. From a biological standpoint, BN is related to the normalization of the
activity of a neuron, which is recognized as an important stabilizing mechanism [Shen et al., 2020].
BN allows us to use much higher learning rates and be less careful about initialization. Furthermore,
BN also acts as a regularizer and, in some cases, it can substitute Dropout [Ioffe and Szegedy, 2015].
Finally, BA significantly reduces the training time in feed-forward neural networks.
However, BA strongly depends on the mini-batch size and it is not obvious how to apply it to
recurrent neural networks. [Ba et al., 2016]. Building on BN, the layer normalization (LN) com-

16 2.3. Network architectures under a biological lens

putes the mean and variance used for normalization from all of the summed inputs to the neurons
in a layer on a single training case. Unlike BN, LN performs the same computation at training and
test times. LN can be easily applied to recurrent neural networks by computing the normalization
statistics separately at each time step. In recurrent networks, LN has shown an effective stabilizing
effect in the hidden state dynamics [Ba et al., 2016]. In the brain, layer-wise normalization occurs
in sensory systems such as the fruit fly olfactory system[Shen et al., 2020].
Finally, the weight normalization (WN) applies the normalization over the incoming weights. It
relies on a reparameterization of the weight vectors that decouples the length of the weight vectors
from their direction. WN does not introduce dependencies between the examples in a minibatch,
therefore it can also be applied to recurrent models [Salimans and Kingma, 2016]. Biologically, the
brain implements a mechanism that is related to weight normalization, known as synaptic scaling. If
the firing rate of a neuron is on average greater than its target firing rate, then all of its incoming ex-
citatory synapses are weakened to reduce its future activity, and vice versa [Turrigiano et al., 1998].
An additional mechanism of weight normalization in biology is the dendritic normalization, which
occurs locally on individual branches of a neuron’s dendritic arbor. If one synapse is strengthened,
then its neighboring synapses on the arbor are weakened [Royer and Paré, 2003a].

Sparsity The neocortex represents information using sparse distributed patterns of activity
[Barth and Poulet, 2012]. The activity of the neurons is sparse since, at any point in time, only a
small fraction of neurons are firing while the rest remain silent. Representations are distributed,
which means that, despite each active neuron contributing information, it is the set of active neu-
rons that determines what is being represented. Sparse representations have been experimentally
observed in early auditory, visual and somatosensory areas [Ahmad and Hawkins, 2016]. Sparsity
ensures that only a small percentage of the neurons consume energy at every instant, complying
with the constrained energy resources of the brain. Furthermore, it reduces the memory require-
ments of the learning and information processing circuits. Experimentally, interplay between spar-
sity and scaling the size of biological brains has been observed, revealing that brains that have
more neurons exhibit more sparse activity [Herculano-Houzel, 2012].
In contrast, most standard machine learning models are dense and over-parametrized, which implies
heavy memory and computation effort during model training and inference. For energetic reasons,
sparsity is a desirable property for artificial neural networks as well. Sparse activations can decrease
the memory footprint of regular networks to fit mobile and battery-powered devices. Furthermore,
sparsity alleviates the growing energy and performance costs of complex models. Sparsity also
enables shorten training time, reducing the computational time resources. Finally, sparsification
leads to improved generalization and robustness and to improved performance for inference and/or
training [Hoefler et al., 2021]. Therefore, an important branch of ML research focuses on methods
to sparsify activity in neural networks. “Today’s sparsification methods can lead to a 10-100x
reduction in model size, and to corresponding theoretical gains in computational, storage, and
energy efficiency, all without significant loss of accuracy” [Hoefler et al., 2021]. The most powerful
technique to reduce memory requirements is known as pruning [Hoefler et al., 2021, Reed, 1993].
Overall, pruning reduces the representational complexity by zeroing out subsets of the model pa-
rameters, hence using only a subset of the dimensions at a time. The underlying principle is to
train networks larger than necessary and remove the parts not needed. The elements that can be
sparsified are the neurons and the weights, as well as the filters in convolutional layers and the
heads in attention layers. Furthermore, in gradient-based training, also errors and gradients can
be sparsified to only update weights partially. Sparsification can be applied after training - often
followed by fine-tuning- or during training - following a sparsification schedule, i.e., how fast to
prune how many elements. Several approaches to select the elements to be removed have been pro-
posed, including evaluating the network with and without the elements in question (not scalable),
removing elements randomly, removing weights with the smallest absolute magnitude, and merging
neurons with similar output activations and rewiring the network accordingly [Hoefler et al., 2021].
The review by Hoefler and colleagues [Hoefler et al., 2021] provides a more in-depth overview of
the key techniques and ideas of network sparsification.

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 17

a b

Fully Connected Convolutional

Figure 2.3: (a) Schematics of a fully connected layer. (b) Schematics of a convolu-
tional layer with weight sharing. Adapted from https://www.oreilly.com/library/view/
learning-tensorflow/9781491978504/ch04.html.

2.3.2 Fully connected neural networks

A fully connected neural network consists of a sequence of fully connected or dense layers that
connect every node in a layer to every node in the following layer. A fully connected layer is a
function from Rn to Rm where n is the input dimension and m is the output dimension. Figure
2.3(a) shows the diagram of a fully connected layer. If yk is the k-th element of the output of the
fully connected layer, it can be written as yk = σ(

∑n
j=1Wkjxj), where σ is a nonlinearity and is

applied element-wise.
Fully connected layers are structure ‘agnostic’, which means that there are no specific assumptions
or requirements for the input structure. This allows using fully connected models for a broad spec-
trum of applications. However, this flexibility comes at the cost of a lower performance compared
to more input-specific layers. The following sections will present some examples of ML archi-
tectures tailored to specific tasks and applications, such as convolutional networks for computer
vision, LSTM cells for time series, and Transformers for speech processing and computer vision.

2.3.3 Convolutional neural networks

Convolutional Neural Networks (CNNs) are architectures that have been specifically designed to
process images. This specificity allows encoding of given features in the model, in particular
by extracting two-dimensional features. CNN models consist of a series of layers of three types:
convolutional layers, pooling layers and fully connected layers. The development of CNNs has been
strongly inspired by the mechanisms governing the visual cortex. In 1959, Hubel and Wiesel carried
out experiments on the cat’s striate cortex. They discovered that simple cells exhibit an enhanced
response both to specific edge orientation and location in the receptive field, meaning that they
have a higher firing rate when a bar of a particular orientation is shown in a particular location
(Figure 2.4(a)). Complex cells receive input from many simple cells and thus have more spatially
invariant responses. Hence, complex cells can be considered as a combination of several simple cells
(Figure 2.4(b)). These operations are modeled in a convolutional neural network, where the role of
simple cells is modeled by convolutional layers and that of complex cells by pooling layers (Figure
2.4(c)). The first computational model of the findings of Hubel and Wiesel was the Neocognitron,
proposed in 1980 by Fukushima [Fukushima, 1980] which consists of a cascading model of the two
types of cells, applied to pattern recognition tasks. This model was later extended to more complex
architectures including the LeNet model by LeCun in 1998 [Lecun et al., 1998b], designed to solve
the handwritten digit classification task MNIST (Figure 2.7(a)).

https://www.oreilly.com/library/view/learning-tensorflow/9781491978504/ch04.html
https://www.oreilly.com/library/view/learning-tensorflow/9781491978504/ch04.html

18 2.3. Network architectures under a biological lens

b ca

Figure 2.4: (a) Hubel and Wiesel’s experiments on the cat’s striate cortex. Response to shining a
rectangular light spot with different spatial rotations. Reproduced from [Hubel and Wiesel, 1959].
(b,c) Relationship between (b) simple and complex cells (components of the visual system) and
(c)convolutional and pooling layers (base operations of a convolutional neural network. Reproduced
from [Lindsay, 2021].

Convolutional layer The basic operation of a convolutional layer is obtained by applying a
convolution operation to the input image. The convolutional layer is a collection of convolutional
filters, the kernels or filters. The input to each convolutional layer has three dimensions: height,
width and depth, where the depth is the number of channels. For example, in an RGB image, the
depth is equal to three. The input is convolved with these filters to generate the output feature
map. The convolution involves the multiplication between the weights and the input. As each
input channel to the convolution layer is two- dimensional, the multiplication between weights and
input is usually done between a 2D array of weights – the filter or kernel – and an array of inputs.
The multiplication between the filter and the input is a dot product, which involves element-wise
multiplication and the results are summed to give the final output in the form of a scalar quantity.
Therefore, the application of a small filter to every location in the image creates a feature map, i.e.,
a 2D array containing the filtered values of the input. A convolutional layer has as many feature
maps as filters applied. Each filtered value present in the feature map is then passed through a
non-linearity. The distance between two consecutive receptive fields is known as a stride.
Several features are shared between the visual stream in the animal brain and the convolutional
layers. First, both are characterized by translation invariance, which means that the same object
elicits similar responses independently of its location in the visual field in the top layers encoding
complex and semantic features. Second, convolutional networks resemble the hierarchical structure
of the visual cortex: the filters at the lower layers extract information about edge orientation and
simple shapes, while the layers above combine low-level information into more complex features.
Applications of FC and Conv layers in this thesis: Chapter 5 and 6

Pooling layer The pooling layers are introduced to reduce the risk of overfitting, by reducing the
size of the convolved feature map. Pooling layers downsample the feature map obtained through
the convolutional layer. Downsampling refers to the process of producing a lower-resolution image
of input that still contains all the important features but does not address the finer details of
the original input. They summarize the features present in the feature map by combining them
in patches. Taking the maximal (resp. the average) activation in a small section of each feature
map downsamples the image and leads to complex cell-like responses. This operation is denoted
‘max-pooling’ (resp. ‘average-pooling’) [Lindsay, 2021]. Furthermore, pooling helps in reducing
the computational load, saves memory, and overall reduces the number of parameters.

Alexnet Since the introduction of LeNet, an increasingly large number of architectures have
been proposed. Different architectures are defined by different combinations of layer types, depth,

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 19

b

c d

a

Figure 2.5: (a) LeNet-5 architecture. Reproduced from [Lecun et al., 1998b]. (b) Alexnet ar-
chitecture. Reproduced from [Krizhevsky et al., 2012]. (c) 96 convolutional kernels of size
11×11×3 learned by the first convolutional layer on the 224×224×3 input images. Taken from
[Krizhevsky et al., 2012]. (d) A building block of a residual network. Taken from [He et al., 2016a].

kernel sizes, and regularization techniques. In this context, one of the most influential papers in
computer vision introduced AlexNet, a network composed of five convolutional layers, some of
which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way
softmax. In AlexNet, the dense layers have most of the parameters of the model, many more
compared to convolutions, and they perform the vast majority of the computation. Compared
to the LeNet model, the AlexNet architecture increases the number of feature extraction layers
from five to seven. Furthermore, the ReLU function is used as nonlinearity instead of the sigmoid.
Finally, larger kernel sizes (5×5) are used in the earlier layers. The AlexNet architecture is shown in
Figure 2.5(b), which illustrates how the computational image processing tasks are shared between
two GPUs working in parallel for faster training on hardware. Figure 2.5(c) shows the convolutional
kernels learned by the network’s two data-connected layers. When trained on the ImageNet dataset
[Deng et al., 2009a] (Figure 2.7(d)), the network achieved state-of-the-art performance, earning the
title of ILSVRC Winner 2012.
The features learned by the network are general and can be applied to across datasets and tasks.
For instance, by removing the last softmax layer, the features extracted by the last dense layer
can be applied to tasks other than classification, for example, to decode information on which the
network is not trained.

Biological features and criticisms of CNNs During training, the AlexNet model has been
shown to learn various frequency- and orientation-selective kernels, and colored blobs. Such repre-

20 2.3. Network architectures under a biological lens

sentations are reminiscent of the features of orientation selectivity that emerge in the retinotopic
map of the animal’s visual cortex. An additional similarity with biological vision is the hierarchical
processing of the input signal: as the information travels from the bottom to the top layers of the
network, the extracted features at each layer become increasingly more complex. However, CNNs
present the main limitation in terms of biological plausibility, that is weight sharing. Weight sharing
consists of passing the same filter over the entire input image. This strategy substantially reduces
the number of trainable parameters and consequently the training time and cost. Furthermore,
weight sharing allows feature search to be insensitive to feature location, hence increasing general-
ization and preventing overfitting. However, weight sharing cannot be implemented by biological
neurons, as synaptic plasticity is local and neurons cannot share receptive fields. Furthermore, the
filter values can be both positive and negative, thus the same neuron can be weighted by both
inhibitory (negative) and excitatory (positive) weights. In the visual system, connections between
areas tend to come only from excitatory cells [Lindsay, 2021]. Outside the domain of biological
plausibility, deep CNNs suffer from another major criticism, the vanishing gradient problem, that
is the very small values of the gradient preventing the weights from changing during the back-
ward pass. This limitation is particularly disadvantageous because increasing the network depth
has been demonstrated to greatly improve accuracy, especially for challenging tasks. An effective
solution to the vanishing gradient is the introduction of residual neural networks.

What can AI learn from neu-
roscience? DALL·E prompt: An
oil painting from Botero of a robot
learning from a book on the biology
of the brain.

Residual networks A Residual Neural Network (ResNet)
is a model architecture that contains skip connections or
residual connections. Skip connections entail adding the out-
put of a previous layer to the output of a deeper layer, in
a bypass pathway fashion. This strategy allows gradient
information to pass through the layers, by creating ‘high-
ways’ of information. As the information from the earlier
parts of the network is passed directly to the deeper parts
of the network, this mitigates the ‘vanishing’ magnitude of
signal propagation, allowing to effectively optimize training
in deeper networks. Additionally, by reducing the impact of
the vanishing gradient, the learning speed increases.

The first proposed neural network containing cross connec-
tivity was the Highway network [Srivastava et al., 2015] in
2015. In this model, the skip connections are modulated by
learned gating mechanisms that, by merging the information
of different layers, introduce regularization of the informa-
tion flow. The shortcut gates can be opened and closed, in
a data-dependent fashion. This strategy allows us to train
networks 100 layers deep and to achieve a much higher convergence rate than the standard feed-
forward networks. Concurrent with the Highway network paper, He and colleagues proposed the
ResNet models, residual learning frameworks that empower training of very deep models by in-
troducing residual blocks [He et al., 2016a]. Compared to the Highway network, the ResNet mod-
els present identity shortcuts, thus parameter-free and always operating (i.e., data-independent).
Figure 2.5(d) shows the diagram of a skip connection with double-layer skip, that uses ReLU as
nonlinearity. The residual block consists of a conventional feedforward network plus a residual
connection. The conventional feedforward network may contain nonlinearities and regularization
operations. In the same research line of the Highway Network and ResNet, in 2017 Huang pre-
sented the Dense Convolutional Network (DenseNet) model [Huang et al., 2017a]. DenseNet relies
on each layer to every other layer in a feedforward fashion. This technique allows alleviating the
vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and reduce
the number of parameters.

Applications of AlexNet, ResNet and DenseNet in this thesis: Chapter 8

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 21

2.3.4 Recurrent neural networks
Recurrent Neural Networks (RNNs), compared to the described fully connected and convolutional
models, are tailored to process sequential data as input. This feature makes RNNs particularly
suited for applications in the field of natural language processing and time series analysis. Indeed,
the context of an element, e.g., a word in the case of speech processing, is key in understanding its
role in the sequence, e.g., its meaning in a sentence. An RNN is a neural network that simulates a
discrete-time dynamical system that has an input xt, an output yt, and a hidden state ht, where
t represents time. The dynamical system is defined by:

ht = fh(xt, ht−1) (2.4)
yy = fo(ht) (2.5)

where fh and fo are a state transition function and an output function, respectively.
A conventional RNN is constructed by defining the transition function and the output function as:

ht = fh(xt, ht−1) = ϕh(W
Tht−1 + UTxt) (2.6)

yy = fo(ht) = ϕo(V
Tht) (2.7)

where W, U and V are the transition, input and output matrices respectively, and ϕh and ϕo are
nonlinear functions, typically sigmoid or tanh.
When unfolded in time, as shown in Figure 2.6, an RNN can be seen as a deep network, as the
input travels through several nonlinearities [Pascanu et al., 2013]. The schematics show that RNNs
can be thought of as several copies of the same network, where each copy passes the information
to the following one. The recurrent nature of RNNs, which implies the existence of loops within
the architecture, allows information to be retained over multiple time steps. The possibility of
connecting past information to the current tasks enables modeling and solving time-dependent and
sequential tasks, such as language translation and speech processing. However, while theoretically
RNNs could retain information about past inputs and discover temporal correlations between events
separated by a long time delay, in practice RNNs are not able to learn long-term dependencies.
Indeed, RNNs are trained with backpropagation-through-time (BPTT), which for long sequences,
i.e., long delay between inputs and related teacher signals, suffers from decaying error flowing
back “in time”. In practice, long-term components go exponentially fast to norm 0, preventing
the model from learning correlations between temporally distant events. This phenomenon, which
leads to prohibitive training times or no learning at all of long data sequences, is known as vanishing
gradient [Pascanu et al., 2012]. A solution to the vanishing gradient issue was proposed with the
introduction of Long-Short Term Memory Networks [Hochreiter and Schmidhuber, 1997] and of
Gated Recurrent Units [Cho et al., 2014].

Long-Short Term Memory Networks Long-Short Term Memory Networks (LSTMs) are
neural network architectures designed to address the vanishing gradient problem of RNNs, al-
lowing the networks to capture long-term dependencies of temporal sequences. LSTMs were
proposed in [Hochreiter and Schmidhuber, 1997] and later refined with several variants includ-
ing [Gers et al., 2000, Gers et al., 2003, Graves et al., 2005]. Training LSTMs relies on a gradient-
based algorithm enforcing constant error flow through internal states of the network’s self-connected
units. Such an enforcing is obtained by introducing in each unit structures called gates, whose role
is that of removing or adding information to the cell state. The gates consist of a sigmoid layer
and a pointwise multiplication operation. The LSTM units are called memory cells and contain

• a forget gate, which establishes what information can be removed from the current cell state,

• a multiplicative input gate unit, which decides which information needs to be stored in the cell
state and which protects the memory information of the cell from perturbations by irrelevant
inputs, and

• a multiplicative output gate unit, which protects other units from perturbation by current
irrelevant information stored in the cell.

22 2.3. Network architectures under a biological lens

c d

a b

Figure 2.6: (a) A conventional neural network unfolded in time. Reproduced from
[Pascanu et al., 2013]. (b) Architecture and equations of a GRU unit. Reproduced from
[Daoulas et al., 2021]. (c,d) Architecture and equations of an LSTM memory cell and its gate units.
(c) Reproduced from the original paper proposing LSTMs [Hochreiter and Schmidhuber, 1997]. (d)
Reproduced from [Daoulas et al., 2021]. In panels (b) and (d), each line carries a vector from the
output of one node to the inputs of others. The pink circles indicate pointwise operations (e.g.,
vector addition), while the yellow boxes are learned neural network layers. Lines merging repre-
sent concatenation, while a line forking denotes its content being copied and the copies going to
different locations.

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 23

The output of the LSTM cell contains information about the three gates. The set of equations
governing the dynamics of LSTMs is reported in Figure 2.6(d). These features enable LSTM models
to learn long data sequences. Indeed, the long-term dependencies and relations are encoded in the
cell state vectors and the cell state derivative can prevent the LSTM gradients from vanishing.

Gated Recurrent Units Gated Recurrent Units (GRU) [Cho et al., 2014] are a type of hidden
unit for recurrent networks, which is motivated by the LSTM network, but is simpler to compute
and implement than LSTM. Each GRU unit contains

• an update gate z, which selects whether the hidden state h is to be updated with a new
hidden state h̃, i.e., how much of the past information is passed for the future steps, and

• a reset gate r, which decides whether the previous hidden state is ignored, i.e., how much of
the previous information should be forgotten.

The final activation of the unit, i.e., the vector which holds information for the current unit
and passes it down to the network, is computed from both the update gate and the reset gate
information. Mathematically, the gates zt and rt and the final activation of a GRU unit ht at
time t are described by the equations in Figure 2.6(b). In such equations, σ is the logistic sigmoid
function and Wi are the learnable weight matrices. When the reset gate is close to 0, the hidden
state ignores the previous hidden state and resets with the current input only. This allows the
hidden state to drop any information that is irrelevant later in the next steps, hence, leading to a
more compact representation than LSTMs. Thanks to the coexistence of separate reset and update
gates, each hidden unit will learn to capture dependencies over different time scales. Those units
that learn to capture short-term dependencies feature reset gates that are frequently active, while
those that capture longer-term dependencies feature update gates that are mostly active.

2.3.5 Transformers

Transformers are deep feed-forward ANNs with a (self)attention mechanism. Compared to the
models described so far, they do not have any recurrence or convolution. They have been proposed
originally for machine translation tasks [Vaswani et al., 2017] and have later been extended to
many other domains including visual processing [Dosovitskiy et al., 2021, Tolstikhin et al., 2021,
Steiner et al., 2021, Chen et al., 2021a, Zhuang et al., 2022, Zhai et al., 2022], speech processing
[Chen et al., 2021b, Dong et al., 2018a] and other fields [Lin et al., 2021] such as chemistry [Schwaller et al., 2019]
and life science [Rives et al., 2021]. The workhorse of transformers is modeling sequential data, in
the frameworks of both sequence-to-sequence and sequence modeling. The transformer architecture
for NLP consists of the following building blocks [Phuong and Hutter, 2022]:

• token embedding, to represent a vocabulary element into a vector;

• position embedding, to represent a token’s position in a sequence and make sense of word
order; the values are multiplied by multiple sinusoidal functions so that the network can learn
the position of its different inputs;

• attention, to take into account contextual information to predict the current token; the
attention mechanism relies on a Query-Key-Value (QKV) model;

• multi-head attention, the operation by which transformers run multiple attention heads (with
separate learnable parameters) in parallel and combine their outputs;

• layer normalization, which controls the mean and variance of individual neural network ac-
tivations;

• unembedding, which converts a vector representation of a token and its context into a dis-
tribution over the vocabulary elements.

24 2.4. Representative examples of state-of-the-art achievements

The attention block works as follows. The token t currently being predicted is mapped to a query
vector q, and the tokens in the context are mapped to key vectors kt and value vectors vt. The inner
products qT kt are interpreted as the degree to which token t is important for predicting the current
token q. The products are used to derive a distribution over the context tokens, which is then used
to combine the value vectors. In the concrete example of NLP and language translation, each word
to be translated generally depends only on some of the words of the sentence, which are found
through the attention operation. In this context, the attention results are human interpretable: it
computes what you should attend at the current time step based on the previous time steps.
Compared to recurrent and convolutional layers, the self-attention layers bring three main benefits:
lower computational complexity per layer, a larger amount of operations that can be parallelized,
and the ability to learn long-range dependencies [Vaswani et al., 2017].

Self celebrating AI. DALL·E
prompt: A 3D rendering of a group
of colorful robots partying with fire-
works and partying caps and whis-
tles.

Based on different combinations of building blocks, the
transformer model can be used in three different ways. In
the Encoder-Decoder the entire architecture is employed
and this is typically used in sequence-to-sequence mod-
eling (e.g., neural machine translation). In the Encoder
only way, only the encoder is used and the outputs of
the encoder are utilized as a representation for the in-
put sequence, which is usually applied to classification or
sequence labeling problems. In the Decoder only mode,
only the decoder is used and the encoder-decoder cross-
attention module is removed. This is generally applied to
sequence generation, such as language modeling. Several ar-
chitectures have been proposed with these features, includ-
ing Sequence-to-sequence (seq2seq) prediction (EDTrans-
former) [Vaswani et al., 2017], BERT (encoder-only trans-
former) [Devlin et al., 2018], and GPT (an instance of a
decoder-only transformer) [Brown et al., 2020b]. Further-
more, several variants of the standard transformer architec-
tures have been proposed, the so-called X-former variants,
which lead to improvements in terms of model efficiency,
generalization, and adaptation [Lin et al., 2021].
Transformers have achieved state-of-the-art performance on a wide variety of complex tasks, how-
ever, they suffer from some additional drawbacks compared to convolutional and recurrent net-
works. Transformers are challenging to scale up, they are more difficult to train as they require
manually designed optimization strategies dependent on architectures and tasks, their performance
can be incredibly brittle, and they suffer from biases and adversarial attacks. Furthermore, trans-
formers have not been applied to reinforcement learning, because they need a lot of manual super-
vision. More specifically, self-attention suffers from two main challenges in practical applications.
First, in terms of complexity, the attention module becomes a bottleneck when dealing with long
sequences. Second, self-attention does not assume any structural bias over inputs, and the order
information is learnt from training data. As a consequence, transformers are prone to overfit on
small or moderate-size data [Lin et al., 2021].
Transformer models to predict neural activity in this thesis: Chapter 8.

2.4 Representative examples of state-of-the-art achievements

Artificial neural network applications span a wide range of domains, including automatized health-
care diagnosis, social network analysis, audio and speech processing (e.g., recognition and enhance-
ment), visual data processing methods (such as multimedia data analysis and computer vision),
and natural language processing (NLP) (translation and sentence classification), playing games
and controlling robotic devices (e.g., drones). These applications have been classified into five cat-

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 25

MNIST CIFAR 10 CIFAR 100

ImageNet SVHN

a b c

d e

Figure 2.7: Illustration of five common datasets for image classification: (a)
MNIST [LeCun and Cortes, 2010], (b) CIFAR-10 [Krizhevsky et al., a], (c) CIFAR-100
[Krizhevsky et al., b], (d) ImageNet [Deng et al., 2009a], and (e) Street View House Num-
bers (SVHN) [Netzer et al., 2011]

egories: classification, localization, detection, segmentation, and registration [Alz, 2020]. In this
section, I will review some common datasets for image classification which will be mentioned later
in the thesis, as well as some examples in which AI has achieved impressive results on some specific
and creative tasks. This list is not meant to be exhaustive, but rather spark curiosity in the reader
on the potential of AI. Furthermore, these examples aim to underline the contrast between the
impressive performance of neural networks in challenging tasks and the dramatic failure in contexts
that may seem simpler, such as dealing with noise in the case of adversarial attacks, as it will be
described in following sections.

2.4.1 Computer vision benchmarks
Five common datasets to test models on image classification tasks are:

• MNIST [LeCun and Cortes, 2010] for handwritten digits classifications. The input image
dimension is 28× 28× 1 and the number of classes is 10.

• CIFAR-10 [Krizhevsky et al., a] for naturalistic image classifications with low resolution. The
input image dimension is 32× 32× 2 and the number of classes is 10.

• CIFAR-100 [Krizhevsky et al., b] for naturalistic image classifications with low resolution.
The input image dimension is 32× 32× 3 and the number of classes is 100.

• ImageNet [Deng et al., 2009a] for naturalistic image classifications with high resolution. The
input image dimension is 469× 387× 3 and the number of classes is 1000.

• Street View House Numbers (SVHN) [Netzer et al., 2011] for digits classification in natural
images. The input image dimension is 32 × 32 × 1 (or original images with character-level
bounding boxes) and the number of classes is 10.

26 2.4. Representative examples of state-of-the-art achievements

2.4.2 Playing games: AlphaGo

Challenging human players
with AI. DALL·E prompt: A 3D
rendering of a brain with eyes,
mouth, arms and legs that walks
hand in hand with a robot on a big
chessboard.

The Go game is a 3000 years old Chinese strategic board
game in which two players compete to surround more terri-
tory than the opponent. Because of its complexity in eval-
uating board positions and moves, Go has been labeled as
the most challenging classical game for AI. Indeed, the eval-
uation of all possible moves is computationally intractable.
Several computer programs have been proposed in the past
decades to play the game, including Monte Carlo tree
search [Coulom, 2006, Kocsis and Szepesvari, 2006], com-
bined with policies trained to predict human experts’ moves
[Coulom, 2007]. However, the performance of such algo-
rithms never exceeded that of amateur players. AlphaGo
[Silver et al., 2016] was the first model that was able to de-
feat a Go Europe champion. AlphaGo combines advanced
search trees with deep neural networks trained with both
supervised learning from human experts and reinforcement
learning from games of self-play. The algorithm relies on a
value network to evaluate board positions and on a policy
network to select moves.
AlphaGo employs techniques of deep convolutional networks
initially designed for computer vision tasks. The input of the
network is the board position as a 19× 19 image, which convolutional layers process to construct
a representation of the position. Such a representation effectively reduces the depth and breadth
of the search tree: evaluating positions using the value network, and sampling actions using the
policy network.
The world of Go was shocked to see AlphaGo implement new and novel strategies. First, AlphaGo
learned from human Go players. Now, human players learn from AlphaGo. The student has
become the master.

2.4.3 Writing human-like text: GPT3, LaMDA

In recent years, wealthy tech firms including Google, Facebook and OpenAI have developed a new
class of computer programs known as “large language models”.
The generative pre-trained transformer (GPT) is a language model from OpenAI [Brown et al., 2020b].
It has been trained on all existent public books and a large dump copy of the internet (as of October
2019).
Google’s response to GPT3 is LaMDA, which stands for Language Model for Dialogue Applications.
The model relies on the Transformer architecture. Unlike GPT3, LaMDA was trained on dialogue,
which allowed it to pick up on several of the nuances that distinguish open-ended conversation
from other forms of language. Thanks to the open-ended nature of the dialogues, LaMDA can take
part in conversations touching a wide number of topics with surprisingly nuanced language.
The GPT and LaMDA models support conversational agents, known as chatbots, such as Blender-
Bot [Shuster et al., 2022a]. Such chatbots, while engaging in conversations with users, can rely on
long-term memory and search the internet. As a consequence, the produced dialogues are factually
consistent and do not have any upper bound on the length. At this point, a question arises: are
modern chatbots capable to pass the Turing test?
The Turing test for conversational AI in this thesis: Chapter 9.

2.4.4 Driving plasma fusion: Tokamak and reinforcement learning

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 27

GPT3: successful writer of the
year. DALL·E prompt: A cubist
painting of a robot writing a book.

Fusion power is a promising long-term candidate to supply
the energy needs of humanity [Fus, 1993]. In 1920, Edding-
ton proposed an explanation for the mechanism of nuclear
fusion occurring in stars [EDDINGTON, 1920]. Nuclear fu-
sion releases energy when two atomic nuclei combine to form
a new atomic nucleus. This process requires fuels – deu-
terium and tritium – that are abundant and nearly inex-
haustible on Earth. Furthermore, the process does not re-
lease harmful atmospheric emissions. In order to decelerate
climate change and global warming observed since the mid-
20th century, human activities need to reduce emissions of
greenhouse gases and rely on environmentally sustainable
energy sources. A promising candidate is the energy derived
from nuclear fusion. The possibility of controlling the fusion
process on Earth would offer a potential long-term energy
source that uses abundant fuel supplies and does not pro-
duce greenhouse gases or long-lived radioactive waste.
Generating the process of nuclear fusion on Earth requires
controlling a plasma core, which is a gas comprised of hydrogen isotopes, that needs to be brought
to heating and pressure conditions able to initiate and sustain fusion reactions. This control is
currently realized through magnetic confinement in devices with toroidal symmetry called Tokamak.
The tokamak magnetic control problem is one of the many technological and theoretical problems
of these machines. In particular, one of the most impelling questions of plasma physics is to
investigate the effects of shaping the plasma distribution into different configurations to optimize
the stability, confinement and energy exhaust, and to inform the first burning-plasma experiment,
ITER. The target plasma current, position and shape, i.e. the plasma configurations, are obtained
through a feedback controller that can manipulate the magnetic field. The desired magnetic field
is driven through precise control of several coils that are magnetically coupled to the plasma.
The conventional feedback controllers rely on solving an inverse problem to precompute a set of
feedforward coil configurations. This approach allows for a successful control, however, it requires
demanding engineering effort, design effort and expertise whenever the target plasma configu-
ration is changed, together with complex, real-time calculations for equilibrium estimation. A
revolutionary alternative approach was introduced as part of a collaboration between the plasma
physics researchers at the EPFL Tokamak and the artificial intelligence researchers at DeepMind
[Degrave et al., 2022]. This work relies on Reinforcement Learning (RL) to drive high-dimensional,
high-frequency, closed-loop control using magnetic actuator coils. The proposed RL-designed mag-
netic controller autonomously learns to command the full set of control coils through interactions
via a tokamak simulator. Compared to the conventional approach, the RL-based model is less
computationally intense, allowing to accelerate the study of alternative plasma configurations, as
well as to predict impending plasma disruptions. Such an approach has proven successful in con-
trolling a diverse set of plasma configurations, including elongated, conventional shapes, as well
as advanced configurations, such as negative triangularity and ‘snowflake’ configurations. These
results encourage a fundamental shift of plasma control design from engineering-driven control
of a pre-designed state to artificial-intelligence-driven optimization of objectives specified by an
operator. Once again, artificial intelligence-based approaches have proven to be a crucial tool for
the solution of one of the most challenging problems for human researchers.

2.4.5 Predicting protein structure: AlphaFold

Protein folding is the physical process by which an amino acid sequence assumes its three-dimensional
atomic structure, which endows the protein with its functional properties. Understanding which is
the biologically active conformation of a protein given its amino acid sequence is known as the pro-
tein folding problem [Dill et al., 2008]. In 1972, in his Nobel Prize speech, Christian Anfinsen made
a historic prediction: it should in principle be possible to determine a protein’s three-dimensional

28 2.4. Representative examples of state-of-the-art achievements

shape based solely on the one-dimensional string of molecules that comprise it [Toews, 2021]. Find-
ing a solution to this problem has remained an open challenge in the field of biology for fifty years,
until in 2021 DeepMind designed the AlphaFold model. AlphaFold [Jumper et al., 2021] is an AI
system that predicts a protein’s 3D structure from its amino acid sequence.
Algorithmically, AlphaFold incorporates novel neural network architectures and training proce-
dures based on the evolutionary, physical and geometric constraints of protein structures. In
particular, its architecture jointly embeds several components, including multiple sequence align-
ments and pairwise features, a new output representation and associated loss that enable accurate
end-to-end structure prediction, and an equivariant attention architecture. An essential building
block of the algorithm is the so-called Evoformer, which views the prediction of protein structures
as a graph inference problem in 3D space in which the edges of the graph are defined by residues
in proximity. Furthermore, the model contains a structure module which operates on a concrete
3D backbone structure using the pair representation and the original sequence row of the multiple
sequence alignment representation from the trunk. The AlphaFold network achieves high accuracy
already using only supervised learning on Protein Data Bank data, however, the accuracy can be
further improved by incorporating an approach similar to noisy student self-distillation that makes
effective use of the unlabeled sequence data. Through this architecture, AlphaFold predicts the
3D coordinates of all heavy atoms for a given protein using the primary amino acid sequence and
aligned sequences of homologs as inputs.

Finding protein structures with
AI. DALL·E prompt: A painting in
vangogh style of a robot that holds
the structure of a 3D protein struc-
ture in its hands.

AlphaFold is the first computational method able to predict
protein structures with atomic accuracy to near experimen-
tal accuracy even for proteins for which no similar structure
is known. All structures found with AlphaFold are collected
in a database which is continuously updated with structures
for newly discovered protein sequences. The latest database
release contains over 200 million entries. AlphaFold has the
immediate potential to help us understand the structure of
proteins and advance biological research.

2.4.6 Medical diagnosis: predicting patholo-
gies before onset

In many of the previously described examples, artificial in-
telligence methods have proven to be successful alternatives
to the approaches developed by humans to solve a wide va-
riety of problems, such as driving cars, answering questions,
playing games or designing controllers for plasma. But the
potential of AI goes far beyond improving human capabili-
ties, by increasing performance reliability and speed. AI has
proven to succeed in tasks that humans cannot (currently) perform. A striking example is provided
by the application of AI to medical diagnosis. The Lab of Regina Barzilay at MIT has demon-
strated that neural networks can not only detect pathologies present in the patient from current
scans but can also predict the onset of illnesses after 5 years from the current scans, predictions
that doctors cannot make. Specifically, in the context of breast cancer research, mammographic
breast density is currently assessed by radiologists to diagnose breast cancer. While human diag-
nosis is prone to errors, deep learning models have proven to be more accurate than radiologists
in cancer diagnosis, and they can be used to predict whether a patient will develop cancer after 5
years from the date of the examination. This shows that mammograms contain informative cues
that humans cannot detect, while deep learning models can discover such cues from the data and
leverage them to assess the risk of breast cancer [Yala et al., 2019].

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 29

a

b

c

Figure 2.8: (a) Images generated with the Inception concept. The images are generated from
a random-noise image, so that the result is purely the result of the neural network. Repro-
duced from [Mordvintsev et al., 2015]. (b) Images generated with Dall e. Reproduced from
[Ramesh et al., 2022]. (c) Examples of a DAC-generated melody classified as Klezmer. Repro-
duced from [Colombo et al., 2017].

30 2.4. Representative examples of state-of-the-art achievements

2.4.7 Generating art: image and music

Learning better diagnosis
techniques through machines.
DALL·E prompt: A realistic paint-
ing of a person that teaches a robot
how to read medical charts.

In the previous paragraphs, I have described impressive
applications of artificial intelligence on well-defined prob-
lems, which given some input data and instructions, lead
to the desired output. Such tasks are very complex, how-
ever, they do not involve what we call creativity. In
1998 Margaret Boden in Creativity and Artificial Intelli-
gence - Why AI must try to model creativity [Boden, 1998]
wrote:
Creativity is a fundamental feature of human intelli-
gence, and a challenge for AI. AI techniques can be
used to create new ideas in three ways: by producing
novel combinations of familiar ideas; by exploring the po-
tential of conceptual spaces; and by making transforma-
tions that enable the generation of previously impossible
ideas. AI will have less difficulty in modeling the gen-
eration of new ideas than in automating their evalua-
tion.

In the following decades, Boden’s suggestion to apply com-
putational models to creative tasks was followed, and more
and more sophisticated models have been developed to generate creative behaviors. This line
of research has given rise to the field of Computational creativity [Colton and Wiggins, 2012],
a subfield of Artificial Intelligence research that focuses on engineering software mod-
els able to produce artifacts and ideas. Countless examples of generative algorithms
based on artificial neural networks have been proposed in creative domains [Colombo, 2021]
such as painting [Mordvintsev et al., 2015, Gatys et al., 2016, Ramesh et al., 2022] and mu-
sic composition [Sturm et al., 2016, Hadjeres et al., 2017, Oore et al., 2017, Oore et al., 2020,
Colombo et al., 2017, Colombo et al., 2018]. In the context of figurative art created by AI, the
DALL·E model [Ramesh et al., 2021] is able to generate an image from a text description. DALL·E
is based on a transformer architecture that autoregressively models the text and image tokens as a
single stream of data. The figures accompanying the text in this thesis have been generated with
this impressive - and often surprising, model. The prompt text for each figure is reported in the
image captions.

Creative AI. DALL·E prompt: A
painting of a robot that composes
music, on the background of a the-
atre.

Despite the successes of AI models to generate art, one ques-
tion still remains. Machines are now trained to perform cre-
ative tasks defined by their human programmers. They can
generate new samples of music or visual art given human-
prescribed rules, they are mimicking the human creation of
art. Will they be able to come up with their own way of
generating art? Or will creativity remain a feature of hu-
man intelligence? On this note, I conclude this section with
the words of the early neuroscientist Sir Geoffrey Jefferson
[Jefferson, 1949]:
Not until a machine can write a sonnet or compose a con-
certo because of thoughts and emotions felt, and not by the
chance fall of symbols, could we agree that machine equals
brain - that is, not only write it but know that it had written
it. No mechanism could feel (and not merely artificially sig-
nal, an easy contrivance) pleasure at its successes, grief when
its valves fuse, be warmed by flattery, be made miserable by
its mistakes, be charmed by sex, be angry or depressed when
it cannot get what it wants.

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 31

2.5 Longstanding challenges of artificial neural networks

The previous section has described impressive applications of artificial intelligence techniques on
disparate tasks. Deep networks have been demonstrated to perform equally well – or even better
– than humans in playing complex games, driving cars, and recognizing objects, just to name
a few. Furthermore, deep networks have been shown to be capable of tasks that humans cannot
perform, such as predicting the onset of an illness on a long time horizon. However, such impressive
results are in stark contrast with a number of limitations affecting the performance of neural
networks, including the inability to perform continual learning (i.e., catastrophic forgetting) and
to generalize predictions to out-of-distribution test samples, the lack of robustness to targeted
signal perturbations (i.e., adversarial attack), the demanding time and energy consumption to
train the networks. Achieving artificial intelligence requires being able to remember tasks learned
sequentially, to quickly adapt to new noisy environments and changes in the tasks, and to learn
with limited temporal and energy resources. Therefore, comprehensively addressing the mentioned
aspects is crucial for closing the gap between artificial and biological intelligence and allowing
machines to continuously adapt to changes in the environment with minimal human intervention,
a process analogous to human learning [Nguyen et al., 2019]. In addition, the learning algorithms
of deep neural networks are not biologically realistic. While this is not a problem per se, the
discrepancies between training in AI and learning in the biological brain may be informative on
the source of AI weaknesses that do not affect the brain. In the next sections, I will provide
an overview of some instabilities of deep neural networks: catastrophic forgetting, lack of out-of-
distribution generalization, susceptibility to adversarial attack, lack of biological plausibility, and
high power consumption.

2.5.1 Catastrophic forgetting

The biological brain is able to learn, memorize and remember tasks learnt sequentially, an abil-
ity which has been termed continual learning of life-long learning. While it is true that hu-
mans tend to gradually forget previously learned information over long time periods, the learn-
ing of novel information generally does not catastrophically interfere with consolidated knowl-
edge [French, 1999, Ratcliff, 1990, Parisi et al., 2018]. One of the few examples was reported in
[Pallier et al., 2003], in which Pallier and colleagues studied forgetting in the context of language
perception and comprehension. The behavioral experiment was performed on adult subjects, born
in Korea and adopted by French families in childhood, who have become fluent in their second
language and report no conscious recollection of their native language. Curiously, the Korean sub-
jects did not exhibit different responses than a control group of native French subjects who have
never been exposed to Korean. The subjects where evaluated both in behavioral tests assessing
their memory for Korean and in event-related functional magnetic resonance imaging to monitor
cortical activations as a response to exposure to the Korean language.
In contrast, when neural networks are trained on a sequence of tasks without being re-exposed to
previously learnt tasks, they tend to forget how to perform the previous tasks. Indeed, the training
focuses on acquiring information to solve the current task (e.g., task B), while the network has
no way of knowing that it needs to retain knowledge about the previous task (e.g., task A). As a
consequence, the weights in the network that are important for task A are changed to meet the ob-
jectives of task B. This leads to accuracy degradation on previous tasks while the network is learning
new tasks. This phenomenon is known as catastrophic forgetting [Kirkpatrick et al., 2017]. Catas-
trophic forgetting occurs both when neural networks are trained with different but related tasks
and when they are trained with non independent and identically distributed (iid) samples. This
property was well-studied [Robins, 1995, French, 1999] before the deep learning renaissance that
began in 2006 [Goodfellow et al., 2014a]. In 2013 Srivastava and colleagues [Srivastava et al., 2013]
brought again attention to studying this aspect of modern deep neural nets, and, since then,
countless attempts to address the phenomenon have been made. Due to its implications in au-
tonomous learning agents and robots, lifelong learning is in the spotlight of machine learning
research. Agents operating in the real world must deal with sensory uncertainty, efficiently process

32 2.5. Longstanding challenges of artificial neural networks

a

c

e

b

d

Figure 2.9: (a) Incremental MNIST. Reproduced from [van de Ven and Tolias, 2018]. (b) Per-
muted MNIST. Reproduced from [van de Ven and Tolias, 2018]. (c) Catastrophic forgetting on
the MNIST dataset for SGD, L2 decay and EWC. Reproduced from [Kirkpatrick et al., 2017]. (d)
Elastic Weight Consolidation schematics. Reproduced from [Kirkpatrick et al., 2017]. (d) Mitigat-
ing Catastrophic forgetting with Replay. Reproduced from [Shin et al., 2017]

continuous streams of multisensory information, and they effectively need to learn multiple tasks
without interfering with consolidated knowledge [Parisi et al., 2018]. For example, a robot that
constantly has to learn new categories as it explores a new environment may not have sufficient
resources to store the training dataset nor to re-train an entire model from scratch.
In image classification, the continual learning framework can be studied in simplified settings by
defining sequential tasks from standard benchmarks such as MNIST. For instance, in the incre-
mental MNIST – or split MNIST – paradigm each task is defined as the presentation of two classes
of digits (Figure 2.9a). In the permuted MNIST paradigm, instead, each task is defined as one
pattern of pixel permutation that is applied identically to the images of all the 10 classes, while
the labels are kept unchanged (Figure 2.9b). When a neural network is trained with SGD on the
permuted MNIST protocol, the accuracy of the network on each task drops dramatically every
time a new task is presented (blue line in Figure 2.9c).
Several attempts have been made to overcome catastrophic forgetting. For example, dropout reg-
ularization [Hinton et al., 2012] is able to mitigate the phenomenon to some extent in feedforward
neural networks. Indeed, the dropout algorithm consistently improves the ability of standard SGD
at adapting to the new task and, at the same time, remembering the old task. In some scenarios,
dropout effectively increases the optimal size of the net, so the reduction of forgetting may be ex-
plained mostly by the larger nets having greater capacity. [Goodfellow et al., 2014a]. Additionally,
L2 regularization, which consists in regularizing the network with a fixed quadratic constraint for
each weight, is helpful in reducing the drop in accuracy (green line in Figure 2.9c). Also different
activation functions have been analyzed in the context of catastrophic forgetting, with the conclu-
sion that the choice of the function is strongly dependent on the problem [Goodfellow et al., 2014a].

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 33

Subsequently, several algorithms have been introduced specifically in an attempt to enable contin-
ual learning in neural networks. Some of these techniques are based on Bayesian inference, which
retains a distribution over model parameters that indicates the plausibility of any setting given the
observed data. When new data arrive, Bayesian inference is used to combine the information of
previous data on the model parameters (the previous posterior) with the information given by the
current data (the likelihood). Examples of Bayesian learning techniques include incremental mo-
ment matching, which introduces uncertainty on the parameters and rely on a Gaussian distribution
to approximate the posterior distribution of parameters [Lee et al., 2017], and Online Structured
Laplace Approximations, which combines Bayesian online learning with the Kronecker factored
Laplace approximation to update a quadratic penalty for every new task [Ritter et al., 2018].
Other approaches to continual learning are based on episodic memory. For instance, Gradient
Episodic Memory (GEM) is a model developed to learn over continuums of data that alleviates
forgetting, while transferring beneficial knowledge to past tasks by storing a subset of the observed
examples (i.e., a small episodic memory) from previous tasks. [Lopez-Paz and Ranzato, 2017].
Its follow-up work presents Averaged GEM (A-GEM) [Chaudhry et al., 2018], which, thanks to a
small change to the loss function, makes GEM orders of magnitude faster at training time while
maintaining similar performance as GEM. Another algorithm exploits both Bayesian learning with
episodic memory: the variational continual learning (VCL), which fuses online variational inference
(VI), advances in Monte Carlo VI for neural networks, and a small episodic memory by combining
VI with the coreset data summarization method [Bachem et al., 2015, Nguyen et al., 2017].
While the listed methods have been successful in partially preventing catastrophic forgetting, they
are most likely not reflecting the mechanisms that the animal brain relies on to perform life-long
learning. A number of other techniques have been proposed to mitigate catastrophic forgetting
by taking inspiration from underlying mechanisms of the brain: synaptic consolidation, memory
replay, and neuromodulated meta-learning. I will describe such algorithms in Section 3.2.
A new strategy to mitigate catastrophic forgetting in this thesis: Chapter 5

2.5.2 Lack of out-of-distribution generalization

Vulnerabilities of artificial
models. DALL·E prompt: A 3D
rendering of a robot that scratches
his head on a background of a huge
colorful oil painting of times square.

A remarkable feature of the brain is its ability to gen-
eralize robustly. In particular, the performance of the
primate visual stream is mostly unaffected by changes in
the input distribution, such as illumination conditions, a
shift of background, change of viewpoint, and partial oc-
clusion due for example to raindrops in front of the ob-
ject. Humans exhibit an impressive ability to acquire new
skills and transfer knowledge across domains and tasks
[Barnett and Ceci, 2002]. The animal visual system seems
to exhibit a generic mechanism that enables generalization
to distributions and distortions that are previously unseen.
In this context, another crucial challenge of neural networks
is building AI models that can learn robust, general concepts
that remain valid outside the context of their training data,
under distributional changes or domain shifts. Indeed, an
unsolved weakness of neural networks is their lack of robust-
ness when the test data are in different distributions from
the training data. Specifically, neural network training re-
lies on the i.i.d. assumption, that is that the training and
testing data are identically and independently distributed. This is referred to as the problem of
out-of-distribution generalization[Shen et al., 2021, Patel et al., 2015] (OOD generalization). Such
phenomenon stems from the fact that machine learning models often rely on features that may
be spuriously correlated with the label only in the training samples, leading to poor accuracy on
the test samples. Figure 2.10 shows some types of out-of-distribution correlations: (a) correlation
between digits and colors in the Colored MNIST dataset; (b) correlations between object entity

34 2.5. Longstanding challenges of artificial neural networks

and image style (e.g., photography, painting, cartoon, and drawing; (c) correlation between back-
ground features and object entity. Neural networks are also unstable with respect to noise and
distortion patterns: for example, when the models are trained with images perturbed with white
noise, they cannot generalize to testing images perturbed with salt-and-pepper noise, which is
perceived similarly to white noise by humans [Geirhos, 2018].

Several works investigate one of these aspects in-depth, focusing on the divergent performance of
DNN models and humans. Here I report some interesting recent examples from the literature.
In [Geirhos, 2018], the authors test the ability of a classifier or human visual system to toler-
ate changes in the input distribution up to a certain degree. The artificial and biological visual
systems are evaluated on various test distributions that differ to some degree from the training
distribution (different types of image manipulations and realistic, non-i.i.d. conditions). The com-
parison of results of computational ANN experiments with the human psychophysical experiments
revealed that the way that humans and ANNs process object information is substantially different,
even when ANN training includes image distortions. Indeed, ANNs fail to generalise the distor-
tion pattern learned during training to a different pattern applied during testing. Furthermore,
the performance degradation of ANNs with decreasing signal-to-noise ratio under noise is more
prominent than for the human behavioral performance. In [Bomatter et al., 2021a] the authors
analyze OOD generalization in terms of the role of context in object recognition. In order to in-
vestigate the discrepancy in performance based on image background, they conduct psychophysics
experiments to establish a human benchmark for in- and out-of-context recognition and compare
it with both state-of-the-art computer vision models and a context-aware architecture for object
recognition. The findings reveal that contextual cues can enhance visual recognition and that an
unexpected context can impair visual recognition capabilities both for humans and models. In
[Madan et al., 2020] the authors investigate whether generalization to out-of-distribution (OOD)
category-viewpoint combinations. The work evaluates CNNs trained to classify both object cate-
gory and 3D viewpoint on OOD combinations, and identifies the neural mechanisms that facilitate
such OOD generalization. The results reveal that two key factors influence the generalization
ability: data diversity, i.e., the number of distribution category-viewpoint combinations within a
constant size dataset, and the introduction of Separate architecture, i.e., in which category and
viewpoints are learnt in non-shared layers. Furthermore, the investigation reveals that OOD gen-
eralization is facilitated by the emergence of two types of neurons, one driving OOD generalization
for category (selective to a category and invariant to a viewpoint), and the other for viewpoint
(selective to viewpoint and invariant to a category). In a follow-up work [Madan et al., 2022], the
authors study what aspects of domain shift make generalization challenging in the first place and
how this compares with human generalization features. The investigation relies on a benchmark
with various photo-realistic domains with the same geometry, scene layout and camera parameters
as the popular 3D ScanNet dataset, and with disjoint and controlled domain shifts in lighting,
materials, and viewpoints. The domain shifts are investigated independently, revealing that gener-
alization is possible in different lighting conditions, but not on unseen materials and especially on
viewpoints. A comparison with psychophysics experiments demonstrates that the generalization
capabilities of human vision are similar on all the tested domain shifts, unlike the computational
models, providing a further example of the discrepancy between the biological and the artificial
vision system.

The lack of OOD generalization hinders the development of machine learning agents able to perform
reliably in real cases, where often the test distribution on which the model has been deployed
deviates from the training distribution. A key example is the application of vision models to
autonomous driving. In this context, for safety reasons the models are required to generalize to
situations that have not been presented during training in order to be reliably employed in real-
world scenarios. Some examples include the cases of unseen weather, unseen lighting conditions,
and presence on the road of objects that are not included in the training set.

Out-of-distribution applied to neural data in this thesis: Chapter 8

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 35

a b c

Figure 2.10: Examples of out-of-distribution correlations. (a) Correlation shift data from Colored
MNIST. (b) Diversity shift data from the PACS dataset: Photo, Art Painting, Cartoon, Sketch.
(c) Two dimensional out-of-distribution data from the NICO dataset: in cage, in water, on grass,
and others. All panels reproduced from [Bai et al., 2021]

2.5.3 Susceptibility to adversarial attack

A particular case of lack of robustness to image perturbation is the longstanding challenge of
deep learning known as adversarial attack. The such phenomenon consists in perturbing the in-
put with minimal, carefully crafted and targeted manipulation, in order to change the output of
the model toward a targeted response. In vision tasks, the change of only a few pixels, which is
mostly imperceptible to the human eye, leads to a confident misclassification in network response
[Szegedy et al., 2013, Goodfellow et al., 2014b]. The analysis in [Goodfellow et al., 2014b] demon-
strates that adversarial attack can be explained as a property of high-dimensional dot products
and that vulnerability to adversarial attack arises from linear behavior in high-dimensional spaces.
Indeed, as the perturbation on the input can grow linearly with the dimensionality of the weight
vectors, many infinitesimal changes to the input can add up to one large change to the output.
Furthermore, adversarial samples designed for one specific network architecture are often effective
in fooling the output of other models. This can be explained as a consequence of the fact that ad-
versarial perturbations are highly aligned with the weight vectors of a model, and different models
learn similar functions when trained on the same task [Goodfellow et al., 2014b].
A common technique to generate adversarial samples relies on adding to the input an imperceptibly
small vector whose elements are equal to the sign of the elements of the gradient of the cost function
with respect to the input [Goodfellow et al., 2014b]. Several other techniques have been proposed
to build adversarial samples imperceptibly different from the original images, including rotating
the image by a small angle in the direction of the gradient. Additionally, recent works release the
constraint of imperceptibility to humans and shift the focus of adversarial attacks towards inter-
pretable and physically-realizable adversarial features. For instance, [Casper et al., 2021] demon-
strated that adversarial samples can be built not only as pixel-level perturbations but also by
inserting a generated visual patch on top of natural images. Thanks to the “copy-paste” nature
of the method, such adversarial attacks can be physically realized for example by printing the
generated patch on paper and sticking it on top of a physical object. Such a strategy is inspired by
the observation that in nature some animals such as butterflies use adversarial eyespots to confuse
predators.
This counterintuitive property of neural networks reveals that models trained with backpropaga-
tion are exposed to intrinsic instabilities and blind spots. In a society where deep learning has been
increasingly used in applications in safety-critical tasks such as autonomous driving, the vulnera-
bility of models to small targeted perturbations represents a crucial safety issue [Xu et al., 2019].
Indeed, adversarial examples are inputs to machine learning models that an attacker intentionally
designed to arbitrarily push the model to make the wrong prediction output. Physically realizable
adversarial attack strategies prove therefore to be a threat to real-world applications of DNNs.

2.5.4 Temporal and spatial credit assignment problem

A pivotal open question in neuroscience is how upstream synapses are adjusted on the basis of
downstream errors [Lillicrap et al., 2016]. In machine learning, the estimation of how much each

36 2.5. Longstanding challenges of artificial neural networks

parameter has contributed to the output error is referred to as the problem of synaptic credit
assignment. The backpropagation algorithm (BP) solves the credit assignment problem by com-
puting the update of each parameter as its derivative with respect to the network’s loss. This is
implemented by backpropagating the gradient of the error from the top to the bottom layers of
the network through the transpose of the forward weights W .
While this strategy is highly effective on a broad range of tasks, it has been criticized for relying
on biologically unrealistic mechanisms that cannot be implemented by the neurons in the brain
[Crick, 1989, Whittington and Bogacz, 2019]. Some theories support the claim that the brain
might be able to implement the underlying principles of BP [Lillicrap et al., 2020], however, a few
aspects of BP appear to be at odds with neurobiology.

• The backpropagation algorithm [Rumelhart et al., 1995] relies on a forward and a backward
pass. During the forward pass, the input signal is propagated from the input layer to the
output layer, where the error is computed by comparing the network’s output with the target.
During the backward pass, the error flows from the top layers to the bottom layers through
the same weights used in the feedforward pathway (Figure 3.1a). Sharing the weights in the
feedforward and in the feedback pathway leads to the weight symmetry or weight transport
problem [Burbank and Kreiman, 2012]. This is not compatible with the architectural features
of distributed systems such as the brain, in which elementary computing units do not have
bidirectional connections with the same weight in each direction [Neftci et al., 2017]. Weight
symmetry, furthermore, requires rapid information transfer back along axons from each of
its synaptic outputs [Crick, 1989].

• For each synapse, the error gradient — and the associated synaptic update — is computed
through the recursive application of the chain rule. Therefore, the parameter updates depend
on the activity of all downstream nodes, which means that feedback neurons would need to
have precise information about all the synaptic weights in the forward pathway units. The
error derivative needs to be transported as a second signal through the network, requiring
the derivative of the non-linearities to be known. Lillicrap described this aspect of BP as
requiring a highly orchestrated computation and delivery of third factors to individual neurons
in the hidden layer. On the contrary, biological synapses learn based on local signals related
to the activity of the neurons they connect with [Whittington and Bogacz, 2019].

• The error gradients are stored separately from the activations [Liao et al., 2016] and do not
influence the activities of the nodes produced in the forward pass. Hence, during the back-
ward pass, the network activity is frozen. In the brain, instead, the neural activity is not
frozen during plasticity changes and the signals traveling through feedback connections in-
fluence the neural activities produced by forward propagation, leading to their enhancement
or suppression [Lillicrap et al., 2020]. Furthermore, BP requires distinct forward and back-
ward (or ‘positive’ and ‘negative’) phases. How forward and backward pathways interact in
the brain remains unclear, however, there is no evidence that supports separate alternating
phases [Bartunov et al., 2018].

• Input signals cannot be processed in an online fashion, but each sample needs to wait for both
the forward and backward computations to be completed for the previous sample. Indeed,
since the update of the parameters of a given layer depends on downstream layers, paralleliza-
tion of the backward pass is unfeasible [Launay et al., 2019, Jaderberg et al., 2016]. This is
referred to as the update locking problem [Jaderberg et al., 2017, Czarnecki et al., 2017].

Further weaker criticisms are related to the lack of cell-type variability and to gradient signals
being both positive and negative, which is unlikely to model a plausible neural computation
[Bartunov et al., 2018]. Additionally, during training, the modulatory signals often vary across
many orders of magnitude, which become extreme in the case of exploding and vanishing gradients
[Lillicrap et al., 2020]. These considerations have motivated the development of several approaches
to train neural networks alternative to BP. These methods demonstrate that exact backpropagated

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 37

gradients are not essential for learning deep representations. Section 3.3 reviews the most successful
biologically inspired approaches to credit assignment.
Besides the non-locality in space, BP is also non-local in time when applied to recurrent neural
networks in the form of the Backpropagation Through Time (BPTT) algorithm. In order to
track all past activities, BPTT requires to unroll the network in time. Hence, it implies an offline
computation of the gradients, which is non-local in time. Furthermore, the network unrolled in time
becomes very deep as the input-sequence length increases [Bohnstingl et al., 2022]. Consequently,
in settings with small networks that do not require online learning, BPTT is a powerful approach,
but, for larger networks, the memory overhead becomes impractical [Zenke and Neftci, 2021].
Furthermore, some of the biologically unrealistic aspects of BP hinder its efficient applicability to
specific hardware. The implementation of BP on a neural substrate is challenging as it involves
employing symmetric weights, carrying out the operations such as multiplications with derivatives
and activation functions, propagating error signals with high, floating-point precision, alternating
between forward and backward passes, and changing the sign of synaptic weights. Neuromorphic
hardware generally models dynamics closely related to that in the brain, hence the requirements
listed above make the implementation of BP on neuromorphic chips difficult. Additionally, BP
requires the immediate availability of network-wide information stored with high-precision memory
during learning, and precise operations that are difficult to realize in neuromorphic hardware.
[Neftci et al., 2017].

2.5.5 Energy and data-hungry models

Power hungry machines.
DALL·E prompt: A photorealistic
image of a robot sitting at a table
set with many light bulbs on the
dishes and in the glasses.

The impressive progress performance of neural networks
has been empowered by the increased availability of large
computational resources that necessitate high energy con-
sumption. Training an artificial neural network is costly
both financially, due to the cost of hardware, electric-
ity and cloud computing time, and environmentally, due
to the CO2 footprint caused by modern tensor process-
ing hardware [Strubell et al., 2019]. The emissions asso-
ciated with the training of cutting-edge models are com-
parable to, for example, the lifetime carbon emissions of
a car [Kaack et al., 2022]. In 2018 OpenAI released an
analysis showing that since 2012, the amount of com-
puting used in the largest AI training runs has been in-
creasing exponentially with a 3.4-month doubling time
[Amodei and Hernandez, 2018]. The computational re-
sources for network training are quantified in floating point
operations (FLOPs), i.e., the number of additions and mul-
tiplications of scalar values required to obtain a result. The
precise mapping from FLOPs to energy consumption is
hardware- and algorithm-dependent, however, more FLOPs
generally correspond to higher energy use. Figure 2.11(a) shows that the trend of the total amount
of computing, in petaFLOP/s-day, used to train different neural network models as a function of
time is exponential. Figure 2.11(b) compares the estimated CO2 emissions from training common
natural language processing models, compared to the average CO2 emission for 1 year of a person,
1 year of an American person, and the lifetime of a car. The elevated energy resources required to
develop and deploy models are increasing, together with the associated carbon footprint, thereby
raising interest in the impact of artificial intelligence on climate change. The ICT sector accounts
for around 1.4% of GHG emissions today, of which ML probably accounts for a small, but un-
known, share [Kaack et al., 2022]. On the other hand, Machine Learning is a versatile tool that
can be used to build applications that alleviate bottlenecks in addressing climate change, such as
tracking deforestation, forecasting renewable power production and transportation demands, and
improving the efficiency of cooling and heating systems [Kaack et al., 2022].

38 2.5. Longstanding challenges of artificial neural networks

The dual impact of Artificial Intelligence on climate change is increasingly becoming central in
the focus of both industrial and academic research. Start-ups such as Axelera AI and Nebuly
are working towards more sustainable AI, i.e., the deployment of hardware and software that can
minimize time and energy consumption of neural networks training, inference and deployment, with
the final aim of contributing to reducing the global computing-related impacts of data centers. In a
parallel research line, the field of neuromorphic computing strives to design and deploy algorithms
and chips that are energy efficient by mimicking the same organizing principles of the biological
nervous system [Douglas et al., 1995, Boahen, 2005]. In particular, neuromorphic circuits rely on
spiking representations for communication, learning and memory, and asynchronous event-based
computation, which are suitable for building modular systems and creating complex hierarchies of
computation [Indiveri and Horiuchi, 2011]. I will discuss spiking neural networks, their dynamics
and learning rules in Section 3.4.
Artificial intelligence models are not only power-hungry but also data-hungry. In particular, the
performance of supervised classification algorithms is often dependent on the availability of a
sufficient amount of training data. However, labeling samples is expensive and time-consuming due
to the significant human effort involved [Jalilian et al., 2017]. Data labeling, therefore, represents a
bottleneck in the development of supervised learning algorithms. As a result, it is desirable to have
methods that learn a classifier with high accuracy from a limited number of labeled training data.
As an alternative method to supervised learning, self supervised learning is a training framework
for neural networks that addresses the scarcity of annotated data. In self supervised learning,
the technique is to generate pseudo labels for data through data augmentation, such as random
crop, rotation, geometric transformations, and color augmentation. The training phase updates
the networks’ parameters to embedding augmented versions of the same sample close to each other
while trying to push away embeddings from different samples [Jaiswal et al., 2020]. This technique
is successful in extracting input features. Extracted features can be evaluated for example by
mapping with a read-out layer to classes in a classification task. I will discuss self supervised
learning in Section 3.3.3.

Chapter 2. Artificial Neural Networks: Methods, Success and Limitations from a biological
perspective 39

a

b

Figure 2.11: (a) The total amount of compute, in petaflop/s-days, used to train different neural
network models. The trend is exponential. Reproduced from [Amodei and Hernandez, 2018] (b)
Estimated CO2 emissions from training common NLP models, compared to familiar consumption.
Reproduced from [Strubell et al., 2019, Kamperis, 2019]

Chapter 3

Biologically Inspired Algorithms for
Neural Networks

While backpropagation-based learning has achieved impressive results on a broad range of tasks,
neural networks invariably suffer from limitations such as catastrophic forgetting, adversarial at-
tack, and lack of generalization to out-of-distribution samples. The animal brain is not affected
by such issues, therefore designing training algorithms for neural networks more compatible with
the learning mechanisms of the brain is a promising direction to address the mentioned limita-
tions. This motivation has triggered a recent wave of research into training schemes that are more
brain-like and which achieve performance competitive with backpropagation in perceptual tasks.
In this section, I will discuss which principles of biology can be used to inform the development of
neural networks. I will outline some practical examples of how brain-inspired computations have
been successfully used to overcome weaknesses of neural network training, such as catastrophic
forgetting. Then I will review biologically inspired learning rules which have been proposed as an
alternative to backpropagation toward more brain-like training of ANNs. Finally, I will introduce
the basic concepts of neuromorphic computing and spiking neural networks, developed with the
goal of energy-efficient and fault-tolerant models.

3.1 Principles of biological computations

A multitude of experimental results in neurobiology hint that biological synapses and systems act
in much more complex ways than the artificial scalar synapses at the basis of current deep neural
networks [Zenke et al., 2017]. Current models overlook aspects of neurophysiology that might be
relevant to improve their performance. Biological circuits may inspire the development of artificial
models at different levels of complexity and from several perspectives. First, at a low level, the
complex morphology of biological networks in terms of diversity of neuron types, synaptic plastic-
ity, connectivity motives, and network topologies offers copious examples of mechanisms to enrich
the dynamics of artificial networks. Learning in the brain is mediated by a rich set of neurophys-
iological principles that regulate changes in synaptic strength. As a prominent example, synaptic
plasticity in the brain is driven mainly by local signals, such as the activity of neighboring neurons
[Whittington and Bogacz, 2019]. The local interaction between synapses plays a crucial role in reg-
ulating weight changes during learning. For example, the mechanism of heterosynaptic competition
controls synapse growth by limiting the total strength of synapses connected to the same pre- or
postsynaptic neuron [Royer and Paré, 2003b]. This phenomenon occurs as a nonlinear competition
across synapses at each neuron. Specifically, as the summed weight of synapses into (or out of) a
neuron hits a threshold, all the incoming (or outgoing) synapses to that neuron undergo a slight het-
erosynaptic long-term depression (“summed-weight limit rule") [Fiete et al., 2010]. Additionally, in
the cortex, each neuron tends to target a specific firing rate, and synaptic strengths are regulated to
keep such rates constant, despite input perturbation [Turrigiano et al., 1998]. Synaptic scaling acts

40

Chapter 3. Biologically Inspired Algorithms for Neural Networks 41

as a global negative feedback control of synaptic strength, regulating the weight changes based on
the neural local activities [Turrigiano, 2008, Moulin et al., 2020, Ibata et al., 2008]. These home-
ostatic mechanisms are typically not modeled in the training of standard ANNs, which rely on
global signals instead of local information [Nøkland and Eidnes, 2019, Bengio et al., 2016].
Second, the underlying architectural principles of the animal brain represent a powerful guide to
inform the design of complex deep network models. A remarkable feature that is fundamental to
most of the state-of-the-art AI models is the hierarchical organization of networks, which extract
progressively higher-level features with increasing depth.
Third, at a systemic level, the evolution has led to the development in the animal brain of so-
phisticated neural circuits specialized for different tasks, including sensing, navigation, and central
pattern generation for locomotion.
Enriching the dynamics of Backpropagation with principles of synaptic plasticity in biology in this
thesis: Chapter 5.

3.2 Addressing catastrophic forgetting with biologically in-
spired strategies

The brain presents the remarkable ability to perform continual learning, which still constitutes an
unsolved challenge for neural networks. Hence, implementing algorithms that mimic the underlying
mechanisms of the brain may be a promising strategy to overcome such a fundamental limitation for
neural networks. A large body of computational methods has been developed by taking inspiration
from the biological learning mechanisms of the mammalian brain [Parisi et al., 2018]. In this
section, I present two of the most common brain-inspired techniques to mitigate catastrophic
forgetting in AI: elastic weight consolidation inspired by synaptic consolidation and replay inspired
by the replay mechanisms in the brain. These methods reflect two main mechanisms for mitigating
forgetting in neural networks identified by [Parisi et al., 2018], namely regularization mechanisms
to constrain parameter updates and replay of previous knowledge.

3.2.1 Approaches inspired by synaptic consolidation

Experimental evidence shows that the learning of a new task in the animal brain encompasses the
strengthening of a fraction of excitatory synapses, which consists of the increase in the volume of
individual dendritic spines of neurons. Synaptic consolidation is a mechanism in the brain that
reduces the plasticity of synapses that are essential to perform previously learned tasks. This acts
as a protection mechanism in neocortical circuits that enables long term retention of memories.
Therefore, synaptic consolidation accounts, at least in part, for the retention of the knowledge re-
lated to the learned skill, and consequently for the ability of the brain to perform continual learning.
Such a mechanism is related to the so-called stability-plasticity dilemma, which regards the trade-
off of a system between the plasticity needed to integrate and adapt to new knowledge and the
stability needed to retain previously consolidated skills. The balance between the two aspects is es-
sential to assimilate new knowledge in order to adapt to new environments, and at the same time
prevent catastrophic forgetting [Grossberg, 1987, Mermillod et al., 2013, Benna and Fusi, 2016].
Several regularization methods towards continual learning have been inspired by synaptic consoli-
dation. One of the earliest algorithms attempting to alleviate catastrophic forgetting by constrain-
ing the network’s parameters similarly to synaptic consolidation is the Learning without Forgetting
(LwF) method, which optimizes both for high accuracy for the new task and for the preservation
of responses on the existing tasks from the original network. Memory retention from previous
tasks is achieved by constraining the network for each original task to have output probabilities
for each image to be close to the recorded output from the network trained on previous tasks
[Li and Hoiem, 2016].
In the same direction, another approach proposed in [Kirkpatrick et al., 2017], known as Elastic
Weight Consolidation (EWC), takes inspiration from synaptic consolidation. The method seeks
to preserve knowledge by making a fraction of synaptic weights less plastic and therefore making

42 3.2. Addressing catastrophic forgetting with biologically inspired strategies

the encoded memories more stable over long timescales. This principle is implemented in EWC by
constraining relevant weights to each task to remain close to the distribution learnt during training
on the specific task. In practice, when a network is trained on a sequence of two tasks, task A and
task B, during the training of task B, the parameters that are most relevant to perform task A
are kept close to a region of low error for task A. Figure 2.9(d) gives a schematic representation of
the described principle. The constraint is modeled as a quadratic penalty, thus it acts as a spring
anchoring the parameters to the previous solution, where the stiffness of a parameter is higher for
parameters more relevant to the task. The relevance of a parameter θ on task A is computed based
on the approximation of the posterior probability p(θ,DA) to a Gaussian with mean given by the
parameters θ∗A and a diagonal precision given by the diagonal of the Fisher information matrix F .
F has three properties: (i) It is equivalent to the second derivative of the loss near a minimum,
(ii) it can be computed from first-order derivatives alone and is thus easy to calculate, and (iii) it
is guaranteed to be positive semidefinite. This technique can be formalized as minimizing the loss
L:

L(θ) = LB(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)

2, (3.1)

where LB(θ) is the loss related to task B, λ weights how strong the constraint on task A should
be, and i is the index running on the network’s parameters. This method proves to substantially
mitigate catastrophic by increasing the fraction of retained memories over a sequence of tasks both
in supervised setting scenarios, such as binary classification of random patterns and supervised
learning with the permuted MNIST task (Figure 2.9(c)). Additionally, EWC proves to be suc-
cessful in enabling continual learning in reinforcement learning (RL), in particular on the Depp
Q Networks (DQNs) architectures. In this context, EWC is applied to introduce constraints to
protect previously acquired knowledge. Furthermore, it is combined with the additional high-level
mechanisms to detect which task is being performed, to incorporate the new tasks and to switch
among tasks. This allows EWC to know which quadratic constraints to update when the task con-
text changes. The novel approach is evaluated on experiments which consist of 10 games chosen
randomly from those that are played by DQNs at least at human-level performance. While with
plain gradient descent methods the agent does not learn to play more than one game, with EWC
the agents are able to learn to play multiple games.
Also, the method designed in [Zenke et al., 2017] relies on an estimate of the synapse’s importance
toward solving problems encountered in the past. The approach exploits internal synaptic dynamics
to enable ANNs to learn sequences of classification tasks so that each synapse accumulates task-
relevant information over time. This leads to the computation of the importance measure efficiently
and locally during training. The importance reflects past credit for improvements of the task
objective and thus represents the local contribution of each synapse to the change in the global
loss. Such information is then used to rapidly store new memories without forgetting old ones.
New tasks are learned through synaptic changes occurring mostly in the synapses that were not
important in previous tasks, while the important synapses are consolidated. This allows avoiding
catastrophic forgetting of these past tasks.

3.2.2 Approaches inspired by the replay mechanism
Biological mechanisms are characterized by separate, interactive memory systems [O’Reilly and Norman, 2002].
Experimental evidence reported in [Gelbard-Sagiv et al., 2008] demonstrates that the human brain
exhibits phases of free recall without external cues after being exposed to a stimulus such as a
movie clip. In the entorhinal cortex, neurons that selectively fire when the subject is watching a
specific video are found to be active also during the recall of the same stimulus. A similar ob-
servation has been made for the entorhinal cortex and hippocampal units at the population level.
Also in the rodent brain, hippocampal neurons have been shown to generate a replay of previ-
ous firing sequences during sleep and rest states after locomotion [Wilson and McNaughton, 1994,
Skaggs and McNaughton, 1996, Lee and Wilson, 2003]. Cells co-activated when the animal moved
in specific locations of the space during subsequent sleep were more prone to fire than in sleep

Chapter 3. Biologically Inspired Algorithms for Neural Networks 43

episodes preceding the behavioral tasks [Wilson and McNaughton, 1994]. The activation pattern,
furthermore, reflect the order in which the cells fired during spatial exploration [Skaggs and McNaughton, 1996].
Such phenomenon of sequential replay occurs also during the awake state immediately after the
behavioral tasks. In the reactivation, the recent episodes of spatial experience are replayed in a
temporally reversed order [Diba and Buzsáki, 2007, Foster and Wilson, 2006]. These observations
lead to the hypothesis that the encoding and reactivation of sequential experience in the hippocam-
pus is essential for spatial learning in rodents and the formation of long-term memories of events in
time in humans [Lee and Wilson, 2003]. Additionally, the bidirectional re-enactment of temporal
sequences may contribute to the establishment of higher-order associations in episodic memory
[Diba and Buzsáki, 2007]. Therefore, episodic and spatial memories can arise from the encoding
of complex associations in hippocampal neuronal circuits, whose consolidation involves the reac-
tivation of the original network firing patterns during sleep and rest [O’Neill et al., 2010]. In this
framework, the complementary learning systems theory [Mcclelland et al., 1995] postulates that
the hippocampal system exhibits short-term adaptation and allows for the rapid learning of novel
information which will, in turn, be played back over time to the neocortical system for its long-term
retention. The hippocampus features a rapid learning rate and encodes sparse representations of
events to minimize interference. Conversely, the neocortex employs a slow learning rate and builds
overlapping representations of the learned knowledge. This may indicate that information is con-
solidated in the neocortex via the reactivation in the hippocampus of encoded experiences in terms
of multiple internally generated replay [Ratcliff, 1990, Parisi et al., 2018].
Inspired by the neuroscientific evidence of replay in the mammalian brain, in order to address the
phenomenon of catastrophic forgetting in neural networks several methods have been proposed
which rely on replaying raw inputs or compressed representations during training. In practice,
replay in neural networks is implemented as mixing new instances with old ones and fine-tuning the
network with this mixture [Parisi et al., 2018]. Some methods realize this technique by storing and
replaying raw pixels. This is known as rehearsal regime [Ratcliff, 1990, Robins, 1995]. Rehearsal is
defined as the relearning of a subset of previously learned items (three in the original formulation)
at the same time that each new item is introduced. The effect of replay is, similar to replay
in the hippocampus, protecting the previously learned items from disruption by new items. In
particular, one of the most successful methods is the sweep rehearsal, in which the training buffer
is dynamic and the three previously learned items are chosen at random for each epoch, which leads
the number of intervening trials to significantly increase. Several follow-up works have expanded
on the replay framework. For instance, [Shin et al., 2017] introduced the deep generative replay
framework, which allows sequential learning on multiple tasks by synthesizing and rehearsing fake
data that mimics former training examples. The cooperative interplay between a deep generative
model (generator) and a task-solving model (solver) allows one to sample training data for previous
tasks and interleave them with those for a new task. Another interesting example of raw-pixel
replay is the approach presented in [Castro et al., 2018] which trains DNNs incrementally through
a combination of new samples and a small exemplar set corresponding to samples from the old
classes. The parameter updates are driven by a loss composed of a distillation measure to retain
the knowledge acquired from the old classes, and a cross-entropy loss to learn the new classes.
While it is able to alleviate catastrophic forgetting, raw-pixel replay involves redundant information
and is memory-inefficient. As an alternative in the framework of replay, other methods were pro-
posed in connection with the hippocampal indexing theory [Teyler and Rudy, 2007], which claims
that the hippocampus stores compressed representations of neocortical activity patterns while
awake. These patterns are replayed and then the corresponding neocortical neurons are re-activated
via reciprocal connectivity with the effect of consolidating memories [Lewis and Durrant, 2011,
O’Neill et al., 2010]. Approaches relying on this theory interleave compressed representations with
samples from the new tasks during training. One of the first methods showing that interleaving
information of new tasks with internally generated patterns of previous experiences helps consoli-
date existing knowledge without explicitly storing training samples was proposed already in 1995
[Robins, 1995]. This approach goes beyond the rehearsal regime, with the aim of addressing the
limitation by which previously presented training information may not be available anymore. It
introduces the pseudorehearsal regime, which does not need to access the initial training popula-

44 3.3. Towards bio-plausible training for ANNs

tion, but rather employs artificially constructed populations of pseudoitems instead of the original
previously learned items. A pseudoitem is constructed by generating a new input vector (setting
at random 50% of input elements to 0 and 50% to 1 as usual), and passing it forward through
the network in the standard way. The output vector generated by this input is the associated
target output. The resulting pseudoitems map the function appropriate to reproducing the actual
population. More recently, [Draelos et al., 2016], inspired by the process of adult neurogenesis in
the hippocampus, combined pseudorehearsal with autoencoders to add new neurons to deep lay-
ers of artificial neural networks in order to facilitate their acquisition of novel information while
preserving previously trained data representations. Another approach using compressed represen-
tation is REMIND, which relies on the replay of latent features using memory indexing and on
a codebook for constructing the memory, which is pre-computed and fixed [Hayes et al.,]. By
removing the constraint of a fixed codebook and avoiding generative replay, [Zhang et al., 2021]
implements a model called Hypotheses-driven Augmented Memory Network (HAMN), which effi-
ciently consolidates previous knowledge using an augmented memory matrix of “hypotheses” and
replays reconstructed image features to avoid catastrophic forgetting. The model learns a set of
hypotheses in the augmented memory, based on which it constructs the latent representation of
an image as a linear combination of the hypotheses. Through multi-head content-based attention,
the model shares the augmented memory over multiple image features so that features can be
reconstructed from hypotheses in parallel. Compared to pixel-level replay, HAMN is more efficient
in terms of memory, as it avoids redundant information in the image pixel space.

3.3 Towards bio-plausible training for ANNs

As described in Section 2.5.4, the BP algorithm lacks biological realism in many regards, including
non-locality, weight transport, freezing of activity, and backward locking. These considerations
have motivated the development of alternative methods for credit assignment, each proposing
solutions to some of these criticisms. Biologically plausible training strategies not only may give a
better intuition for learning mechanisms in biological brains, but may also open new computational
possibilities, such as updating layers asynchronously [Launay et al., 2019]. Furthermore, from a
pure machine learning perspective, there is growing interest in neuron-like architectures with local
learning rules, mainly driven by the progress in neuromorphic hardware [Illing et al., 2019].
In this section, I will first introduce the arguments supporting the hypothesis that the brain could
implement updates relying on BP-like error signals. In this context, I will introduce the neural
gradient representation by activity differences (NGRAD) framework [Lillicrap et al., 2020]. Then,
I will provide an overview of the most competitive and promising biologically inspired training al-
gorithms for ANNs alternative to BP, including sign symmetry [Xiao et al., 2018], feedback align-
ment [Lillicrap et al., 2016], weight mirror circuits [Akrout et al., 2019], the Kolen Pollac recipro-
cal network [Akrout et al., 2019], direct random target propagation [Frenkel et al., 2019], global
error vector broadcasting [Clark et al., 2021], deep feedback control [Meulemans et al., 2021], the
least control principle [Meulemans et al., 2022], and the contrastive, local and predictive plasticity
[Illing et al., 2021]. I will analyze the achievements, requirements, and limitations of the pro-
posed algorithms, outlining promising directions for extensions and applications of the current
frameworks. With specific references and examples, I will outline best practices to consider when
implementing and applying such techniques to various tasks, e.g., in image classification. I will
focus on presenting results on image recognition, as most of the recent publications benchmark the
proposed algorithms on such a task. In particular, to provide a baseline, I remark that, according
to the analysis in [Illing et al., 2019], biologically plausible training schemes are typically defined
as successful if they reach around 98% test accuracy on the MNIST data set. Finally, I will indicate
the still unsolved theoretical aspects of rigorously analyzing the convergence properties of some of
the training methods.
The biologically inspired methods can be grouped into two main classes: labeled learning – includ-
ing local classifier and supervised clustering – and unlabeled learning – including self supervised
learning and predictive coding. We remark that despite their biological inspiration, all the de-

Chapter 3. Biologically Inspired Algorithms for Neural Networks 45

scribed algorithms have a substantial difference from learning in the brain: they train networks
initialized from scratch according to different schemes. In contrast, before any type of learning,
the brain is already endowed with prior knowledge that has been optimized with evolution. Such
priors are expressed in the form of neural architectures and connectivity strengths. Consequently,
the brain only needs a relatively small amount of error-driven learning in order to acquire even
very complex skills [Lillicrap et al., 2020].

3.3.1 The neural gradient representation by activity differences (NGRAD)
framework and predictive coding

Lillicrap and colleagues [Lillicrap et al., 2020] argue that in spite of the apparent differences be-
tween BP and observed principles of biological learning, the brain may be able to implement the
core computations of BP. The quest for understanding if biological neurons may implement a BP-
like mechanism is motivated by two main reasons. First, while BP may find a set of trained weights
via a different pathway than that of the brain, in some settings the resulting receptive fields have
been shown to be similar to those studied in the brain [Crick, 1989]. Striking examples show that
neural networks trained with BP can simulate response properties in the posterior parietal cor-
tex [Zipser and Andersen, 1988], in vestibulo-ocular reflexes [Anastasio and Robinson, 1989], and
- more recently - in the primary motor cortex [Lillicrap and Scott, 2013]. Another example is pro-
vided by the so-called substitute models of the brain - or digital twins. These networks, which are
trained with BP, are currently the best models to predict and explain neural responses. Milestone
works have demonstrated that CNNs mapped to the ventral stream can predict and even drive the
activity of small neuron populations in rodents’ V1 [Walker et al., 2019] and in macaque V4 and IT
[Bashivan et al., 2019, Yamins et al., 2014, Ponce et al., 2019]. Other non-BP-related approaches
such as Gabor filters achieve a substantially lower performance in predicting response properties.
Second, networks trained with BP can achieve impressive results in very complex tasks – as re-
viewed in Section 2.4 – outperforming any other training strategy in a broad range of applications.
This successful result may indicate that the brain may exploit precise error-driven feedback for
learning.
An early hypothesis was that BP might be implemented via the retrograde transmission of in-
formation along axons [Brandt and Lin, 1996, Lillicrap et al., 2016]. However, this is in contrast
with experimental findings that retrograde transport operates on timescales significantly slower
than forward propagating neural activity [Harris, 2008]. Another proposed explanation is that er-
ror information can be propagated through a second network, however, this requires that weights
are symmetric [Kording and König, 2001]. As for the signed error signals, it has been suggested
that, in the cortex, firing rates above a certain threshold convey positive error signals, and rates
below this value convey negative errors. However, these computations would need elaborate book-
keeping to integrate and propagate the signed error across multiple layers as signed information
[Lillicrap et al., 2020].
The theory proposed in [Lillicrap et al., 2020] is that biological circuits could compute synaptic
updates by using feedback connections to elicit neuron activities whose locally computed differences
encode BP-like error signals. This relies on the principle that higher-level activities - dictated for
example by targets or larger spatial or temporal contexts - can nudge lower-level activities towards
values that are more consistent with the higher-level activity or the desired output. Consequently,
the information on the nudged activity (i.e., top-down-driven activity) can drive local synaptic
adjustments. Interestingly, a number of training schemes propose to compute the weight updates
based on differences in activity states, rather than on propagated gradients. Such approaches
successfully avoid propagating activities and error derivatives. The neural gradient representation
by activity differences (NGRAD) is a framework collecting the learning algorithms relying on this
idea. We define the NGRAD hypothesis as the idea that the cortex uses an NGRAD to implement
an approximation to gradient descent.
Some algorithms complying with the NGRAD principles take inspiration from the predictive cod-
ing framework [Rao and Ballard, 1999]. Predictive coding is a general learning framework that was
originally proposed as a model of visual processing and, in particular, as a hierarchical and pre-

46 3.3. Towards bio-plausible training for ANNs

dictive strategy for encoding natural images. In predictive coding in a hierarchical model network,
nodes at different levels of hierarchy are connected by both feedforward and feedback connections.
Each level attempts to predict the responses at the next lower level via feedback connections,
and the error between this prediction and the actual response is sent back to the higher level via
feedforward connections. This model of visual processing explains the property of endstopping
(also known as extra-classical receptive field) in visual cortical areas. In endstopping a vigorous
response to an optimally oriented line segment is reduced or eliminated when the same stimulus
extends beyond the neuron’s classical receptive field (RF). The predictive coding framework entails
that neural networks learn the statistical regularities of the natural world, and signal deviations
from such regularities to higher processing centers. This reduces redundancy by removing the
predictable components of the input signal [Rao and Ballard, 1999]. In the NGRAD framework,
Whittington and colleagues [Whittington and Bogacz, 2017] propose to apply predictive coding
for supervised learning settings through a local Hebbian plasticity algorithm. The activity differ-
ences driving synaptic updates are between sets of neurons in a local circuit. In this scheme, a
predictive coding network is shown to converge to BP in a certain limit of parameters, supporting
the NGRAD hypothesis that local updates based on activity difference can, at least theoretically,
approximate BP-like synaptic adjustments.
Another example of algorithms fitting in the NGRAD framework is the Generalized recirculation
(GeneRec) scheme [O’Reilly, 1996], developed in the auto-encoder framework. GeneRec builds on
the Recirculation algorithm [O’Reilly, 1996, Hinton and McClelland, 1987], a learning algorithm
to train autoencoders. The original recirculation approach is based on comparing the activations
of the network on the original input to the activations of the reconstructed input. The input
from the hidden units changes the state of the visible units and the new state is fed through the
system again. Finally, the difference in activations is used to compute the parameter updates. For
monotonic activation functions, this gives an approximation of the error derivative, with a different
magnitude but with the correct sign. GeneRec trains multilayer recurrent networks with sigmoidal
units through two phases. In a minus phase, the network is presented with the input, and recurrent
activities are allowed to settle to equilibrium. In a plus phase, input is provided to the network
and simultaneously the environment provides the target output activation, which is propagated to
the output and hidden layers. The output neurons are nudged towards their target values, and
activities are again allowed to settle to equilibrium. The weight update is proportional to the
difference between the product of the presynaptic and postsynaptic activities from the plus and
minus phases [O’Reilly, 1996, Lillicrap et al., 2020]. Therefore the learning rule is local, however,
the requirement for long positive and negative settling phases for computing the activities is not
supported by neurophysiology findings [Bartunov et al., 2018].
A further possible implementation of the NGRAD backbone for learning is to drive updates
based on activity differences between different compartments of multi-compartmental neurons.
Several algorithms [Urbanczik and Senn, 2014, Guerguiev et al., 2017, Sacramento et al., 2018a,
Asabuki and Fukai, 2020] alleviate the requirement of having two separate pathways for feedback
signals [Lillicrap et al., 2016] and demonstrate that local error signal can be computed by having
two distinct dendritic compartments in each hidden layer neuron: a basal compartment, strongly
coupled to the soma for integrating bottom-up sensory information, and an apical compartment
for integrating top-down feedback to drive plasticity [Guerguiev et al., 2017]. Biologically, in the
neocortex, electrotonically segregated apical dendrites receive top-down inputs, a phenomenon
known as dendritic segregation. A pioneer work in this direction by Urbanczik and Senn proposes
a plasticity rule which is driven by the correlation of presynaptic activity with a postsynaptic,
somatodendritic prediction error, rather than by the correlation between pre- and postsynaptic
activity, as in Hebbian learning [Urbanczik and Senn, 2014]. In this framework, learning seeks to
minimize discrepancies between somatic firings and a local dendritic potential, which may arise
from stochastic fluctuations and synaptic input, which is received by the soma. This model can be
applied to unsupervised, supervised, and reinforcement learning.
Extending on the principle of learning based on segregated dendritic compartiments, Guerguiev
and colleagues [Guerguiev et al., 2017] demonstrate that dendritic segregation can be exploited
in multi-layer networks to learn image categorization. Neurons in different layers can coordinate

Chapter 3. Biologically Inspired Algorithms for Neural Networks 47

local synaptic weight updates via distinct basal and apical compartments that integrate feedback
and feedforward signals separately. Similarly to DTP, feedback from higher layers is used to
construct local targets at the hidden layers. The resulting algorithm takes advantage of multilayer
architectures to identify useful higher-order representations, reproducing the hallmark of deep
learning. Tested on the MNIST dataset, the scheme applied to one- and two-hidden layer networks
achieves better accuracy than on single-layer networks. The algorithm is constrained to supervised
learning settings with a teaching signal.
Sacramento and colleagues [Sacramento et al., 2018a] follow a similar research line of learning by
reducing the prediction error between the somatic potential and their dendritic branch potential,
but further integrate into the architecture a second population of cells, that of interneurons with
both lateral and cross-layer connectivity (e.g., somatostatin-positive, SST, cells). Therefore, each
hidden area of the network consists of a microcircuit with pyramidal cells and lateral inhibitory
interneurons. Lateral synaptic input from local interneurons learns to cancel top-down feedback
from downstream brain areas. Both the lateral synapses from and onto interneurons are trained.
Such an algorithm can be applied to learn non-linear regression tasks, MNIST classification task,
input reconstruction and denoising. Compared to [Guerguiev et al., 2017] in which the error for
learning the bottom-up synapses does not influence the somatic activity, here the apical dendrite
has an explicit error representation at every moment in time by simultaneously integrating top-
down excitation and lateral inhibition. This allows us to avoid two-phase training and to solve the
credit assignment problem for time-continuous input streams.
Finally, Asabuki and Fukai proposed a plasticity rule to train networks based on somato-dendritic
mismatch in unsupervised settings [Asabuki and Fukai, 2020]. Learning occurs as a self-supervising
process in which a single neuron (more precisely, the soma) generates an appropriate supervision
signal to learn the spatiotemporal firing patterns repeated in upstream neurons (projecting to the
dendrites of the neuron). This enables efficient learning of clustered temporal events in a completely
unsupervised manner, which can be applied to perform blind source separation of mutually corre-
lated signals, temporal chunking, and reproduce experiments of audio sources separation through
embedded repetition [Dellaferrera et al., 2022a].
The results obtained via the described NGRAD algorithms lead Lillicrap and colleagues to the
conclusion that BP may offer a conceptual framework for understanding how the cortex learns,
despite it is still unclear how some aspects of the NGRAD framework could be implemented by
the neurons, in particular how to compute differences between neuronal activities and use this
information to drive synaptic updates [Lillicrap et al., 2020].

3.3.2 Supervised learning

The following algorithms propose different solutions to the described biological limitations of BP.
They all rely on labeled samples, by either using error or target information to compute the
parameter updates.
To mathematically describe the proposed frameworks, I adopt the same notation used in [Nokland, 2016].
Given a mini-batch of input-output vectors (x, y) and a networks with two hidden layers (Figure
3.1a) with weights Wi and bias bi, the activations of the networks are computed as:

a1 =W1x+ b1, h1 = f(a1), (3.2)
a2 =W2h1 + b2, h2 = f(a2), (3.3)
ay =W3h2 + b3, y = fy(ay), (3.4)

where f(.) is the hidden non-linearity ad fy(.) is the output non-linearity. Given a loss function J ,
the error at the output layer is computed as the gradient of the loss function with respect to the
output activations:

e = δay =
∂J

∂ay
(3.5)

48 3.3. Towards bio-plausible training for ANNs

The gradients for the hidden layers are computed with BP as:

δa2 =
∂J

∂a2
= (WT

3 e)⊙ f ′(a2) (3.6)

δa1 =
∂J

∂a1
= (WT

3 δa2)⊙ f ′(a1) (3.7)

(3.8)

Finally, the weight updates are computed based on the gradients as:

δW3 = −ηehT2 (3.9)

δW2 = −ηδa2hT1 (3.10)

δW1 = −ηδa1xT (3.11)
(3.12)

where η is the learning rate.

Separate synaptic pathways:
an illustration of Feedback
Alignment. DALL·E prompt: A
3D rendering of a humanized neuron
with eyes and mouth that is stand-
ing on a road that forks in two.

Feedback Alignment (FA) Lillicrap and colleagues
[Lillicrap et al., 2016] proposed one of the first solutions to
the weight transport problem. They introduced a deep
learning algorithm derived from approximations of BP. Their
method leverages the same connectivity structure as BP, but
uses independent forward and backward pathways. Their
findings demonstrate that fully connected neural networks
can be effectively trained when in the feedback path the
transpose of the forward weight matrix (WT) is substituted
by a fixed random matrix (B). Given the same notation and
settings described for BP, in FA the gradients for the hidden
layers are computed as:

δa2 = (B2e)⊙ f ′(a2) (3.13)
δa1 = (B1δa2)⊙ f ′(a1) (3.14)

(3.15)

Figure 3.1c shows schematics of the forward and backward
connections in a fully connected network. This shows that
the precise symmetric connectivity between forward and
backward pathways is not needed to achieve learning. The
only constraint in the choice of the random matrix is that B
needs to satisfy eTWBe > 0, where e is the network’s error.
During training, only the forward pathway (W) is updated,
by propagating the gradient of the loss function through the backward path (B). The backward
parameters (B) are left unchanged. The dynamics of the training algorithm push the updates of
the forward weights toward a soft alignment with the backward weights. This mechanism allows
the error to flow backward through the network to deliver useful teaching signals for the updates of
the forward weights. Indeed, since soft alignment between W and BT is encouraged, the forward
weights evolve towards a setting resembling that of backpropagation, with the backward weights
being equal to WT . In practice, the rough transposition makes the updates of FA similar enough
to those of BP that the network is able to learn simple tasks with an accuracy comparable to BP.
This weak symmetry, however, is not forced nor achieved through weight transport, as it emerges
spontaneously via the dynamics of the training algorithm, allowing us to solve the weight symmetry
problem. Such dynamics are guaranteed by the only constraint on the B matrix, i.e., eTWBe > 0
. When the inequality is satisfied, the teaching signal (or modulator signal) backpropagated by
the matrix, Be, lies within 90 degrees of the signal which would be prescribed by BP (WT e).

Chapter 3. Biologically Inspired Algorithms for Neural Networks 49

This ensures that the updates prescribed by B push the network toward the same direction as
those of BP. More specifically, analytical results suggest that W evolves towards alignment with
the Moore-Penrose pseudoinverse of B. Under this condition, in networks with one hidden layer,
feedback alignment is able to asymptotically reduce the error to zero.
The computation of modulatory signals in feedback alignment requires the decoupling of for-
ward and backward activity and their interaction during learning. Biological circuits could sup-
port decoupling through multiple plasticity mechanisms. For instance, the modulator signals
can be provided by inputs that arrive at different times or to different subcellular compartments
[Clopath and Gerstner, 2010, Kwag and Paulsen, 2009, Sjostrom and Hausser, 2006], or via differ-
ent types of synapse [Coesmans et al., 2004, Yang and Lisberger, 2014]. Furthermore, forward
and backward pathways could interact via the post-synaptic voltage, which would allow inference
and learning processes to interact. Additionally, feedback alignment might be related to learn-
ing paradigms for multi-compartmental neuron models that update the synaptic strength based
on forward and teaching signals reaching separately the dendritic and the somatic compartments
[Urbanczik and Senn, 2014, Asabuki and Fukai, 2020]. The decoupling of forward and backward
pathways allows simplifying the computation and transport of third factors, as the modulatory sig-
nals are delivered via random connections and are computed on the basis of random connections
in the backward pathway.
However, while FA represents a pivotal step towards solving the weight transport problem, it cannot
scale to complex models and tasks [Bartunov et al., 2018]. Furthermore, FA is still affected by the
other issues of BP. First, the error signals do not affect the post-synaptic activities (i.e., the network
is frozen during the backward pass and the signed error vectors are delivered via a distinct path
[Bartunov et al., 2018]). Second, the modulatory signals still require having precise information
about all the random connections (i.e., non-local). Third, the training is backward-locked. Forth,
FA requires transporting signed error information in the backward pass [Bartunov et al., 2018].
Finally, while the disjoint forward and backward path solves the weight symmetry problem, it
introduces a further biologically unrealistic aspect. The disjoint feedback pathway may exist in an
architecture with a second set of ‘error’ neurons that act as the feedback variables. However, this
would imply that there exist entirely segregated feedforward cortical neurons that are unaffected
by feedback activity. This is at odds with experimental evidence showing that feedback in the
cortex tends to be area-wise reciprocal and that feedforward and feedback pathways appear to be
active and interacting, at least to some extent, simultaneously [Lillicrap et al., 2020].

The sign symmetry algorithm (SS) The sign symmetry approach, also known as sign-
concordant feedback, [Liao et al., 2016] is another approach to training neural networks addressing
the weight symmetry problem. Empirical results show that when the feedback matrix is different
from the transpose of the forward matrix, the magnitude of feedback weights does not matter
for the performance, while the sign of the feedback weights is crucial for the network to learn.
This means that, if the feedback matrix is built by combining the sign of the forward weights
with random magnitudes, training leads to performance comparable to BP. In practice, the sign-
concordant feedback training is implemented by using feedback matrices that share the sign with
the forward matrices, but use random magnitudes (Figure 3.1b). The sign symmetry algorithm
along with several variations the feedback matrix is tested on several datasets: MNIST, CIFAR-10,
CIFAR-100, and TIMIT. For many datasets, the performance obtained using the same sign but
random magnitudes, together with batch normalization and batch manhattan, leads to perform
better than standard BP (but not than BP with batch normalization and batch manhattan). We
remark that in the sign symmetry approach the feedback connections are changing with training.
This is a major difference from FA, where the feedback matrix is random but fixed.
[Bartunov et al., 2018] investigated the scalability of FA to more complex methods and datasets, re-
vealing that FA does not work in more complex scenarios. Building on these results, [Xiao et al., 2018]
demonstrates that the sign symmetry training scales to more complex datasets such as ImageNet
and MS COCO. It evaluates five configurations: (i) BP, (ii) FA on all layers, (iii) FA on convolu-
tional layers and BP on fully connected layers, (iv) sign-symmetry on all layers, (v) sign-simmetry
on convolutional layers and BP on fully connected layers. The findings show that BP achieves the

50 3.3. Towards bio-plausible training for ANNs

best performance and that the sign-symmetry models are only slightly worse than BP. FA exhibits
the worst accuracy when applied to all layers, but its performance improves when SS is applied
only to convolutional layers and the fully connected layers are trained with BP. We underline that
the sign symmetry training implies that the feedback weights keep track of the evolution of the
forward weights. This might explain the gap in performance with FA.

Direct Feedback Alignment (DFA) The feedback alignment training algorithm succeeds in
training networks with a few hidden layers without weight transport. While precise symmetry
between forward and backward pathways is not required in FA, the connectivity pattern needs to
be the same, i.e., all the neurons that are connected with a forward connection also need to be
connected in the backward direction. Furthermore, in FA only connections between contiguous
layers are contemplated. While neurophysiology insight support reciprocal connectivity between
cortical areas [Gilbert and Li, 2013], the error signal may be relayed through areas not involved
in the forward pathway to reach more distant layers. This condition requires the forward and
connectivity pathways to be disconnected. Building on the FA results, Nokland [Nokland, 2016]
proposed to train networks with disjoint connectivity patterns: the forward path is composed of
connections between contiguous layers (as in BP and in FA), while the backward path is formed
by connections that carry the error signal directly from the output layer to each hidden layer
independently. Such circuitry is shown in Figure 3.1d. In DFA, the modulatory signals for the
hidden layers are computed as:

δa2 = (B2e)⊙ f ′(a2) (3.16)
δa1 = (B1e)⊙ f ′(a1) (3.17)

(3.18)

The empirical results in [Nokland, 2016], show that the performance obtained by DFA and FA
is comparable and only slightly lower than BP for fully connected architectures. The accuracy
gap increases in the case of convolutional models. Additionally, the direct error transportation
pathway employed by DFA has the advantage that the modulatory signal at every hidden layer
is non-zero for all non-zero error e. Therefore, DFA is not vulnerable to the vanishing gradient
issue and enables training of very deep networks (i.e., 100 hidden layer fully connected architec-
tures), that neither BP or FA can train with simple initialization schemes. Furthermore, DFA
has been shown to be effective in a broad range of applications in state-of-the-art settings and
network types beyond fully connected models. Some successful applications are neural view syn-
thesis, recommender systems, geometric learning with graph convolutions, and natural language
processing with Transformers [Launay et al., 2020a]. Additionally, the asynchronous weight up-
dates and the single operation at the center of the training stage enable new classes of training
co-processors (i.e., photonic co-processors [Launay et al., 2020b]), leveraging dedicated hardware
to perform the direct error propagation with optical random projections. However, a systematic
study on DFA [Launay et al., 2019] showed that DFA is unable to train deep convolutional ar-
chitectures, as convolutional layers systematically fail to align. This phenomenon prevented DFA
from scaling to complex architectures such as VGG-16 and complex computer vision tasks like
ImageNet [Refinetti et al., 2021].
While there is no empirical evidence that a mechanism analogous to DFA is implemented in the
brain, Nokland’s findings are essential to demonstrate that ANNs can be trained not only without
weight transport but also with disconnected forward and feedback pathways, i.e., in the framework
of synaptic asymmetry [Launay et al., 2020a]. This result is important as the training does not
require knowing the derivative of the non-linearity. Additionally, the parameter updates depend
only on the pre-synaptic activity and the temporal derivative of the post-synaptic activity, allowing
the learning rule to be local. The update phase can be considered to be not a separate phase, but
as the final computation of an extended forward pass. Finally, the error signal can be considered
to be a separate signal relayed by other neurons, addressing the issue of BP in which the error is
a second signal, separate from the input, in the neurons participating in the forward pass.

Chapter 3. Biologically Inspired Algorithms for Neural Networks 51

Indirect Feedback Alignment (IFA) With the same motivation driving the design of DFA,
Nokland designed a second feedback path configuration known as indirect Feedback Alignment.
As in DFA, the forward and backward pathways are disconnected. However, the backward path
presents a connectivity framework different from the direct output-hidden layer connections of
DFA. In IFA, the error is propagated directly from the output layer to the first hidden layer.
Then, the modulatory signal computed at the first hidden layer is propagated in a forward fashion
through the same weights used for the forward computations.
In such schematics, the modulatory signals for the hidden layers are computed as:

δa2 = (W2δa1)⊙ f ′(a2) (3.19)
δa1 = (B1e)⊙ f ′(a1) (3.20)

(3.21)

The IFA algorithm provides another demonstration that fully connected architectures can be
trained without weight transport and with disconnected forward and feedback computations. Ad-
ditionally, compared to DFA, IFA requires using a single random matrix instead of one matrix per
layer, thereby saving memory. However, this comes at the cost of lower and more fragile perfor-
mance. Empirical results on IFA are not reported in the original paper [Nokland, 2016], nor, to
the best of my knowledge, have been reported in any follow-up work.

Weight Mirrors (WM) Bartunov and colleagues [Bartunov et al., 2018] evaluated the perfor-
mance of biologically inspired training schemes, including FA, DFA and target propagation, on
image classification datasets with increasing complexity (MNIST [LeCun and Cortes, 2010], CI-
FAR [Krizhevsky et al., a], ImageNet [Deng et al., 2009a]). The results revealed that FA has a
performance only slightly lower than BP on MNIST and CIFAR-10 with fully connected archi-
tectures. However, FA struggles with locally connected networks and is not able to scale up to
training large networks on ImageNet. Given these findings, the authors hint that the ‘research
should continue into new physiologically realistic learning algorithms that can scale-up’. Akrout
and colleagues [Akrout et al., 2019] take up the challenge and propose novel methods to address
the scalability issues of FA outlined in [Bartunov et al., 2018]. The underlying idea is that, since
FA leads to the learning of simple tasks through the soft alignment between the feedback and the
forward weights, an improvement of such an alignment might empower FA to handle harder tasks.
To this goal, they propose two approaches to learn appropriate feedback weights without weight
transport. The first method, the weight mirrors (WM), proposes to adjust the initially random
feedback matrix B so that it becomes proportional to the forward matrix W . By taking inspiration
from the alternation of wakefulness and sleep states in the animal brain, the WM algorithm alter-
nates two modes in training: engaged and mirror modes. During the engaged mode, the network
receives input samples specific to the task (i.e., ImageNet images) and learns the forward weights
W through the standard FA algorithm. In the mirror mode, the feedback weights are adjusted to
mimic the forward ones, i.e., the initially random feedback matrix B is updated so that it becomes
proportional to the transpose of the forward weight matrix W without weight transport. To avoid
weight transport, a noise vector xi is given as input to each layer i separately. At each layer, xi
passes through the forward weight matrix Wi, and the output of the layer yi =Wixi is computed
(Figure 3.1e). The noise vector xi models a mechanism in which neurons discharge noisily, that
could occur during sleep or during development in utero. The Bi matrix is adjusted relying on the
locally available information on xi and yi, where yi contains information on Wi. The update of Bi

is based on the transposing rule δBi = ηxiy
T
i . In practice, Bi integrates a signal, called the teach-

ing signal, which is proportional to WT
i on average. During training, the initial values of Bi shrink

away, and Bi converges to a positive scalar multiple of WT
i . Therefore, throughout training weight

mirroring keeps the forward and feedback weights in agreement, achieving an alignment angle in
the range of [6◦, 12◦]. The subscript i denotes the index of the layer. The computations in the
mirror mode are performed layer by layer. Importantly, in this technique, weight decay or synaptic
scaling are essential to keep the norm of the B weights small. When tested on a ResNet-18 and
on a ResNet-50 architectures trained on ImageNet, WM outperformed FA and SS, and obtained
an accuracy only slightly lower than BP.

52 3.3. Towards bio-plausible training for ANNs

Kolen-Pollack (KP) reciprocal network The second approach presented in [Akrout et al., 2019]
to improve the agreement of the feedback and forward weights in FA builds on the Kolen-Pollack
(KP) algorithm to alleviate the weight transport problem. The principle of the Kolen-Pollack (KP)
algorithm is that parameter updates can rely on the transport of changes in weights rather than
the transport of weights. As in WM, the forward and backward matrices (W and B) are initialized
differently, and then, during training, they are updated with identical weight adjustments. This
technique, however, is not biologically plausible, as different synapses are unlikely to undergo the
same adjustments. The novel algorithm proposed in [Akrout et al., 2019], (called KP reciprocal
network) builds on KP and proposes the following update rules. W is updated based on its in-
put vector and a teaching vector δ sent from the feedback path (as in feedback alignment). B is
updated based on its input and a cell-specific scalar teaching signal from the forward path. The
update of the feedback weights Bl at layer l is computed as:

∆Bl+1 = −ηylδTl+1, (3.22)

where δTl+1 is a scalar teaching signal from the forward path. If the updates of the forward and
feedback weights have the same learning rate and weight decay, then the B matrix converges to
the transpose of W . Compared to the WM algorithm, this approach only needs a single mode of
operation and does not need to update the backward pathway layer by layer. Additionally, the
KP network kept the alignment of the forward and feedback matrices in a range closer to zero
than WM. When tested on a ResNet-18 and on a ResNet-50 architectures trained on ImageNet,
KP outperformed FA and SS, and obtained an accuracy only slightly lower than BP, and slightly
better than WM.
Similarly to DFA, both the WM and the KP algorithms rely on disjoint sets of neurons. Impor-
tantly, in WM and KP the distinct neurons are paired such that each forward-path cell is connected
with a feedback-path cell. The authors speculate that such one-to-one wiring may appear during
development. However, the WM and KP schemes are unlikely to be implemented exactly as they
are in the brain, as they required the input-related activity and the teaching signal flowing through
the cell without interfering.

Node perturbation (NP) [Lansdell et al., 2020] proposes a strategy to alleviate the weight
symmetry problem that relies on combining three techniques: (i) approximating BP via a rein-
forcement learning scheme, (ii) adding noise to neural activity, and (iii) integrating global and
local feedback signals. The training algorithm, which is called Node Perturbation (NP), trains a
feedback system to provide synthetic gradients which approximate the modulatory signals that
would be prescribed by BP. The algorithm can be described as a two-learner system, in which one
network enables the other network to learn more efficiently. The such framework may be compatible
with the dynamics of certain biological circuits, including the dendritic trees of pyramidal neurons
containing an apical and a basal component, and the ensemble of climbing fibers and Purkinje
cells in the cerebellum. The NP scheme is implemented as a network that learns to use feedback
signals trained with reinforcement learning via a global reward signal. In practice, the loss gradient
term is replaced with a synthetic estimate that is learned through noisy perturbation of the neural
activity. At each layer, the loss is linearized and noise is introduced to perturb the layer’s output
and the loss function. The estimate of the error used to update the weights is computed based on
the correlation between the perturbed loss and the introduced noise. Importantly, such a technique
can be applied to learn appropriate feedback weights B in an architecture analogous to that of FA.
Theoretical and empirical results demonstrate that NP is able to train the B matrix to converge
to the forward weight matrix W .
During training, the feedback network co-adapts with the evolving feedforward weights to continue
to provide a useful error signal. The alignment angle between B and W and the sign congruence are
better than the ones obtained with standard FA, supporting the hypothesis that NP communicates
error signals between layers better than FA. If the feedback learning rate is zeroed, the scheme
falls back to FA. In fully connected architectures trained on MNIST, NP achieves an accuracy
comparable to BP, surpassing the performance of FA. In autoencoders trained on MNIST, while
FA performs poorly, NP performs better than BP. Such an improvement may arise from the addition

Chapter 3. Biologically Inspired Algorithms for Neural Networks 53

of noise that encourages the learning of more robust latent factors. Finally, in convolutional models
trained on CIFAR-10 and CIFAR-100, NP performs worse than BP but better than FA.
While NP outperforms FA in the tested tasks, in terms of biological plausibility NP only solves
the weight transport problem, but is affected by the same issues of FA, namely backward locking,
freezing of neural activity, and non-locality. Compared to the WM scheme [Akrout et al., 2019],
NP also relies on noise signals to learn the feedback matrices, however, it does not require two
separate phases of learning, not layer-by-layer updates.

Target Propagation (TP) and its variants Target Propagation [Lecun and Soulie Fogelman, 1987,
le Cun, 1986, Bengio, 2014, Lee et al., 2015] is a training scheme for neural networks that proposes
a solution to both the biological criticisms and the vanishing gradient issue of BP. The previously
described algorithms update the parameters by associating to each unit a loss gradient, or an ap-
proximation of it. The underlying principle of TP, instead, aims to compute targets rather than
gradients, i.e., each unit is associated to a target value.
In TP, the forward pass is implemented as in BP, in which activity is propagated forward through
successive layers of a network to produce an output. In the update phase, the output target is
propagated backwards through feedback connections. The backpropagation of the output target
generates at each layer target activities, i.e., activities that would have led the network to output
the correct response. The layer-wise difference between such target activity and the actual activa-
tions obtained during the feedforward pass is used to drive the forward weights. In practice, this
means that each layer is trained to reconstruct the layer below. In other words, the feedback pa-
rameters are learned through layer-wise auto-encoding of the forward layers, where auto-encoding
refers to a learning rule in which the target is the input itself. Therefore, reconstruction is exploited
as a layer-local training signal. In the limit in which the target signal is close to the feedforward
value, the dynamics of TP approached that of BP.
Using the same notation as described above, the updates prescribed by TP in a supervised learning
setup can be formulated through the following equations. We introduce the f ′() shorthand notation
on top of the previously described notation:

hl = f ′l (hl−1) = fl(Wlhl−1) (3.23)

The output target is driven by the gradient of the global loss, and is defined as the output activation
tweaked in the direction of the negative gradient [Meulemans et al., 2020]:

ĥL = hL − η̂eL = hL − η̂
(∂L
∂hL

)T
, (3.24)

where η̂ is the output target step size. hL is backpropagated through layer-wise inverse to compute
hidden layer targets as:

ĥl = g′l(hl+1) = gl(Blhl+1), (3.25)

where g′l is an approximate inverse of f ′i+1, Bl the feedback weights and gl a smooth nonlinear
activation function. The forward activations and the target signals are used to compute the local
loss per layer - also known as forward loss - as:

Ll(ĥl, hl) = ||ĥl − hl||2. (3.26)

Finally, the forward weights Wl are updated by taking a gradient descent step on this local loss,
assuming that ĥl stays constant. Analogously, the backward weights Bl (the decoder part) are
trained based on the reconstruction loss:

Lrec
l (g′l(fl+1(hl)), hl) = ||g′l(fl+1(hl))− hl||2. (3.27)

This approach allows learning an approximate inverse g′l, making the f ′l / g′l pair look like an auto-
encoder. Furthermore, in order to extend the inverse mapping to a neighborhood of the training
samples, [Lee et al., 2015] proposes to modify the loss through noise augmentation:

Lrec
l (g′l(fl+1(hl)), hl) = ||g′l(fl+1(hl + ϵ))− (hl + ϵ)||2, (3.28)

54 3.3. Towards bio-plausible training for ANNs

with ϵ ∼ N(0, σ).
For effective learning, the TP dynamics requires that the layer-wise parameter updates, each
improving a layer-wise loss, also lead to an improvement of the global loss. [Lee et al., 2015]
analytically demonstrates that, in the case that gl is a perfect inverse of fl and fl has a certain
structure, the update direction of TP does not deviate more than 90◦ from the gradient direction
estimated by BP, which always leads to a decrease of the global loss.
From the biological perspective, TP does not require symmetric forward and feedback pathways,
and the reconstruction-driven updates at each layer may be considered local. However, TP is
still affected by the alternation between a feedforward and ‘frozen’ backward phase, and there is
no neurophysiological justification for the origin of the output targets. The disjoint forward and
backward paths, as for FA, could be thought of as part of an architecture with a second set of
‘error’ neurons that could act as the feedback variables [Lillicrap et al., 2020].
On the computational side, TP is a very unstable optimization algorithm. Indeed, in classification
tasks the same 1-hot vector in the output will always map back to precisely the same hidden unit
activities in a given layer. This leads to instability when different samples of the same class have
different appearances: TP will attempt to make their representations identical even in the early
layers. Additionally, there are no guarantees about the dynamics of TP when the inverses are
imperfect [Bartunov et al., 2018].

Difference Target Propagation (DTP) Difference target propagation (DTP) is a stabilizing
linear correction for the imperfect inverse mapping of TP which is effective to make TP actually
work. [Lee et al., 2015] observes that the imperfection of the inverse function in TP leads to severe
optimization problems when assigning targets based on the original equation. In this context, DTP
[Lee et al., 2015] builds on the principle of TP and tweaks the original formulation through the
following linearly corrected formula:

ĥl−1 = hl−1 + g′l(ĥl)− gl(hl) (3.29)

If g′l is the inverse of f ′l , DTP becomes equivalent to standard TP. Such a correction significantly im-
proves the optimization stability of TP. Note that, in the formulation proposed in [Lee et al., 2015],
the penultimate layer target is computed using gradients from the network’s loss and not the up-
dates of TP.
In simulations, [Lee et al., 2015] demonstrates DTP enables multilayer training on supervised im-
age classification tasks. On fully connected multilayer models with tanh nonlinearity DTP reaches
an accuracy only slightly lower than BP both on MNIST and on CIFAR-10. The gap in per-
formance wides when the tanh activation is replaced with ReLU. Regarding scalability to more
complex scenarios, [Bartunov et al., 2018] demonstrated that DTP fails to train architectures on
ImageNet.

Simplified Difference Target Propagation (SDTP) Biologically, a major issue presented
by DTP is the update of the last layer, which requires computing the output gradient via BP. A
plausible reason for this choice is that this approach ensures that the penultimate layer receives
diverse targets despite the low-dimensional 1-hot targets at the output layer. To address this
limitation, [Bartunov et al., 2018] introduces weight-transport-free variants of DTP, to remove the
BP updates of the penultimate layer. In SDTP the target for the penultimate layer is formulated
as:

ĥL−1 = hL−1 − g(hL;λL) + g(ĥL;λL), (3.30)

where ĥL = argminhL
L(hL), which is the correct label distribution. While it removes the bi-

ologically implausible gradient communication, this strategy only produces weak targets for the
penultimate layer. Therefore SDTP is integrated with an auxiliary output that enriches the target
signal with information from the input. [Bartunov et al., 2018] introduces a composite structure
for the output layer, that combines the predicted class distribution o with an auxiliary output vec-
tor z that provides additional information about activations of the penultimate layer. The target

Chapter 3. Biologically Inspired Algorithms for Neural Networks 55

for penultimate layer is then computed as:

ĥL−1 = hL−1 − g(o, z;λL) + g(ô, z;λL), (3.31)

Furthermore, [Bartunov et al., 2018] introduces an additional variant of DTP, which, unlike DTP
that alternates learning in forward and backward weights, optimizes both the forward and the
reconstruction loss simultaneously. On MNIST and CIFAR-10, SDTP is able to train the networks
with an accuracy slightly lower than DTP on MNIST and CIFAR-10. Given this result and the
failure of DTP on ImageNet, not unexpectedly [Bartunov et al., 2018] demonstrated that SDTP
and all its tested variants fail to train architectures on ImageNet.
[Meulemans et al., 2020] introduces an additional variant of DTP, the Direct Different Target Prop-
agation (DDTP). In DDTP the network has direct feedback mapping functions g′l(ĥL) from the
output to each hidden layer. Such a variant systematically outperforms the accuracy of the original
DTP algorithm on MNIST, Frozen-MNIST, Fashion-MNIST, and CIFAR-10.

Direct Random Target Propagation (DRTP) The DRTP algorithm aims to simultaneously
solve the weight transport and the update locking problem. It relies on a similar strategy as DFA
of sending the modulatory signal directly at each hidden layer, with the main difference being that
the modulatory signals are projected target vectors instead of project error vectors as in DFA.
Figure 3.1g provides the schematics of the rule. The underlying principle of DRTP is that the
target vectors contain information about the error sign, and this is sufficient to provide useful
modulatory signals for learning. Indeed, the sign of the c-th elements of the error vector associated
to a target c∗ and an output response y ∈ [0, 1] can be computed as:

ec =

{
sign(1− yc) = 1 if c = c∗

sign(−yc) = −1 otherwise
(3.32)

In DRTP, considering the same architecture introduced for BP and FA, the modulatory signals for
the hidden layers are computed as:

δa2 = (B2y
∗)⊙ f ′(a2) (3.33)

δa1 = (B1y
∗)⊙ f ′(a1) (3.34)

(3.35)

where y∗ is the target.
The advantages provided by this scheme are twofold. As in DFA, there is no dedicated feedback
pathway, thereby alleviating the weight symmetry requirement. Second, the update locking issue
is solved, as the updates can be performed at each layer as soon as the forward network activations
are computed for the current layer. Therefore, the weight updates do not need to wait for the
computation of the error at the end of the forward pass. Compared to Target Propagation, DRTP
shares the idea of propagating target information, however, DRTP projects the target directly
to each hidden layer, while TP propagates the target information in a backward fashion. When
applied to image classification tasks, the DRTP update strategy enables learning in multi-layer
networks, as the modulatory signals based only on the target (and thus on the error sign) are
within 90◦ of those prescribed by BP. However, disregarding information on the error - and on
the class-dependent magnitude - carries a major drawback, which is a substantially lower accuracy
compared to other biologically inspired algorithms including FA. Such a gap cannot be narrowed
even when doubling the layersize nor when increasing the number of hidden layers from 1 to 2.
For instance, in all reported configurations, even when trained on the MNIST dataset, DRTP does
not reach an accuracy higher than 96%.

Global Error Vector Broadcasting (GEVB) The global error-vector broadcasting (GEVB)
[Clark et al., 2021] is a learning rule which generalizes three-factor Hebbian learning to train neu-
ral networks without weight transport and backward update locking. The algorithm relies on

56 3.3. Towards bio-plausible training for ANNs

broadcasting a single global learning signal to all hidden units and applying local Hebbian-like
updates (Figure 3.1f). Such a method distributes information about the output error throughout
the network. It projects the same identical error vector to all units, without unit-specific feedback
parameters. The update prescribed by GEVB is given by:

∆Wl ∝ −G(hl)
∑
µ

aµl−1e
µ (3.36)

where G is a function that induces a coupling between different vector components, and µ is the
output error vector broadcasted to all hidden units. The equation above shows that presynaptic
units that are aligned or anti-aligned with the output error vector have their weight onto the
postsynaptic unit decreased or increased, respectively, when the postsynaptic unit is active. In this
rule, the weight updates are shown to match the sign of the gradient on individual samples, leading
to effective learning. The GEVB algorithm can be written as three-factor Hebbian learning with eµ
being a vector-valued global third factor. Since the error is broadcasted directly from the output
– which is a vector – to each unit, also the units need to be vectors. Therefore GEVB can only
operate in a class of DNNs called vectorized nonnegative networks (VNNs). VVNs feature vector-
valued units and nonnegative weights past the first layer (excitatory). The vectorial framework
introduces additional computational and memory costs, as each unit needs to be represented by a
vector rather than a scalar value. Such a framework becomes impractical in some cases, such as
classification tasks with a large number of classes, e.g., ImageNet, which would require each unit
to be a 1000 dimensional vector. Furthermore, there is no experimental evidence that the vectorial
representation of units is compatible with neurophysiology. On the other hand, constraining the
network to nonnegative weights may be justified by the fact that cortical projections are excitatory
[Kandel, 2000]. GEVB shares the principle of broadcasting a global learning signal with NP. The
global signal could model the role of a neuromodulator in biological circuits that influences synaptic
activity and updates. However, NP is intrinsically subject to high variance in gradient estimates.
This issue is overcome by GEVB which does not rely on perturbations but rather on distributing
identical information about the output error throughout the entire network. Computationally,
the GEVB rule performs on par with BP on vectorized networks trained on MNIST and CIFAR-
10. We remark, however, that the performance of BP on VNN is lower than in conventional
models. Furthermore, GEVB is able to train convolutional architectures on MNIST and CIFAR-
10, overcoming the limitation of DFA. Additionally, the alignment angles between the weight
updates of GEVB and the gradients are smaller than those between the weight updates of DFA
and the gradients, indicating that such a difference might drive the gap in performance.

Deep Feedback Control (DFC) One of the drawbacks of some of the biologically inspired
solutions to credit assignment is a lack of connection with a mathematical optimization method.
To address this limitation, Meulemans and colleagues [Meulemans et al., 2021] design the Deep
Feedback Control (DFC), a learning rule for supervised learning which combines an approximation
of Gauss-Newton optimization with dynamical system theory. DFC uses a feedback controller to
drive a deep neural network to match the desired output target. The control signal of the feedback
controller is used for credit assignment: the dynamic change in the neuron activations is used to
update the synaptic weights. In terms of biological plausibility, the parameter updates are fully
local in space and time and they could be implemented in a multi-compartmental model of cortical
pyramidal neurons with a local voltage-dependent synaptic plasticity rule.
More specifically, the dynamics of each neuron follows

τv
d

dt
vi(t) = −vi(t) +Wif(vi−1(t)) +Biu(t), (3.37)

with

• i ∈ [1, L] is the layer index

• vi contains the pre-nonlinearity activations of the neurons in layer i

Chapter 3. Biologically Inspired Algorithms for Neural Networks 57

• f(.) is a smooth nonlinearity

• u is a feedback input

• Wi and Bi are the forward and the feedback matrices respectively

• τv is a time constant

• ri = f(vi) are the post-nonlinearity activations of layer i.

• if u = 0, i.e., in absence of input, the dynamics fall back to that of a conventional multilayer
feedforward network.

During learning, a feedback controller produces the feedback signal u(t) to continuously drive the
network’s output rL(t) towards an output target r∗L:

r∗L = r−L − η
∂L(rL, y)
∂rL

|rL=r−L
= r−L + δL, (3.38)

where

• L(rL, y) is a supervised loss defining the task

• δL is a shorthand notation

The control error e(t) = r∗L − rL(t) is used to control the dynamics as:

u(t) = KIu
int(t) +KP e(t) (3.39)

and

τu
d

dt
uint(t) = e(t)− αuint(t) (3.40)

where the control matrices are KI = I and KP = kpI, with kp ≥ 0. The output controller maps
directly to each hidden layer. The dynamics of the controller and of the network can be described
as implementing a dynamic inversion of the output target r∗L towards the hidden layers. Given such
dynamics, the learning rule relies on comparing the neuron’s controlled activation to its current
feedforward input. In practice, the update of the feedforward weights can be implemented as:

τW
d

dt
Wi(t) =

(
f(vi(t))− f(Wiri−1(t))

)
ri−1(t)

T , (3.41)

where τW is a time constant longer than the time constants for the network and the controller,
so that the weight plasticity does not influence the network and controller dynamics. This can
be interpreted as a delta rule using the difference between the actual firing rate of the neuron
f(vi) and its estimated firing rate f(vffi) based on the feedforward inputs. The feedback weights
are trained through alternating with updates of the forward weights, similarly to the wake and
sleep phases in the WM algorithm [Akrout et al., 2019]. The updates of the Bi matrices rely on
zero-mean noise ϵ injection:

τv
d

dt
vi(t) = −vi(t) +Wif(vi−1(t)) +Biu(t) + σϵi (3.42)

Consequently, we updates of the feedback matrix can be computed as:

τB
d

dt
Bi(t) = −vfbi (t)u(t)T − βBi, (3.43)

where β is the scale factor of the weight decay term. In simulations, DFC is tested on the MNIST
and Fashion MNIST tasks, where it performs close to BP, slightly outperforming DFA. On the
MNIST autoencoder, DFC also performs slightly worse than BP, while DFA has a poorer perfor-
mance.

58 3.3. Towards bio-plausible training for ANNs

Least Control Principle (LCP) A second approach to credit assignment relying on a controller
is the Least Control Principle (LCP) algorithm [Meulemans et al., 2022]. Inspired by the DFC
scheme for feedforward networks, the LCP rule extends the control-based learning principle to
recurrent systems. It consists of a temporally- and spatially-local rule which at first relies on an
optimal controller to push the free dynamics of the system towards a solution state defined as a
controlled equilibrium state that minimizes a loss L. Then the parameters are trained to reduce
the amount of control needed to reach such a minimum loss state. The requirement for the model
is that the dynamics need to be at equilibrium.
The LCP can be applied to learn an equilibrium RNN with one fully-connected recurrent layer in
the context of supervised learning. The output controller is projected onto the recurrent neurons
with direct linear feedback weights which are constrained to satisfy a column space condition. This
scheme is a generalization of the DFC algorithm [Meulemans et al., 2021] to equilibrium RNNs.
Both on the MNIST and on CIFAR-10 tasks, LCP achieves an accuracy only slightly lower than
recurrent BP. Furthermore, LCP can also be applied to meta-learning, a framework that aims at
improving a learning algorithm by leveraging shared structure in encountered tasks.

Layer-wise local supervised learning An approach to avoid the propagation of a global
error is to train the network with layer-wise loss functions [Nøkland and Eidnes, 2019]. In the
method proposed in [Nøkland and Eidnes, 2019], the synaptic weights are updated through a local
error signal. Such signal is computed at each hidden layer through two separate single-layer sub-
networks, one trained with the similarity matching loss (sim loss) and the other with the prediction
loss (pred loss). The sim loss measures the L2 distance between matrices, where the elements
contain the pair-wise similarities between examples in a mini-batch. The pred loss measures the
cross-entropy between a prediction from a local classifier and the target. The sim and the pred loss
can be combined in the predsim loss. The local algorithm is tested on MNIST, Fashion-MNIST,
Kuzushiji-MNIST, CIFAR-10, CIFAR-100, STL-10 and SVHN, and is applied to both standard
convolutional (VGG-like) and fully connected network architectures. In all settings, the proposed
approach achieves an accuracy comparable to - and, in the case of the predsim loss, higher than -
that of BP. However, the convergence rate is lower than that of BP.
The layer-wise local supervised learning demonstrates that error-driven learning does not require
global error transportation nor backward propagation, and that each hidden layer can be trained
independently from the downstream layers. The error locality approach alleviates the backward-
locking problem and the weight transport problem, and is fully local. Since gradients and activa-
tions do not need to be stored, the memory requirement is lower than for BP. Furthermore, the
layers can be trained one at a time, further reducing the memory cost. However, the loss at each
layer is generated through a subnetwork trained with BP, therefore at the layer level this strategy
suffers from the weight transport problem. Moreover, this strategy is more computationally costly
than BP.

3.3.3 Self supervised learning

Supervised learning has proven successful in training models on a broad range of tasks. However,
it presents two crucial limitations. The first aspect is practical: annotating large datasets is
expensive and time-consuming as it requires a significant amount of human effort. The second
limitation is related to biological plausibility, as learning in the animal brain is thought to be
mostly unsupervised [Lillicrap et al., 2020]. Self-supervised learning is a powerful strategy to learn
representation from neural data that addresses both limitations. First, self-supervised methods
create pseudo-labels as supervision, allowing to use unlabeled datasets for training. Collecting
unlabeled visual data is relatively easier and inexpensive for example thanks to the availability of
large internet databases such as YouTube. Second, learning without labels has also been suggested
as one possible means of building visual representation in the biological brain [Wang et al., 2021].
In the context of self-supervised learning, a popular approach is contrastive learning, which aims
at grouping together the representation of similar samples and pushing apart the representation
of different samples. Similar samples are generated by applying different distortions to the same

Chapter 3. Biologically Inspired Algorithms for Neural Networks 59

input sample. In the case of images, effective manipulations are random crop, color transfor-
mation, geometric transformation, and rotation. Different samples can simply be different input
samples. Similar samples and different samples are referred to as positive pairs and negative pairs,
respectively [Jaiswal et al., 2020]. Here, we review a recent approach that combines principles of
contrastive learning with Hebbian plasticity rules to learn hierarchical representations in a local
and biologically plausible fashion.

Contrastive, Local And Predictive Plasticity (CLAPP) A salient feature of the mam-
mal visual ventral stream is the hierarchical representation of features. Higher processing areas
extract higher-level information from the visual signal than lower areas. Most of the credit as-
signment solutions proposed as an alternative to BP (e.g., FA) can only lead to convergence in
simple models [Bartunov et al., 2018]. Some other approaches, such as DFA, can train deeper
networks, but with lower performance than shallow architectures [Nokland, 2016]. Illing and col-
leagues [Illing et al., 2021] propose a local plasticity rule that learns deep representations with-
out BP, thereby addressing the reported issue. The Contrastive, Local And Predictive Plasticity
(CLAPP) algorithm is a local and biologically plausible (Hebbian) learning rule that relies on self-
supervised learning from temporal data. The temporal structure of the data is taken into account
by simulating self-generated changes of gaze direction, known as saccades. Saccades distinguish
input from a moving object during fixation from input arriving after a saccade towards a new
object. The presence or absence of the saccades is taken into account in the learning dynamics
through the introduction of a global factor that modulates plasticity.
CLAPP relies on the minimization of a layer-wise contrastive predictive loss function to learn
hierarchical representations. Such representation can then be fed to an encoder trained with BP
to associate the extracted features with labels. To describe the learning rule, we use the same
notation as for the algorithms above. In addition to the general feedforward framework, CLAPP
introduces feedback and lateral connections. At each time step, pyramidal neurons integrate input
activity at the basal dendrites (matrix W l of feedforward weights) and pass on their response to
downstream areas (W l+1). At any point in time, the dendritic activity of the neurons predicts
future neural activity through recurrent connections W pred . An encoder network produces a
context representation ct at time t. Given the context, the encoder tries to predict the encoding
of the future input ht+δt. Algorithmically, each neuron j in a layer l may receive dendritic inputs
(W predct,l)j coming either from the layer above (ct,l = ht,l+1) or from lateral connections in the
same layer (ct,l = ht,l). For algorithmic reasons, the dendritic input (W predct,l)j influences the
weight updates ∆Wji of the post-synaptic neuron j, but not its activity htj . In this framework,
the weight update is proportional to the following factors:

∆Wi,j ∝ modulators · (W predct1)j · postt2j · pret2i (3.44)

The modulating broadcast factors are the same for large groups of neurons, for example all neurons
in the same area, or even all neurons in the whole network. postt2j and pret2i are functions of the
pre- and post- synaptic activities, thus local.
The CLAPP algorithm relies on prediction across temporal information. Specifically, the prediction
is modeled by the dendritic input term (W predctj). The prediction is meaningful during fixation,
i.e., slightly different views of the same image, but is not reliable after a gaze change, i.e., a view of
another image. In order to distinguish between the two cases, CLAPP relies on a score function ut
to classify whether the current sample in the temporal sequence is a different view of the previous
sample (absence of saccade) or a new image (presence of saccade). The loss employed to learn the
binary classification problem is given by the variable st which is st = +1 for fixation and st = −1
for saccade. The CLAPP loss - related to the Hinge loss - is therefore defined as:

Lt,l
CLAPP = max(0, 1− st · ut+δt,l

t) (3.45)

The information on the presence or absence of a saccade is transmitted as a broadcast signal, which
gives the contrastive information, i.e., distinguished between positive and negative pairs. In the
case the classification is correct (ut+δt,l

t > +1 if fixation or ut+δt,l
t < −1 if saccade), the gradient

vanishes.

60 3.4. Addressing energy consumption: spiking neural networks

The gradients with respect to the feedforward weights are computed as:

∂Lt
CLAPP

∂Wji
= ±(W predct)jf

′(at+δt
j)xt+δt

i . (3.46)

The gradients with respect to the predicting layer weights are computed as:

∂Lt
CLAPP

∂W c
km

= ±(W predTht+δt)kf
′(ac,tk)xc,tm , (3.47)

where the sign is negative (resp. positive) in the absence (resp. presence) of saccades. The weights
are updated via gradient descent with learning rate η:

∆W t
ji = −η

∂Lt−δt
CLAPP

∂Wji
(3.48)

By introducing a modulating factor γt = yt ·Ht, where Ht ∈ {0, η} is a layer-wide broadcast signal
that indicates if the saccade or fixation was correctly detected, the forward weight updates can be
formulated as:

∆Wji = γt · (W predct−δt)jf
′(atj)x

t
i. (3.49)

The updates of the prediction layer weights require the introduction of an additional matrix, the
retrodiction matrix W retro, which is necessary to model the transmission of information in the
direction of emitting the prediction instead of receiving it. The resulting update is:

∆W c,t
km = γt · (W retroht)kf

′(ac,t−δt
k)xc,t−δt

m . (3.50)

Finally, the plasticity of the prediction and retrodiction weights is governed by the Hebbian learning
rule:

∆W pred
jk = ∆W retro

kj = γt · htj · ct−δt
k , (3.51)

where neuron k in the predicting layer c is pre-synaptic in W pred or post-synaptic in W retro and
neuron j in the predicted layer z is post-synaptic in W pred or pre-synaptic in W retro.
CLAPP is evaluated experimentally on the STL-10 dataset of image classification. Each image
is cropped into 16 × 16 patches. The patches are viewed one after the other in a vertical order.
A 6 layer VGG-like network is trained using the CLAPP rule. After training, the layers have
learnt features that are selective for orientation and colors in the bottom layers and that are more
semantic and object-selective in deeper layers. This is corroborated by the accuracy of read-out
layers that are trained on the features extracted by each layer: the encoder accuracy increases
significantly from hidden layer 1 to hidden layer 4, and then saturates and only slightly improves
for layers 5 and 6.
Algorithmically, CLAPP solves the locality, the freezing of layers and the weight transport is-
sue. Furthermore, it enables hierarchical feature learning. Biologically, the global factor in the
learning rule can be related to global, saccade-specific signals from motor areas, combined with
surprise or prediction error. Additionally, neurophysiological evidence supports the fact that the
visual pathway is ‘self-aware’ of saccades due to saccade-specific modulation of processing. Finally,
CLAPP is able to exploit the temporal structure of the data, which is likely how the brain processes
information.

3.4 Addressing energy consumption: spiking neural networks
In parallel to the advances of ANNs, the neuroscientific community has studied network architec-
tures with more biologically realistic dynamics. The use of sparse asynchronous voltage pulses,
called spikes, to compute and propagate information, in conjunction with the concept of spiking

Chapter 3. Biologically Inspired Algorithms for Neural Networks 61

a

e

cb d

f g h
WEIGHT MIRROR GEVB

Figure 3.1: Schematics of (a) BP and alternative training schemes: (b) sign concordant feedback,
(c) feedback alignment, (d) direct feedback alignment, (e) weight mirroring, (f) global error vector
propagation, (g) direct random target projection, and (h) present the error to perturb the input
to modulate activity.

62 3.4. Addressing energy consumption: spiking neural networks

leaky integrate-and-fire (LIF) neurons, led to the development of the Spiking Neural Networks
(SNNs) paradigm. SNNs are bio-inspired Artificial Neural Networks that aim at closely mimicking
the neuronal mechanisms to efficiently perform tasks such as pattern recognition and clustering.
Since SNNs are based on core properties of biological networks, I will first review the fundamental
processes occurring in the brain as a basis to thoroughly understand the computational design and
choices of the described models.

3.4.1 The potential in the efficiency of SNNs compared to ANNs

The spike-based information propagation in the biological brain allows for energy-efficient commu-
nication of analog signals across noisy channels. SNNs inherit properties of power efficiency from
the brain by mimicking event-based signal transmission properties. The advantages in terms of
the efficiency of SNNs stem from three main aspects.

1. First, SNNs rely on parallel sparse computing, unlike ANNs which rely on parallel dense
computing. Brain computations rely on sparsity to remove redundancy and non-relevant
information. Mimicking this feature through the sparse nature of spike-based computations
in SNNs is key to saving computational power.

2. Second, SNNs exploit asynchronous event-based spikes, which allow spending energy only
when a spike occurs. The neuronal output is binary, where 0 indicates subthreshold mem-
brane potential and 1 indicates a spike. On the contrary, ANNs work with synchronous
clocking, forcing to spend power for every node at every step.

3. Third, SNNs can learn on the fly through local learning rules, which have the potential to
be more robust and able to quickly adapt than the offline training using labeled datasets
typically adopted in ANNs training.

3.4.2 Neuronal dynamics and elements of neuronal systems

Neurons are the elementary processing units of the central nervous system. They propagate the
information in the form of electrical pulses from one another through connections called synapses.
Neurons can be grouped into several subtypes, such as spiking neurons. The neuronal structure
consists of several parts: the cell body, called soma, which contains the cell nucleus; the dendrites,
which extend away from the some to receive signals from other neurons; the axon, which propagates
the integrated signal from the other cells to the axon’s terminal to propagate the signal to other
cells.
In spiking networks, the information is propagated from a sending neuron, the presynaptic neuron,
to a receiving neuron, the postsynaptic neuron, in the form of short electrical pulses. These neuronal
signals are referred to as action potentials (AP) or spikes. An action potential is a binary signal
that does not have gradient information. A sequence of APs gives rise to the so-called spike trains,
which encode the information in the timing and number of spike events. The refractoriness period
is the smallest time interval between two consecutive APs in the same neuron. The spike train of
a neuron i which fires at times t(f)i can be written as:

Si(t) =
∑
f

δ(t− t
(f)
i) (3.52)

where δ(t−t(f)i) is the Dirac function, with δ(t−t(f)i) = 0 for t ̸= t
(f)
i ∀i, f , and

∫∞
∞ δ(t−t(f)i)dt = 1

Neuronal dynamics The ability of neurons to produce electrical signals derives from the pro-
cesses occurring at the level of the membrane separating each cell from the surrounding environ-
ment. The difference in voltage between the interior and the exterior of the cell is the membrane
potential Vmem,i(t), where i labels the index of the cell, and where the temporal evolution is high-
lighted by (t). If no input is received by the cell, the membrane potential remains constant at the

Chapter 3. Biologically Inspired Algorithms for Neural Networks 63

rest potential Vmem,i(t) = Vrest. The resting membrane potential of a neuron is approximately
-70 mV. Upon the arrival of a spike from a presynaptic neuron, the membrane voltage can either
increase (depolarization) or decrease (hyperpolarization), and then it decays back to the resting
value. The response of the membrane potential is known as postsynaptic potential (PSP). In the
former case, the synapse is said to be excitatory and its value, the synaptic weight, is positive, while
in the latter case the synapse is inhibitory and its weight is negative. When a spike train of spikes
f stimulates a post-synaptic neuron i, the PSPs of the single spikes are summed up linearly in the
membrane dynamics. Furthermore, if the incoming spikes are generated by different presynaptic
neurons j, the responses add up linearly as well. The overall variation in the membrane potential
of the postsynaptic neuron i can therefore be written as:

Vmem,i(t) =
∑
j

∑
f

ϵij
(
t− t

(f)
j

)
+ Vrest. (3.53)

When enough excitatory responses are evoked, the membrane potential increases until it crosses
a critical value, namely the voltage threshold Vthr. The moment at which the voltage reaches the
threshold from below is called firing time t(f)i : t(f)i = {t|Vmem,i(t) = Vthr}.
At the firing time, an AP is elicited. The shape of the AP is always the same and stays constant
during propagation through synapses, thus it does not contain information on the signal. Therefore,
the input is encoded by the presence or absence of spikes, their timing, and their frequency.

3.4.3 Leaky integrate and fire neuron models
Many mathematical approaches have been developed to describe neuronal activity. The dynamics
of the membrane potential can be described as a summation process, also called an integration
process. Neuron models that are based on this behavior are known as “Integrate-and-Fire”. One
commonly used neuron model is the “Leaky Integrate-and-Fire” (LIF) model, whose dynamics are
described by:

• a linear differential equation to describe the evolution of the membrane potential, known as
equation of the passive membrane

τm
dVmem

dt
= −[Vmem,i(t)− Vrest] +RI(t), (3.54)

where I(t) is an arbitrary input current and τm is the characteristic time of the decay,
computed as the product between the membrane resistance R and capacitance C: τm = RC;

• a firing threshold Vthr;

• a reset condition
limδ→0;δ>0 u(t

f + δ) = ur.

Figure 3.2a shows a diagram comparing the structure of a biological neuron with its circuit repre-
sentation. Figure 3.2b shows the schematics of LIF neuron dynamics. The neuron integrates the
incoming spikes from presynaptic nodes, which is reflected by variations in the voltage membrane
Vmem.
The LIF neuron model exhibits very simplified dynamics, however, it proves to be highly accurate
to simulate the spike generation in neurons. Furthermore, it can be used as a basic building unit
for the construction of large populations of neurons. This allows investigation of the collective
properties of neurons, by designing and simulating populations interacting with each other. The
focus can be brought from the properties of the single neurons to the response of a whole neuronal
population to a sensory stimulus (e.g. visual, auditory, tactile, etc.).
SNNs and temporal coding to process information can be used to perform multiple tasks, such as
pattern clustering and classification. Depending on the nature of the task the training is carried
out through supervised or unsupervised learning rules.

64 3.4. Addressing energy consumption: spiking neural networks

The learning of most networks designed for pattern clustering is based on the classical Hebbian rule
of spike-timing-dependent-plasticity (STDP). STDP rule states that the resulting change in the
synaptic efficacy ∆wij , connecting a presynaptic neuron j spiking at t(f)j to a postsynaptic neuron
i spiking at time t(f)i , is a function of the spike time differences (t

(f)
i − t

(f)
j). If the presynaptic

neuron fires shortly before the postsynaptic neuron the connection is reinforced, otherwise, it is
depressed. The smaller the difference in the spike times, the greater the amplitude of the synaptic
change [Gerstner and M Kistler, 2002].

3.4.4 Spike encoding

Temporal spike pattern encoding refers to the process of mapping a sensory input, consisting of
multidimensional raw data, into a temporal sequence representation, that of the spike trains. Once
the input is in the form of spikes, it can be processed and propagated by the spiking neurons in
the network. Several encoding techniques have been developed.

Temporal code or Time-to-first spike encoding The time-to-first-spike coding scheme en-
codes the information in the response latency of the spike-time of neurons. For visual input
encoding, the input to the network is directly the image. For audio signal encoding, the audio
stimulus is initially transformed into a spectrogram that describes the power spectral density of
the sound signal over time and frequency axes. The number of input neurons is the same as the
number of pixels in the image or spectrogram. Each neuron spikes only once and its spike-time is
computed based on the intensity of the associated pixel: the greater the intensity, the sooner the
neuron fires. The advantage of this method resides in power efficiency due to a fixed and small
number of spikes.

Rate code or Poisson encoding Poisson encoding is a commonly used technique to convert
a sound signal into spikes ([Hazan et al., 2018], [Diehl and Cook, 2015]). Employing a Poisson
process allows simulating spike trains that reflect features close to those generated by real neurons.
As for the time-to-first spike method, the number of input Poisson neurons is equal to the number
of pixels of the image or spectrogram. Each input neuron is set to have an average firing rate λ
proportional to the intensity of the pixel it is associated with. As a consequence, the information is
encoded in the firing rates, while the information contained in the temporal structure is neglected.
Due to the high number of spikes generated, Poisson encoding is more time-consuming and energy
inefficient than time-to-first spike encoding [Dong et al., 2018b].
Spiking networks and Poisson encoding in this thesis: Chapter 7.

3.4.5 Power efficiency of spiking neural networks

Neuromorphic engineering has taken on the challenge of approaching the energy efficiency of the
mammal brain by building scalable, low-power systems that mirror the brain’s essential architec-
tural features [Zenke and Neftci, 2021]. Information processing and memory elements are phys-
ically separated in standard von Neumann computing architectures. Therefore, von Neumann
machines are not well suited for simulating parallel neural networks, they are incompatible with
the locality principle, and they require a large amount of power. Instead, in-memory comput-
ing architectures typically comprise parallel and distributed arrays of synapses and neurons that
can perform computation using only local variables, thereby leading to extremely low-energy con-
sumption figures. The spike-based learning circuits implemented in analog neuromorphic circuits
exploit the precise timing of spikes and consequently take advantage of the high temporal resolu-
tions of event-based sensors. Furthermore, the sparsity characterizing the spike patterns produced
by neuromorphic sensors and processors leads to even higher gains in terms of energy efficiency
[Khacef et al., 2022].

Chapter 3. Biologically Inspired Algorithms for Neural Networks 65

a

c

b

d

Figure 3.2: (a) Reproduced from [Gerstner and Kistler, 2002] (b) Reproduced from
[Corradi et al., 2021] (c) Reproduced from [Wozniak et al., 2020].

3.4.6 The spiking neural unit
The Spiking Neural Unit (SNU)[Wozniak et al., 2020] approach proposes an alternative model to
conventional SNNs to incorporate neuronal dynamics into a neural network. The SNU paradigm
unifies SNNs with recurrent ANNs by abstracting the dynamics of a LIF spiking neuron into a
simple recurrent ANN unit. SNUs may operate as SNNs, with a step function activation, or as
more conventional RNNs, with continuous activations. The non-spiking variant is called soft SNU
(sSNU). The SNU architectures have proven to be successful in three applications: handwritten
digit recognition, language modeling and polyphonic music prediction, where SNUs achieve com-
petitive performance with that achieved by the state-of-the-art ANNs.
Figure 3.2c and 3.2d report a diagram of the biological neuron, its circuit representation, the
underlying dynamics of a SNU and a feedforward architecture of SNU units.
Spiking neural units in this thesis: Chapter 5.

Chapter 4

Modeling the Mind

4.1 Digital twins of the brain

Deep neural networks modeling the circuits of the brain are an invaluable tool to help us under-
stand the myriad complexities of human cognition and intelligence [O’Reilly, 2006]. The goal of
the research linking deep learning and neuroscience is to design in-silico neural networks that are
able to fit and predict the empirical data, from the neuronal level to the behavior in the primate
and rodent brains. AI architectures have been shown to be able to accurately model the activity
in some areas of the brain. When mapped to the pair stimuli-responses of biological networks,
these models have made novel predictions about neural phenomena or shed light on the fundamen-
tal functions being optimized [Schaeffer et al., 2022]. Some milestone works in this direction have
shown the possibility of predicting, and in some cases even guiding, the neural responses in brain
areas such as the posterior parietal cortex [Zipser and Andersen, 1988], in vestibulo-ocular reflexes
[Anastasio and Robinson, 1989], in the primary motor cortex [Lillicrap and Scott, 2013], in ro-
dents’ V1 [Walker et al., 2019] and in macaque V4 and IT [Bashivan et al., 2019, Yamins et al., 2014,
Ponce et al., 2019]. Compared to previous models, deep networks are trained on quasi-naturalistic
sensory signals, such as image pixels or auditory spectrograms, rather than on their hand-labeled
input and output units.
These “models of the brain” are defined as successful when their representations, after training on a
specific optimization problem, match the experimental observations. In this case, the models may
reveal which optimization problem the brain is solving. Furthermore, when proved successful in
matching neural responses, these models can potentially be employed to generate novel predictions
on brain responses and related behavior [Schaeffer et al., 2022]. In this thesis, we focus on deep
learning models of the brain applied to the visual areas, described more in-depth in section 4.1.2
and in chapter 8.
In a review, Saxe and colleagues reflect on how neuroscientists use deep networks to model and
understand biological brains [Saxe et al., 2020]. They claim that deep networks may lead to the de-
velopment of theories of perception, cognition and action for biological brains, thereby introducing
a new perspective toward understanding neural systems.

4.1.1 The encoding and the decoding problems

When building computational models of vision, neuroscientists tackle two fundamental questions:
“how is the visual input represented in the brain?” and, “how is this representation used by the
brain to carry out behavioral tasks?”

The encoding problem The first question is referred to as the encoding problem. Understanding
how the visual input is represented in the brain involves designing a deep learning model that is
able to take the same input as the brain and predict the neural responses of the region of interest.

66

Chapter 4. Modeling the Mind 67

Four elements are key in designing the algorithm to model the activity of a brain area as a response
to a stimulus. First, the choice of the animal we want to model. The final goal, for example for
therapeutic applications, would be building a model of the human brain. However, as the possibility
of performing invasive recording with humans is limited, the measurements are often performed
on monkeys and the findings are translated to humans, for instance by guiding the design of
psychophysics experiments. Second, the choice of the brain area. One of the most studied areas
in the context of substitute models is the visual stream. The substitute models map the pixels of
a visual stimulus to the neural activity response. The pixels are given as input to a network. The
neuronal responses are mapped, for example through linear regression methods, to a specific layer
of the model. The layer is generally chosen through a grid-search operation as the layer that best
explains the neural activity on a set of held out images from the training and fitting operations.
The choice of the area and its specific function under analysis dictates the type of experiment to
be performed. For example, the animal can be head-restrained and passively view images for free
viewing tasks, or it can be trained to perform a task, such as choosing an image in a set of images
based on its semantic content. The third important choice is related to the model architecture.
Common choices include convolutional models such as the AlexNet [Bashivan et al., 2019] and
ResNet architecture [Yuan et al., 2020], however also transformer models have proven suitable to
the task [Yuan et al., 2020].

The decoding problem The question ‘how is this representation used by the brain to carry
out behavioral tasks?” is related to the so-called decoding problem, which involves linking the
neural responses to the consequent behavior. Neural responses can be used to explain core object
recognition, for example by training a model to infer which object category was shown to the animal
based on the recorded activity in IT. In a free viewing experiment, a monkey was let to observe
passively a sequence of images while IT neuronal activity was recorded through multielectrode
arrays. The IT neural population representation, in terms of mean firing rates, can be used to
explain and predict object recognition behavior. Based on the recording, a linear decoder can
be successfully trained to classify the images into classes based on the neural population feature
vector.

4.1.2 Examples of ANNs to study biological vision

In the past few years, enormous progress has been made in developing computational models of
visual processing aiming to capture underlying principles of the primate ventral visual stream. The
introduction of these models allowed to gain a deeper understanding of the dynamics and properties
of the visual cortex, paving the way for intriguing applications such as targeted control of cortical
neural activity and the associated behavioral response. Deep artificial neural networks (ANNs),
which mimic the approximately hierarchical structure of the ventral visual cortex [Kreiman, 2021a],
currently offer the most accurate understanding of the behavior of the primate ventral visual sys-
tem [Yamins et al., 2014, Cadena et al., 2019, Schrimpf et al., 2018]. Recent breakthroughs have
demonstrated that not only ANNs are exceptionally good predictors of ventral stream neural ac-
tivity, but also that they can be successfully used to control the firing rate of specific neurons
in cortical areas of primates and rodents. Some original approaches proposed using ANN-driven
image generation to synthesize visual stimuli able to drive the activity of specific neurons beyond
their naturally occurring maximal firing rate. The first milestone in this direction is represented
by the method introduced by Bashivan and colleagues [Bashivan et al., 2019] in which a variant
of Alexnet architecture [Krizhevsky et al., 2012] is used to synthesize images that each are specifi-
cally targeted to control neural firing activity in cortical visual area V4 of macaques. The control
is realized in two settings: in the ‘Neural Stretch’ scenario, the synthetic images activate specific
neurons more strongly than any other naturalistic stimulus, while in the ‘Neural Population State
Control’ the synthetic images achieve independent control of every neural site in a small recorded
population. In a similar vein, Ponce and colleagues [Ponce et al., 2019] developed an ANN frame-
work relying on a pre-trained generative deep neural network and on a genetic algorithm to create
evolved images guided by neuronal firing in the primary inferior temporal cortex (IT) of macaques.

68 4.1. Digital twins of the brain

The proposed paradigm, termed XDREAM, yields the generation of ‘super stimuli’ images able to
elicit responses higher than any natural image in V1, in IT cortex, in single-units, in multi-units,
and in average population responses. Similar progress for mouse primary visual cortex (V1) was
made by Walker and colleagues [Walker et al., 2019] with the development of ‘inception loops’, an
end-to-end trained ANN-based model able to synthesize optimal stimuli driving neural responses
more strongly than control images.

4.1.3 Brain-Score

The Brain-Score platform [Schrimpf et al., 2020, Schrimpf et al., 2018] is an open-source tool for
researchers introduced in 2018 to evaluate the performance of neural networks as models of the
brain, and in particular of the ventral stream. Through a set of metrics and a range of exper-
iments, Brainscore assesses the image-level alignment of proposed models to primate behavior.
Each model is evaluated through a common interface that overcomes the technical differences and
ambiguities presented by the diverse candidate models in the machine learning and computer vision
communities.
The platform formalizes and standardizes six experimental benchmarks used to evaluate models
of the brain, including single neural predictions in particular visual areas to particular image sets,
distributions of tuning functions in each visual area, and patterns of behavioral performance in
particular visually guided tasks. Brain-Score is framed as a competition and reports a leaderboard
of results of each participating project, with the motivation that a competitive benchmark may
lead to the emergence of more accurate models.

4.1.4 Substitute models to drive perception

The described techniques represent pivotal steps in the direction of relying on ANN substitute
models for the non-invasive manipulation of brain states at neuron-level resolution. However,
while these methods achieve remarkable control of the activity of small neural populations, they
do not explore the perceptual consequences of such control nor tailor the targeted neural responses
to the desired behavior. In Chapter 8, we describe our research in which we build upon the de-
scribed works and show how several approaches to image synthesis, including ANN-based methods,
linear interpolation and CycleGAN-based interpolation, can be used to influence both neuronal re-
sponses and behavior in a binary decision task. In our work, we focus on the response of the
well-characterized face-selective neurons in the macaque IT cortex [Moeller et al., 2008]. We de-
velop an array of techniques to minimally perturb human or monkey face images such that they
are differently classified by both primate and human observers.
Our approach generates deceptive images by modifying images from one category (such as human
faces) to look like a target category (such as monkey faces), while limiting pixel value change. The
notion of minimally perturbing an image to move a model decision boundary is anything but new
in machine learning: CNNs have been found susceptible to adversarial attacks, that is the manip-
ulation of images through carefully crafted, minute noise leading models to misclassify them with
high confidence [Szegedy et al., 2013, Goodfellow et al., 2014b]. While our work pursues the same
goal of adversarial attacks, our deceptive images depart substantially from the standard notion of
adversarial images, in that the added perturbations significantly alter the original images. In con-
trast, adversarial noise tailored for CNNs is often imperceptible to humans [Szegedy et al., 2013],
so adversarial images have sometimes been thought of as relative to ground truth labels assigned
by humans. We remark, however, that there are indications that primate vision can be some-
what sensitive to adversarial images. Elsayed et al. [Elsayed et al., 2018] show that humans doing
visual categorization under tight time constraints can be biased by adversarial images. Zhou et
al. [Zhou and Firestone, 2019] show that humans can decipher the attack target in adversarial
images crafted for CNNs (without necessarily making mistakes if asked to categorize the images).
Berardino et al. [Berardino et al., 2017] identify ‘eigen-distortions,’ directions of small pixel value
change that most readily make images look different.
Guo and colleagues [Guo et al.,] performed a study with the similar goal of developing a method

Chapter 4. Modeling the Mind 69

to perform adversarial visual attacks directly on primate brain activity. They compared the adver-
sarial sensitivity of individual IT neural sites with individual units in state-of-the-art robust deep
neural networks. Given a small image perturbation budget, the authors tweaked the images to
cause the largest perturbation possible in the neuron activity. Their analysis represents a milestone
work as it is the first study using the regime of image perturbation studied by robustness research in
the computer vision and machine learning communities. The results demonstrate that adversarial
examples exist for all IT neural sites and that they are dense in the image space, suggesting that
visual object recognition behavior in primates may not be as robust as previously thought. These
findings appear at odds with our result that perceivable image perturbations are needed to fool the
primate perception. We need to consider carefully the difference between the two studies, in that
Guo and colleagues analyze the robustness of individual cells, while in our work we consider the
activity at the population level. Therefore, while the work in [Guo et al.,] shows that the single
neuron activity is not adversarially robust, it does not make claims at the perceptual level.
Although our deceptive images do not fulfill the requirements of adversarial attack definition,
our proposed approach represents important progress towards the development of image synthesis
methods able to flip the semantic content perceived by the primate brain. Therefore, our work
opens up new experimental paradigms to study neuronal processing and its link to behavior.
Furthermore, the proposed strategies [Yamins et al., 2014, Bashivan et al., 2019, Walker et al., 2019,
Ponce et al., 2019] are powerful tools to predict and control neural activity from visual stimuli, but
cannot be applied to predict activity in absence of visual stimulation. In preliminary unpublished
work, I introduced a new research line in the framework of ANNs to understand biological vision,
in which I propose methods and baseline strategies to predict neuronal activity in conditions of
spontaneous activity, i.e., when the animal is looking at a dark screen. I tested and compared
different methods, including regression, LSTMs and Transformers, to predict neural activity in one
brain area, from simultaneous activity in a connected brain area. I will expand on this research
direction in the future.

4.2 Limitations of deep learning applied to neuroscience

4.2.1 No free lunch from deep learning in neuroscience

Despite the remarkable results obtained with the so-called digital twins of the brain, Schaeffer
and colleagues warn about the fact that there is “No free lunch from Deep Learning in Neuro-
science” [Schaeffer et al., 2022]. Deep learning models need to be used carefully to give insight
into brain principles. The apparent success of some algorithms has been shown to derive from
specific implementation choices, and we need to be cautious in distinguishing predictive prop-
erties from post hoc implementation and model tuning. In particular, deep learning models of
grid cells in the entorhinal-hippocampal circuit are a critical case. Experimental observations re-
vealed that the hippocampus contains place cells [O’Keefe and Dostrovsky, 1971, Rich et al., 2014],
which fire at specific locations in the environment, and the medial entorhinal cortex contains grid
cells [Hafting et al., 2005], which fire in a spatially periodic pattern in 2D environments. ANNs
have been proposed to model biological circuits on path integration, which is the task of using
self-velocity estimates to track one’s spatial position, a crucial component of spatial navigation
[Cueva and Wei, 2018, Banino et al., 2018, Sorscher et al., 2019, Whittington and Bogacz, 2019,
Nayebi et al., 2021]. These networks have been demonstrated to yield models accounting for the
presence of grid cells. However, these findings should not be confused as predictive of the exis-
tence of grid cells, but rather as models designed purposely to obtain representation fitting the
known properties of grid search. The search of models and parameters was biased toward favoring
configurations shown to produce grid cell emergence, which are fragile solutions in the landscape
of all possible models. Concluding, Schaeffer and colleagues claim that, if grid cells had not been
discovered experimentally, it would have been highly unlikely that deep learning models predicted
their emergence without inductive bias informing their design. Therefore, when building deep
learning models of the brain, it is imperative to rigorously characterize conditions and constraints
under which the particular tuning does and does not emerge, to consider whether the constraints

70 4.2. Limitations of deep learning applied to neuroscience

align with biological constraints.
An additional important point made in [Schaeffer et al., 2022] is that, even in the case where
the representations produced by the models of the brain match the experimental observation, it
is incorrect to infer that the brain solves the same optimization problem. Indeed, in principle,
several distinct loss functions can have similar minima. The claim that the brain solves different
optimization problems than the models is also supported by the fact that these models are not
functionally identical to the ventral visual stream. For instance, a major difference is the lack of
recurrent circuits in the model, which is instead a prominent feature of the brain.

4.2.2 A roadmap for neuroscience research

In the current formulation of the success of deep learning models, the networks are evaluated based
on matching between their representation and the neural recording. However, even in the case in
which the brain is solving the same optimization of its digital twin, how can this provide a better
insight into its dynamics? As Saxe and colleagues [Saxe et al., 2020] ask, “If neural computation
emerges uncontrollably through blind, unconstrained optimization, then how can neuroscientists
formulate new, empirically testable hypotheses about neural mechanisms?”.
A possible answer to this open question is given by Marblestone and colleagues [Marblestone et al., 2016],
who proposes three hypotheses: (i) the brain optimizes cost functions, (ii) the cost functions do not
need to be global, rather they are diverse and differ across brain locations and over development,
and (iii) optimization operates within a pre-structured architecture matched to the computational
problems posed by behavior. The meaning of cost function in the brain is related to the ability of
neurons to adjust the properties of their synapses, so that they get better at performing a task.
The role of the synapses is defined as the cost function. The authors suggest that cost function
optimization plays an important role in shaping the internal representations and processes used by
the brain.
The focus on designing more accurate models of the brain is to get better results on benchmarks as
quantifies for example on the Brain-Score platform. However, less attention is paid to the reasons
why the models reach a certain performance. This comes together with the lack of guidance in
the roadmap of gaining a more comprehensive understanding of neural computation through deep
learning.

4.2.3 The brain as a highly social network

Furthermore, it is of foremost importance to remember that there are substantial conceptual dif-
ferences between the brain and computers. Oreilly [O’Reilly, 2006] describes this point through a
metaphor:
It is clear that the brain is much more like a social network than a digital computer, with learning,
memory and processing all being performed locally through graded communication between inter-
connected neurons. These neurons build up strong, complex “relationships” over a long period of
time; a neuron buried deep in the brain can only function by learning which of the other neurons
it can trust to convey useful information. In contrast, a digital computer functions like the post
office, routing arbitrary symbolic packages between passive memory structures through a centralized
processing unit, without consideration for the contents of these packages. This affords arbitrary
flexibility (any symbol is as good as any other), but at some cost: When everything is arbitrary,
then it is difficult to encode the subtle and complex relationships present in our commonsense
knowledge of the real world. In contrast, the highly social neural networks of the brain are great at
keeping track of “who’s who and what’s what,” but they lack flexibility, treating a new symbol like
a stranger crashing the party.
The brain is an interconnected system which has been observed to be able to function when
some areas are removed accidentally or on purpose. For example, the patient Phineas P. Gage
survived an accident in which a large iron rod was driven completely through his head, destroying
much of his brain’s damage involved both left and right prefrontal cortices. Despite the brain
damage, Gage remained as able-bodied and intelligent as before the accident, without impairment

Chapter 4. Modeling the Mind 71

of movement, speech, learning or memory [Damasio et al., 1994]. This demonstrated that one
could perform most of the cognitive functions without an intact brain. Another example is the
removal of portions of the brain that originate epileptic seizures, which does not affect the cognitive
functions of the patients. In contrast, if a part of a computer is removed, the machine is highly
unlikely to function. Thus, the question naturally arises: “how can we design deep networks able
to reproduce such observations of robustness and redundancy?”

Part 2

Results

72

Chapter 5

GRAPES: a Biologically Inspired
Optimizer

Plasticity circuits in the brain are known to be influenced by the distribution of the synaptic
weights through the mechanisms of synaptic integration and local regulation of synaptic strength.
However, the complex interplay of stimulation-dependent plasticity with local learning signals is
disregarded by most of the artificial neural network training algorithms devised so far. Here, we
propose a novel biologically inspired optimizer for artificial and spiking neural networks that in-
corporates key principles of synaptic plasticity observed in cortical dendrites: GRAPES (Group
Responsibility for Adjusting the Propagation of Error Signals). GRAPES implements a weight-
distribution-dependent modulation of the error signal at each node of the network. We show that
this biologically inspired mechanism leads to a substantial improvement of the performance of
artificial and spiking networks with feedforward, convolutional, and recurrent architectures, it mit-
igates catastrophic forgetting, and it is optimally suited for dedicated hardware implementations.
Overall, our work indicates that reconciling neurophysiology insights with machine intelligence is
key to boosting the performance of neural networks.

5.1 Introduction

Artificial neural networks (ANNs) were first proposed in the 1940s as simplified computational
models of the neural circuits of the mammalian brain [McCulloch and Pitts, 1943b]. With the ad-
vances in computing power [Thompson et al., 2020], ANNs drifted away from the neurobiological
systems they were initially inspired from, and reoriented towards the development of computa-
tional techniques currently employed in a wide spectrum of applications. Among the variety of
techniques proposed to train multi-layer neural networks, the backpropagation (BP) algorithm
[Rumelhart et al., 1995, Schmidhuber, 2015] has proven to lead to an effective training scheme.
Despite the impressive progress of machine intelligence, the gap between the potential of ANNs
and the computational power of the brain remains to be narrowed. Fundamental issues of ANNs,
such as long training time, catastrophic forgetting [French, 1999], and inability to exploit increasing
network complexity [Ba and Caruana, 2014], need to be dealt with not only to approach the human
brain capabilities, but also to improve the performance of daily used devices. For instance, reducing
the training time of online learning in robotic applications is crucial to ensure a fast adaptation of
the robotic agent to new contexts [Polydoros and Nalpantidis, 2017] and to reduce the energy costs
associated with training. Several techniques, such as batch normalization [Ioffe and Szegedy, 2015],
layer normalization [Ba et al., 2016], and weight normalization [Salimans and Kingma, 2016], have
been proposed to accelerate the training of ANNs. Although successful in improving the conver-
gence rate, such methods are still far behind from the learning capabilities of the biological brain.
The limitations of ANNs with respect to the brain can be largely ascribed to the substantial sim-
plification of their structure and dynamics compared to the mammals’ neural circuits. Several

73

74 5.1. Introduction

mechanisms of paramount importance for brain functioning, including synaptic integration and
local regulation of weight strength, are typically not modeled in BP-based training of ANNs. Over-
coming this limitation could be key in bringing artificial networks’ performance closer to animal
intelligence [Richards et al., 2019]. Synaptic integration is the process by which neurons combine
the spike trains received by thousands of presynaptic neurons prior to the generation of action po-
tentials (APs) [Williams and Stuart, 2001]. The axonal APs are elicited in the axon of the cell as a
response to the input received from the cell’s dendrites, and act as overall output signal of the neu-
ron. Experimental evidence has shown that, at least in CA1 cells, input signals reaching the same
postsynaptic cell from different presynaptic neurons may interact with non-linear dynamics, due
to the active properties of the dendrites [Etherington et al., 2010, Williams and Atkinson, 2008].
Specifically, when strong depolarization occurs in a dendritic branch, a dendritic action potential
is elicited in the region. The dendritic AP boosts the amplitude of the sum of the excitatory
postsynaptic potentials (EPSPs) that generated it, thereby amplifying the dendritic input before
it reaches the soma to elicit an axonal AP. The generation of a dendritic spike requires that enough
presynaptic cells spatially connected to the same branch are active close in time with sufficient
synaptic strength. As a consequence, the ability of synaptic inputs to influence the output of the
postsynaptic neuron depends on their location within the dendritic tree. The differences between
axonal and dendritic spikes are discussed in Ref. [Etherington et al., 2010]. The powerful compu-
tational abilities of neurons are suggested to stem from the complex nonlinear dynamics derived
from dendritic spikes [Li et al., 2020]. Figure 5.1(a) illustrates such a mechanism and shows how
the impact of each presynaptic neuron depends also on the signals delivered to the same post-
synaptic neuron through other presynaptic connections. Thus, the local weight distribution can
be responsible of boosting the input signal at specific nodes. Similarly to neurons in the brain,
nodes in ANNs receive inputs from many cells and produce a single output. We can relate the
activation of artificial nodes to axonic APs, but there is no rigorous translation of the mechanism
of dendritic APs into the dynamics of point neurons. However, dendritic spikes are strongly af-
fected by the distribution of synaptic strengths within dendritic branches. Similarly, the nonlinear
dynamics of artificial nodes are affected by the weight distribution of synapses incoming to a layer
of nodes. Surprisingly, in common training approaches for ANNs, a mechanism taking into account
the weight distribution for each node is lacking.

Furthermore, synaptic plasticity in the brain is driven mainly by local signals, such as the activity
of neighboring neurons [Whittington and Bogacz, 2019]. The local interaction between synapses
plays a crucial role in regulating weight changes during learning. In this context, the mechanism
of heterosynaptic competition allows regulating synapse growth by limiting the total strength of
synapses connected to the same pre- or postsynaptic neuron [Royer and Paré, 2003b]. This phe-
nomenon occurs as a nonlinear competition across synapses at each neuron. Specifically, as the
summed weight of synapses into (or out of) a neuron hits a threshold, all the incoming (or out-
going) synapses to that neuron undergo a slight heterosynaptic long-term depression (“summed-
weight limit rule") [Fiete et al., 2010]. Additionally, in the cortex, each neuron tends to target
a specific firing rate, and synaptic strengths are regulated to keep such rates constant, despite
input perturbation [Turrigiano et al., 1998]. Synaptic scaling acts as a global negative feedback
control of synaptic strength, regulating the weight changes based on the neural local activities
[Turrigiano, 2008, Moulin et al., 2020, Ibata et al., 2008]. These homeostatic mechanisms are typ-
ically not modeled in the training of standard ANNs, which rely on global signals instead of local
information [Nøkland and Eidnes, 2019, Bengio et al., 2016]. Indeed, the BP algorithm rely on the
simplified training strategy of assigning the error on a weight-by-weight fashion. Each synaptic
weight is updated based on its individual contribution to the global output error of the network as a
response to a specific input sample. We refer to this input-specific contribution as input-driven re-
sponsibility. Although earlier works have attempted to encode metaplasticity (i.e., the alteration of
synaptic plasticity [Abraham, 2008]) in the training of networks via weight-dependent learning rules
([Pfeiffer et al., 2010, Legenstein et al., 2010, Frémaux et al., 2010, Soltoggio and Stanley, 2012]),
they invariably depend on a modulation of the Hebbian learning rule rather than ANNs training
and do not account for the local weight distribution. Some training strategies more biologically
plausible than BP [Whittington and Bogacz, 2019], such as the feedback alignment (FA) algo-

Chapter 5. GRAPES: a Biologically Inspired Optimizer 75

rithm [Lillicrap et al., 2016] and its direct and indirect feedback alignment (DFA, IFA) variants
[Nokland, 2016], have been proposed, yet they do not explicitly model the neural mechanisms
mentioned above.
Here, we make progress in reconciling neurophysiological insights with machine intelligence by
proposing a biologically inspired optimizer that incorporates principles from biology, including
synaptic integration, heterosynaptic competition [Bailey et al., 2000] and synaptic scaling [Turrigiano et al., 1998].
Our approach achieves substantial benefits in the training of fully connected neural networks (FC-
NNs), leading to a systematically faster training convergence, higher inference accuracy, better
scalability of performance with network complexity, and mitigation of catastrophic forgetting. Our
novel approach effectively boosts also the performance of convolutional neural networks (CNNs)
and spiking neural networks (SNNs)[Ghosh-Dastidar and Adeli, 2009] on temporal data. These
results validate the hypothesis that biologically inspired ANN and SNN models feature superior
performance in software simulations [Sinz et al., 2019], and provide guidelines for designing a new
generation of neuromorphic computing technologies [Chicca and Indiveri, 2020].

5.2 Results

5.2.1 The GRAPES algorithm

The synaptic integration and the local synaptic strength regulation mechanisms are complex pro-
cesses which depend on various factors, such as the large variability in size, structure, excitability,
intercellular distance and temporal dynamics of synapses and dendritic spines [Spruston, 2008].
The simple point-like structure of a synchronously operating ANN node does not allow one to
reproduce the rich dynamics enabled by the neuronal complex morphology. Hence, a direct trans-
lation of the mechanism of dendritic integration for ANNs is not straightforward. Here, we take
inspiration from the nonlinear synaptic dynamics and introduce a deep learning optimizer to boost
the training of FCNNs. Our goal is to present an effective algorithm, inspired by biological mech-
anisms, and elucidate its potential impact on the properties of ANNs. This novel approach can
also be easily applied to more biologically plausible neuronal models such as SNNs. Our algorithm
builds on three observations:

1. In the brain, due to the spiking nature of the information, a signal is propagated only if a
postsynaptic neuron receives enough input current from the presynaptic population to elicit
action potentials. In rate-based models of neural activity [Brette, 2015], a neuron with high
firing rate is more likely to elicit high activity in the downstream neurons than neurons with
low firing rate.

2. A single presynaptic neuron is responsible only for a fraction of the driving force that leads the
postsynaptic neuron to fire. Hence, the impact of a presynaptic neuron on the downstream
layers depends also on all the other presynaptic neurons connected to the same postsynaptic
cell.

3. If we neglect specific distributions of the inputs, the firing probability of a postsynaptic neuron
depends on the average strength of the presynaptic connections. If the average strength is
high, the postsynaptic neuron is more likely to reach the spiking threshold and thus to
propagate further the information encoded in the presynaptic population. Therefore, the
postsynaptic neuron and the related presynaptic population have a high responsibility on the
network’s output and its potential error.

We refer to the intrinsic responsibility of the network as network-driven responsibility, as opposed
to the input-driven responsibility mentioned above. Analogously, we introduce for ANNs the notion
of node importance stemming from the node responsibility in propagating the information received
from its presynaptic population to the output layer. The concept of node importance builds on
the mechanism of dendritic integration in brain. In biological neurons, the dynamics of dendritic
spikes originate from the spatial grouping of input cells based on the dendritic branch they send

76 5.2. Results

a

b

W3W2W1

x h1 h2 y

= strong connection

= weak connection

= high-importance

postsynaptic node

= low-importance

postsynaptic node

Synaptic

cleft

Synaptic

cleft

v

vi

s
u

m

iv

v
vi

x

xi
xii

AP
i

iii

ii

vii

ix

viii

Dendritic

threshold

E
P

S
P

iv

E
P

S
P

E
P

S
P

time

time

time

time

xi

xii

s
u

m
E

P
S

P

x

E
P

S
P

E
P

S
P

time

time

time

time

ii

iii

s
u

m
E

P
S

P

i

E
P

S
P

E
P

S
P

time

time

time

time

viii

ix

s
u

m
E

P
S

P

vii

E
P

S
P

E
P

S
P

time

time

time

time

AP

Dendritic

threshold

Dendritic

threshold

Dendritic

threshold

= normalization of

importance vector

Figure 5.1: Synaptic strength distribution in biological and artificial networks. (a) In
biological synapses, during the process of synaptic integration, dendritic spikes can enhance the
impact of synchronous inputs from dendrites belonging to the same tree. Excitatory postsynaptic
potentials (EPSPs) with the same amplitude but different locations in dendritic tree may lead
to different responses. For example, dendrites i, iv and viii send similar signals, but only the
i and iv contribute in driving an AP, since their respective branches receive sufficient further
excitation from other connected dendrites. In the top image, the postsynaptic neuron (dark blue)
receives inputs mostly from dendrites generating strong EPSPs (orange) and only few generating
weak EPSPs (yellow). The bottom postsynaptic neuron (light blue) receives most inputs from
weak-EPSPs dendrites. Because of such dendritic distribution, the dark blue neuron exhibits
higher firing probability and thus its importance is higher with respect to the light blue neuron.
(b) The structure of an FCNN is much simpler than that of biological neurons with presynaptic
connections arranged in dendritic trees. However, analogously to panel (a), the node importance
of each node arises from the distribution of the weight strength within each layer. The blue node
has a high node importance since most of its incoming synapses are strong. Conversely, the light
blue node importance is lower, since the presynaptic population exhibits a weaker mean strength.
The gray dotted lines emanating from the neuron with the highest importance and arriving at
the other nodes in the same layer represent a normalization effect, resembling the winner-take-all
competition based on the highest importance value.

Chapter 5. GRAPES: a Biologically Inspired Optimizer 77

𝛿𝑊3 𝑡 = −𝑒ℎ2⟙

𝛿𝑎1 = 𝑀1 ⊙(𝑊2⟙𝜹𝒂𝟐)⊙𝑓′(𝑎1)

c

a

𝑖1
𝑙

𝑖2
𝑙

𝑖3
𝑙

𝑖4
𝑙

|𝑊11
𝑙 | |𝑊12

𝑙 | |𝑊13
𝑙 |

|𝑊21
𝑙 | |𝑊22

𝑙 | |𝑊23
𝑙 |

|𝑊31
𝑙 | |𝑊32

𝑙 | |𝑊33
𝑙 |

|𝑊41
𝑙 | |𝑊42

𝑙 | |𝑊43
𝑙 |

+

+

+

+

+

+

+

+

=

=

=

=

𝑚1
𝑙 = 𝑚𝑖𝑛 2

𝑖1
𝑙

𝑚𝑎𝑥
𝑖

𝑖𝑖
𝑙 , 1

𝑚2
𝑙 = 𝑚𝑖𝑛 2

𝑖2
𝑙

𝑚𝑎𝑥
𝑖

𝑖𝑖
𝑙
, 1

𝑚3
𝑙 = 𝑚𝑖𝑛 2

𝑖3
𝑙

𝑚𝑎𝑥
𝑖

𝑖𝑖
𝑙
, 1

𝑚4
𝑙 = 𝑚𝑖𝑛 2

𝑖4
𝑙

𝑚𝑎𝑥
𝑖

𝑖𝑖
𝑙 , 1

𝛿𝑊𝑀
𝑙 = 𝛿𝑊𝑜

𝑙 ⊙𝑀𝑙

p
o
s
t

pre

𝛿𝑊11
𝑙 𝑚1

𝑙 𝛿𝑊12
𝑙 𝑚1

𝑙 𝛿𝑊13
𝑙 𝑚1

𝑙

𝛿𝑊21
𝑙 𝑚2

𝑙 𝛿𝑊22
𝑙 𝑚2

𝑙 𝛿𝑊23
𝑙 𝑚2

𝑙

𝛿𝑊31
𝑙 𝑚3

𝑙 𝛿𝑊32
𝑙 𝑚3

𝑙 𝛿𝑊33
𝑙 𝑚3

𝑙

𝛿𝑊41
𝑙 𝑚4

𝑙 𝛿𝑊42
𝑙 𝑚4

𝑙 𝛿𝑊43
𝑙 𝑚4

𝑙

p
o
s
t

pre

Importance vector 𝑖𝑙

of postsynaptic nodes
(level of nodes)

Local modulation
vector 𝑚𝑙

(level of nodes)

Modulated weight update
(level of connections)

Local version

Local modulation
matrix 𝑀𝑙

(level of connections)

𝑚1
𝑙 𝑚1

𝑙 𝑚1
𝑙

𝑚2
𝑙 𝑚2

𝑙 𝑚2
𝑙

𝑚3
𝑙 𝑚3

𝑙 𝑚3
𝑙

𝑚4
𝑙 𝑚4

𝑙 𝑚4
𝑙

𝑊3

𝑊2

𝑊1

x

h1

h2

y

𝑀3

𝑀2

𝑀1

𝛿𝑎𝑦 = 𝑒 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑡𝑎𝑟𝑔𝑒𝑡,𝑦)Update 𝑊3 :

Example: SGD update

𝛿𝑎2 = 𝑀2 ⊙ (𝑊3⟙𝛿𝑎𝑦)⊙𝑓′(𝑎2)Update 𝑊2 :

Update 𝑊1 :

Apply adjustment to feedback signal
(Propagating version)

*

target

𝛿𝑊2 𝑡 = −𝛿𝑎2ℎ1⟙

𝛿𝑊1 𝑡 = −𝛿𝑎1𝑥⟙

𝑊3 𝑡 + 1 = 𝑊3 𝑡 + 𝜂𝛿𝑊3(t)

𝑊2 𝑡 + 1 = 𝑊2 𝑡 + 𝜂𝛿𝑊2(t)

𝑊1 𝑡 + 1 = 𝑊1 𝑡 + 𝜂𝛿𝑊1(t)

0

1

2

3

0

1

2

3

normalization of

importance vector

b

lower bounding on

importance vector

0

1

2

3
importance of W1

importance of W2
modulation factor for W1

modulation factor for W2

Figure 5.2: Computation of the modulation factor. (a) The computation of the importance
vector for one hidden layer, based on the associated weight matrix, is followed by the computation of
the local modulation vector, based on the node importance. In the local version, GRAPES adjusts
the weight update through the Hadamard multiplication of the initial weight-update matrix δW l

o

with the local modulating vectorM l. (b) Sketch illustrating the steps in computing the modulation
factor using the importance vector in the simple case of three postsynaptic nodes. (c) Algorithm for
the propagation of the modulation factor to the upstream layers in a two-hidden layer network. The
activations in the network are computed as a1 =W 1x, h1 = f(a1) and a2 =W 2h1, h2 = f(a2), and
the network output as ay = W 3h2, y = fy(a

3). Note that δa2 is adjusted through the modulation
matrix M2 and such adjustment also affects the upstream layer since δa1 contains δa2.

78 5.2. Results

their signal to. In FCNNs the presynaptic nodes are connected to the postsynaptic nodes without
being first grouped into dendritic branches. However, such a simpler non-dendritic morphology still
offers the possibility to perform spatial grouping of input nodes based on the postsynaptic layer.
In absence of dendritic branches presynaptic cells can be grouped based on point-like postsynaptic
nodes rather than on the dendritic branches of a single neuron. Consequently, while in biological
circuits the dendritic integration is related to boosting input signals at the level of branches,
the node importance in FCNNs is related to signal modulation at the level of point-like nodes.
Therefore the node importance is related to the average strength of the synapses connected to such
node. Figure 5.1(b) illustrates the concept of node importance in an FCNN.
Based on this notions, we devised a novel algorithm, that we call GRAPES (Group Responsibil-
ity for Adjusting the Propagation of Error Signals). For simplicity, we begin by presenting the
algorithm as a modulation of the error propagation in a network trained with BP and optimized
with stochastic gradient descent (SGD). Next, we demonstrate that GRAPES can be conveniently
applied also to other commonly used optimizers, such as Nesterov Accelerated Gradient (NAG)
[Nesterov, 1983] and RMSprop [Tieleman and Hinton, 2012], to other more biologically realistic
training schemes, such as FA and DFA, and to networks with the biologically realistic dynamics
of spiking neurons.
The GRAPES algorithm modulates the error signal at each synaptic weight based on two quan-
tities: the node importance and the local modulation factor. Mathematically, we define the node
importance of a given node n belonging to layer l as the sum of the absolute strength over all
weights of layer l whose postsynaptic neuron is n

iln =

N∑
pre=1

∣∣W l
n,pre

∣∣ , (5.1)

where N is the number of incoming connections to node n. The sum is performed over the
absolute value of the parameters since we consider the connection strength (i.e., how much each
weight amplifies or attenuates an incoming signal) rather than its excitatory or inhibitory nature.
Alternatively, in specific cases discussed further in the paper, the node importance may also be
obtained from the sum of the absolute strength of all weights of layer l+1 outgoing from the same
presynaptic neuron. We remark that the importance defined in Equation 5.1 depends only on the
intrinsic state of the network and not on the input value. Therefore, in the initial phases of training,
the importance is not related to the task. However, as the network undergoes training, the weight
distribution becomes dependent on the task which the network is trained on, and consequently the
importance vector evolves to be specific to the task.
The importance vector il for layer l contains the node importance values for each postsynaptic
node n in l. By normalizing the importance vector by its maximal value, multiplying it by 2 and
lower-bounding by 1, we obtain the local modulation vector

ml = min

(
2

il

max(il)
, 1

)
, (5.2)

whose elements are bounded in the range 1 ≤ ml ≤ 2. Such an interval has been defined on the basis
of an empirical optimization (see Table 5.3). The n-th local modulation factor is the n-th element
of the resulting vector and indicates the responsibility of the postsynaptic node n and its associated
connected weights on the output of the network. In order to build the local modulation matrix
M l for layer l, the local modulation vector is tiled as many times as the presynaptic population
size. Each element of the matrix is associated with one synaptic weight of layer l. Therefore,
by construction, the modulation has the same value for all weights W l

n,pre connected to the same
postsynaptic neuron n.
With these quantities at hand, in the local version of GRAPES, we adjust the error signal in layer l
through a Hadamard multiplication of the weight-update matrix δW l

o computed with the standard
optimizer (e.g., SGD) with the local modulation matrix M l. The weight-change matrix, in which
each row corresponds to a post-synaptic node and each column to a pre-synaptic node, is therefore

Chapter 5. GRAPES: a Biologically Inspired Optimizer 79

b

a

Figure 5.3: Dynamics of the modulation factor. (a) Mean and standard deviation dynamics
of the modulation factors for a 10×256 tanh network, with 10% dropout, trained with BP, SGD
and GRAPES modulation for 200 training epochs. The modulation factors are recorded for each
layer every 10 epochs. (b) Distribution of the modulation factors at the end of training.

modulated row-wise:

δW l
M = δW l

o ⊙M l. (5.3)

The main steps of the computation of importance vector, local modulation vector and matrix
for a single hidden layer l, and the update step of the local version of GRAPES are summarized
in Figures 5.2(a) and 5.2(b). The same concept of importance and modulation as described for
the fully connected models can be applied to convolutional layers. In fully connected layers,
the computation of the importance relies on grouping the weights (1D connections) based on
the postsynaptic node. In convolutional layers, we compute the importance of each 2D filter by
grouping the filters based on the postsynaptic maps. Figure 5.4 shows a schematic of the main
steps to compute the filter importance. The filter update is modulated accordingly as described
in Equation 5.3.
In the propagating version of the algorithm, the modulation factor is incorporated in the error
signal of each layer and propagated to the upstream layers, where it is incorporated in the respective
weight updates. In Figure 5.2(c) we outline the algorithm for the propagation of the modulation
factor in a two-hidden layer network. The propagating version provides the greatest benefits in
terms of classification accuracy and convergence speed compared to the local version, as shown
in the Table 5.1. Hence, the propagating version of the algorithm is the default method adopted
in the simulations. Finally, the weight update obtained by applying the GRAPES modulation to
SGD can be expressed as:

W l(t+ 1) =W l(t) + ηδW l
M (t). (5.4)

GRAPES does not change the computational complexity of SGD and, since the modulation factor
is computed only after the parameter update (e.g., at the end of each batch), the additional
computations are negligible for large batch size.

80 5.2. Results

= filter W1

+

+

= filter W2

Input

channels

Output

channels

0

1

2

3

0

1

2

3

normalization and lower

bound of importance vector

ba

sum the absolute values of all

elements along the three

dimensions* per filter

(kernel size x kernel size x

input channels

importance of filter W2

importance of filter W1
modulation factor for filter W2

modulation factor for filter W1

* sum on three dimensions:

1

2
3

Figure 5.4: Graphical representation of the GRAPES algorithm for convolutional layers.
(a) Filters of convolutional layers can be grouped according to the output channels, in the same
way as weights in fully-connected layers can be grouped based on the post-synaptic node. (b)
Steps to compute the importance vector and the modulation factors for the convolutional filters
starting from the filter elements.

By construction, the error signal modulation implemented in GRAPES presents some analogies
with the biological mechanisms of heterosynaptic competition and synaptic scaling. Firstly, the
node importance is defined as the sum of the synaptic weights connected to the same node. As in
heterosynaptic competition, the information on the total synaptic strength is used to modulate the
weight magnitude. However, while in heterosynaptic competition the total synaptic weight is used
to solely determine depression by changing directly the weights [Fiete et al., 2010], in GRAPES the
total weight information is used to adjust the weight update, hence leading to both strengthening
or weakening of the synapses. Secondly, by definition, the local modulation factor in GRAPES is
equal for all synapses incoming to the same node. This leads back to synaptic scaling, in which a
neuron-specific multiplicative scaling factor adjusts the weights of the synapses connected to the
same neuron based on the local activity so that the neuron maintains a target firing rate.

Figure 5.3(a) displays the evolution of the mean of the modulation factor during training for each
layer of a 10 hidden layer network. The dynamics of the modulation factor are different for each
layer. The mean of the modulation factor exhibits the most pronounced decay in the first three
hidden layers, whereas it either decreases very slowly or remains constant in the downstream hidden
layers. In Figure 5.3(b), we show the distribution of the modulation factors for each layer after
training. In each layer, a subset of the modulation factors is equal to 1, due to the lower bounding
operation in Eq. 5.2. The remaining values are distributed with mean and variance specific to
each layer. Therefore, based solely on the current state of the network weights, GRAPES offers
a simple approach to modulate the error signal at each synapse using node-specific factors whose
temporal evolution, mean and variance can be different for each hidden layer. Note that, for
some layers, the decrease of the modulation factor with respect to its initial value (Figure 5.3a)
resembles a learning rate decay scheme [Darken et al., 1992]. Compared to the classical learning-
rate-schedules, GRAPES provides two main advantages. First, to apply a learning rate decay,
a time-consuming search of the best decay scheme and its hyperparameters is required for each
network setting and task. Instead, the spontaneous decay provided by GRAPES (Figure 5.3a)
does not need to be optimized in advance, thus allowing the modulation factor to naturally adapt

Chapter 5. GRAPES: a Biologically Inspired Optimizer 81

a b

c d

Figure 5.5: GRAPES applied to BP on MNIST. Results of training fully connected models
on MNIST with BP and SGD, with and without GRAPES. The red curves and bars correspond
to the networks trained with GRAPES, whereas the blue curves and bars to the networks trained
with SGD. (a) Testing curve (dotted line) and fit using the plateau function (solid line) for the 10
× 256 ReLU network, trained without dropout. The fit is performed on the initial 100 epochsof a
single trial. (b) Test accuracy of networks with four hidden layers as a function of the layer size.
The learning rate is optimized separately for SGD and for GRAPES. For different layer size the
optimal learning rate slightly varies. For most layer sizes the optimal learning rate is η = 0.1 for
SGD and η = 0.05 for GRAPES. Each curve is a cross section of the bar plot in panel c along the
learning rate axis. (c) Test accuracy of networks with four hidden layers as a function of the layer
size and the learning rate, trained with 10% dropout. (d) Convergence rate of the models in c. In
panels c,d for visualization purposes the bases of the SGD and GRAPES bars are slightly shifted
from each other. The actual learning rates and layer sizes are the same for both and are reported
in the axes’ labels. For panels b,c,d the accuracy for each run is computed as the mean of the test
accuracy over the last 10 training epochs. The reported result is the mean and standard deviation
(error bars in b) over the accuracy of 10 independent runs.

82 5.2. Results

Layers Act. DO η
Train
epochs

acc [%]
SGD

acc [%]
GRAPES prop

acc [%]
GRAPES local

s
SGD

s
GRAPES prop

s
GRAPES local

3 × 256 ReLU 0% 1e-3 200 97.46±0.09 97.95±0.07 97.80±0.04 0.36±0.02 0.17±0.01 0.27±0.02
3 × 256 ReLU 10% 1e-3 200 97.43±0.09 98.25±0.08 97.85±0.06 0.46±0.01 0.21±0.01 0.31±0.02
3 × 256 tanh 0% 1e-2 200 98.04±0.11 98.20±0.07 98.12±0.09 0.15±0.01 0.08±0.00 0.12±0.01
3 × 256 tanh 10% 1e-2 200 98.16±013 98.42±0.07 98.33±0.06 0.16±0.00 0.10±0.00 0.13±0.00

Table 5.1: Test accuracy and convergence rate on the MNIST dataset for networks
trained with BP and SGD optimizer, comparing the results for the local and propa-
gating version of GRAPES. The reported result is the average and standard deviation of best
test accuracy over five runs. “DO" stands for dropout, η is the learning rate. Both the local and
the propagating versions of GRAPES always outperform the classic SGD both in terms of accuracy
(acc) and slowness (s). The propagating version allows for the best improvements.

to different architectures and data sets. Furthermore, while with the conventional learning-rate-
schedule approach the learning rate is equal for each parameter, GRAPES allows the update step
to be adjusted differently for each weight (Figure 5.3b). Specifically, we have shown in Figure
5.3 that GRAPES implements a dynamic learning schedule for each weight. We demonstrate the
stability of such a learning schedule by analytically proving the convergence properties of GRAPES
in subsection.

5.2.2 Convergence analysis of GRAPES applied to SGD
We have shown that GRAPES implements a dynamic learning schedule for each weight. Here, we
demonstrate the stability of GRAPES by analytically proving its convergence properties. The proof
relies on the online learning framework proposed in [Zinkevich, 2003], similarly to the investigation
of the convergence of Adam optimizer in [Kingma and Ba, 2015]. In online convex programming,
an algorithm addresses a sequence of convex programming problems, each consisting of a convex
feasible set W ⊆ Rn, which is the same for all problems, and a convex cost function f t(w) :W → R,
which in principle is different for each problem. Given an arbitrary, unknown sequence of T such
convex cost functions f1(w), f2(w), ..., fT (w), at each time step t the algorithm must predict the
parameter vector wt before observing the cost function f t. After the vector wt is selected, it is
evaluated on f t. Since the convex functions can be unrelated to one another and the nature of
the sequence is unknown in advance, we evaluate the convergence of the GRAPES modulation
using the regret function [Zinkevich, 2003]. The regret function computes a difference between the
proposed online algorithm and an “offline” algorithm. In the online algorithm, for each convex
function a decision is made before the cost is known. On the other hand, the “offline” algorithm,
prior to making a prediction, has knowledge about the sequence of convex cost functions, and
makes a single choice to minimize the cost function f(w) =

∑T
t=1 f

t(w). The regret function
is defined as the difference between the cost of the online algorithm and the cost of the offline
algorithm. It is computed as the sum of all the previous differences between the online prediction
f t(wt) and the best fixed point parameter f t(w∗):

R(T) =

T∑
t=1

[f t(wt)− f t(w∗)] (5.5)

where w∗ = argminw∈W

∑T
t=1 f

t(w).
We show that GRAPES modulation has O(

√
T) regret bound, similarly to standard SGD.

Theorem We express the learning rule obtained by applying the local GRAPES modulation to
SGD as:

wt+1 = wt − ηtM tgt (5.6)

where:

Chapter 5. GRAPES: a Biologically Inspired Optimizer 83

• gt = ∇f t(wt) is the gradient of the cost fuction with respect to the parameter wt at time
step t

• ηt is the learning rate at time step t

• M t is the modulation factor at time step t. We define Mmax as the maximum value obtained
by the modulation factor. Due to the constraints of the modulation factor Mmax ≤ 2

Assume that the GRAPES modulation applied to SGD during training can select only the pa-
rameters wi belonging to a convex feasible set W . Assume that the programming problem con-
sists of an arbitrary, unknown sequence of convex cost functions f1(w), f2(w), ..., fT (w) such that
f i(w) :W → R. Assume that:

1. The feasible set is bounded,
i.e., ∃k ∈ R : ∀wi, wj ∈W , ||wi − wj || ≤ k
We define ||W || = max

wi,wj∈W
||wi − wj ||

2. The feasible set is closed,
i.e., ∀{w1, w2, ...} where wt ∈W , ∀t,
if ∃w ∈ Rn such that w = lim

t→∞
wt, then w ∈W

3. The feasible set is non-empty,
i.e., ∃w ∈W

4. The cost functions are differentiable, i.e., ∀t, f t is differentiable.
We define the gradient of the cost function as gt = ∇f t(wt)

5. The cost functions have bounded gradients,
i.e., ∃k ∈ R : ∀t, ∀w ∈W, ||∇f t(w)|| ≤ k
We define ||∇f || = max

w∈W,t∈{1,2,...}
||∇f t(w)||

6. ∀t,∀w ∈ R,∃ an algorithm A, so that, given w and ∇f t(w), it can produce argminw∈W ||wi−
wj ||

Assume furthermore that the learning rate follows ηt = t−1/2 .
Under these assumptions the GRAPES modulation applied to SGD achieves the following guar-
antee, for all T ≥ 1.

R(T) ≤ ||W ||2
√
T

2MT
+Mmax||∇f ||2

(√
T − 1

2

)
(5.7)

Corollary Under the same conditions of the Theorem, GRAPES modulation applied to SGD
achieves the following guarantee, for all T ≥ 1.

R(T)

T
= O

(
1√
T

)
(5.8)

Under the same conditions, standard SGD achieves the following guarantee, for all T ≥ 1.

RSGD(T) ≤ ||W ||2
√
T

2
+ ||∇f ||2

(√
T − 1

2

)
(5.9)

and

RSGD(T)

T
= O

(
1√
T

)
(5.10)

84 5.2. Results

5.2.3 Main steps of the convergence analysis

First we show that, as f t are convex functions, the regret function has an upperbound and can be
expressed as

R(T) ≤
T∑

t=1

(wt − w∗) · gt (5.11)

Definition 1 For a convex feasible set W , a function f :W → R is convex if for all wi, wj ∈W ,
for all λ ∈ [0, 1],

λf(wi) + (1− λ)f(wj) ≥ f(λwi + (1− λ)wj) (5.12)

Lemma 2 [Zinkevich, 2003] If a function f :W → R is convex, then for all wi, wj ∈ R,

f(wj) ≥ f(wi) +∇f(wi)⊤(wj − wi) (5.13)

Using Lemma 2 we have

f t(wt)− f t(w∗) ≤ (gt)⊤(wt − w∗) =

n∑
q=1

gtq(w
t
q − w∗

q), (5.14)

where gtq, wt
q and w∗

q are the k-th components of gt, wt and w∗ respectively. This leads to

R(T) =

T∑
t=1

[f t(wt)− f t(w∗)] (5.15)

≤
T∑

t=1

gt · (wt − w∗) (5.16)

Now we use the weight update rule wt+1 = wt−ηtM tgt and the learning rate dynamics ηt = t−1/2

to show that

R(T)

T
= O

(
1√
T

)
(5.17)

We start by manipulating the weight update rule:

(wt+1 − w∗)2 = (wt − ηtM tgt − w∗)2 = (5.18)

=
[
(wt − w∗)− ηtM tgt

]2
= (5.19)

= (wt − w∗)2 − 2ηtM tgt(wt − w∗) + (ηt)2(M t)2(gt)2 (5.20)

Since, by assumption, ||gt|| = ||∇f t|| ≤ ||∇f ||, we can upper bound the expression above as:

(wt+1 − w∗)2 ≤ (wt − w∗)2 − 2ηtM tgt(wt − w∗) + (ηt)2(M t)2||∇f ||2 (5.21)

By rearranging we obtain:

����2ηtM tgt(wt − w∗)

����2ηtM t ≤ (wt − w∗)2 − (wt+1 − w∗)2 + (ηt)2(M t)2||∇f ||2

2ηtM t

gt(wt − w∗) ≤ 1

2ηtM t

[
(wt − w∗)2 − (wt+1 − w∗)2

]
+
ηt

2
M t||∇f ||2 (5.22)

Chapter 5. GRAPES: a Biologically Inspired Optimizer 85

By substituting equation 5.22 in equation 5.11 we can write:

R(T) ≤
T∑

t=1

gt · (wt − w∗)

≤
T∑

t=1

[
(wt − w∗)2 − (wt+1 − w∗)2

2ηtM t
+
ηt

2
M t||∇f ||2

]

≤
T∑

t=1

(wt − w∗)2 − (wt+1 − w∗)2

2ηtM t
+

||∇f ||2

2

T∑
t=1

ηt

2
M t

=

T∑
t=1

(wt − w∗)2

2ηtM t
−

T∑
t=1

(wt+1 − w∗)2

2ηtM t
+

||∇f ||2

2

T∑
t=1

ηt

2
M t (5.23)

We apply a change of variable to the second term of equation 5.23 as t′ = t+ 1 to obtain:

T∑
t=1

(wt+1 − w∗)2

2ηtM t
=

T+1∑
t′=2

(wt′ − w∗)2

2ηt′−1M t′−1
=

=
(wT+1 − w∗)2

2ηTMT
+

T∑
t′=2

(wt′ − w∗)2

2ηt′−1M t′−1
(5.24)

We then insert the result of equation 5.24 into equation 5.23:

R(T) ≤

[
(w1 − w∗)2

2η1M1
+

T∑
t=2

(wt − w∗)2

2ηtM t

]
−

[
(wT+1 − w∗)2

2ηTMT
+

T∑
t=2

(wt − w∗)2

2ηt−1M t−1

]
+ (5.25)

+
||∇f ||2

2

T∑
t=1

ηt

2
M t = (5.26)

=
(w1 − w∗)2

2η1M1
− (wT+1 − w∗)2

2ηTMT
+

1

2

T∑
t=2

(
1

ηtM t
− 1

ηt−1M t−1

)
(wt − w∗)2+ (5.27)

+
||∇f ||2

2

T∑
t=1

ηt

2
M t (5.28)

Now we use the assumption that the feasible set W is bounded, i.e., ∀t||wt −w∗|| ≤ ||W || to find:

R(T) ≤ ||W ||2

2η1M1
+

1

2

T∑
t=2

(
1

ηtM t
− 1

ηt−1M t−1

)
||W ||2+

+
||∇f ||2

2

T∑
t=1

ηtM t =

=
||W ||2

2

[
�
�
�1

η1M1
+

(
�
�
�1

η2M2
−
�
�
�1

η1M1

)
+ ...+

(
1

ηTMT
−
�

���
��1

ηT−1MT−1

)]
+

+
||∇f ||2

2

T∑
t=1

ηtM t =

=
||W ||2

2

1

ηTMT
+

||∇f ||2

2

T∑
t=1

ηtM t (5.29)

86 5.2. Results

Next, we consider the assumptions ηt = t−1/2 and ∀t,M t ∈ [1, 2).

T∑
t=1

ηtM t =

T∑
t=1

1√
t
M t

≤ 2

(
1 +

∫ T

t=1

dt√
t

)

≤ 2

(
1 +

[
2
√
t
]T
1

)
≤ 2

(
2
√
T − 1

)
(5.30)

We then use equation 5.30 and the condition ∀t,M t ∈ [1, 2) in equation 5.29:

R(T) ≤ ||W ||2

2

1
MT√

T

+
||∇f ||2

2
2
(
2
√
T − 1

)
(5.31)

=
||W ||2

√
T

2MT
+ ||∇f ||2

(
2
√
T − 1

)
(5.32)

Therefore,

lim sup
t→∞

R(T)

T
=

||W ||2
√
T

2MT + ||∇f ||2
(
2
√
T − 1

)
T

= 0 (5.33)

5.2.4 Simulation results on handwritten digit classification
To illustrate the benefits of GRAPES on the training of ANNs, we have enhanced the standard
minibatch SGD by incorporating the GRAPES modulation scheme, and are referring to it as
“GRAPES”. We initially compare the performance of GRAPES against standard minibatch SGD,
which from now on we will simply call “SGD”, on the MNIST data set [LeCun and Cortes, 2010].
To evaluate the convergence rate, we relied on a Michaelis Menten-like equation [Michaelis and Menten, 1913]
and introduced the novel plateau equation for learning curves:

accuracy =
max_accuracy · epochs

slowness + epochs
. (5.34)

By fitting the test curve to this function, we can extract the slowness parameter, which quantifies
how fast the network reduces the error during training. Mathematically, the slowness value cor-
responds to the number of epochs necessary to reach half of the maximum accuracy. Hence, the
lower the slowness, the faster the training. In our simulations, we perform the fit on the first 100
epochs. The graphical representation of the plateau curve is given in the Figure 5.6.
Figure 5.5(a) reports test curves and related slowness fits for 10 × 256 ReLU networks, trained
on the MNIST data set. The red and blue curves refer to GRAPES and SGD-based training
respectively, with the same learning rate η = 0.001. The testing curve for the GRAPES model
saturates at a substantially higher accuracy plateau compared with those of the SGD models.
Furthermore, the test curve for GRAPES rises much earlier and in a steeper manner — leading to
a consistently smaller slowness parameter — compared with the test curves of the networks trained
with SGD. This demonstrates that the key for improving the convergence lies in the non-uniform
modulation of the error signal. Table 5.2 shows that GRAPES exhibits the described improvements
in accuracy and convergence rate under a wide range of network configurations.

Chapter 5. GRAPES: a Biologically Inspired Optimizer 87

a b

Figure 5.6: Graphical representation of the Plateau equation for learning curves: (a) Plateau curve
for 100 epochs. From the plot one can easily observe that that max_accuracy = 100. (b) Zoom
on the initial 5 epochs. The intercept clearly shows that the slowness value is s = 1.

By design, the modulation factor for GRAPES is bounded in the interval [1,2]. This range has
been empirically determined by varying the upper and lower bounds and choosing the interval that
allows for the most significant improvements with respect to standard SGD. Table 5.3 shows the
test accuracy for different ranges of the modulation factor.
Previous work in Ref. [Ba and Caruana, 2014] empirically showed that, as the number of trainable
parameters in deep neural networks increases, the network performance initially improves and
then saturates. We demonstrated that GRAPES is affected by performance saturation to a lesser
extent than SGD. Figures 5.5(b,c,d) show the accuracy results for models with increasing layer size,
together with the corresponding slowness value. As the average of the modulation factor is larger
than one (see Figure 5.3), one needs to ensure that the training improvements are not solely due to a
greater mean of the learning rate. Therefore, for each layer size, we perform a fine-grained learning
rate search both for SGD and for GRAPES. We vary the learning rate from η = 0.001 to η = 0.5.
Note that a further increase of the learning rate (η > 0.5) leads to instability and deteriorated
accuracy. Figure 5.5(c) shows that for each learning rate and layer size pair GRAPES achieves
better performance than SGD, with the improvements becoming increasingly more substantial as
the learning rate is decreased. The optimal learning rate is η = 0.1 for SGD and η = 0.05 for
GRAPES. With such values of η we draw a cross section of the bar plots along the learning rate
axis, as shown in Figure 5.5(b). We observe that for each layer size GRAPES outperforms SGD in
terms of final accuracy. Moreover, the accuracy results indicate a rising trend for both SGD and
GRAPES as the network layer size increases. Importantly, for GRAPES the rising trend saturates
later than for SGD. Furthermore, as shown in Figures 5.5 and 5.9, if a learning rate smaller than
the optimized one is used, GRAPES shows a robust rising trend for different network depth and
layer sizes, whereas with SGD the accuracy either saturates or deteriorates for increasing network
complexity.
In addition, as shown in Figure 5.8(d), GRAPES exhibits a much faster convergence compared
with SGD. Unlike SGD, especially for small learning rate values, GRAPES benefits from a greater
network complexity and converges even faster when deeper networks are used, indicating that
GRAPES enhances the most relevant weight updates. Therefore, GRAPES not only improves the
model performance and scalability, but it also provides a useful tool to mitigate issues such as lower
accuracy and slower convergence rate that arise when the learning rate is not carefully optimized.

5.2.5 Performance under various learning rules and data sets
GRAPES can be combined with a wide range of momentum-based optimizers (e.g., NAG, rmsprop)
and credit assignment strategies (e.g., FA, DFA, IFA). When combined with DFA, the computation
of the modulation factor requires a modification. Since in DFA the propagation of the error occurs

88 5.2. Results

a b

c d

Figure 5.7: GRAPES applied to FA and DFA on Extended and Fashion MNIST. Test
accuracy and convergence rate in terms of slowness value for 3 hidden layer ReLU networks, with
10% dropout, trained with FA on the Extended MNIST and DFA on the Fashion MNIST dataset,
as a function of the layer size and the learning rate. The slowness parameter is computed by fitting
the initial 100 epochs. The accuracy for each run is computed as the mean of the test accuracy over
the last 10 training epochs. The reported result is the mean over the accuracy of 10 independent
runs. (a) Test accuracy and (b) convergence rate for FA on Extended MNIST. (c) Test accuracy
and (d) convergence rate for DFA on Fashion MNIST. For visualization purposes the bases of the
SGD and GRAPES bars are slightly shifted from each other. The actual learning rates and layer
sizes are the same for both and are reported in the axes’ labels.

Chapter 5. GRAPES: a Biologically Inspired Optimizer 89

Layers Act DO Def Train
epochs

acc [%]
SGD

acc [%]
GRAPES

acc [%]
SGD augm η

s
SGD

s
GRAPES

s SGD
augm η

3 × 256 ReLU 0% No 200 97.46±0.09 97.95±0.07 97.81±0.06 0.36±0.02 0.17±0.01 0.27±0.01
3 × 256 ReLU 10% No 200 97.43±0.09 98.25±0.08 97.90±0.09 0.46±0.01 0.21±0.01 0.32±0.02
3 × 256 ReLU 25% No 200 97.15±0.09 98.11±0.03 97.81±0.09 0.55±0.04 0.27±0.02 0.38±0.04

10 × 256 ReLU 0% No 600 97.21±0.12 98.48±0.05 97.34±0.08 0.22±0.02 0.04±0.01 0.14±0.01
10 × 256 ReLU 10% No 600 98.16±0.06 98.72±0.11 98.18±0.07 0.99±0.05 0.05±0.01 0.59±0.06
10 × 256 ReLU 0% Yes 600 98.81±0.06 99.56±0.03 99.01±0.07 1.27±0.09 0.11±0.01 0.78±0.05
10 × 512 ReLU 0% No 300 97.41±0.06 98.51±0.06 97.50±0.12 0.16±0.01 0.03±0.01 0.11±0.01
10 × 512 ReLU 10% No 300 98.11±0.12 98.78±0.06 98.19±0.04 0.60±0.06 0.04±0.01 0.33±0.02
10 × 512 ReLU 0% Yes 300 98.43±0.18 99.54±0.04 98.82±0.05 0.84±0.08 0.09±0.01 0.53±0.04
3 × 256 tanh 0% No 200 98.04±0.11 98.20±0.07 98.11±0.08 0.15±0.01 0.08±0.00 0.11±0.00
3 × 256 tanh 10% No 200 98.16±013 98.42±0.07 98.42±0.05 0.16±0.00 0.10±0.00 0.13±0.00
3 × 256 tanh 25% No 200 97.99±0.06 98.37±0.03 98.26±0.06 0.17±0.01 0.12±0.00 0.15±0.01

10 × 256 tanh 0% No 600 98.10±0.07 98.43±0.04 98.15±0.10 0.09±0.001 0.04±0.00 0.07±0.00
10 × 256 tanh 10% No 600 98.44±0.02 98.62±0.01 98.45±0.04 0.13±0.01 0.06±0.00 0.10±0.01
10 × 256 tanh 0% Yes 600 99.33±0.04 99.38±0.04 99.35±0.06 0.32±0.02 0.11±0.01 0.22±0.01
10 × 512 tanh 0% No 300 98.12±0.10 98.56±0.05 98.22±0.06 0.09±0.01 0.04±0.00 0.07±0.01
10 × 512 tanh 10% No 300 98.33±0.04 98.59±0.03 98.40±0.06 0.11±0.01 0.05±0.01 0.09±0.01
10 × 512 tanh 0% Yes 300 99.12±0.12 99.37±0.08 99.20±0.14 0.30±0.03 0.10±0.01 0.19±0.01

Table 5.2: Test accuracy and convergence rate on the MNIST dataset for networks
trained with BP and SGD optimizer, with and without GRAPES modulation. In the
“Def” column we indicate whether the elastic deformation scheme [Cireşan et al., 2010] was used.
“DO" stands for dropout. The learning rate is η = 0.001 with ReLU activation and η = 0.01
with tanh activation. The column marked with “augm η" indicate that the learning rate has been
uniformly multiplied by a factor equal to the mean of the local modulation factor of GRAPES.
The reported result is the average and standard deviation of the best test accuracy over five runs.
The GRAPES modulation in most cases outperforms the classic SGD. Note that, even in the case
where GRAPES is used with a smaller learning rate than SGD (network configuration with 10
hidden-layers and tanh activations, where η = 0.01 for SGD and η = 0.001 for GRAPES; see Table
5.11 for details on the learning rate), it provides a better convergence rate.

directly from the output layer to each hidden layer, the dimensionality of the error terms is different
with respect to BP. Therefore, in order to incorporate the modulation factor in the error term, we
compute the importance based on the presynaptic grouping

iln =

K∑
post=1

∣∣W l+1
post,n

∣∣ , (5.35)

where K is the number of outgoing connections from node n in layer l. We point out that while
DFA solves the weight transport problem [Nokland, 2016], the propagating version of GRAPES
requires to propagate the modulation factors from the output to the input layer, thereby still
incurring in the weight transport requirement.
Figure 5.7 shows the improvements obtained by GRAPES in terms of accuracy and convergence rate
when applied to FA and DFA over two data sets more challenging than MNIST: Fashion MNIST
[Xiao et al., 2017] and Extended MNIST [Cohen et al., 2017]. We test networks with increasing
layer size and with varying learning rate. We demonstrate that, when the optimal learning rate
is used, for each model size GRAPES yields a better accuracy than SGD. Furthermore, similarly
to BP, FA shows a rising trend of performance for increasing layer sizes. However, this trend
was not observed with DFA. In terms of convergence rate, GRAPES combined with FA strongly
mitigates the degradation for small learning rates. With DFA, GRAPES has a better slowness value
than SGD for almost all models, both for large and small learning rates. Table 5.4 shows that
comparable improvements in accuracy and slowness are obtained under a wide range of network
settings. Furthermore, in Tables 5.5, 5.6, 5.7, 5.8 we report the performance of GRAPES applied

90 5.2. Results

Range of
modulation Optimized learning rate Test accuracy [%]

[1,2] 0.05 98.53±0.06
[1,3] 0.01 98.53±0.06
[1,5] 0.005 98.46±0.04
[0,2] 0.05 98.51±0.06
[0,5] 0.0005 98.43±0.05

Table 5.3: Test error on the MNIST dataset for networks trained with BP and SGD,
with GRAPES modulation and different value range for the modulation factor. The
model architecture consists of 4 hidden layers, with 256 ReLU units each. The models are trained
for 200 epochs with 10% dropout rate. The accuracy for each run is computed as the mean of the
test accuracy over the last 10 training epochs. The reported result is mean and standard deviation
over the accuracy of 10 independent runs. The best results are obtained with the modulation factor
in the ranges [1, 2] and [1, 3].

a

b

Figure 5.8: (a) Test accuracy and (b) convergence rate in terms of slowness of networks with
different layer size as a function of the number of hidden layers. The slowness parameter is
computed by fitting the initial 100 epochs. The shaded area around the standard deviation bar
shows the distribution of the results of five runs with a violin plot.

on several feed-forward models proposed in Ref. [Nokland, 2016] and Ref. [Frenkel et al., 2019].
These results demonstrate that, when GRAPES is applied on top of momentum-based optimizers,
in most cases it leads to better accuracy than such optimizers in their original formulation.

Chapter 5. GRAPES: a Biologically Inspired Optimizer 91

a

b

Figure 5.9: (a) Test accuracy and (b) convergence rate in terms of slowness value for 3 × 256
ReLU networks, with 10% dropout, trained with BP, FA and DFA on MNIST, Fashion MNIST,
Extended MNIST, and CIFAR-10 data sets. The slowness parameter is computed by fitting the
initial 100 epochs. The results are mean and standard deviation over 5 independent runs.

Finally, we test the performance of the convolutional version of GRAPES on residual networks
[He et al., 2016a] trained on CIFAR-10 [Krizhevsky et al., a] and CIFAR-100 [Krizhevsky et al., b].
Specifically, we trained a residual nine-layer architecture similar to [M., 2019] with the Adam op-
timizer, with and without GRAPES. Neither weight decay nor weight normalization is applied.
When GRAPES is used, the modulation is applied after the batch normalization and the nonlinear-
ity. The results are reported in Table 5.10. The learning rate is optimized separately for Adam and
GRAPES (see Table 5.9). The best accuracy per dataset is reported in bold. Overall, GRAPES
combined with Adam outperforms the standard Adam optimizer also on a residual architecture.

5.2.6 Mitigation of catastrophic forgetting

Catastrophic forgetting refers to the phenomenon affecting neural networks by which the process of
learning a new task causes a sudden and dramatic degradation of the knowledge previously acquired
by the system [French, 1999]. This represents a key limitation of ANNs, preventing the success-
ful reproduction of continual learning occurring in the human brain [Muñoz-Martín et al., 2019,
Kemker et al., 2018]. Some of the most successful proposed approaches that enable lifelong learn-
ing rely on replay. This scheme involves fine-tuning models with old inputs [Castro et al., 2018]
or their related compressed representations [Hayes et al.,]. While replay is a biologically plausible
mechanism, its application to the training of ANNs introduces additional computational steps and
modifies the input sequence to include information about previous instances. Here, we show that
the application of GRAPES mitigates, to a certain extent, the effects of catastrophic forgetting in
ANNs without introducing additional steps or replaying data of previous instances.
To analyze catastrophic forgetting in a sequence of supervised learning tasks, we have adopted
the protocol proposed in Ref. [Kirkpatrick et al., 2017]. For each task, we randomly generate a
permutation pattern of a fraction of image pixels and we apply it to all the training and testing
samples of the MNIST data set. We perform the training sequentially for all tasks for a fixed number
of epochs, and, after each training epoch, we test the network performance of all the previously
learnt tasks. First, we follow the protocol for the permuted MNIST proposed in the standardized
benchmark Avalanche [Lomonaco et al., 2021], which involves the permutation of all image pixels,
therefore no overlap is present among tasks (Figure 5.12a and b). Then, we use a custom task setup
in which we regulate the fraction of permuted pixels per task, thereby exploring how GRAPES can

92 5.2. Results

exploit overlapping pixels among tasks. For each task, 600 random permutations are applied (see
Figure 5.12c and d). Both without and with overlapping pixels between the tasks, we observe that,
compared with SGD, the drop in accuracy observed after learning each new task is considerably
reduced when GRAPES is applied. In the latter case, the fraction of overlapping pixels among
tasks reduces the accuracy degradation and its variability across different runs. Furthermore, the
models, both with SGD and GRAPES, are able to exploit information from previous tasks, such
that for each new task the test accuracy after one epoch is higher than for the previous tasks. Such
accuracy is always better for GRAPES than for SGD. We used the same learning rate for GRAPES
and SGD (η = 0.001). If a larger learning rate is used, the performance degradation of SGD with
respect to GRAPES further worsens (see Figure 5.10). We remark that the average learning rate
for GRAPES is higher than that of SGD, so we could expect a higher performance degradation with
respect to SGD. However, the importance-based modulation of the updates mitigates catastrophic
forgetting more effectively than a uniform change of the learning rate.

ba

L
E

A
R

N
 T

A
S

K
 1

L
E

A
R

N
 T

A
S

K
 2

L
E

A
R

N
 T

A
S

K
 3

L
E

A
R

N
 T

A
S

K
 4

L
E

A
R

N
 T

A
S

K
 5

-27.7%

-14.2%

-6.1%

-2.0%
L
E

A
R

N
 T

A
S

K
 1

L
E

A
R

N
 T

A
S

K
 2

L
E

A
R

N
 T

A
S

K
 3

L
E

A
R

N
 T

A
S

K
 4

L
E

A
R

N
 T

A
S

K
 5

-21.3%

-12.5%

-6.6%

-2.4%

Figure 5.10: Results for the permuted MNIST protocol with η = 0.1. (a) Test accuracy for SGD.
(b) Test accuracy for GRAPES. The results are mean and standard deviation over 5 independent
runs.

Furthermore, we analyzed the effect of GRAPES under a second interesting aspect of incre-
mental learning: the generalization to unseen tasks. Following the paradigm proposed in Ref.
[Sodhani et al., 2020], we compute the per-task-future-accuracy, by testing the model performance
on tasks it has not been trained on yet. We initially used the same protocol with 600 permutations
as in Figures 5.12(c) and 5.12(d), hence different tasks are only slightly correlated with each other
(the total number of pixels is 784). Figure 5.12(e) shows that in most cases the networks trained
with GRAPES show better generalization capability on unseen permutations. The absolute ac-
curacy is, though, very low. Thus, we decreased the number of permutations to 300, leading the
tasks to have a stronger correlation with each other. The results are reported in Figure 5.12(f). We
observe that both SGD and GRAPES achieve well above-chance level accuracy. The generalization
capability increases with the number of tasks learnt. Consistently with the results obtained with
600 permutations, GRAPES in most cases leads to higher accuracy than SGD. Therefore, both in
the case of almost uncorrelated and partially correlated tasks, GRAPES proves to be more effective
in achieving knowledge transfer to future tasks compared with SGD. We ascribe this remarkable
result mainly to two properties of GRAPES. First, GRAPES enhances the updates related to a
subset of parameters based on their importance. At each new task, such subset may vary, thus the
learning focuses on different groups of synapses, thereby better preserving knowledge on the old
tasks. Secondly, as shown in Figure 5.11, the weights learnt with GRAPES are distributed with a
larger variance in comparison to the weights learnt with SGD. We speculate that such distribution
might be more robust to performance degradation when the network is trained on a sequence of
tasks.

Chapter 5. GRAPES: a Biologically Inspired Optimizer 93

ba

c d

Figure 5.11: Weight distribution and fit for the first hidden layer of a 12 hidden layer model.
Hidden layer size is 128 and activation function is ReLU. (a) Distribution of the weights after
training with SGD (red) or GRAPES (blue). The black dotted line shows the weight initialization.
The weight distribution obtained with SGD remains significantly closer to the weight initialization
than with GRAPES. (b) Zoom of panel (a) along the y axis. The weights trained with GRAPES
show a longer tail and more outliers with respect to the weights trained with SGD. (c) The weights
trained with SGD follow a normal distribution. The weights trained with GRAPES cannot be fitted
well with a Gaussian shape. In particular the weights on the tail cannot be captured by the fit.
(d) The weights trained with GRAPES have a distribution that follows more closely a student-t
distribution than a Gaussian distribution. The student-t distribution belongs to the class of the
heavy-tailed distributions, similarly to the lognormal distribution that has been experimentally
measured in synaptic strength in neural circuits of mammalian brain.

5.2.7 Application of GRAPES to biologically inspired neural networks

SNNs are neural network models that attempt to mimic the complex neuronal dynamics of the
mammalian brain [Ghosh-Dastidar and Adeli, 2009]. Moreover, the development of SNNs is driven
by the ultimate goal to implement embedded neuromorphic circuits, with high parallelism, low-
power consumption, fast inference, event-driven processing, and online learning [Carrillo et al., 2013,
Pfeiffer and Pfeil, 2018]. Given its biological inspiration, GRAPES holds great potential to boost
the performance of SNNs. We apply GRAPES on SNN architectures implemented through the spik-
ing neural unit (SNU) approach [Wozniak et al., 2020], which unifies SNNs with recurrent ANNs
by abstracting the dynamics of a LIF spiking neuron [Gerstner et al., 2014b] into a simple recurrent
ANN unit. SNUs may operate as SNNs, with a step function activation, or as more conventional
RNNs, with continuous activations. The non-spiking variant is called soft SNU (sSNU).
We trained both SNU and sSNU models on temporal data derived from the MNIST data set. To
that end, we encoded the MNIST handwritten digit examples into spikes using the rate coding
method as described in [Wozniak et al., 2020]. The depth of the network for optimal performance
was found to be 3 hidden layers for SNU, and 2 hidden layers for sSNU. Figure 5.13(a) reports
the accuracy results. For both models, GRAPES surpasses the classification accuracy obtained
with SGD for different layer sizes. Furthermore, GRAPES renders the networks robust against
hyperparameter choice and model complexity. As can be seen in Figure 5.13(b) for SNUs, the
convergence of SGD-based training is heavily affected by changes in the magnitude of the learning
rate η. As η is decreased, the number of training epochs needed to trigger efficient learning dra-

94 5.2. Results

f

dc

L
E

A
R

N
 T

A
S

K
 1

L
E

A
R

N
 T

A
S

K
 2

L
E

A
R

N
 T

A
S

K
 3

L
E

A
R

N
 T

A
S

K
 4

L
E

A
R

N
 T

A
S

K
 5

-10.1%

-6.5%

-3.6%

-1.8%

L
E

A
R

N
 T

A
S

K
 1

L
E

A
R

N
 T

A
S

K
 2

L
E

A
R

N
 T

A
S

K
 3

L
E

A
R

N
 T

A
S

K
 4

L
E

A
R

N
 T

A
S

K
 5

-8.0%

-4.9%

-2.8%
-1.4%

e

L
E

A
R

N
 T

A
S

K
 1

L
E

A
R

N
 T

A
S

K
 2

L
E

A
R

N
 T

A
S

K
 3

L
E

A
R

N
 T

A
S

K
 4

L
E

A
R

N
 T

A
S

K
 1

L
E

A
R

N
 T

A
S

K
 2

L
E

A
R

N
 T

A
S

K
 3

L
E

A
R

N
 T

A
S

K
 4

ba

-15.2%

-8.4%

-4.7%

-1.7%

-16.7%

-10.2%

-6.1%

-1.8%

Figure 5.12: Mitigation of catastrophic forgetting. Following the protocol in Ref.
[Kirkpatrick et al., 2017] for catastrophic forgetting, we trained ReLU networks with SGD with
and withoug GRAPES on a sequence of tasks. Each task is defined by a random pattern of Np

pixel permutations, which is applied to all MNIST train and test images. The networks are trained
sequentially on each task for Ne epochs. At the end of each training epoch, the networks are tested
on both the task they are being trained on as well as the tasks they have already learnt (e.g.,
while learning task 1 they are tested only on task 1, and while learning task 2 they are tested on
both task 2 and 1 to observe performance degradation on task 1). Panels (a) and (b) show the
resulting test curves for 2× 256 networks trained on the Avalanche benchmark with Np = 28× 28
permutations (i.e., no overlap between tasks) and Ne = 1 epoch per task. For the optimization,
we used SGD with momentum with default parameters. The results are mean and standard de-
viation over ten independent runs. Panels (c) and (d) show the resulting test curves for 3 × 256
networks trained with Np = 600 permutations (i.e., small overlap between tasks) and Ne = 10
epoch per task. For the optimization, we used SGD without momentum. Panels (e) and (f) report
the per-task-future-accuracy ([Sodhani et al., 2020]) on unseen tasks obtained with the same task
setup as in (c) and (d). The tasks are defined by Np = 600 (panel e) and Np = 300 (panel f)
pixel permutations, respectively. The networks are first trained on each task for Ne = 10 epochs
and then tested on all the unseen tasks (e.g., after learning task 1, the per-task-future-accuracy is
reported for unseen tasks 2,3,4,5).

Chapter 5. GRAPES: a Biologically Inspired Optimizer 95

matically rises. When GRAPES is introduced, the model reaches well above-chance performance
in only a few epochs. Furthermore, as illustrated for sSNUs in Figure 5.13(c), SGD struggles in
triggering learning of networks with increasing depth, requiring almost 100 epochs to start effective
training of 6 hidden layer networks. GRAPES overcomes this issue, by enabling the deep models
to converge with a lower number of epochs.

5.2.8 Behaviour of GRAPES under hardware constraints

Training ANNs on hardware accelerators implies certain performance degradation due to a number
of hardware-specific constraints, such as noisy synaptic updates, limited range of synaptic weights
[Youhui Zhang et al., 2016], and their update frequency and resolution [Pfeil et al., 2012]. We em-
pirically demonstrate that GRAPES mitigates the accuracy degradation. Inspired by the approach
in [Nandakumar et al., 2018], we investigate the effect of granularity and stochasticity associated
with weight-updates. First we establish a reference performance for a 1-hidden layer network,
trained on the MNIST data set with full precision (FP) arithmetic (64-bits) and no noise. Specif-
ically, after FP training, the network achieves a test accuracy of 97.08% with SGD and 97.23%
with GRAPES. Then, we apply fixed n-bit granularity and stochasticity on the weight update as
described below in Simulation details. Figure 5.14(a) reports the classification accuracy for differ-
ent granularity levels and noise amplitudes. In the absence of noise, the accuracy is close to the
reference FP value for 4,6,8-bits precision, while for 2-bits granularity an accuracy drop of 1.5% is
observed. As noise with increasing amplitude is added, the model accuracy progressively deterio-
rates. Such degradation is robustly mitigated when GRAPES is applied. Figure 5.14(b) shows the
test curve for a noise standard deviation of σ = 1.5ϵ. For all weight granularities, GRAPES leads
to a higher classification accuracy over the entire training period.
We remark that the implemented hardware constraints share many aspects with biological circuits:
the synaptic transmission is affected by noise, the signal is quantized and neurons have a limited
fan-in/fan-out. Interestingly, GRAPES retains many similarities with biological processes, such as
synaptic integration, synaptic scaling and heterosynaptic plasticity. We therefore envision that the
brain might exploit such mechanisms in order to overcome the limitations due to the mentioned
constraints, and, in fact could turn out to endow the networks with the ability to take advantage of
noise to improve the performance. Our analysis is consistent with previous work providing evidence
that synaptic integration combined with the intrinsic noise stochasticity of Poisson trains enhances
the computational capabilities of spiking networks on pattern classification tasks [Li et al., 2020].
In conclusion, our findings suggest that incorporating GRAPES in on-chip training algorithms
could pave the way for pivotal progress in learning algorithms for bio-inspired hardware and, in
particular, for neuromorphic chips.

5.3 Discussion

Inspired by the biological mechanism of non-linear synaptic integration and local synaptic strength
regulation, we proposed GRAPES (Group Responsibility for Adjusting the Propagation of Error
Signals), a novel optimizer for both ANN and SNN training. GRAPES relies on the novel concept
of node importance, which quantifies the responsibility of each node in the network, as a function
of the local weight distribution within a layer. Applied to gradient-based optimization algorithms,
GRAPES provides a simple and efficient strategy to dynamically adjust the error signal at each
node and to enhance the updates of the most relevant parameters. Compared with optimizers
such as momentum, our approach does not need to store parameters from previous steps, avoid-
ing additional memory penalty. This feature makes GRAPES more biologically plausible than
momentum-based optimizers as neural circuits cannot retain a substantial fraction of information
from previous states [Pehlevan and Chklovskii, 2019].
We validated our approach with ANNs on five static data sets (MNIST, CIFAR-10, CIFAR-100,
Fashion MNIST and Extended MNIST) and with SNNs on the temporal rate-coded MNIST. We
successfully applied GRAPES to different training methods for supervised learning, namely BP,

96 5.3. Discussion

a

b

c

Figure 5.13: Experiments with spiking neural networks. (a) Test accuracy for SNU and
sSNU networks with 3 and 2 hidden layers, respectively. The results are mean and standard
deviation of the test accuracy after training over 5 independent runs. (b) Test curves for SNU
3 × 256 networks with decreasing values for the learning rate η. Left hand-side: η = 0.01. Right
hand-side: η = 0.001. The initial 100 training epochs are shown. (c) Test curves for sSNU networks
with increasing number of hidden layers. Left hand-side: 4×256 networks. Right hand-side: 6×256
networks. In (b) and (c) the curves correspond to a single run.

Chapter 5. GRAPES: a Biologically Inspired Optimizer 97

b

a

Figure 5.14: (a) Final test accuracy for 1-hidden layer networks as a function of the n-bit granu-
larity where n ∈ {2, 4, 6, 8} and noise standard deviation σ ∈ {0.0, 0.5, 1.0, 1.5}ϵ. The red curves
correspond to networks trained with GRAPES, while the blue curves to networks trained with
SGD. The results are mean and standard deviation over 5 independent runs. (b) Test curves
for single run as a function of the training epochs with fixed noise standard deviation σ = 1.5ϵ.
Training with full precision (FP), 8,6,4 and 2 bits precision are compared.

FA and DFA, and to different optimizers, i.e., SGD, RMSprop and NAG. We demonstrated that
the proposed weight-based modulation leads to higher classification accuracy and faster conver-
gence rate both in ANNs and SNNs. Next, we showed that GRAPES addresses major limita-
tions of ANNs, including mitigation of performance saturation for increasing network complexity
[Ba and Caruana, 2014] and catastrophic forgetting [French, 1999].
We suggest that these properties stem from the fact that GRAPES effectively combines in the error
signal information related to the response to the current input with information on the internal
state of the network, independent of the data sample. Indeed, GRAPES enriches the synaptic
updates based on the input-driven responsibility with a modulation relying on the network-driven
responsibility, which indicates the potential impact that a node would have on the network’s output,
independently on the input. Such training strategy endows networks trained with GRAPES with
the ability to achieve convergence in a lower number of epochs, as the training is not constrained to
information depending only on the presented training samples. For the same reason, such networks
present better generalization capability than SGD both when tested on the learnt tasks and when
presented with unseen tasks in continual learning scenarios. In this context, we identify parallelism
with plasticity types in the brain. The change in synaptic strength in response to neuronal activity
results from the interplay of two forms of plasticity: homosynaptic and heterosynaptic. Homosy-
naptic plasticity occurs at synapses active during the input induction, thus is input-specific and
associative, as the input-driven responsibility. Instead, heterosynaptic plasticity concerns synapses
that are not activated by presynaptic activity and acts as an additional mechanism to stabilize the
networks after homosynaptic changes [Chistiakova et al., 2014, Caya-Bissonnette, 2020]. There-
fore, similarly to the network-driven responsibility, heterosynaptic plasticity does not exhibit strict
input specificity.
Our algorithm appears to have certain similarity with existing normalization schemes [Bird et al., 2021]
and the Winner-take-all computational primitive [Kaski and Kohonen, 1994]. However, as GRAPES
relies on the concept of network-driven responsibility, its main computations are based on synaptic
strength rather than on synaptic activity. In particular, the operations of summing the weight

98 5.3. Discussion

strength and the normalization in Eq. 5.2 require that neurons communicate their synaptic
strength. We remark that the normalization operation is introduced to project the importance
vector into a meaningful interval, in which values larger than 1 lead to enhancement of the weight
updates, and smaller than 1 imply weakening of the updates. The same numerical results can
be achieved by performing the vector normalization by dividing by the mean of the importance
values (or the total sum of the importance values), and later multiplied by 2 × mean(i)

max(i) (resp. by

2 × sum(i)
max(i)) rather than 2. Furthermore, previous work has contemplated the possibility that the

neurons communicate synaptic strengths. For instance, in [Fiete et al., 2010], the authors propose
the summed-weight limit rule for heterosynaptic long-term depression: when the summed weight of
synapses into (or out of) a neuron exceeds a limit, all the incoming (or outgoing) synapses to that
neuron are weakened. Such mechanism implies that synapses communicate information about the
values of the synaptic weights to the postsynaptic node, and such information is used to modulate
the synaptic weights in a non-local fashion. A second example is the theory of retroaxonal signals
and neural marketplace proposed in [Harris, 2008, Lewis and Harris, 2014]. Experimental evidence
suggests that neurons are capable of carrying retroaxonal signals through molecules known as neu-
rotrophic factors, which can encode information both on synaptic strength and on its temporal
derivative. Such information is used to promote or hinder the consolidation of synaptic weights’
changes. The theory of the neural marketplace builds on the mechanism of retroaxonal signalling
and proposes a model for how networks of neurons in the brain self-organize into functional net-
works. Both the neural marketplace theory and the GRAPES algorithm rely on the propagation of
information about the weights and their changes, hence the two frameworks present several analo-
gies. First, the retroaxonal signals control the plasticity of synapses by modulating the synaptic
updates. Similarly, the importance vector is used in GRAPES to modulate the weight changes
prescribed by BP. Secondly, the retroaxonal signals carrying information on weight strength and
weight change travel slowly; similarly, the information in GRAPES is only applied after each batch.
Third, both the information propagated through neurotrophin and the importance in GRAPES do
not depend on gradients. Finally, the theory in [Lewis and Harris, 2014] introduces the concept of
worth of a cell, which measures the usefulness of the cell’s output, and is defined as the worsening
in network performance if the cell were to die. A cell is inactivated if all its incoming connections
are zeroes, hence the worth of a cell is related to the strength of the incoming synapses to the cell.
Therefore, the worth can be related to the concept of node importance in GRAPES. In conclusion,
the underlying ideas of GRAPES are inspired by the concepts of node importance, error modula-
tion and communication of weight strength, which are supported by experiments investigating the
role of dendritic integration, synaptic scaling and retroaxonal signalling. While the biological in-
spiration is grounded on these mechanisms, only the high-level concept of GRAPES-like plasticity
modulation is compatible with plasticity modulation principles observed in neural circuits.

The benefits of GRAPES stem from the adjustment of the error signal. The nonuniform distribu-
tion of the modulation factor, combined with the propagation to upstream layers, allows GRAPES
to greatly enhance a subset of synaptic updates during training. Hence, small groups of synapses
are enabled to strengthen or weaken to a much larger extent than with SGD. From preliminary
investigation, GRAPES appears to convey the network weights toward more biologically plausible
distribution, specifically heavy-tailed distributions [Buzsáki and Mizuseki, 2014, Iyer et al., 2013,
Teramae and Fukai, 2014, Song et al., 2005]. In Figure 5.11, we compare the layer-wise weight
distribution of networks trained with SGD and with GRAPES, both initialized with a normal
distribution. After training with SGD, the weight distribution is still close to a Gaussian. Instead,
after GRAPES-optimization we observed that, particularly in the first hidden layers of deep net-
works, the weight distribution does not follow a Gaussian shape, is wider, and is characterized by
long tails.

Recent electrophysiological studies have revealed that the amplitudes of EPSPs between cor-
tical neurons are not distributed as Gaussians but obey a long-tailed pattern, typically log-
normal [Buzsáki and Mizuseki, 2014, Song et al., 2005]. Such firing pattern implies that some
synapses are very strong while many synapses are weak (“strong-sparse and weak-dense” networks)
[Teramae and Fukai, 2014]. Heavy-tailed distributions were shown to lead to important network

Chapter 5. GRAPES: a Biologically Inspired Optimizer 99

properties: faster transient responses, higher dynamical range and lesser sensitivity to random fluc-
tuations in synaptic activity [Iyer et al., 2013]. This suggests that the long-tail distribution found
at many physiological and anatomical levels in the brain is fundamental to structural and func-
tional brain organization [Buzsáki and Mizuseki, 2014]. From preliminary investigation, GRAPES
seems to convey the network weights toward a more biologically plausible distribution. Fig. 5.11
illustrates this phenomenon. This implies that the properties of faster learning and greater ro-
bustness to noise exhibited by networks trained with GRAPES could stem from the modulation
of the gradients towards adjusting the weights to a long-tailed distribution. We suggest that the
properties exhibited by GRAPES could stem from such weight distribution. Ongoing work in our
group is currently seeking a more comprehensive understanding of this phenomenon.
Remarkably, our results suggest that GRAPES offers a promising strategy for mitigating the perfor-
mance degradation caused by hardware-related constraints, such as noise and reduced precision, as
discussed in section 5.2.8. We highlight that these constraints reflect biological circuits in many as-
pects, as the synaptic transmission is affected by noise and the neural signal is quantized. Interest-
ingly, GRAPES retains many similarities with biological processes. We, therefore, envision that the
biological mechanisms underlying GRAPES may play a central role in overcoming the limitations
associated with hardware-related constraints. Furthermore, we suggest that such brain-inspired
features are at the origin of the benefits of GRAPES on biologically-inspired models. Indeed, we
have demonstrated that GRAPES not only improves BP-based training of standard ANNs, but
additionally boosts substantially the performance of networks trained with biologically plausible
credit assignment strategies, such as FA and DFA, and networks relying on the dynamics of spiking
neurons. Both the FA algorithms and the SNN models are crucial steps towards bridging biological
plausibility and machine learning. However, at the present stage, they can only achieve a limited
performance compared to ANNs trained with BP [Bartunov et al., 2018, Pfeiffer and Pfeil, 2018].
For instance, as shown in the Results section, both the FA and SNNs approaches suffer from
lower accuracy and convergence rate compared with BP, and SNNs training is severely affected
by changes in network complexity and hyperparameters. Thanks to an efficient modulation of the
error signal which enhances the updates of the most important parameters, GRAPES reduces the
impact of such limitations, thereby narrowing the gap between the performance of bio-inspired
algorithms and standard ANNs.
To conclude, our findings indicate that incorporating GRAPES and, more generally, brain-inspired
local factors in the optimization of neural networks paves the way for pivotal progress in the
performance of biologically inspired learning algorithms and in the design of novel neuromorphic
computing technologies.

5.4 Methods

MNIST data set We train FCNNs with 3 and 10 hidden layers, each consisting of either 256
or 512 hidden nodes. The activation functions chosen for the hidden layers are rectified linear unit
(ReLU) or hyperbolic tangent (tanh). The output activation is softmax with cross-entropy loss
function. With ReLU hidden nodes the weights are initialized according to [He et al., 2015], with
tanh units according to [Glorot and Bengio, 2010]. The batch size is fixed to 64. The learning rate
η is optimized for the different models, separately for SGD and GRAPES, and is kept fixed during
training. Table 5.11 reports the optimized learning rate as well as detailed simulation settings for
all simulations. We investigate the performance both without dropout [Hinton et al., 2012] and
with moderate dropout rates of 10% and 25%. We also show the accuracy improvement of the
models that are trained with an augmented version of the data set, built by applying both affine
and elastic deformation on the training set, similarly as proposed in Ref. [Cireşan et al., 2010]. To
compute the accuracy, we train the models on the training set and after each epoch we test the
performance on the test set. Following the strategy in Ref. [Cireşan et al., 2010], we report the
best test accuracy throughout the entire simulation. For all settings, we average the result over
five independent runs.

100 5.4. Methods

Scalability to complex networks We train networks with layer sizes ranging from 128 to 1024
and with depth from 2 to 12 hidden layers. Each network is trained with ReLU, 10% dropout rate
and for 200 epochs. The learning rate is kept constant to η = 0.001. As in the previous section, we
report the best testing accuracy obtained throughout the entire training, averaged over five runs.

Catastrophic forgetting In the simulations based on the Avalanche library, the networks, con-
taining 2× 256 ReLU hidden layers, are trained with momentum for one epoch on each task. In our
task setting, for each task, 600 random permutations are applied. We train 3 × 256 ReLU FCNN
networks on the training samples using shuffling and minibatch processing for a fixed number of
epochs. We set the number of training epochs per task to 10. In both settings, we use a constant
learning rate η = 0.001. We introduce a dropout rate of 10%. For all settings, we average the
result over five independent runs.

Spiking Neural Networks We train SNU and sSNU networks on the rate-coded MNIST data
set. The dynamics of the units and the training protocol are the same as described in Ref.
[Wozniak et al., 2020]. The only difference with respect to the original SNU network in Ref.
[Wozniak et al., 2020] is the introduction of a soft-reset to smoothen the training process of the
spiking units. We performed a grid-search for the hyperparameters. For the SNU networks the
optimal configuration is 3-hidden layer and constant learning rate η = 0.1. For sSNU models the
optimal configuration is 2-hidden layers with constant η = 0.2. The networks are trained for 200
epochs. The number of steps of input presentation is set to Ns = 20 during train and Ns = 300
during test. The mean and standard deviation of the final accuracy are computed over 5 runs.

Simulation details We train 1-hidden layer networks on MNIST data set. The hidden layer has
250 sigmoid neurons, the output activation is softmax and the loss is cross-entropy. No dropout
is introduced. The networks are trained for 10 training epochs with fixed learning rate η = 0.4.
The weight distribution after training of the FP network lies in the range [-1,1]. To investigate
the effect of fixed n-bit granularity, we assume a similar final weight distribution range as that
from the floating-point simulation. Hence, we cover the weight range [-1,1] in 2n − 2 steps, with
n ∈ {2, 4, 6, 8}. We use the n-bit granularity for the forward pass. We perform the backward
pass on a floating point copy of the network and apply the granularity after the update. The
stochasticity is applied on the weight update as white noise with mean zero and variance σ = kϵ,
where ϵ = 1/(2n − 2) and k ∈ {0.0, 0.5, 1.0, 1.5}. Both the final test accuracy and the test curves
are averaged over five runs.

Programming The learning experiments of the ANN simulations were run using custom-built
code in Python3 with the Numpy library. The SNU and sSNU-based simulations were performed
using the original TensorFlow code from the Supplementary Material of [Wozniak et al., 2020].

Chapter 5. GRAPES: a Biologically Inspired Optimizer 101

Data set Train
scheme Layers Activation DO Def Train

epochs
acc [%]
SGD

acc [%]
GRAPES

s
SGD

s
GRAPES

MNIST FA 3 × 256 ReLU 10% No 200 94.56±0.10 96.03±0.10 3.40±0.26 1.33±0.04
FA 10 × 256 ReLU 10% No 600 - 91.30±0.48 - -
FA 3 × 256 tanh 10% No 200 97.09±0.03 97.75±0.07 0.22±0.01 0.16±0.01
FA 10 × 256 tanh 10% No 600 89.52±2.58 94.54±0.74 40.72±21.20 1.63±0.94
DFA 3 × 256 ReLU 10% No 200 96.13±0.12 96.57±0.09 1.06±0.03 0.89±0.04
DFA 3 × 256 tanh 10% No 200 97.89±0.06 97.87±0.04 0.17±0.01 0.15±0.00
DFA 10 × 256 tanh 10% No 300 97.93±0.05 97.94±0.02 0.19±0.01 0.15±0.01

Fashion MNIST BP 3 × 256 ReLU 10% No 200 87.91±0.14 89.48±0.14 0.55±0.02 0.32±0.02
BP 10 × 256 ReLU 10% No 600 89.21±0.23 90.29±0.10 1.06±0.10 0.19±0.02
BP 3 × 256 tanh 10% No 200 89.20±0.12 89.97±0.13 0.18±0.01 0.15±0.01
BP 10 × 256 tanh 10% No 600 89.84±0.08 90.47±0.13 0.16±0.01 0.16±0.01
FA 3 × 256 ReLU 10% No 200 84.65±0.15 86.45±0.09 3.01±0.15 1.42±0.07
FA 10 × 256 ReLU 10% No 600 - 65.69±1.85 - 34.66±8.33
FA 3 × 256 tanh 10% No 200 87.75±0.07 88.70±0.08 0.31±0.01 0.20±0.01
FA 10 × 256 tanh 10% No 600 85.78±2.21 85.76±1.98 3.03±1.62 2.52±1.35
DFA 3 × 256 ReLU 10% No 200 86.81±0.04 87.26±0.14 1.13±0.02 0.93±0.03
DFA 3 × 256 tanh 10% No 200 88.42±0.08 88.53±0.08 0.20±0.01 0.17±0.01
DFA 10 × 256 tanh 10% No 300 88.89±0.04 88.78±0.13 0.27±0.01 0.19±0.01

Extended MNIST BP 3 × 256 ReLU 10% No 200 83.28±0.10 85.32±0.07 2.55±0.08 1.18±0.04
BP 10 × 256 ReLU 10% No 400 84.08±0.21 86.35±0.13 5.46±0.30 0.44±0.02
BP 3 × 256 tanh 10% No 200 86.39±0.12 86.40±0.12 0.73±0.02 0.38±0.01
BP 10 × 256 tanh 10% No 400 86.85±0.07 86.39±0.12 0.61±0.02 1.44±0.09
FA 3 × 256 ReLU 10% No 200 73.73±0.25 78.95±0.12 14.35±0.52 6.50±0.15
FA 10 × 256 ReLU 10% No 400 - 43.62±8.24 - -
FA 3 × 256 tanh 10% No 200 82.29±0.11 83.74±0.09 1.88±0.03 1.07±0.02
FA 10 × 256 tanh 10% No 300 71.58±0.86 78.22±0.39 22.73±0.75 2.87±0.16
DFA 3 × 256 ReLU 10% No 200 80.62±0.12 80.91±0.20 5.71±0.10 4.49±0.05
DFA 3 × 256 tanh 10% No 200 84.30±0.14 84.36±0.15 1.14±0.03 0.87±0.02
DFA 10 × 256 tanh 10% No 200 83.95±0.11 83.88±0.15 1.76±0.03 1.05±0.02

CIFAR-10 BP 3 × 256 ReLU 10% No 600 54.29±0.29 55.00±0.21 2.60±0.11 1.60±0.04
BP 10 × 256 ReLU 10% No 500 42.18±0.44 52.74±0.47 13.09±5.81 8.05±1.87
BP 3 × 256 tanh 10% No 600 43.81±0.15 49.43±0.17 3.49±0.33 1.82±0.13
BP 10 × 256 tanh 10% No 500 42.77±0.34 56.38±0.31 4.12±0.59 1.98±0.11
FA 3 × 256 ReLU 10% No 400 49.58±0.16 52.50±0.15 6.45±0.26 3.73±0.10
FA 3 × 256 tanh 10% No 400 36.94±0.14 42.45±0.34 15.62±2.71 10.35±0.39
FA 10 × 256 tanh 10% No 400 - 33.51±1.02 - 12.69±6.90
DFA 3 × 256 ReLU 10% No 300 53.28±0.14 53.52±0.10 3.67±0.10 3.21±0.14
DFA 3 × 256 tanh 10% No 300 39.60±0.17 41.47±0.12 12.57±1.39 10.93±1.54
DFA 10 × 256 tanh 10% No 300 35.29±0.14 39.58±0.20 20.48±4.12 16.64±1.14

Table 5.4: Test accuracy and convergence rate of models with BP, FA and DFA learn-
ing schemes, obtained with and without GRAPES modulation on a variety of data
sets. The reported result is the average and standard deviation of the best test accuracy over 5
simulations. Empty fields in the accuracy columns indicate no convergence, while empty fields in
the slowness columns indicate that the shape of the test curve could not be meaningfully fitted
with the plateau equation. The learning rate is η = 0.001 with ReLU activation and η = 0.01 with
tanh activation. The number of training epochs for each simulation is set based on the saturation
of the models’ performance. The GRAPES modulation in most cases outperforms the classic SGD.

102 5.4. Methods

Model Activation Results in [Nokland, 2016] RMSprop GRAPES + RMSprop
7 × 240 tanh 2.16±0.13% 2.05±0.09 % 2.05±0.10%
1 × 800 tanh 1.59±0.04% 1.53±0.08% 1.50±0.04%
2 × 800 tanh 1.60±0.06% 1.51±0.05 % 1.47±0.05 %
3 × 800 tanh 1.75±0.05% 1.65±0.07 % 1.62±0.04%
4 × 800 tanh 1.92±0.11% 1.86±0.06 % 1.79±0.06%
2 × 800 sigmoid 1.67±0.03 % 1.56±0.06 % 1.62±0.05 %
2 × 800 ReLU 1.48±0.06% 1.50±0.05% 1.50±0.06%

Table 5.5: Test error on the MNIST dataset for networks trained with BP and RM-
Sprop optimizer on the settings from [Nokland, 2016], with and without GRAPES
modulation. The reported result is the mean and standard deviation over the final test accuracy
of 10 runs. The GRAPES modulation in most cases outperforms the classic RMSprop.

Model Activation Results in [Nokland, 2016] RMSprop GRAPES + RMSprop
7 × 240 tanh 2.20±0.13% 3.34±0.10% 2.56±0.13%
1 × 800 tanh 1.68±0.05% 1.65±0.06% 1.61±0.04%
2 × 800 tanh 1.64±0.03% 1.67±0.01% 1.65±0.04%
3 × 800 tanh 1.66±0.09% 1.57±0.07 % 1.60±0.07 %
4 × 800 tanh 1.70±0.04% 1.79±0.07% 1.64±0.08%
2 × 800 sigmod 1.82±0.10% 1.78±0.07 % 1.80±0.03%
2 × 800 ReLU 1.74±0.10% 1.66±0.02% 1.69±0.05%

Table 5.6: Test error on the MNIST dataset for networks trained with FA and RM-
Sprop optimizer on the settings from [Nokland, 2016], with and without GRAPES
modulation. The reported result is the mean and standard deviation over the final test accuracy
of 5 runs. The GRAPES modulation in most cases outperforms the classic RMSprop.

Model Activation Results in [Nokland, 2016] RMSprop GRAPES + RMSprop
7 × 240 tanh 2.32±0.15% 2.20±0.07% 2.11±0.05%
2 × 800 tanh 1.74±0.08% 1.65±0.04% 1.64±0.03%
3 × 800 tanh 1.70±0.04% 1.64±0.08% 1.65±0.07%
4 × 800 tanh 1.83±0.07% 1.69±0.04% 1.73±0.07%
2 × 800 sigmod 1.75±0.04% 1.84±0.06% 1.85±0.04%
2 × 800 ReLU 1.70±0.06% 1.71±0.07% 1.64±0.06%

Table 5.7: Test error on the MNIST dataset for networks trained with DFA and RM-
Sprop optimizer on the settings from [Nokland, 2016], with and without GRAPES
modulation. The reported result is the mean and standard deviation over the final test accuracy
of 5 runs. The GRAPES modulation in most cases outperforms the classic RMSprop.

Chapter 5. GRAPES: a Biologically Inspired Optimizer 103

Model Activation Dropout Results in [Frenkel et al., 2019] NAG GRAPES + NAG
1 × 500 tanh 0.0 1.72±0.08% 1.71±0.003% 1.68±0.003%
1 × 500 tanh 0.1 1.55±0.03% 1.69±0.02% 1.64±0.02%
1 × 500 tanh 0.25 1.64±0.06% 1.70±0.02% 1.63±0.02%
1 × 1000 tanh 0.0 1.76±0.06% 1.69±0.003% 1.72±0.002%
1 × 1000 tanh 0.1 1.58±0.03% 1.68±0.02% 1.63±0.02%
1 × 1000 tanh 0.25 1.70±0.06% 1.68±0.03% 1.62±0.03%
2 × 500 tanh 0.0 1.62±0.12% 1.56±0.003% 1.61±0.004%
2 × 500 tanh 0.1 1.61±0.05% 1.62±0.02% 1.57±0.02%
2 × 500 tanh 0.25 1.84±0.05% 1.76±0.02% 1.60±0.02%
2 × 1000 tanh 0.0 1.67±0.07% 1.58±0.002% 1.50±0.002%
2 × 1000 tanh 0.1 1.85±0.06% 1.77±0.04% 1.49±0.01%
2 × 1000 tanh 0.25 2.31±0.06% 2.04±0.04 % 1.62±0.02%

Table 5.8: Test error on the MNIST dataset for networks trained with BP and NAG
optimizer on the settings from [Frenkel et al., 2019], with and without GRAPES mod-
ulation. The accuracy for each run is computed as the mean of the test accuracy over the last 10
training epochs. The reported result is the mean and standard deviation over the accuracy of 10
independent runs. The GRAPES modulation in most cases outperforms the classic NAG.

CIFAR-10 CIFAR-100

Optimizer Accuracy [%]
η = 1e− 3

Accuracy [%]
η = 1e− 1

Accuracy [%]
η = 1e− 3

Accuracy [%]
η = 1e− 1

Adam 76.07 83.08 45.52 54.98
Adam+
GRAPES 76.96 80.25 44.65 52.65

Table 5.9: Test accuracy on the CIFAR-10 and CIFAR-100 datasets for residual net-
works trained with BP and Adam optimizer, with and without GRAPES modulation,
for learning rates larger and smaller than the optimized one . We trained the models
with learning rates η = 1e− 3 and η = 1e− 1, respectively smaller and larger than the optimized
learning rate η = 1e− 2. The results confirm that η = 1e− 2 is the optimal learning rate for both
SGD and GRAPES. The reported results are for a single run.

Optimizer CIFAR-10 CIFAR-100
Adam 84.78±0.20 58.20±0.39
Adam+
GRAPES 85.59±0.17 58.85±0.38

Table 5.10: Test accuracy on the CIFAR-10 and CIFAR-100 datasets for CNNs trained
with BP and Adam, with and without GRAPES modulation. The network is a nine-layer
residual architecture. The learning rate is decayed by 90% every 50 epochs and the initial learning
rate is η = 1e− 2. The models are trained for 250 epochs. The accuracy for each run is computed
as the mean of the test accuracy over the last 10 training epochs. The reported result is the mean
and standard deviation over the accuracy of 10 independent runs. The bold font indicates the best
performance for each dataset.

104 5.4. Methods

Experiment Figure/
Table

Training
scheme Dataset Model Opt. Act. DO

[%]
bs #ep. #trials η

SGD
η
GRAPES

M l Dy-
namics

Fig.3 BP MNIST
input layer: 784 × 256
10 hidden fc: 256 × 256
output layer: 256× 10

SGD ReLU 0.1 64 200 1 0.001 0.001

Slowness fit Fig.4a BP MNIST
input layer: 784 × 256
10 hidden fc: 256 × 256
output layer: 256× 10

SGD ReLU 0.1 64 200 1 0.001 0.001

Scalability Fig.4b,c BP MNIST

input layer: 784 × ls
3 hidden fc: ls × ls
output layer: ls× 10
ls∈ {256, 400, 512, 800}

SGD ReLU 0.1 64 200 10 ∈
[0.001, 0.5]

∈
[0.001, 0.1]

Scalability Fig.5a,b FA Extended
MNIST

input layer: 784 × ls
3 hidden fc: ls × ls
output layer: ls× 10
ls∈ {256, 400, 512, 800}

SGD ReLU 0.1 64 200 10 ∈
[0.001, 0.5]

∈
[0.001, 0.5]

Scalability Fig.5c,d DFA Fashion
MNIST

input layer: 784 × ls
3 hidden fc: ls × ls
output layer: ls× 10
ls∈ {256, 400, 512, 800, 1024}

SGD ReLU 0.1 64 200 10 ∈
[0.001, 0.1]

∈
[0.001, 0.1]

Convolutional
residual
model

Tab.1 BP CIFAR-10,
CIFAR-100

As in [M., 2019],
except without
the max pool
after conv5
for better accuracy

Adam ReLU None 256 250 10 0.01 0.01

Catastrophic
forgetting
(Avalanche)

Fig.6a,b BP Permuted
MNIST

input layer: 784 × 256
1 hidden fc: 256 × 256
output layer: 256× 10

mom ReLU None 64 1 10 0.001 0.001

Catastrophic
forgetting
(numpy)

Fig.6c-
f

BP Permuted
MNIST

input layer: 784 × 256
2 hidden fc: 256 × 256
output layer: 256× 10

SGD ReLU 0.1 64 10 5 0.001 0.001

Catastrophic
forgetting
(numpy)

Fig.S3 BP Permuted
MNIST

input layer: 784 × 256
2 hidden fc: 256 × 256
output layer: 256× 10

SGD ReLU 0.1 64 10 5 0.1 0.1

SNU Fig.7a BPTT Rate
MNIST

input layer: 784 × ls
2 hidden fc: ls × ls
output layer: ls× 10
ls∈ {256, 512}

SGD Step None 64 200 5 0.1 0.1

sSNU Fig.7a BPTT Rate
MNIST

input layer: 784 × ls
1 hidden fc: ls × ls
output layer: ls× 10
ls∈ {256, 512}

SGD sigmoid None 64 200 5 0.2 0.2

Hardware
constraints Fig.S5 BP MNIST

input layer: 784 × 250
1 hidden fc:
output layer: 250× 10
ls∈ {256, 512}

SGD sigmoid None 64 10 5 0.4 0.4

Table 5.11: Model and hyperparameter settings for all experiments.

Chapter 6

PEPITA: a Biologically Plausible
Training Scheme

Supervised learning in artificial neural networks typically relies on backpropagation, where the
weights are updated based on the error-function gradients and sequentially propagated from the
output layer to the input layer. Although this approach has proven effective in a wide domain of
applications, it lacks biological plausibility in many regards, including the weight symmetry prob-
lem, the dependence of learning on non-local signals, the freezing of neural activity during error
propagation, and the update locking problem. Alternative training schemes have been introduced,
including sign symmetry, feedback alignment, and direct feedback alignment, but they invariably
rely on a backward pass that hinders the possibility of solving all the issues simultaneously. Here,
we propose to replace the backward pass with a second forward pass in which the input signal is
modulated based on the error of the network. We show that this novel learning rule comprehen-
sively addresses all the above-mentioned issues and can be applied to both fully connected and
convolutional models. We test this learning rule on MNIST, CIFAR-10, and CIFAR-100. These
results help incorporate biological principles into machine learning.

6.1 Introduction

The backpropagation algorithm (BP) has proven to reach impressive results in training Arti-
ficial Neural Networks (ANNs) on a broad range of complex cognitive tasks including speech
recognition, image classification [LeCun et al., 2015], and playing board games [Silver et al., 2016].
However, BP has been criticized for relying on a biologically unrealistic strategy of synaptic
credit assignment, i.e., estimating how much each parameter has contributed to the output er-
ror [Crick, 1989, Whittington and Bogacz, 2019, Lillicrap et al., 2020]. In particular, a few as-
pects of BP appear to be at odds with neurobiology. (i) The same weights are used both in
the feedforward and in the feedback pathway, raising the weight symmetry or weight transport
problem [Burbank and Kreiman, 2012]. (ii) The parameter updates depend on the activity of all
downstream nodes, while biological synapses learn based on local signals related to the activity
of the neurons they connect with [Whittington and Bogacz, 2019]. (iii) The error gradients are
stored separately from the activations [Liao et al., 2016] and do not influence the activities of the
nodes produced in the forward pass. Hence, during the backward pass, the network activity is
frozen. In the brain, instead, the neural activity is not frozen during plasticity changes and the
signals travelling through feedback connections influence the neural activities produced by for-
ward propagation, leading to their enhancement or suppression [Lillicrap et al., 2020]. (iv) Input
signals cannot be processed in an online fashion, but each sample needs to wait for both the
forward and backward computations to be completed for the previous sample. This is referred
to as the update locking problem [Jaderberg et al., 2017, Czarnecki et al., 2017]. These considera-
tions have motivated the development of alternative methods for credit assignment, each propos-

105

106 6.2. Background and related work

ing solutions to some of these criticisms [Lillicrap et al., 2016, Nokland, 2016, Liao et al., 2016,
Frenkel et al., 2019, Nøkland and Eidnes, 2019, Clark et al., 2021, Meulemans et al., 2021]. How-
ever, none of the training schemes designed so far is able to comprehensively address all the
aforementioned challenges.
Here we introduce a novel learning rule that is able to train ANNs on image classification tasks
without incurring in the issues described above. We name our scheme PEPITA, Present the Error
to Perturb the Input To modulate Activity. PEPITA relies on perturbing the input signal based
on error-related information. The difference between the network responses to the input and to
its perturbed version is used to compute the synaptic updates. Specifically, the algorithm is im-
plemented by performing two forward computations for each input sample, avoiding any backward
pass and performing the updates in a layerwise feedforward fashion during the second forward
pass. By avoiding the backward pass, PEPITA does not suffer from the weight transport problem
and it partially solves the update locking problem. Furthermore, as the error is incorporated in
the input signal, PEPITA does not freeze the neural activity to propagate and apply the modu-
latory signal. Finally, the update rule respects the locality constraints. We show that PEPITA
can be formulated as a two-factor Hebbian-like learning rule. The error information is used as a
global learning signal, which is consistent with biological observations of global neuromodulators
that influence synaptic plasticity, and which is similar to several reinforcement learning schemes
[Williams, 1992, Mazzoni et al., 1991]. As a proof-of-principle, we show that PEPITA can be suc-
cessfully applied to train both fully connected and convolutional models, leading to performance
only slightly worse than BP.

6.2 Background and related work
We review some of the training schemes proposed to solve the biologically unrealistic aspects
of backpropagation. We begin by discussing learning rules relying on unit-specific feedback, i.e.,
propagating the error from the output layer to each hidden layer through specific connectivity ma-
trices. Then, we describe recent algorithms which involve delivering learning signals in alternative
fashions.

6.2.1 Credit assignment in conventional networks
The backpropagation algorithm [Rumelhart et al., 1995] relies on a forward and a backward pass.
During the forward pass, the input signal is propagated from the input layer to the output layer,
where the error is computed by comparing the network’s output with the target. During the
backward pass, the error flows from the top layers to the bottom layers through the same weights
used in the feedforward pathway. For each synapse, the error gradient — and the associated
synaptic update — is computed through recursive application of the chain rule. In the past
two decades, several works investigated whether a mechanism similar to BP could be imple-
mented by brains. [Xie and Seung, 2003] showed the equivalence of BP and Contrastive Heb-
bian Learning, and, in a more general setting, [Scellier and Bengio, 2017] introduced Equilibrium
Propagation (EP), a learning framework for energy-based models, which shares similarities with
Contrastive Hebbian Learning. EP plays a role analog to BP to compute the gradient of an ob-
jective function, and is a compelling biologically-plausible approach to compute error gradients
in deep neuromorphic systems [Laborieux et al., 2021]. In the context of unsupervised learning,
[Pehlevan and Chklovskii, 2019] demonstrated that biologically plausible neural networks can be
derived from similarity matching objectives, relying both on Hebbian feedforward and anti-Hebbian
lateral connections.
Alternative training principles have been proposed to relax the constraint of symmetric weights.
Effective learning in neural networks can be achieved also when the error is backpropagated through
connections that share only the sign and not the magnitude with the feedforward weights (sign
symmetry algorithm) [Liao et al., 2016, Xiao et al., 2018] or through random fixed connections
(feedback-alignment algorithm, FA) [Lillicrap et al., 2016]. In the latter, the feedback provided
by the random matrices is able to deliver useful modulatory information for learning since the

Chapter 6. PEPITA: a Biologically Plausible Training Scheme 107

forward connections are driven to align with the fixed feedback matrices. As an extension to
FA, the direct feedback alignment approach (DFA) shows that useful learning information can
be propagated directly from the output layer to each hidden unit through random connectivity
matrices [Nokland, 2016, Refinetti et al., 2021]. In a similar vein, [Akrout et al., 2019] builds on
FA and introduces the weight mirror neural circuit. This approach adjusts the initially random
feedback weights of FA to improve their agreement with the forward connections, yielding improved
performance compared to FA.
These biologically inspired training schemes achieve performance close to BP in many pattern
recognition tasks without incurring in the weight transport problem. However, they do not tackle
the issues of non-locality, freezing of neural activity and update locking.

6.2.2 Credit assignment without random feedback path

Recently, learning techniques based on local error handling have been shown to successfully train
ANNs while addressing the update locking problem [Nøkland and Eidnes, 2019, Belilovsky et al., 2020,
Mostafa et al., 2018]. In these approaches, however, each layer is trained independently through
auxiliary fixed random classifiers, thereby incurring both in the weight transport problem at the
level of the classifiers and in a significant computational overhead. With the same goal, the direct
random target projection (DRTP) algorithm has been proposed to update the parameters of the
hidden layers based on the sample labels rather than the network error [Frenkel et al., 2019]. Such
a strategy overcomes both the weight transport and the update locking issues without incurring in
additional computational requirements. However, it requires that the activity is frozen as the mod-
ulatory information on the targets flows through the network. Furthermore, DRTP suffers from a
significantly larger performance degradation with respect to BP compared to the FA algorithms.
Another original approach to credit assignment known as global error-vector broadcasting (GEVB)
avoids delivering error information through fixed random connections [Clark et al., 2021]. The
GEVB learning rule performs parameter updates based on the inner product of the presynaptic
activity and a global error vector. This scheme provides a performance almost on par with BP,
and solves both the weight transport and the locality issues. However, it can only operate in a new
class of deep neural networks, the vectorized nonnegative networks, which require each node to
be represented by a vector unit with the same dimensionality as the output class. This implies a
higher computational overhead, which significantly increases for datasets with a large number of
classes, e.g., CIFAR-100.

6.3 Error-driven input modulation

6.3.1 Overview of the proposed learning rule

Here we introduce a local plasticity rule to train ANNs via supervised learning. The training rules
described so far rely on a forward pass, followed by a backward pass during which the error (BP,
FA, DFA, GEVB) or the target (DRTP) travels from the output layer to each hidden unit through
paths specific to each learning rule. The backward computation leads to at least two biologically
implausible aspects. First, the weight updates rely on non-local information: the error coming
directly from the output layer (all schemes), as well as downstream feedback connections (BP, FA).
Second, during the backward pass the network activity is frozen. We circumvent both problems
by proposing a training scheme that does not involve a backward pass, but rather performs two
successive forward passes per input sample. The first pass is similar to any conventional training
scheme. In the second forward pass, the error computed during the first pass is used to modify
the input. The modulated input travels through the network, eliciting activities slightly different
from those of the first pass. Such differences in node activity are used to update the network’s
parameters. As the output and input dimensionalities are generally different, we use a fixed random
matrix F, with zero mean and small standard deviation, to project (i.e., add) the error onto the
input. We refer to the first and second forward passes as “standard pass” and “modulated pass”,
respectively. Figure 6.1 shows a schematic comparison between error propagation in BP, FA and

108 6.3. Error-driven input modulation

DFA and the novel configuration proposed in this paper, PEPITA. The intuition of modulating
the input signal with error-related information is motivated by the existence of global modulatory
signals in the brain fed from higher level to lower level connections that influence the activity at
the early stages of the visual stream [Shimegi et al., 2016].

x

h1

h2

y

t e

W1

W2

W3

W2
T B1

B2W3
T

BP FA DFA

x

h1

h2

y

t e

W1

W2

W3

B1

B2

x

h1

h2

y

t e

W1

W2

W3

F

x

h1

h2

y

t e

W1

W2

W3

PEPITA

+

ΔWℓ = −(𝑊ℓ+1
𝑇 𝛿𝑎ℓ+1)⊙ 𝑓′ 𝑎ℓ ℎℓ−1

𝑇 −(𝐵ℓ
𝑇𝛿𝑎ℓ+1)⊙ 𝑓′ 𝑎ℓ ℎℓ−1

𝑇 −(𝐵ℓ
𝑇𝑒) ⊙ 𝑓′ 𝑎ℓ ℎℓ−1

𝑇
(ℎℓ−ℎℓ

𝑒𝑟𝑟) ∙ (ℎℓ−1
𝑒𝑟𝑟 𝑇)

WEIGHT-TRANSPORT-FREE ✓ ✓ ✓

LOCAL RULE ✓

FREEZING OF ACTIVITY ✓

UPDATE-UNLOCKED PARTIALLY PARTIALLY

a b c d

Figure 6.1: Overview of different error transportation configurations. a) Back-propagation (BP).
b) Feedback-alignment (FA). c) Direct feedback-alignment (DFA). d) Present the Error to Perturb
the Input To modulate Activity (PEPITA). Green arrows indicate forward paths and orange arrows
indicate error paths. Weights that are adapted during learning are denoted as Wl, and weights
that are fixed and random are denoted as Bl if specific to a layer (BP, FA, DFA) or F if specific
to the input signal (PEPITA).

6.3.2 The learning rule

Given a fully connected neural network with L layers and an input signal x, in the standard pass
the hidden unit and output unit activations are computed as:

h1 = σ1(W1x),

hl = σl(Wlhl−1) 2 ≤ l ≤ L.
(6.1)

where σl denotes the non-linearity at the output of the lth layer and Wl denotes the matrix of
weights between layer l− 1 and layer l. At the modulated pass, the activations are computed as:

herr1 = σ1(W1(x+ Fe)),

herrl = σl(Wlh
err
l−1) 2 ≤ l ≤ L.

(6.2)

where e denotes the network error and F denotes the fixed random matrix used to project the
error on the input. We compute the error as e = hL − target.
During the two forward passes, the network weights are equal and the difference in the node
activities is solely due to the error-driven modulation of the input signal.
The weight updates are computed after (or during, see Discussion) the modulated pass and are
applied in a forward fashion. Each synaptic update depends on the product between a postsynaptic
term and a presynaptic term. The postsynaptic term is given by the difference in activation of
the postsynaptic node between the standard and the modulated pass. The presynaptic term
corresponds to the activity of the presynaptic nodes during the modulated pass.

Chapter 6. PEPITA: a Biologically Plausible Training Scheme 109

First layer:

∆W1 = (h1 − herr1) · (x+ Fe)T (6.3)

Intermediate hidden layers, with 2 ≤ l ≤ L− 1:

∆Wl = (hl − herrl) · (herrl−1)
T (6.4)

Output layer:

∆WL = e · (herrL−1)
T (6.5)

The weights of the output layer are trained as in BP since the information about the error is
directly accessible at the last layer. Furthermore, we tested a modification of the algorithm and
replaced the activity of the modulated pass with that of the standard pass in the presynaptic term:
∆Wl = (hl − herrl) · (hl−1)

T . In the simulations, such modification did not affect the network
performance.
Finally, the prescribed synaptic updates are applied depending on the chosen optimizer, as for
any gradient-based optimization technique. For example, using the Stochastic Gradient Descent
(SGD)-like scheme, with learning rate η:

W (t+ 1) =W (t)− η∆W (6.6)

The algorithm is reviewed in the pseudocode below.

Algorithm 1 Implementation of PEPITA
Given: Input (x) and label (target)
#standard forward pass
h0 = x
for ℓ = 1, ..., L

hℓ = σℓ(Wℓhℓ−1)
e = hL− target
#modulated forward pass
herr0 = x+Fe
for ℓ = 1, ..., L

herrℓ = σℓ(Wℓh
err
ℓ−1)

if ℓ < L:
∆Wℓ = (hℓ − herrℓ) · (herrℓ−1)

T

else:
∆Wℓ = e · (herrℓ−1)

T

6.3.3 Extension to convolutional layers
The same approach can be applied to train convolutional models. However, a modification is
required to account for the parameter sharing used in convolutions. As for fully connected models,
PEPITA trains the convolutional models through a standard and a modulated forward pass, and
the kernels are learnt based on post- and pre-synaptic related terms. For each filter, the update is
computed after the modulated pass through the following steps:

1. For each element in the output map, first we compute the difference in activity between the
standard and modulated pass. Then we multiply such difference by the area of the input map
on which the filter was applied to generate the specific output pixel. Each of the computed
products has the same dimensionality as the filter.

2. All the products computed in step 1 are summed into a single update term.

110 6.4. Results

Input maps Output mapsFilters Input map

Output map

activity difference

Filter update

x

x

+

Forward pass Update computation

Figure 6.2: Update scheme for convolutional layers

3. The resulting term is divided by the number of summed products.

4. The computed update is applied to the filter with the chosen optimization technique, such
as Eq. 6.6.

Figure 6.2 provides a schematic of the standard forward pass and the computation of the update
for a single channel of a filter.

6.4 Results

6.4.1 Methods
Inspired by [Liao et al., 2016], we focus on relative differences between algorithms, not absolute
performance. Each experiment is a {model, dataset} pair. We tested the PEPITA learning rule
on 3 datasets: MNIST [LeCun and Cortes, 2010], CIFAR-10 [Krizhevsky et al., a] and CIFAR-100
[Krizhevsky et al., b]. We did not use any data augmentation. For each dataset, we trained both
a fully connected and a convolutional model with BP, FA, DRTP and PEPITA. With BP, FA
and PEPITA, we used rectified linear unit (ReLU) [Nair and Hinton, 2010] as non-linearity for the
hidden layers and softmax for the output layer. With DRTP we used hyperbolic tangent as non-
linearity for the hidden layers and sigmoid for the output layer. We used SGD with momentum
with hyperparameter 0.9. For BP, FA and DRTP we used cross entropy loss. In the fully connected
networks, we introduced dropout with drop rate of 10% after the hidden layer. In the convolutional
models, we applied Max Pooling after the convolutional layer. We initialized the networks using the
He initialization [He et al., 2015] for both the forward connections Wi and the projection matrix
F . The input images are normalized to the interval [0,1]. We optimized the learning rate, the
learning rate decay schedule, the batch size and the dropout rate separately for each experiment.
We used the entire training set for the training and did not use a validation set. The network
architectures and simulation details for each dataset and learning rule are reported in Table 6.1.
The code for the simulations of fully connected models with PEPITA, BP, FA and convolutional
models with PEPITA is provided at: https://github.com/GiorgiaD/PEPITA . For all the other
experiments we used the code from [Frenkel et al., 2019].

6.4.2 Experimental results
Here, we show that the proposed learning rule successfully trains both fully connected and convo-
lutional networks on image classification tasks. The experimental results are summarized in Table
6.3. The accuracy obtained by PEPITA for fully connected networks (Table 6.3, columns 1-3) is
close to the accuracy achieved by BP and FA, and superior to that of DRTP for all experiments.
Figure 6.5a shows the learning curve on the test set for the fully connected model trained on

https://github.com/GiorgiaD/PEPITA

Chapter 6. PEPITA: a Biologically Plausible Training Scheme 111

Fully connected models Convolutional models

MNIST CIFAR10 CIFAR100 MNIST CIFAR10 CIFAR100

InputSize 28×28×1 32×32×3 32×32×3 28×28×1 32×32×3 32×32×3
Layer 1 FC1:1024 FC1:1024 FC1:1024 Conv1:32,5,1 Conv1:32,5,1 Conv1:32,5,1
Layer 2 FC2:10 FC2:10 FC2:100 FC1:10 FC1:10 FC1:100

η BP 0.1 0.01 0.01 0.1 0.01 0.01
η FA 0.1 0.001 0.001 0.1 0.01 0.01
η DRTP 0.01 0.001 0.001 0.01 0.01 0.01
η PEPITA 0.1 0.01 0.01 0.1 0.1 0.1
η decay rate ×0.1 ×0.1 ×0.1 ×0.1 ×0.1 ×0.1
decay epoch 60 60,90 60,90 10,30,50 10,30,50 10,30,50
Batch size 64 64 64 100 100 100

F std 0.05·2
√

6
fanin 0.05·2

√
6

fanin 0.05·2
√

6
fanin 0.05·2

√
6

fanin 0.05·2
√

6
fanin 0.05·2

√
6

fanin

Fan in 28 · 28 · 1 32 · 32 · 3 32 · 32 · 3 28 · 28 · 1 32 · 32 · 3 32 · 32 · 3
#epochs 100 100 100 100 100 100
Dropout 10% 10% 10% - - -
Weight init He unif. He unif. He unif. He unif. He unif. He unif.

Table 6.1: Network architectures and settings used in the experiments. For the convolutional layers
A,B,C means A feature maps of size B, with stride C.

MNIST with PEPITA. Figure 6.6 reports the t-SNE visualization of the representation learned at
the hidden layer for the same model. Figure 6.3 reports PEPITA’s test curve on the CIFAR-10
dataset, compared with the test curves of BP, FA, and DRTP. Figure 6.5a and Figure 6.3 show that
the training rules lead to convergence within 100 epochs. We observe an improved performance of
the convolutional models trained with PEPITA compared to the fully connected networks for all
datasets (Table 6.3, columns 4-6), indicating that the convolutional version of PEPITA is able to
learn useful two-dimensional filters.

Figure 6.3: Test curve for BP, FA, DRTP and PEPITA in the experiments for the fully connected
models trained on CIFAR-10 (second column of Table 6.3). The solid line is the mean over 10
independent runs. The shaded colored area shows the std over the 10 runs.

To evaluate the learning speed of the tested training schemes, we relied on the plateau equation for
learning curves proposed in [Dellaferrera et al., 2022b]:

accuracy =
max_accuracy · epochs

slowness + epochs
. (6.7)

112 6.4. Results

By fitting the test curve to this function, we extract the slowness parameter, which quantifies how
fast the network reduces the error during training. Mathematically, the slowness value corresponds
to the number of epochs necessary to reach half of the maximum accuracy. Hence, the lower the
slowness, the faster the training. In our simulations, we perform the fit on the first 60 epochs, as
on epoch 61 the learning rate is decayed and the test curve exhibits a sudden increase (see Figure
6.3). Note that the fitting is performed on the test curve to which we add a point for the chance
level (10% for CIFAR-10) at epoch 0 (see Figure 6.4). Furthermore, we compute the slowness value
only for the fully connected models, as the test curve obtained with the convolutional models is
challenging to fit due to a learning rate decay scheme applied already after ten training epochs
(see Table 6.1). In Figure 6.4 we show the plateau curve fitting the learning curves of BP, FA,
DRTP, and PEPITA for the fully connected model trained on CIFAR-10. Table 6.2 reports the
slowness values for the fully-connected models on all datasets. PEPITA’s convergence rate is in
between BP (the fastest) and FA (the slowest). DRTP has a better learning speed than FA, but
it converges to a significantly lower accuracy plateau.

a b

c d

BP FA

DRTP PEPITA

Figure 6.4: The plateau equation for learning curves fits the test curves. Results for the fully
connected models trained on CIFAR-10 (second column of Table 6.3). The black solid line is the
test curve averaged over 10 independent runs. The purple dotted line is the fitted curve from which
we extract the slowness value (s). Results for (a) BP, (b) FA, (c) DRTP, and (d) PEPITA.

Fully connected models

MNIST CIFAR10 CIFAR100

BP 0.026 0.659 1.338
FA 0.068 1.048 4.243
DRTP 0.063 0.336 4.05
PEPITA 0.049 0.785 2.552

Table 6.2: Convergence rate in terms of slowness value obtained by BP, FA, DRTP and PEPITA
in the experiments for the fully connected models trained on CIFAR-10 (second column of Table
6.3). The smallest the slowness value, the better the convergence rate. The slowness is computed
on the test curve averaged over 10 independent runs.

In PEPITA, the error-based perturbation of the input is key to directing the parameter updates
in the correct direction. We verify that the accuracy is above chance but much lower than with

Chapter 6. PEPITA: a Biologically Plausible Training Scheme 113

PEPITA, if in the second forward pass the input is perturbed with random noise, or if F is set to zero
(i.e., only the last layer is updated in a BP-fashion). Figure 6.7 compares the test curves obtained
on CIFAR-10 with PEPITA, using F=0 or random noise modulation with different amplitudes.
Specifically, we compare:

• PEPITA, for which, at the modulated pass, the activations are computed as:

herr1 = σ1(W1(x+ Fe)),

herrl = σl(Wlh
err
l−1) 2 ≤ l ≤ L.

(6.8)

• PEPITA with F=0, for which, at the modulated pass, the activations are computed as:

herr1 = σ1(W1(x)),

herrl = σl(Wlh
err
l−1) 2 ≤ l ≤ L.

(6.9)

Therefore, with F=0, only the last layer is trained and the hidden layer is frozen.

• Random Perturbation (RP) of the input, for which, at the modulated pass, the activations
are computed as:

herr1 = σ1(W1(x+ F rk)),
herrl = σl(Wlh

err
l−1) 2 ≤ l ≤ L.

(6.10)

where r is a random vector with the same dimension as e, whose elements are randomly
sampled from a uniform distribution over [0, 1), and k is a scalar ∈ [0.01, 0.1, 1].

e = hL − target denotes the network error and F denotes the fixed random matrix used to project
(i.e., add) the error on the input.

Figure 6.7 shows that PEPITA reaches a significantly higher test accuracy than its variation with
F=0 or random perturbation of the input. When F=0, the accuracy saturates at 44.6%, while
PEPITA reaches 52.6%. For Random Perturbation, if k = 0 the performance is close to chance
level, for smaller values of k the performance is close to that of F = 0 as the hidden weights are
only slightly updated. Hence, the updates obtained by modulating the input with error-related
information is key to directing the parameter updates in the correct direction. Our results show
that, if the input is not perturbed or is perturbed independently from the error, the network
exhibits worse performance.

6.4.3 Analytic results
To gain insight into the dynamics of the PEPITA-based learning rule, we considered a two-layer
network and measured the alignment of the product between the forward weights (W1W2) with
the fixed matrix F . As in [Xiao et al., 2018], we flattened the matrices into vectors and computed
the angle between the vectors. Figure 6.5b reports the alignment dynamics of a network with one
hidden layer during training on MNIST. We observe that, at initialization, the alignment angle
is ∼90◦ (i.e., random), and that during training the angle increases, saturating at approximately
120◦. The evolution of the angle alignment finds a plateau as the test accuracy saturates. Inter-
estingly, we observe that our approach encourages a soft ‘antialignment’ (i.e., the angle increases
above 90◦) of the forward matrices with the fixed feedback matrix. Here we provide a formal
proof showing why such phenomenon occurs in the case of a linear fully connected network. We
follow the same reasoning presented for feedback alignment in Supplementary Notes 11 and 12 of
[Lillicrap et al., 2016] and use the same notation.
We consider a linear network with one hidden layer, where A is the weight matrix from the input
to the hidden layer and W is the weight matrix from the hidden to the output layer. Given an
input vector x, the hidden layer activation is computed as h = Ax (vector), and the output of
the network as y = Wh (vector). Each input x is associated with a desired target y∗ (vector),

114 6.4. Results

which is given by a target linear transformation T , such that y∗ = Tx. The aim of the training is
to learn A and W so that the network is functionally equivalent to T . We also define the matrix
E = T −WA, so that the error vector can be written as e = Ex.
Given a learning rate η, the weight updates prescribed by PEPITA can be written as:

∆W = ηehT = ηExxTAT (6.11)

and

∆A = η(h− herr)xT = (6.12)

= η(Ax−Axerr)xT = (6.13)

= η(Ax−A(x+ Fe))xT = (6.14)

= η(Ax−Ax−AFEx))xT = (6.15)

= −ηAFExxT . (6.16)

Notice that the prescribed update for A here is computed as ∆A = η(h − herr)xT rather than
∆A = η(h−herr)(x+Fe)T . As mentioned in Section 6.3.2, the two rules lead to the same network
performance. In this analytical proof for simplicity we consider the first form.
We assume that we train the network with batch learning and that the input samples x are i.i.d.
standard normal random variables (i.e., mean 0 and standard deviation 1) and thus xxT = I,
where I is the identity matrix. Then the parameter updates can be written as:

∆W = ηExxTAT = ηEAT (6.17)

and

∆A = −ηAFExxT = −ηAFE. (6.18)

We note that the minus sign in the update of A does not appear in the update of A using feedback
alignment [Lillicrap et al., 2016]. Therefore, this step of the proof explains the difference in the
direction of the alignment.
In the limit of a small η, the discrete time learning dynamics converge to the continuous time
dynamical system:

Ẇ = EAT (6.19)

and

Ȧ = −AFE. (6.20)

where Ȧ and Ẇ are the corresponding temporal derivatives. In order to show why the forward
matrices and FT come to antialignment with each other, we need to prove that the time derivative
of tr(FWA) is negative. Indeed, the antialignment is defined by the condition d

dt tr(FWA) < 0,
where tr(FWA) = [WA]↓ · [FT]↓ and [·]↓ is an operator that flattens a matrix into a vector. To
this goal, we decouple the deterministic dynamics of A and W : at first we freeze W and train A,
and then we keep A constant and train W .
In the first phase, we impose Ẇ = 0 and let Ȧ = −AFE. In our experiments we observe that the
norm of A monotonically increases during training (Figure 6.5c). Thus d

dt ||A||
2 = d

dt tr(A
TA) > 0.

We can rewrite the time derivative of the norm as:

d

dt
tr(ATA) = 2tr(AT Ȧ) = (6.21)

= 2tr(AT (−AFE)) = (6.22)

= 2tr(−ATAFE) = (6.23)

= 2tr(−||A||2FE) = (6.24)

= −2||A||2tr(FE). (6.25)

Chapter 6. PEPITA: a Biologically Plausible Training Scheme 115

Therefore, we deduce tr(FE) < 0.
Next, we consider the second phase, in which Ȧ = 0 and Ẇ = EAT . Under this condition, we
examine the evolution in time of tr(FWA):

d

dt
tr(FWA) = tr(FẆA) = (6.26)

= tr(FEATA) = (6.27)

= tr(FE||A||2) = (6.28)

= ||A||2tr(FE). (6.29)

From the above result tr(FE) < 0, we conclude that d
dt tr(FWA) < 0. This analytical result for a

linear network supports our empirical finding on non-linear models that the product of the forward
matrices comes to antialign with FT . We conjecture that such antialignment enables the error
that modulates the input, and consequently the neural activity, to deliver useful learning signals
for weight updates in A and W .

a

b

c

Figure 6.5: Dynamics of a 1 hidden layer network, with 1024 hidden units, 10% dropout, during
training on MNIST with PEPITA. (a) Test accuracy computed after each training epoch. (b)
Angle between the product of the forward matrices and the F matrix. (c) Evolution of the norm of
the initial weight matrix. The solid line reports the mean over five independent runs, the shaded
area indicates the standard deviation.

Such analytical result for a linear network supports our empirical finding on non-linear models
that the product of the forward matrices comes to antialign with FT . We conjecture that such
antialignment enables the error that modulates the input, and consequently the neural activity, to
deliver useful learning signals for weight updates in A and W . We remark that with a different sign
choice for the input modulation step in Eq. 6.2 – i.e., herr1 = σ1(W1(x−Fe)) – the product of the
forward matrices would instead come to ‘align’ with FT . In the proof, we make the assumption
that the norm of the first hidden layer weights increases monotonically. We verify empirically
that this is a realistic assumption in Figure 6.5c. Figure 6.9 shows that the rate of weights’ norm
increase diminishes as training continues beyond 50 epochs and the learning rate is decayed. The

116 6.4. Results

Initialization Trained

Figure 6.6: t-SNE embeddings of the MNIST representation at the hidden layer of the fully con-
nected model trained on MNIST, both before (initialization) and after training (trained). Each
color corresponds to a different class.

Figure 6.7: Test curve for PEPITA in its original formulation, PEPITA with F=0 (i.e., only the
last layer is trained), and a Random Projection (RP) algorithm in which the input is modulated
with a random vector r. The elements of r are sampled from a uniform distribution over [-1, 1) and
multiplied by a scalar k. We used the same settings as in the experiments for the fully connected
models trained on CIFAR-10 (second column of Table 6.3). The solid line is the mean over 10
independent runs. The shaded colored area shows the std over the 10 runs. PEPITA achieves a
significantly higher accuracy than the F=0 and RP schemes. Additionally, for small k values, the
RP algorithm (purple) has a similar learning curve as the F=0 algorithm (blue).

a b

zoom in

Figure 6.8: Distribution of the weights trained with BP (orange, purple) and PEPITA (green,
blue) on MNIST for a network with one hidden layer with 1024 units, with and without dropout
(DO), with dropout rate 10%. (a) First hidden layer (b) Output layer

bottom panel shows that, after the learning rate decay step at epoch 60, the norm of W1 increases
with a significantly smaller rate, however it does not saturate.
Furthermore, the proof relies on the assumption that the input is whitened. In Table 6.4 we show
that PEPITA effectively trains networks also with whitened input. We use the same settings for
the fully connected model as described in Table 6.1, except for the learning rate which needs to be
decreased by a factor 10 (η = 0.01). The Table below reports the accuracy result. The accuracy

Chapter 6. PEPITA: a Biologically Plausible Training Scheme 117

Table 6.3: Test accuracy [%] achieved by BP, FA, DRTP and PEPITA in the experiments. Mean
and standard deviation are computed over 10 independent runs.

Fully connected models Convolutional models

MNIST CIFAR10 CIFAR100 MNIST CIFAR10 CIFAR100

BP 98.63±0.03 55.27±0.32 27.58±0.09 98.86±0.04 64.99±0.32 34.20±0.20
FA 98.42±0.07 53.82±0.24 24.61±0.28 98.50±0.06 57.51±0.57 27.15±0.53
DRTP 95.10±0.10 45.89±0.16 18.32±0.18 97.32±0.25 50.53±0.81 20.14±0.68
PEPITA 98.01±0.09 52.57±0.36 24.91±0.22 98.29±0.13 56.33±1.35 27.56±0.60

obtained with whitening is lower than without whitening, however the accuracy is above 90%,
showing that the assumption in the anti-alignment proof is plausible.

MNIST

PEPITA non whitened input 98.01±0.09
PEPITA whitened input 92.08±0.14

Table 6.4: Test accuracy [%] achieved by PEPITA with and without whitening on the input with a
fully connected model trained on the MNIST dataset. Mean and standard deviation are computed
over 10 independent runs.

Figure 6.9: Figure 6.5 extended to 1000 epochs. Dynamics of a 1 hidden layer network, with 1024
hidden units, 10% dropout, during training on MNIST with PEPITA. (a) Test accuracy computed
after each training epoch. (b) Angle between the product of the forward matrices and the F matrix.
(c) Evolution of the norm of the initial weight matrix. The solid line reports the mean over five
independent runs, the shaded area indicates the standard deviation.

118 6.4. Results

6.4.4 Final weight distribution

We compared the layer-wise weight distribution of networks trained with BP and PEPITA, initial-
ized with the same normal distribution [He et al., 2015]. For a two-layer model trained on MNIST,
the trained weights in the first layer have similar distributions for BP and PEPITA (Figure 6.8a),
with the weight distribution for BP covering a slightly greater range than for PEPITA. The distri-
bution in the last layer is instead significantly different: both BP and PEPITA lead to bell-shaped
distributions with mean close to zero, however the distribution width obtained with PEPITA is
significantly larger (Figure 6.8b). Importantly, this implies that PEPITA learns different solutions
with respect to BP, and those solutions yield successful performance. In Figure 6.8 we show that
the weight distribution obtained with BP can be fit with a Normal curve, while the distribution ob-
tained with PEPITA is better described by a Student’s t-distribution. The Student’s t-distribution
is a subexponential distribution, which is reminiscent of the connectivity structure of neurons in
cortical networks. Indeed, findings of electrophysiological studies indicate that the amplitudes of
excitatory post-synaptic potentials between cortical neurons obey a long-tailed pattern, typically
lognormal [Buzsáki and Mizuseki, 2014, Song et al., 2005, Iyer et al., 2013].

a b

c d

Figure 6.10: The weight distributions for the output layer reported Figure 6.8b here are shown
separately and fit both with a Normal distribution (solid black line) and a Student’s t-distribution
(dotted black line). With the BP training scheme (a) without dropout and (c) with dropout, the
Normal curve well fits the weight distribution. Instead, with the PEPITA training scheme both
(b) without dropout and (d) with dropout settings, the Student’s t-distribution fits the weight
distribution much more accurately than the Normal curve. This indicates that PEPITA pushes
the weights towards a sub-exponential distribution. Note that we used different scale for the y-axis
for visualization purposes.

Furthermore, PEPITA drives the training towards a parameter distribution in which most synaptic
connections are weak and a few weights are sparse and strong (zoom of Figure 6.8b). [Feldman and Valiant, 2009]
demonstrates that a network regime featuring some maximally strong synapses enables sparse and
disjoint representation of items. This yields a significantly higher memory capacity compared to a

Chapter 6. PEPITA: a Biologically Plausible Training Scheme 119

regime supported by weak synapses only. We also remark that previous work [Blundell et al., 2015]
has shown that networks regularized with dropout [Hinton et al., 2012] or uncertainty on the
weights (i.e., Bayes by Backprop [Blundell et al., 2015]) present a greater range of weight strength
as compared to standard SGD. Therefore, PEPITA, which is conceived to solve the biological
implausible aspects of network training via BP, conveys the network weights resembling more bi-
ologically plausible distributions than BP, possibly supporting higher memory capacities as well
as more regularized parameters. However, we observe that, despite the similarity in subexponen-
tial distribution, the weight distribution learnt by PEPITA differs from the synaptic strength in
biological circuits in the ratio between excitatory to inhibitory connections. While it is generally
thought that biological neurons function under balanced excitation and inhibition, this does not
imply equal numbers of excitatory and inhibitory neurons as it occurs in PEPITA.

6.5 Discussion

We introduced PEPITA, a learning rule that relies on perturbing the input signal through error-
related information and updating the network parameters based on local variations of activity.
Our results indicate that PEPITA is able to train both fully connected and convolutional neural
networks on image classification tasks, with an accuracy comparable to the feedback alignment
algorithms. We empirically observe that PEPITA encourages the feedforward weights to evolve
towards a soft ‘antialignment’ with the feedback matrix, and it nudges the weight distribution
towards a “strong-sparse and weak-dense” distribution reminiscent of the connectivity of cortical
neurons.
By replacing the backward pass with an additional forward pass, our approach avoids BP’s bi-
ologically unrealistic aspects of weight transport, non-locality, freezing of neural activity during
parameter updates, and update locking. First, PEPITA is not affected by the weight transport
problem as it does not send weight-specific feedback signals. Secondly, regarding locality, the pre-
scribed updates of each synapse solely rely on the activity of the nodes it is connected to. The
only global signal required by the algorithm is the error projected onto the input. The role of this
global error in perturbing the node activity may correspond to a neuromodulator that influences
local synaptic plasticity [Mazzoni et al., 1991, Williams, 1992, Clark et al., 2021]. Third, during
training, PEPITA never requires the network activity to be frozen since the error is propagated
together with the input signal. Finally, in PEPITA the updates are performed layer-wise in a
feedforward fashion allowing to partially solve the update locking issue. Indeed, the weights of the
first layer can be updated right at the beginning of the second forward pass and do not need to
wait for the updates of the downstream layers. Hence, the forward computation for the next input
sample at the first layer can start in parallel with the update of the second layer from the previous
sample, and so on. In the case of very deep networks, such a strategy could substantially reduce
the computational time, suggesting that PEPITA could be suitable for edge computing devices
requiring fast processing of the input signals.
While our approach addresses BP’s issues of biological plausibility, it introduces additional elements
with respect to BP and FA. Specifically, PEPITA involves the projection of the error onto the
input through a fixed random matrix. We speculate that the role of such a projection matrix is
reminiscent of the connectivity matrices supporting the cortico-thalamo-cortical loops throughout
neocortex. Additionally, the error-based input modulation is supported by the observation that
neuromodulators can modulate the activity in the visual stream. Although neuromodulators do
not change activity in the retina (let alone inputs to the retina), they can change the activity at
the very early stages of the visual pathway (LGN, V1) [Kreiman, 2021b]. Since we apply PEPITA
on shallow networks, the algorithm approximates the role of neuromodulators by changing the
input directly. In deeper networks, we could apply the error-based modulation on the low hidden
layers rather than on the input. Furthermore, PEPITA requires storing the activations of the
standard pass during the modulated pass. We suggest that this could be implemented in biological
neurons through dendritic and somatic activities. Earlier works have proposed two-compartmental
neuron models in which learning is driven by local prediction mismatch between synaptically-driven

120 6.5. Discussion

dendritic activity and somatic output [Asabuki and Fukai, 2020, Sacramento et al., 2018b]. We
propose that if we apply PEPITA to train a network of such two-compartment neurons, the response
to the input signal in the standard forward pass is first integrated in the dendritic compartment and
then encoded in the somatic activity. Then, in the modulated forward pass, the dendrites encode
the response to the modulated input while the soma is still storing the response to the original
input. The mismatch between the dendritic activity encoding the response to the modulated input
and the somatic activity encoding the response to the original input drives the synaptic update.
Consequently, synaptic strength can be updated based on the outcome of the second pass and the
outcome of the first pass through a mismatch between somatic activity (storing the activity of the
first pass) and dendritic activity (integrating the activity of the second pass) in two-compartment
neurons. Alternatively, the activity of the first pass can drive plasticity through the dynamics
of interneurons: the past activation can be stored in an interneuron and then retrieved after the
second forward pass.
Importantly, PEPITA bears structural similarity with learning rules that are believed to take
place in the brain, i.e., Hebbian-like approaches. Indeed, the update rule shown in the pseu-
docode can be decoupled into two separate successive updates: ∆W 1

ℓ = (hℓ) · (herrℓ−1)
T and ∆W 2

ℓ =

(−herrℓ) · (herrℓ−1)
T . Each of the two updates embodies a fundamental feature of Hebbian learning

[Gerstner et al., 2014a], i.e., the synaptic strength modification is proportional to both a presy-
naptic and a postsynaptic signal. Therefore the definition of PEPITA fits in the criteria to be a
biologically plausible mechanism.
In conclusion, we have demonstrated that a learning rule that solves the biologically implausible
aspects of BP by relying only on forward computations, is able to train both fully connected and
convolutional models with a performance close to BP and on par with FA. The proposed algorithm
can thus help bridge the gap between neurobiology and machine learning.

Chapter 7

Dendritic Learning for Blind Source
Separation

In natural auditory environments, acoustic signals originate from the temporal superimposition
of different sound sources. The problem of inferring individual sources from ambiguous mixtures
of sounds is known as blind source decomposition. Experiments on humans have demonstrated
that the auditory system can identify sound sources as repeating patterns embedded in the acous-
tic input. Source repetition produces temporal regularities that can be detected and used for
segregation. Specifically, listeners can identify sounds occurring more than once across different
mixtures, but not sounds heard only in a single mixture. However, whether such a behaviour can
be computationally modelled has not yet been explored. Here, we propose a biologically inspired
computational model to perform blind source separation on sequences of mixtures of acoustic stim-
uli. Our method relies on a somatodendritic neuron model trained with a Hebbian-like learning
rule which was originally conceived to detect spatio-temporal patterns recurring in synaptic in-
puts. We show that the segregation capabilities of our model are reminiscent of the features of
human performance in a variety of experimental settings involving synthesized sounds with natu-
ralistic properties. Furthermore, we extend the study to investigate the properties of segregation
on task settings not yet explored with human subjects, namely natural sounds and images. Overall,
our work suggests that somatodendritic neuron models offer a promising neuro-inspired learning
strategy to account for the characteristics of the brain segregation capabilities as well as to make
predictions on yet untested experimental settings.

7.1 Introduction

Hearing a sound of specific interest in a noisy environment is a fundamental ability of the brain
that is necessary for auditory scene analysis. To achieve this, the brain has to unambiguously
separate the target auditory signal from other distractor signals. In this vein, a famous example
is the “cocktail party effect” [Cherry, 1953], i.e., the ability to distinguish a particular speaker’s
voice against a multi-talker background [Brown et al., 2001, Mesgarani and Chang, 2012]. Many
psychophysical and neurobiological studies have been conducted to clarify the psychophysical
properties and underlying mechanisms of the segregation of mixed signals [McDermott, 2009,
Bee and Micheyl, 2008, Asari et al., 2006, McDermott et al., 2011, Lewald and Getzmann, 2015,
Li et al., 2017, Atilgan et al., 2018, Narayan et al., 2008, Schmidt and Römer, 2011], and compu-
tational theories and models have also been proposed for this computation [Thakur et al., 2015,
Haykin and Chen, 2005, Kameoka et al., 2018, Karamatli et al., 2018, Sawada et al., 2019, Sagi et al., 2001,
Bell and Sejnowski, 1995, Amari et al., 1995, Dong et al., 2016, Elhilali and Shamma, 2009]. How-
ever, how the brain attains its remarkable sound segregation remains elusive. Various properties of
auditory cues such as spatial cues in binaural listening [Ding and Simon, 2012] and temporal coher-
ence of sound stimuli [Krishnan et al., 2014, Teki et al., 2013] are known to facilitate the listener’s

121

122 7.2. Results

ability to segregate a particular sound from the background. Auditory signals that reached to ears
first undergo the analysis of frequency spectrums by cochlea [Oxenham, 2018]. Simultaneous initi-
ation and termination of the component signals and the harmonic structure of the frequency spec-
trums help the brain to identify the components of the target sound [Popham et al., 2018]. Prior
knowledge about the target sound, such as its familiarity to listeners [Woods and McDermott, 2018,
Elhilali, 2013], and top-down attention can also improve their ability to detect the sound [Ahveninen et al., 2011,
Golumbic et al., 2013, Bronkhorst, 2015, Xiang et al., 2010, O’Sullivan et al., 2014, Kerlin et al., 2010].
Selective attention as the combination of the auditory (sound) and visual (lip movements, vi-
sual cues) modalities has also been suggested to be beneficial to solve the cocktail party problem
[Yu, 2020, Liu et al., 2021]. However, many of these cues are subsidiary and not absolutely re-
quired for hearing the target sound. For example, a mixture sound can be separated by monaural
hearing [Hawley et al., 2004] or without spatial cues [Middlebrooks and Waters, 2020]. Therefore,
the crucial mechanisms of sound segregation remain to be explored.
Whether or not biological auditory systems segregate a sound based on principles similar to those
invented for artificial systems remains unclear [McDermott, 2009, Bee and Micheyl, 2008]. Among
such principles, independent component analysis (ICA) [Comon, 1994] and its variants are the
conventional mathematical tools used for solving the sound segregation problem, or more gener-
ally, the blind source decomposition problem [Haykin and Chen, 2005, Bell and Sejnowski, 1995,
Amari et al., 1995, Hyvärinen and Oja, 1997]. Owing to its linear algebraic features, the conven-
tional ICA requires as many input channels (e.g., microphones) as the number of signal sources,
which does not appear to be a requirement for sound segregation in biological systems. In
this context, however, recent works for single-channel source separation based on techniques
such as Non-Negative Matrix Factorization (NNMF) have demonstrated that ICA can be ap-
plied with a lower number of channels than the number of sources [Krause-Solberg and Iske, 2015,
Mika et al., 2020]. In addition, NNMF has been shown to extract regular spatio-temporal pat-
terns within the audio and to achieve good performance in applications such as music processing
[Smaragdis and Brown, 2003, López-Serrano et al., 2019, Cichocki et al., 2006, Santosh and Bharathi, 2017].
It has been suggested as an alternative possibility that human listeners detect latent recurring pat-
terns in the spectro-temporal structure of sound mixtures for separating individual sound sources
[McDermott et al., 2011]. This was indicated by the finding that listeners could identify a target
sound when the sound was repeated in different mixtures in combination with various other sounds
but could not do so when the sound was presented in a single mixture.
The finding represents an important piece of information about the computational principles of
sound source separation in biological systems. Here, we demonstrate that a computational model
implementing a pattern-detection mechanism accounts for the characteristic features of human
performance observed in various task settings. To this end, we constructed a simplified model
of biological auditory systems by using a two-compartment neuron model recently proposed for
learning regularly or irregularly repeated patterns in input spike trains [Asabuki and Fukai, 2020].
Importantly, this learning occurs in an unsupervised fashion based on the minimization principle of
regularized information loss, showing that the essential computation of sound source segregation
can emerge at the single-neuron level without teaching signals. Furthermore, it was previously
suggested that a similar repetition-based learning mechanism may also work for the segregation
of visual objects [McDermott et al., 2011]. To provide a firm computational ground, we extended
the tasks of our framework to predictions on visual images.

7.2 Results

7.2.1 Learning of repeated input patterns by a two-compartment neuron
model

We used a two-compartment spiking neuron model which learns recurring temporal features in
synaptic input, as proposed in [Asabuki and Fukai, 2020]. In short, the dendritic compartment
attempts to predict the responses of the soma to given synaptic input by modelling the somatic
responses. To this end, the neuron model minimizes information loss within a recent period when

Chapter 7. Dendritic Learning for Blind Source Separation 123

the somatic activity is replaced with its model generated by the dendrite. Mathematically, the
learning rule minimizes the Kullback–Leibler (KL) divergence between the probability distributions
of somatic and dendritic activities. The dendritic membrane potential of a two-compartment
neuron obeys v(t) =

∑
j wjej(t), where wj and ej stand for the synaptic weight and the unit

postsynaptic potential of the j-th presynaptic input, respectively. The somatic activity evolves as

u̇(t) = −1

τ
u(t) + gD[−u(t) + v(t)]−

∑
j

Gkϕ
som(uk(t))/ϕ0, (7.1)

where the last term describes lateral inhibition with modifiable synaptic weights Gk (≥ 0), as shown
later. The soma generates a Poisson spike train with the instantaneous firing rate ϕsom(u(t)),
where ϕsomi (ui) = ϕ0[1 + eβ(−ui+θ))]−1, and the parameters β and θ are modified in an activity-
dependent manner in terms of the mean and variance of the membrane potential over a sufficiently
long period t0. To extract the repeated patterns from temporal input, the model compresses the
high dimensional data carried by the input sequence onto a low dimensional manifold of neural
dynamics. This is performed by modifying the weights of dendritic synapses to minimize the time-
averaged mismatch between the somatic and dendritic activities over a certain interval [0,T]. In a
stationary state, the somatic membrane potential ui(t) can be described as an attenuated version
v∗i (t) of the dendritic membrane potential. At each time point, we compare the attenuated dendritic
membrane potential with the somatic membrane potential, on the level of the two Poissonian spike
distributions with rates ϕsomi (u(t)) and ϕ(v∗i (t)), respectively, which would be generated if both
soma and dendrite were able to emit spikes independently. In practice, the neuron model minimizes
the following cost function for synaptic weights w, which represents the averaged KL-divergence
between somatic activity and dendritic activity, and in which we explicitly represent the dependency
of ui and v∗i on X:

E(w) =

∫
ΩX

dXP ∗(X)

∫ T

0

dt
∑
i

DKL[ϕ
som
i (ui(t;X))||ϕdend(v∗i (t;X))], (7.2)

with P ∗(X) and ΩX being the true distribution of input spike trains and the entire space spanned
by them, and ϕdend(x) = ϕ0[1 + eβ0(−x+θ0))]−1. To search for the optimal weight matrix, the
cost function E(w) is minimized through gradient descent: ∆wij ∝ −∂E/∂wij . Introducing the
regularization term −γwi and a noise component ξi with its intensity g gives the following learning
rule (for the derivation see [Asabuki and Fukai, 2020]):

ẇi(t) = η{ψ(v∗i (t))[{f(ϕsomi + ϕ0gξi)− ϕdend(v∗i (t))}/ϕ0]e(t)− γwi}, (7.3)

where wi = [wi1,...,wiNin
], e(t) = [e1, ...eNin], ξi obeys a normal distribution, ψ(x) = d

dx log(ϕ
dend(x)),

ϕsom and ϕdend follow Poisson distributions, η is the learning rate, and

f(x) =

0 if x < 0,

x if 0 ≤ x < ϕ0,

ϕ0 if x ≥ ϕ0

Finally, if a pair of presynaptic and postsynaptic spikes occur at the times tpre and tpost, re-
spectively, lateral inhibitory connections between two-compartment neurons i and j are modified
through a symmetric anti-Hebbian STDP as

∆Gij = Cpexp

(
− tpre − tpost

τp

)
− Cdexp

(
− tpre − tpost

τd

)
(7.4)

See Material and Methods and Supplementary Note for additional details. The prediction is learn-
able when input spike sequences from presynaptic neurons are non-random and contain recurring
temporal patterns. In such a case, the minimization of information loss induces a consistency check
between the dendrite and soma, eventually enforcing both compartments to respond selectively to

124 7.2. Results

one of the patterns. Mathematically, the somatic response serves as a teaching signal to supervise
synaptic learning in the dendrite. Biologically, backpropagating action potentials may provide the
supervising signal [Larkum, 2013, Larkum et al., 1999].
We constructed an artificial neural network based on the somatodendritic consistency check model
and trained the network to perform the task of source recovering from embedded repetition. The
network consisted of two layers of neurons. The input layer encoded the spectrogram of acous-
tic stimuli into spike trains of Poisson neurons. For each sound, the spike train was generated
through a sequence of 400 time steps, where each time step corresponds to a “fire” or “non-fire”
event. The output layer was a competitive network of the two-compartment models that re-
ceived synaptic input from the input layer and learned recurring patterns in the input (figure 7.1).
We designed the output layer and the learning process similarly to the network used previously
[Asabuki and Fukai, 2020] for the blind signal separation (BSS) within mixtures of multiple mu-
tually correlated signals. In particular, lateral inhibitory connections between the output neurons
underwent spike-timing-dependent plasticity for self-organizing an array of feature-selective out-
put neurons (Material and Methods). In the spike encoding stage, the spectrogram is flattened
into a one-dimensional array where the intensity of each element is proportional to the Poisson
firing probability of the associated input neuron. This operation disconnects the signal’s tem-
poral features from the temporal dynamics of the neurons. Although this signal manipulation
is not biologically plausible and introduces additional latency as the whole sample needs to be
buffered, it allows the input layer to encode simultaneously all the time points of the audio signal.
Thanks to this strategy, the length of the input spike trains does not depend on the duration of
the audio signal, and a sufficiently large population of input neurons can encode arbitrarily long
sounds, possibly with some redundancy in the encoding for short sounds. We remark that, while
the somatodendritic mismatch learning rule was conceived to capture temporal information in an
online fashion, in our framework it is applied to a flattened spectrogram, thus to a static pattern.
Furthermore, in order to relate the signal intensity with the encoding firing rate, we normalized
the spectrogram values to the interval [0,1]. This strategy is suited to our aim of reproducing
the experiments with synthetic sounds and custom naturalistic stimuli. However, in a real-world
application any instantaneous outlier in signal intensity would destroy other temporal features of
an input signal. Nonetheless, the normalization is performed independently for each mixture, so if
the outlier affects a masker sound and not a target, and the target is presented in at least two other
mixtures, we expect that the normalization does not affect the ability of the network of identifying
sounds presented in different mixtures.

7.2.2 Synthesized and natural auditory stimuli

We examined whether the results of our computational model are consistent with the outcomes
of the experiments on human listeners on artificially synthesized sounds described previously
[McDermott et al., 2011]. To provide a meaningful comparison with the human responses, we
adopted for our simulations settings as close as possible to the experiments, both in terms of dataset
generation and performance evaluation (Material and Methods). In [McDermott et al., 2011], the
generation of synthetic sounds is performed by first measuring the correlations between pairs
of spectrograms cells of natural sounds (spoken words and animal vocalizations). Then such
correlations are averaged across different pairs to obtain temporal correlation functions. The
correlation functions in turn are used to generate covariance matrices, in which each element
is the covariance between two spectrogram cells. Finally, spectrograms are drawn from the re-
sulting Gaussian distribution and applied to samples of white noise, leading to the synthesis
of novel sounds. In our experiments we synthesized the sounds using the toolbox provided at
https://mcdermottlab.mit.edu/downloads.html. In the human experiments, a dataset con-
taining novel sounds was generated such that listeners’ performance in sound source segregation
was not influenced by familiarity with previously experienced sounds. To closely reproduce the ex-
periment, we created a database of synthesized sounds according to the same method as described
in [McDermott et al., 2011] (Material and Methods). The synthesized stimuli retained similarity
to real-world sounds except that they lacked grouping cues related to temporal onset and harmonic

https://mcdermottlab.mit.edu/downloads.html

Chapter 7. Dendritic Learning for Blind Source Separation 125

α

intensity

0

1

P(firing)

POISSON NEURON

DENDRITIC NEURON

= afferent synapse,

exc/inhib, plastic

= lateral synapse,

inhib, plastic

Figure 7.1: Network architecture. The input signal is pre-processed into a two-dimensional
image (i.e., the spectrogram) with values normalized in the range [0,1]. The image is flattened
into a one-dimensional array where the intensity of each element is proportional to the Poisson
firing probability of the associated input neuron. The neurons in the input layer are connected to
those in the output layer through either full connectivity or random connectivity with connection
probability p = 0.3. The output neurons are trained following the artificial dendritic neuron
learning scheme [Asabuki and Fukai, 2020].

spectral structures. Furthermore, unlike human listeners, our neural network was trained and built
from scratch, and had no previous knowledge of natural sounds that could bias the task execution.
We exploited this advantage to investigate whether and how the sound segregation performance
was affected by the presence of grouping cues in real sounds. To this goal we also built a database
composed of natural sounds (Material and Methods).

To build the sequence of input stimuli, we randomly chose a set of sounds from the database of
synthesized or natural sounds, and we generated various mixtures by superimposing them — i.e.,
we summed element-wise the spectrograms of the original sounds and then normalized the sum to
the interval [0,1]. We refer to the main sound, which is always part of mixtures, as the target, and
to all the other sounds, which were either presented as mixing sounds with the target (i.e., masker
sounds) or presented alone, as distractors. The target sound is shown in red in the training protocols
(figure 7.5 and figure 7.6). Following the protocol in [McDermott et al., 2011], we concatenated the
mixtures of target and distractors into input sequences. For certain experiments, we also included
unmixed distractor sounds. We presented the network with the input sequence for a fixed number of
repetitions. As each input signal— both unmixed sounds and mixtures— is flattened into one input
vector, each input signal is one element of the input sequence. During the input presentation, the
network’s parameters evolved following the learning rule described in [Asabuki and Fukai, 2020].
Then, we examined the ability of the trained network to identify the target sound by using probe
sounds, which were either the target or distractor sound composing the mixtures presented during
training (correct probe) or a different sound (incorrect probe). Incorrect probes for synthesized
target sounds were generated similarly as described in [McDermott et al., 2011]. Specifically, we
synthesized the incorrect probe by using the same covariance structure of the target sound, and
then we set a randomly selected time slice of the incorrect probe (1/8 of the sound’s duration) to
be equal to a time slice of the target of the same duration. Examples of target sounds, distractor

126 7.2. Results

sounds and incorrect probes are shown in figure 7.2A, figure 7.2B and figure 7.2C, respectively. A
further beneficial aspect of our model is the possibility of freezing plasticity during the inference
stage, so that the synaptic connections do not change during the probe presentation. This allows
us to investigate whether the trained network can identify not only the target but also the masker
sounds.

A B C Slice equal

to the target

Figure 7.2: Synthesized sounds - Target and associated distractor. (A) Spectrogram of
one target sound. (B) Step 1 to build the spectrogram of an incorrect probe related to the target
in A: a sound is randomly selected from the same Gaussian distribution generating the target. (C)
Step 2 to build the incorrect probe: after the sampling, a randomly selected time slice equal to
1/8 of the sound duration is set to be equal to the target. In the figure, the temporal slice is the
vertical stripe around time 0.5s.

7.2.3 Learning of mixture sounds in the network model

Our network model contained various hyperparameters such as number of output neurons, number
of mixtures and connectivity pattern. A grid search was performed to find the best combination
of hyperparameters. Figure 7.3A and figure 7.3B report the learning curves obtained on synthe-
sized and natural sounds, respectively, for random initial weights and different combinations of
hyperparameters. For both types of sounds, synaptic weights changed rapidly in the initial phase
of learning. The changes were somewhat faster for synthesized sounds than for natural sounds,
but the learning curves behaved similarly for both sound types. The number of output neurons
little affected the learning curves, while they behaved differently for different connectivity patterns
or different numbers of mixtures. Because familiarity to sounds enhances auditory perception in
humans [Jacobsen et al., 2005], we investigated whether pretraining with a sequence containing
target and distractors improves learning in our model for various lengths of pretraining. Neither
the training speed nor the final accuracy were significantly improved by the pretraining (figure
7.3C, figure 7.3D and figure 7.3E). This suggests that the model was “forgetting” about the pre-
training stage and learning the mixture sounds from scratch, not exploiting any familiarity with
previously seen sounds. We suspect that this behavior is related to the well know limitation of
ANNs of lack of continual learning [French, 1999] rather than to a specific feature of our model.
Furthermore, we cannot provide a comparison in the learning curve between the model and the
psychophysical data, since the model was trained for multiple epochs, while the human listeners
were presented with the training sequence only once and then tested on the probe immediately
after.
To reliably compare the performance of our model with human listeners, we designed a similar
assessment strategy to that adopted in the experiment. In [McDermott et al., 2011] listeners were
presented with mixtures of sounds followed by a probe which could be either a correct probe (i.e.,
the target sound present in the training mixtures) or an incorrect probe (i.e., sounds unseen during

Chapter 7. Dendritic Learning for Blind Source Separation 127

the training). The subjects had to say whether they believed the probe was present in the training
mixture by using one of the four responses “sure no” “no”, “yes”, and “sure yes”. The responses
were used to build a receiver operating characteristics (ROC) as described in [Wickens, 2002],
and the area under the curve (AUC) was used as performance measure, with AUC = 0.5 and
1 corresponding to chance and perfect correct, respectively. In our algorithm, we mimicked this
protocol for reporting by using the likelihood as a measure of performance. To this goal, first,
for each tested probe, we projected the response of the N output neurons (figure 7.4A,D) to a
two-dimensional PCA projection plane. We defined the PCA space based on the response to the
correct probes and later projected on it the datapoints related to the incorrect probes (figure
7.4B,E). We remark that other clustering approaches such as K-means and self-organizing maps
could be used instead of PCA without reducing the output dimension. Second, we clustered the
datapoints related to the correct probes through a Gaussian Mixture Model (GMM) with as many
classes as the number of correct probes (figure 7.4C,F). Third, for each datapoint we computed
the likelihood that it belonged to one of the clusters. The target likelihood values are fixed to 1
and 0 for datapoints related to correct and incorrect probes respectively. We highlight that the
labels introduced in this post-processing phase are not specific for each sound, but rather depend
on the role of the sound in the tasks, i.e., if sound X is presented during training as a target or
masker sound it is associated to label 1, while if, in another simulation, the same sound X is used
to build an incorrect probe (not used during training) then it is associated with label 0. We binned
the likelihood range into four intervals corresponding, in an ascending order, to the four responses
“sure no”, “no”, “yes”, and “sure yes”. Finally, based on the four responses, we built the receiver
operating characteristic (ROC) curve: the datapoints falling in the interval (i) L > 0 (sure yes)
were assigned the probability value p=1.0, those in (ii) −5 < L < 0 (yes) p=0.66, those in (iii)
−15 < L < −5 (no) p=0.33, and those in (iv) L < −15 (sure no) p=0.0. The AUC of the ROC is
used as the “accuracy” metric to evaluate the performance of the model. For additional details see
Material and Methods. Now, we are ready to examine the performance of the model in a series
of experiments. We show examples of the different behaviour of the network trained on single
(figure 7.4A-C) or four mixtures (figure 7.4D-F). As expected, the ability of the model to learn
and distinguish the targets from the distractors depended crucially on the number of mixtures.
The algorithm was implemented in Python and a sample code used to simulate Experiment 1 is
available at the repository https://github.com/GiorgiaD/dendritic-neuron-BSS.

7.2.4 Experiment 1: sound segregation with single and multiple mix-
tures of synthesized sounds

To begin with, we compared how the number of mixtures influences the learning performance
between human subjects and the model. The number of mixtures presented during training was
varied from 1, where no learning was expected, to 2 or more, where the model was expected to
distinguish the target sounds from their respective distractors. The simulation protocol is shown
in figure 7.5A (bottom). As reported in figure 7.5A (top), we obtained that, when one mixture
only was shown, neither the target nor the mixing sound was learnt, and performance was close to
chance. An immediate boost in the performance was observed when the number of mixtures was
raised to two. The network managed to distinguish the learnt targets from the incorrect probes
with an accuracy greater than 90%. As the number of mixtures increased up to six, the accuracy
worsened slightly, remaining above 80%. A significant drop in the performance was observed for
a greater number of mixtures. From a comparison with the results shown in figure 7.5B, which
were replicated for human subjects [McDermott et al., 2011], it emerged that our model was able
to partially reproduce human performance: the success rate was at chance levels when training
consists of a single mixture only; the target sounds could be distinguished to a certain accuracy
if more than a mixture was learnt. We also verified that the model performance was robust for
variations of the network architecture, both in terms of the number of output neurons N and the
connection probability p (Supplementary figure 1). Furthermore we observe that, while none of
the output neurons exhibits an enhanced high firing rate when presented with the target sound,
the overall population response to the target is substantially different from the response to the

https://github.com/GiorgiaD/dendritic-neuron-BSS

128 7.2. Results

A B

EC D

repetitions train seq. # repetitions train seq.

repetitions train seq. # repetitions train seq. # repetitions train seq.

Figure 7.3: Learning curves. (A) Average synaptic weight change for the experiments carried out
on the synthetized sounds, the network being initialized with random values. (B) Average synaptic
weight change for the experiments carried out on the natural sounds, the network being initialized
with random values. (C) Average synaptic weight change for the experiments carried out on the
synthetized sounds, the network being pretrained on the targets set presented for 100 epochs. (D)
Average synaptic weight change for the experiments carried out on the synthetized sounds, the
network being pretrained on the targets set presented for 200 epochs. (E) Average synaptic weight
change for the experiments carried out on the synthetized sounds, the network being pretrained
on the targets set presented for 300 epochs. The solid line and the shaded area represent the
mean and standard deviation over 3 independent runs respectively. Without pretraining, when the
number of output neurons is varied no significant change is found, while with pretraining when a
larger number of neurons is used, the weight change curve saturates at a lower value, as shown by
the blue (N=4) and green (N=12) curves. Furthermore, the figures show that both when a larger
number of training mixtures is presented (yellow curves) and when only 30% of the connections
are kept (red curves) the slope of the learning curve is steeper. The weight change is computed by
storing the weights values every 2000 time steps (i.e., “fire” or “non-fire” events) and computing
the standard deviation over the last 100 recorded values. The standard deviation is then averaged
across all connections from input to output neurons. Therefore, each point on the curve reports
the average weight change over the past 2000×100 time steps. Note that each sound/mixture is
presented for 400 time steps. Finally, the x-axis shows the number of repetitions of the training
mixture sequence (2000 for synthetic sounds and 1500 for naturalistic sounds).

masker sounds and to the incorrect probes.

Our model and human subjects also exhibited interesting differences. When the mixture number
was increased to two, performance improved greatly in our model but only modestly in human sub-
jects. Unlike human subjects, our model showed a decreasing accuracy as the number of mixtures
further increased. We consider that such discrepancies may arise from a capacity limitation of the
network. Indeed, the network architecture is very simple and consists of two layers only, whose size
is limited by the spectrogram dimensions for the input layer and by the number of output neurons
for the last layer. Therefore the amount of information that the network can learn and store is
limited with respect to the significantly more complex structure of the human auditory system. We
also suspect that the two-dimensional PCA projection might limit the model performance when a

Chapter 7. Dendritic Learning for Blind Source Separation 129

TARGETS DISTRACTORS

TARGETS DISTRACTORS
A B C

D E F

Figure 7.4: Experiment 1 - output dynamics and clustering. (A,B,C) refer to the results
of Experiment 1 on synthesized sounds with a single mixture presented during training. (D,E,F)
refer to the results of Experiment 1 on synthesized sounds with three mixtures presented during
training. The “correct probes” are the target and the distractor sounds composing the mixtures
presented during training, while the “incorrect probes” are sounds not presented during training.
The numbers in the legends indicate the sound IDs. (A) Voltage dynamics of the 8 output neurons
during inference, when the target, the distractor and the two associated incorrect probes are tested.
The neuron population is not able to respond with different dynamics to the four sounds, and the
voltage of all the output neurons fluctuates randomly throughout the whole testing sequence. (B)
The PCA projection of the datapoints belonging to the two targets (in blue) shows that the clusters
are collapsed into a single cluster. (C) When GMM is applied, all the datapoints representing
both the correct probes (in blue) and the incorrect probes (in orange and red) fall within the same
regions, making it impossible to distinguish the different sounds based on the population dynamics.
(D) Voltage dynamics of the 8 output neurons during inference, when the four targets and the
associated distractors are tested. As expected, the neuron population has learnt the feature of the
different sounds and responds with different dynamics to the eight sounds. Each output neuron
exhibits an enhanced response to one or few sounds. (E) The PCA projection of the datapoints
belonging to the four correct probes (in blue) shows that the clusters are compact and spatially
distant one from the other. (F) When GMM is applied, the model shows that the network is, most
of the times, able to distinguish the target and distractors (in blue) from the incorrect probes (in
yellow, orange and red). The correct probes are never overlapped. Three of the four distractors fall
far from the targets’ region, while the fourth (in yellow) overlaps with one of the targets. These
results are overall coherent with the human performance. In (C,F) the contour lines represent the
landscape of the log-likelihood that a point belongs to one of the clusters associated to the correct
probes.

large number of distractors is used. Indeed the PCA space becomes very crowded and although
the datapoints are grouped in distinct clusters, the probability that such a cluster lie close to each
other is high. To verify this hypothesis, we tested a modification of the inference protocol of the
algorithm. During test, we presented the network only with the target sound and one incorrect
probe, and performed BSS on the PCA space containing the two sounds. Under this configuration,
the model performance is above chance level for two or more different mixtures, and the accuracy
does not significantly decrease for large number of mixtures (Supplementary figure 2).

130 7.2. Results

We may use our model for predicting performance of human subjects in auditory perception tasks
not yet tested experimentally. To this end, we propose an extension of the paradigm tested
previously: for set-ups with the number of mixtures between two and five, we investigated whether
presenting all possible combinations of the mixing sounds among themselves, rather than only the
distractors with the target, affects the performance. The experiment is labelled “Experiment 1
a.c.”, where a.c. stands for “all combinations”, and its training scheme is reported in figure 7.5C.
Because all sounds are in principle learnable in the new paradigm, we expect an enhanced ability
of distinguishing the correct probes from the incorrect ones. Somewhat unexpectedly, however,
our model indicated no drastic changes in the performance when the mixture sequence presented
during training contained all possible combinations of the mixing sounds. Such a scheme resulted
in a minor improvement in the accuracy only for the experiments with two mixing sounds. Indeed,
in the “all combinations” protocol, during training the distractor was presented in more than one
different mixture, while in the original task setting only the target was combined with different
sounds. We hypothesize that the “all combinations” protocol makes it easier for the network to
better distinguish the distractor sound. For four or five mixing sounds, instead, the performance
slightly worsened. It is likely that this behaviour is related to the already mentioned capacity
restraints of the network. Indeed, the length of the training sequence grows as the binomial
coefficient

(
n
k

)
where k = 2, therefore for four and five targets (i.e., for n=4 or 5) the number of

mixtures is increased to 6 and 10, respectively.

7.2.5 Experiment 2: sound segregation with alternating multiple mix-
tures of synthesized sounds

Next, we investigate the model’s performance when the training sequence alternated mixtures of
sounds with isolated sounds. An analogous protocol was tested in a psychophysical experiment (see
experiment 3 in [McDermott et al., 2011]). Figures 7.6A and 7.6B show the network accuracy and
human performance, respectively, for the protocols A,B,C in figure 7.6C. Only the target and the
masker sounds were later tested since recognizing the sounds presented individually during training
would have been trivial (See conditions B, C, 1, and 2 in figure 7.6C). In the alternating task, the
network was only partially able to reproduce the human results, displaying an interesting contrast
to human behaviour. In condition A, in which the sounds mixed with the main target (in red)
changed during training, the listeners were able to learn the targets with an accuracy of about 80%,
and so did our model. In contrast, our network behaved radically differently with respect to human
performance under condition B, in which the training sequence consisted of the same mixture
alternating with different sounds. As reported in figure 7.5B, the listeners were generally not able
to identify the single sounds composing the mixture. Our model, instead, unexpectedly achieved
a performance well above chance. The output dynamics could distinguish the distractors from the
two targets with accuracy surprisingly above 90%. The behavioural discrepancy under condition
B could be explained by considering that in the training scheme the network is presented with
three different sounds besides the mixture. With respect to Experiment 1 with a single mixture, in
this protocol the network could learn the supplementary features of the isolated sounds and could
exploit them during inference to respond differently to the distractors. From the spectrograms
shown in figure 7.2, it is evident that some regions of overlap exist between the higher-intensity
areas of different sounds. Therefore, the network presented during training with isolated sounds in
addition to the single mixture, could detect some similarities between the training sounds and the
tested distractors and respond with a more defined output dynamics than in Experiment 1. Finally,
under condition C, both human subjects and our model performed above chance. While human
performance was slightly above 60%, the network achieved more than 90% accuracy. This result
should be interpreted considering that during inference also the isolated sound (blue) was tested
together with the associated distractor, which was a trivial task for the nature of our network and
thus boosted its overall performance.

Chapter 7. Dendritic Learning for Blind Source Separation 131

Train Test

C.P.

1

2

3

Train TestTrain Test

1

2

3

A B C

2

3

I.P.

C.P. I.P.

C.P. I.P.

C.P.

I.P.

C.P. I.P.

C.P. I.P.

C.P. = Correct Probe I.P. = Incorrect Probe

Figure 7.5: Experiment 1 and 1 a.c. – results and comparison with human performance.
(A) Results and schematics for Experiment 1 on the dendritic network model. The number of
mixtures is varied from 1 to 10. Performance is close to chance for a single training mixture.
The performance is boosted as two mixtures are presented. As the number of mixtures is further
increased, the clustering accuracy slowly decreases towards chance values. The protocol shown
at the bottom of the panel illustrates that (i) in the training phase we feed the network only
with the mixture(s), i.e., target+masker sound(s). (ii) in the inference phase we feed the network
only with the unmixed sounds (target, distractor separately) and with the incorrect probes (also
unmixed sounds). We remark that in the case of one mixture (condition 1) the target and the
masker sounds play the same role, while in the case of multiple mixtures (conditions 2 and 3)
the target has a different role in the protocol as it is present in more than one mixture while
the masker sounds are presented in one mixture only in the training sequence. (B) Results and
schematics for Experiment 1 on the human experiment. The number of mixtures presented are
1,2,3,5 and 10. For a single mixture the performance is close to chance. As the number of mixtures
increases, the classification accuracy improves steadily. Figure reproduced based on data acquired
by [McDermott et al., 2011]. (C) Results and schematics for Experiment 1 a.c. on the dendritic
network model. The number of mixtures is varied from 2 to 5. Combining all the mixing sounds in
mixtures slightly improves the mean performance for two mixing sounds, while it slightly worsens
it for a larger number of mixtures. The height of the bars and the error bars show respectively
mean and standard deviation of the AUC over 10 independent runs.

7.2.6 Experiment 3: effect of temporal delay in target presentation with
synthesized sounds

Temporal delay in the presentation of mixtures containing the target degraded performance sim-
ilarly in the model and human subjects. We presented the network with a training sequence of
six mixtures containing the same target mixed each time with a different distractor (figure 7.6C,
protocols 0,1,2: c.f. experiment 4 in [McDermott et al., 2011]). The mixtures alternated with an
increasing number of isolated sounds, hence increasing the interval between successive presenta-
tions of the target. The human ability to extract single sounds from mixtures was previously shown
to worsen as the interval between target presentations increased, as replicated in figure 7.6B. The
network presented a similar decreasing trend, as reported in figure 7.6A. An interesting difference,
however, is that the performance of our model drastically dropped even with one isolated sound
every other mixture while the human performance was affected when at least two isolated sounds
separated the target-containing mixtures. The discrepant behaviour indicates that the insertion

132 7.2. Results

Train Test

A

B

C

A B

0

1

2

C

C.P. I.P.

C.P. I.P.

C.P. I.P.

C.P. I.P.

C.P. I.P.

C.P. I.P.

C.P. = Correct Probe

I.P. = Incorrect Probe

Figure 7.6: Experiments 2 and 3 – results and comparison with human performance.
(A) Results for Experiments 2 (dark blue) and 3 (light blue) on the dendritic network model.
In Experiment 2 the performance is above chance for the three conditions. In Experiment 3 the
accuracy decreases as the number of isolated sounds alternating with the mixtures increases. (B)
Results for Experiments 2 (dark blue) and 3 (light blue) on the human experiment. In Experiment
2 the performance is above chance in the conditions A and C, while it is random for condition
B. In Experiment 3 the accuracy decreases as the target presentation is more delayed. Figure
reproduced based on data acquired by [McDermott et al., 2011]. (C) Schematics for Experiments
2 and 3. The training is the same for both the dendritic network model and the human experiment.
The schematics is omitted for delays 3 and 5. The testing refers to the dendritic network model,
while the testing for the human experiment (same as in figure 7.5B) is omitted. In panels A and
B, the height of the bars and the error bars show respectively mean and standard deviation of the
AUC over 10 independent runs.

of isolated sounds between the target-containing mixtures more strongly interferes the learning of
the target sound in the model compared to human subjects. This stronger performance degra-
dation may partly be due to the capacity constraint of our simple neural model, which uses a
larger amount of memory resource as the number of isolated sounds increases. In contrast, such a
constraint may be less tight in the human auditory systems.

Also for Experiments 2 and 3, we tested a modification of the inference protocol, by presenting the
network only with the target sound and one incorrect probe. Under this configuration, the model
performance of Experiment 2 improves compared to the original protocol, while no substantial
changes are noted for Experiment 3 (Supplementary figure 3).

Chapter 7. Dendritic Learning for Blind Source Separation 133

7.2.7 Experiment 4: sound segregation with single and multiple mix-
tures of real-world sounds

We applied the same protocol of Experiments 1 to the dataset of natural sounds. Although such ex-
periments were previously not attempted on human subjects, it is intriguing to investigate whether
the model can segregate target natural sounds by the same strategy. The spectrograms of two iso-
lated sounds and of their mixtures are shown in figure 7.7A-C, together with the respective sound
waves (figure 7.7D-F). The qualitative performance was very similar to that obtained with the
synthesized sounds. Specifically, the output dynamics learned from the repetition of a single mix-
ture was randomly fluctuating for both seen and randomly chosen unseen sounds (figure 7.8A),
whereas the network responses to targets and unseen sounds were clearly distinct if multiple mix-
tures were presented during training (figure 7.8D). The output dynamics were not quantitatively
evaluated because it was not possible to rigorously generate incorrect probes associated with the
learnt targets and distractors. Therefore, we qualitatively assessed the performance of the model
by observing the clustering of network responses to the learnt targets versus unseen natural sounds
(figure 7.8B, C, E and F). We observed that, in the case of multiple mixtures, the clusters related to
natural sounds (figure 7.8E and F) were more compact than those of synthetic sounds (figure 7.4E
and F). Furthermore, these clusters were more widely spaced on the PCA projection plane: the
intraclass correlation in the response to the same target was greater while the interclass similarity
in the response to different targets or distractors was lower. These results indicate that grouping
cues, such as harmonic structure and temporal onset, improve the performance of the model.

A B C

D E F

Figure 7.7: Real-world sounds – Targets and mixture. (A) Spectrogram of a spoken sentence
800 ms-long. (B) Spectrogram of 800 ms-long recording of chimes sounds. (C) Spectrogram of
the mixture of the sounds in A and B. (D) Sound wave associated with the spectrogram in A. (E)
Sound wave associated with the spectrogram in B. (F) Sound wave associated with the spectrogram
in C.

7.2.8 Experiment 5: image segregation with single and multiple mix-
tures of real-world images

Finally, we examined whether the source segregation through repetition scheme can also extend to
vision-related tasks, as previously suggested [McDermott et al., 2011]. To this end, we employed
the same method as developed for sound sources and performed the recovery of visual sources
with the protocol of Experiment 1. The mixtures were obtained by overlapping black-and-white
images sampled from our visual dataset (Material and Methods), as shown in figure 7.9. Similarly
to Experiment 4, the performance of the model was assessed only qualitatively in the visual tasks.

134 7.2. Results

INCORRECT

PROBE

A B C

D E F

CORRECT

PROBES

INCORRECT

PROBE

CORRECT

PROBES

Principal Component 1 Principal Component 1

P
ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

2

P
ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

2

Principal Component 1 Principal Component 1

P
ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

2

P
ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

2

Figure 7.8: Experiment 4 - output dynamics and clustering. (A,B,C) refer to the results of
Experiment 4 on real-world sounds with a single mixture presented during training. (D,E,F) refer
to the results of Experiment 4 on real-world sounds with three mixtures presented during training.
(A) Voltage dynamics of the 8 output neurons during inference, when the target, the distractor
and one unseen sound are tested. As expected, the neuron population is not able to respond
with different dynamics to the three sounds, and the voltage of all the output neurons fluctuates
randomly throughout the whole testing sequence. (B) The PCA projection of the datapoints
belonging to the target and distractor (in blue) shows that the clusters are collapsed into a single
cluster. (C) When GMM is applied, all the datapoints representing both the learnt sounds (in blue)
and the unseen sound (in orange) fall within the same regions, making it impossible to distinguish
the different sounds based on the population dynamics. (D) Voltage dynamics of the 8 output
neurons during inference, when the target, the three distractors, and one unseen sound are tested.
As expected, the neuron population has learnt the feature of the different sounds and responds
with different dynamics to the five sounds. Each output neuron has an enhanced response to one
or few sounds. (E) The PCA projection of the datapoints belonging to the four correct probes (in
blue) shows that the clusters are more compact and more spatially distant one from the other with
respect to the result obtained with the synthetized sounds. (F) When GMM is applied, the model
shows that the network clearly distinguished the learnt sounds (in blue) from the unseen sound
(in orange). These results show that the grouping cues improve the model accuracy with respect
to the synthesized dataset.

As in the acoustic tasks, the clustering of network responses showed that the model was able to
retrieve the single images only when more than one mixture was presented during training. The
network responses are shown in figure 7.10. We remark that the model is presented with the visual
stimuli following the same computational steps as for sounds. Indeed, as previously described, the
acoustic stimuli are first pre-processed into spectrograms and then encoded by the input layer.
While it is not unexpected that similar computational steps lead to consistent results, we remark
that the nature of the “audio images”, i.e., the spectrograms, is substantially different to that
of the naturalistic images, leading to very different distributions of the encoding spike patterns.
Therefore, successful signal discrimination in the visual task strengthen our results, proving that
our model is robust with respect to different arrangements of signal intensity.

Chapter 7. Dendritic Learning for Blind Source Separation 135

A B C

Figure 7.9: Real-world images – Targets and mixture. (A) Squared 128x128 target image
of a zebra. (B) Squared 128x128 distractor image of a butterfly. (C) Mixture of the target and
distractor images shown in A and B.

7.3 Discussion

The recovery of individual sound sources from mixtures of multiple sounds is a central challenge
of hearing. Based on experiments on human listeners, sound segregation has been postulated
to arise from prior knowledge of sound characteristics or detection of repeating spectro-temporal
structure. The results of [McDermott et al., 2011] show that a sound source can be recovered
from a sequence of mixtures if it occurs more than once and is mixed with more than one masker
sound. This supports the hypothesis that the auditory system detects repeating spectro-temporal
structure embedded in mixtures, and interprets this structure as a sound source. We investigated
whether a biologically inspired computational model of the auditory system can account for the
characteristic performance of human subjects. To this end, we implemented a one-layer neural net-
work with dendritic neurons followed by a readout layer based on GMM to classify probe sounds as
seen or unseen in the training mixtures. The results in [McDermott et al., 2011] show that source
repetition can be detected by integrating information over time and that the auditory system can
perform sound segregation when it is able to recover the target sound’s latent structure. Motivated
by these findings, we trained our dendritic model with a learning rule that was previously demon-
strated to detect and analyze the temporal structure of a stream of signals. In particular, we relied
on the learning rule described by [Asabuki and Fukai, 2020], which is based on the minimization
of regularized information loss. Specifically, such a principle enables the self-supervised learning
of recurring temporal features in information streams using a family of competitive networks of
somatodendritic neurons. However, while the learning rule has been designed to capture temporal
information in an online fashion, in our framework we flatten the spectrogram before encoding
it, making the spike pattern static during the stimulus presentation. Therefore, the temporal
fluctuations are determined by the stochastic processes in the rate encoding step.
We presented the network with temporally overlapping sounds following the same task protocols
as described in [McDermott et al., 2011]. First, we carried out the segregation task with the same
dataset of synthesized sounds presented to human listeners in [McDermott et al., 2011]. We found
that the model was able to segregate sounds only when one of the masker sounds varied, not
when both sounds of the mixture were repeated. Our findings bear a closer resemblance to the
experimental findings of human listeners over a variety of task settings. Earlier works have proposed
biologically inspired networks to perform BSS [Isomura and Toyoizumi, 2019, Bahroun et al., 2021,
Pehlevan et al., 2017]. However, to our knowledge, this is the first attempt to reproduce the
experimental results of recovering sound sources through embedded repetition. For this reason,
we could not compare our results with previous works. Additionally, we demonstrated that our
network can be a powerful tool for predicting the dynamics of brain segregation capabilities under
settings difficult to test on humans. In particular, the recovery of natural sounds is expected

136 7.3. Discussion

A B C

D E F

INCORRECT

PROBE

CORRECT

PROBES

INCORRECT

PROBE

CORRECT

PROBES

Principal Component 1 Principal Component 1

P
ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

2

P
ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

2

Principal Component 1 Principal Component 1

P
ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

2

P
ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

2

Figure 7.10: Experiment 5 – output dynamics and clustering. (A,B,C) refer to the results
of Experiment 5 on real-world images with a single mixture presented during training. (D,E,F)
refer to the results of Experiment 5 on real-world images with three mixtures presented during
training. (A) Voltage dynamics of the 5 output neurons during inference, when the two training
images and one unseen image are tested. As expected, the neuron population is not able to respond
with different dynamics to the three images, and the voltage of all the output neurons fluctuates
randomly throughout the whole testing sequence. (B) The PCA projection of the datapoints
belonging to the two seen images (in blue) shows that the clusters are collapsed into a single
cluster. (C) When GMM is applied, all the datapoints representing both the targets (in blue) and
the unseen image (in orange) fall within the same regions, making it impossible to distinguish the
different images based on the population dynamics. (D) Voltage dynamics of the 5 output neurons
during inference, when the four targets and one unseen image are tested. As expected, the neuron
population has learnt the features of the different images and responds with different dynamics to
the five images. Each output neuron has an enhanced response to one or few inputs. (E) The PCA
projection of the datapoints belonging to the four learnt images (in blue) shows that the clusters
are compact and spatially distant one from the other. (F) When GMM is applied, the model shows
that the network clearly distinguished the target and distractors (in blue) from the unseen image
(in orange). These results suggest that humans would be able to distinguish single visual targets
if previously seen in different mixtures.

to be a trivial task for humans given their familiarity with the sounds, whereas our model is
built from scratch and has no prior knowledge about natural sounds. We find that the hallmarks
of natural sounds make the task easier for the network when the target is mixed with different
sounds, but, as for the synthetic dataset, the sounds cannot be detected if presented always in
the same mixture. Furthermore, we extended the study to investigate BSS of visual stimuli and
observed a similar qualitative performance as in the auditory settings. This is not surprising
from a computational perspective as the computational steps of the visual experiment are the
same as for the acoustic experiment: there, the sounds are first preprocessed into images, the
spectrograms, and then presented to the network in a visual form. From the biological point of
view, the neural computational primitives used in the visual and the auditory cortex may be similar,
as evidenced by anatomical similarity and by developmental experiments where auditory cortex
neurons acquire V1-like receptive fields when visual inputs are redirected there [Sharma et al., 2000,

Chapter 7. Dendritic Learning for Blind Source Separation 137

Bahroun et al., 2021]. We point out, however, that such a similarity is valid only at high level as
there are some substantial differences between visual and auditory processing. For instance, the
mechanisms to encode the input signal into spikes rely on different principles: in the retina the
spike of a neuron indicates a change in light in the space it represents, while in the cochlea the rate
of a neurons represents the amplitude of the frequency it is associated to, like a mechanical FFT.
Motivated by these reasons, we suggest extending the experiments of source repetition to vision to
verify experimentally whether our computational results provide a correct prediction of the source
separation dynamics of the visual system.
Although the dynamics of our model under many aspects matches the theory of repetition-based
BSS, the proposed scheme presents a few limitations. The major limitation concerns the dis-
crepancy of the results in experiment 2B. In such a setting, the model performance is well above
chance, although the target sound always occurs in the same mixture. We speculate that, in this
task settings, the output neurons learn the temporal structure of the distractor sounds presented
outside the mixture and that they recognize some similarities in the latent structure of the probes.
We note that the degree of similarity among distractors is the same as in the psychophysics exper-
iment. This pushes the neurons to respond differently to the correct and incorrect probes, thereby
allowing the output classifier to distinguish the sounds. In contrast, we speculate that human
auditory perception relies also on the outcome of the later integration of features detected at early
processing stages. This will prevent the misperception of sounds based on unimportant latent
features. A second limitation of the selected encoding method consists in the difficulty to model
the experiments relying on the asynchronous overlapping of signals and on reversed probe sounds
presented by [McDermott et al., 2011]. Indeed, in our approach, because of the flattening of the
spectrogram in the encoding phase, each input neuron responds to one specific time frame, and
the output neurons are trained uniquely on this configuration. Hence, temporal shifts or inverting
operations are not possible. Third, we observed that in Experiment 1, as the number of mixtures
increased over a certain threshold, the model’s accuracy degraded. We speculate that, in such
settings, substituting PCA with a clustering algorithm not relying on dimensionality reduction,
such as K-means, may help mitigate the issue. In addition, an interesting variation of our frame-
work would be replacing the clustering step of the model with an another layer of spiking neurons.
Fourth, the flattening of the spectrogram in the spike encoding stage is not biologically plausible
and introduces high latency as the entire input signal needs to be buffered before the encoding
starts. This strategy exhibits the advantage of making the length of the spike train fixed for any
sound length, though modifications of the encoding scheme that preserves the signal’s temporal
structure might be more suitable for applications tailored for real-world devices. Furthermore,
an instantaneous identity coding approach, either from raw signal or via a spectrogram, would
not be affected by the previously described issues related to the spectrogram normalization in the
presence of outliers in signal intensity. Motivated by these points, in a follow up work we intend
to explore an extension of the presented framework combining time frame-dependent encoding
and spike-based post-processing clustering, which would allow us to integrate the model in em-
bedded neuromorphic applications for sound source separation with reduced response latency. In
this context, for further lowering the temporal latency, as well as for reducing the model’s energy
consumption in neuromorphic devices, the time-to-first-spike encoding method could be explored
as an alternative to the current rate coding approach.
Furthermore, as previously mentioned, the training scheme in [Asabuki and Fukai, 2020] has proven
to be able to learn temporal structures in a variety of tasks. In particular, the model was shown
to perform chunking as well as to achieve BSS from mixtures of mutually correlated signals. We
underline that our computational model and experiments differ in fundamental ways from the BSS
task described by [Asabuki and Fukai, 2020]. First, the two experiments diverge in their primary
scope. The BSS task aims at using the average firing rate of the single neurons responding to
sound mixtures to decode separately the original sounds. In our work, instead, sound mixtures are
included only in the training sequence and, during inference, only individual sounds are presented
to the network. Our goal is to verify from the population activity whether the neurons have
effectively learned the sounds and can distinguish them from unseen distractors. Furthermore, in
[Asabuki and Fukai, 2020] the stimulus was encoded into spike patterns using one Poisson process

138 7.4. Materials and methods

proportional to the amplitude of the sound waveform at each time step, disregarding the signal
intensity at different frequencies. This method was not suitable for the source segregation through
repetition task, where the sound mixtures retain important information on the frequency features
of the original sounds at each time frame. Furthermore, we flatten the audio signal spectrogram
before encoding it, unlike in the BSS task described by [Asabuki and Fukai, 2020].
In summary, we have shown that a network of dendritic neurons trained in an unsupervised fashion
is able to learn the features of overlapping sounds and, once the training is completed, can perform
blind source separation if the individual sounds have been presented in different mixtures. These
results account for the experimental performance of human listeners tested on the same task
setting. Our study has demonstrated that a biologically inspired simple model of the auditory
system can capture the intrinsic neural mechanisms underlying the brain’s capability of recovering
individual sound sources based on repetition protocols. Furthermore, as the adopted learning
scheme in our model is local and unsupervised, the network is self-organizing. Therefore, the
proposed framework opens up new computational paradigms with properties specifically suited for
embedded implementations of audio and speech processing tasks in neuromorphic hardware.

7.4 Materials and methods

7.4.1 Datasets

A dataset of synthesized sounds were created in the form of spectrogram, which shows how signal
strength evolves over time at various frequencies, according to the method described previously
[McDermott et al., 2011]. In short, the novel spectrograms were built as Gaussian distributions
based on correlation functions analogous to those of real-world sounds. White noise was later
applied to the resulting spectrograms. Five Gaussian distributions were employed to generate
each of ten different sounds in figure 7.5A. The corresponding spectrograms featured 41 frequency
filters equally spaced on an ERBN (Equivalent Rectangular Bandwidth, with subscript N denot-
ing normal hearing) scale [Glasberg and Moore, 1990] spanning 20-4000 Hz, and 33 time frames
equally dividing the 700ms sound length. For our simulations, we used the same MATLAB toolbox
and parameters used in the previous study [McDermott et al., 2011]. For further details on the
generative model for sounds, please refer to the SI Materials and Methods therein.
In addition to the dataset of synthesized sounds, we built a database composed of 72 record-
ings of isolated natural sounds. The database contained 8 recordings of human speech from the
EUSTACE (the Edinburgh University Speech Timing Archive and Corpus of English) speech cor-
pus [White and King, 2003], 23 recordings of animal vocalizations from the Animal Sound Archive
[Frommolt et al., 2006], 29 recordings of music instruments by Philharmonia Orchestra [phi, 2019],
and 12 sounds produced by inanimate objects from the BBC Sound Effect corpus [BBC, 1991]. The
sounds were cut into 800ms extracts. Then the library librosa [McFee et al., 2015] was employed to
extract spectrograms with 128 frequency filters spaced following the Mel scale [Stevens et al., 1937]
and 10ms time frames with 50% overlap.
For image source separation, we built a database consisting of 32 black-and-white pictures of
various types, both single objects and landscapes. The images were later squared, and their size
was reduced to 128x128 pixels.

7.4.2 Neuron model

In this study we used the same two-compartment neuron model as that developed previously
[Asabuki and Fukai, 2020]. The mathematical details are found therein. Here, we only briefly
outline the mathematical framework of the neuron model. Our two-compartment model learns
temporal features of synaptic input given to the dendritic compartment by minimizing a regularized
information loss arising in signal transmission from the dendrite to the soma. In other words, the
two-compartment neuron extracts the characteristic features of temporal input by compressing
the high dimensional data carried by a temporal sequence of presynaptic inputs to the dendrite
onto a low dimensional manifold of neural dynamics. The model performs this temporal feature

Chapter 7. Dendritic Learning for Blind Source Separation 139

analysis by modifying the weights of dendritic synapses to minimize the time-averaged mismatch
between the somatic and dendritic activities over a certain recent interval. In a stationary state, the
somatic membrane potential of the two-compartment model could be described as an attenuated
version of the dendritic membrane potential with an attenuation factor [Urbanczik and Senn, 2014].
Though we deal with time-dependent stimuli in our model, we compare the attenuated dendritic
membrane potential with the somatic membrane potential at each time point. This comparison,
however, is not drawn directly on the level of the membrane potentials but on the level of the two
non-stationary Poissonian spike distributions with time-varying rates, which would be generated
if both soma and dendrite were able to emit spikes independently. In addition, the dynamic
range of somatic responses needs to be appropriately rescaled (or regularized) for meaningful
comparison. An efficient learning algorithm for this comparison can be derived by minimizing the
Kullback–Leibler (KL) divergence between the probability distributions of somatic and dendritic
activities. Note that the resultant learning rule enables unsupervised learning because the somatic
response is fed back to the dendrite to train dendritic synapses. Thus, our model proposes the
view that backpropagating action potentials from the soma may provide a supervising signal for
training dendritic synapses [Larkum, 2013, Larkum et al., 1999].

7.4.3 Network architecture

The network architecture, shown in figure 7.1, consisted of two layers of neurons, either fully
connected or with only 30% of the total connections. The input layer contained as many Poisson
neurons as the number of pixels present in the input spectrogram (acoustic stimulus) or input image
(visual stimulus). The postsynaptic neurons were modelled according to the two-compartment
neuron model proposed previously [Asabuki and Fukai, 2020]. Their number was varied from a
pair to few tenths, depending on the complexity of the task. Unless specified otherwise, 8 and 5
output neurons were set for acoustic and visual task respectively.
In the first layer, the input was encoded into spikes through a rate coding-based method [Almomani et al., 2019].
The strength of the signal at each pixel drove the firing rate of the associated input neuron, i.e. the
spike trains were drawn from Poisson point processes with probability proportional to the intensity
of the pixel. We imposed that, for each input stimulus, the spike pattern was generated through a
sequence of 400 time steps, where each time step corresponds to a “fire” or “non-fire” event.
We designed the output layer and the learning process similarly to the previous network used for
the blind signal separation (BSS) within mixtures of multiple mutually correlated signals as well
as for other temporal feature analyses [Asabuki and Fukai, 2020]. As mentioned previously, the
learning rule was modelled as a self-supervising process, which is at a conceptual level similar to
Hebbian learning with backpropagating action potentials. The soma generated a supervising signal
to learn and detect the recurring spatiotemporal patterns encoded in the dendritic activity. Within
the output layer, single neurons learned to respond differently to each input pattern. Competition
among neurons was introduced to ensure that different neurons responded to different inputs.
With respect to the network used for BSS containing only two output neurons, we rescaled the
strength of the mutual inhibition among dendritic neurons by a factor proportional to the inverse
of the square root of the number of output neurons. This correction prevented each neuron from
being too strongly inhibited when the size of the output layer increased (i.e. exceeds three or
four). Furthermore, we adopted the same inhibitory spike timing-dependent plasticity (iSTDP) as
employed in the previous model. This rule modified inhibitory connections between two dendritic
neurons when they coincidently responded to a certain input. The iSTDP allowed the formation
of chunk-specific cell assemblies when the number of output neurons was greater than the number
of input patterns.
For all parameters but noise intensity ξi during learning, we used the same values as used in the
original network model [Asabuki and Fukai, 2020]. For bigger values of noise intensity g, the neural
responses were subject to more fluctuations and neurons tended to group in only one cell assembly.
From the analysis of the learning curves shown in figure 7.3, we decided to train the network
from randomly initialized weights and to expose it, during training, to the mixture sequence 3000
times for the synthesized sounds and 1500 times for the real-world sounds. The learning rate was

140 7.4. Materials and methods

kept constant throughout the whole process. During testing, the sequence of target sounds and
respective distractors was presented 50 times, and the resulting neural dynamics was averaged over
20 trials. The performance results shown in the Results section were computed as average over 10
repetitions of the same simulation set-up. In each repetition different target sounds and distractors
were randomly sampled from the dataset in order to ensure performance independence of specific
sounds.

7.4.4 Experimental settings and performance measure

The synapses were kept fixed during inference in our network, implying that the responses to probes
tested later were not affected by the presentation of other previously tested probes. This allowed us
to test the trained network on a sequence of probes, rather than only on one probe as in the studies
of the human brain where plasticity cannot be frozen during inference [McDermott et al., 2011]. In
figure 7.5A and figure 7.6C, the first half of the sequence contained the target and the distractors,
the second half the respective incorrect probes, which were also built by using the same method
as in human experiment [McDermott et al., 2011]. Each incorrect probe was a sound randomly
selected from the same Gaussian distribution generating the associated target. After the sampling,
a randomly selected time slice equal to 1/8 of the sound duration was set to be equal to the target.
The possibility of presenting more than one probe allowed us to test the performance of the network
for all the sounds present in the mixtures. To ensure a stable neural response against the variability
of the encoding, we repeated the sequence 50 times. The response of the network consisted of the
ensemble activity of the output neurons. As previously explained, 400 time-steps were devoted to
the presentation to each stimulus. The response to each probe, therefore, consisted of 400 data
points describing the dynamical activity of each output neuron, each point being a collection of
N values, where N is the number of output neurons. An example of one testing epoch output
is shown in figure 7.4A and figure 7.4C. We neglected the first 50 data points, since, during the
initial transient time, the membrane potential was still decaying or rising after the previous input
presentation. For visualization purpose, we applied the principal component analysis (PCA) to
reduce the dimensionality of the data from N to 2. In our settings, the two principal components
explain approximately 40% of the variance of the neural response. The PCA transformation was
based uniquely on the data points obtained with the presentation of the target and the distractors,
as shown in figure 7.4B and Figure figure 7.4E. The same transformation was later exploited
to project the points related to the incorrect probes. Only the target and distractors patterns
were presented during the learning process, and the responses to unseen patterns were afterwards
projected on the space defined by the training.
The two-dimensional projection of the target-related data points were clustered in an unsupervised
manner through GMM. We set the number of Gaussians equal to the number of targets such that
the covariance matrices had a full rank. With the defined GMM model at hand, we proceeded
with fitting all the PCA data points, related to both correct and incorrect probes. The model tells
which cluster each data point belonged to and what was the likelihood (L) that the cluster had
generated this data point. figure 7.4C and figure 7.4F show the datapoints projected on the PCA
plane together with the GMM clustering and likelihood curves.
We used the likelihood as a measure of performance. The four intervals of the likelihood range
corresponding to the four responses “sure no”, “no”, “yes”, and “sure yes” were (i) L > 0 (sure
yes), (ii) −5 < L < 0 (yes), (iii) −15 < L < −5 (no), and (iv) L < −15 (sure no). In building
the receiver operating characteristic (ROC) curve, the datapoints falling in the interval (i) were
assigned the probability value 1.0, those in (ii) 0.66, those in (iii) 0.33, and those in (iv) 0.0.
The described evaluation metrics was applied only to the experiments carried on the dataset
composed of synthesized sounds. For the experiments based on natural sounds and images, the
results of clustering were shown only qualitatively for the target-related datapoints. Indeed, due
to the real-world nature of signals, it was not possible to simply use Gaussian functions to build
physically consistent incorrect probes. On the real-world sound dataset, we performed all the same
protocol of Experiment 1 (Experiment 4). On the image dataset we performed an experiment
with a protocol analogous to Experiment 1. Here, the mixtures were obtained by overlapping two

Chapter 7. Dendritic Learning for Blind Source Separation 141

images, both with transparency 0.5, similarly to the spectrogram overlapping described for the
acoustic task. The input images were normalized to the range [0,1] and the intensity of each pixel
was encoded through the firing rate of one input neuron. We followed the same procedure and
network setting described for the audio stimuli segregation to assess the ability of the network to
separate visual stimuli presented in mixtures.

Chapter 8

Fooling the Primate Brain with
Small, Targeted Image Manipulation

Human or monkey? DALL·E
prompt: A watercolor painting of a
monkey that is looking at a photo of
a human face.

Artificial neural networks (ANNs) such as deep convolu-
tional neural networks are considered the current best mod-
els of biological vision. Despite the successes of ANNs
at computer vision applications and describing neural re-
sponses, these models are fragile, fail to generalize, and show
significant differences with neural circuits and perception.
Here we investigate a suspected disparity between ANNs and
biological vision in their sensitivity to small, targeted image
manipulations. We proposed an array of image manipulation
methods to change the primate brain’s representation of an
image, in a targeted, category-specific way while limiting the
amount of pixel value change. We generated such ‘deceptive
images’ of human faces, monkey faces, and noise patterns
so that they are perceived as a different, pre-specified tar-
get category. Measuring both monkey neuronal responses
and human behavior to these images, we found several ef-
fective methods for changing primate visual categorization
that required significantly smaller image change compared
to untargeted noise. Our work shares the same goal with
adversarial attack, namely the manipulation of images with minimal, targeted noise that leads
ANNs to misclassify the images. Our results quantify and characterize the differences in pertur-
bation robustness between biological and artificial vision.

8.1 Introduction

Deep artificial neural networks (ANNs), which mimic the approximately hierarchical structure of
the visual cortex, currently constitute the most accurate models of biological vision [Yamins et al., 2014,
Cadena et al., 2019, Schrimpf et al., 2018]. ANNs not only are good predictors of ventral stream
neural activity, but also can be used to design images that drive prescribed patterns of neu-
ronal responses[Bashivan et al., 2019, Walker et al., 2019, Ponce et al., 2019]. Despite the success
of ANN-based models at describing neural responses and perceptual judgements to some visual
stimuli, these models remain fragile, fail to generalize, and differ in essential aspects from neural
circuits and perception [Serre, 2019]. To build better models, it is essential to understand the
conditions where current models diverge from neural data and behavior.
To stress-test current vision models, here we designed several approaches to image synthesis—
including methods based on an ANN encoding model of neuronal activity—to specifically ‘fool’ both

142

Chapter 8. Fooling the Primate Brain with Small, Targeted Image Manipulation 143

neuronal responses and behavior in a binary image categorization task. These ‘deceptive images’ are
designed such that they, (i) when presented to macaques, are miscategorized by selective neurons as
the target category; and (ii) when presented to human observers, mislead their perception during a
visual categorization task. We investigated three directions of creating ‘deceptive images,’ changing
human faces to look like monkey faces, monkey faces to look like human faces, and noise patterns
to look like human faces.
Deceptive images provide a valuable testing ground for computational models of vision for sev-
eral reasons. First, minimally morphing images to change perception is an open challenge. Prior
work has used ANN models to guide the de novo synthesis of images to drive specific patterns
of neuronal activity[Bashivan et al., 2019, Walker et al., 2019]. Image synthesis represents a more
stringent test of model prediction of neuronal responses compared to testing prediction on held-
out (and typically, identically distributed) images. To the extent that visual neurons underlie
perception[Salzman et al., 1990, Parvizi et al., 2012, Moeller et al., 2017, Rajalingham and DiCarlo, 2019],
robust and general models that can predict the response of visual neurons should also allow us to
design images that, by activating a certain pattern of visual neuronal responses, drive a specific
behavior.
Second, images perturbed with category-specific noise are likely to generate neural responses that
are challenging to explain for current ANN-based vision models. This is because such deceptive
images are related to adversarial attacks, the phenomena that adding carefully crafted, minute
noise to an image can cause ANNs to misclassify it with high confidence [Szegedy et al., 2013,
Goodfellow et al., 2014b]. Prior studies have measured human perceptual responses to adversarial
images designed for ANNs[Elsayed et al., 2018, Zhou and Firestone, 2019] and to random image
distortions[Geirhos et al., 2018]. However, empirical data are lacking on how visual perception
and neurons respond to different types of category-specific image manipulations that relate to
adversarial images.
We developed and tested several methods for generating deceptive images, including linear inter-
polation toward the target class, CycleGAN translation [Zhu et al., 2017], generating adversarial
images for an ensemble of ANNs [Elsayed et al., 2018], and ‘gray box’ methods using an ANN-
based predictive model of neuronal responses. We generated deceptive images at various noise
levels and collected monkey neuronal and human behavioral responses. This data allowed us to di-
rectly compare the robustness of biological and artificial vision to diverse types of category-specific
image manipulations. Furthermore, the methods we developed for creating deceptive images open
up a novel experimental paradigm for studying neuronal processing and its link to behavior.

8.2 Results

8.2.1 Deceptive images of human faces evoked monkey face-like neuronal
responses

We started by designing deceptive images of human face images that would elicit monkey face-like
responses (human→monkey or h2m manipulation) in face-selective monkey neurons. We tested
a wide range of image manipulation noise strengths (noise levels) and a variety of manipulation
methods.
To choose a noise range that was likely to progress from unsuccessful to successful semantic flip,
we reasoned that image category is trivially changed if an original-class image is replaced by an
image from the opposite class. Thus, we computed the distance distribution between unmodified
human and monkey faces, considering 250 images in each category. Image distance was quantified
by the mean-squared error (MSE) using vectorized pixel values (range: 0–255). At constant image
resolution, MSE is equivalent to the square of the l2-norm (i.e., Euclidean distance), a common
metric in the adversarial attack literature. We elected to use MSE instead of the l2-norm because
the latter depends on the number of pixels. The typical human-to-monkey pairwise distance in
our image set was MSE = 6500 ± 2300 (mean ± stdev for all numbers in text unless otherwise
noted). However, for successful semantic change, it suffices to replace a human face with the
closest monkey face. With 250 images in each category, the minimum human-to-monkey distance

144 8.2. Results

was 2800 ± 700. We thus reasoned that an upper range of MSE = 800 was reasonable to test,
as it was safely lower than the budget for simply replacing the image. We selected a lower range
of MSE = 200 because this amount of image change was barely perceptible. We tested 10 evenly
spaced noise levels covering this range of MSE.
The first manipulation method we considered, as a reference, was to linearly interpolate between
a human face and the closest monkey face. This method is guaranteed to achieve complete success
at a high enough noise level. Second, we included a slight modification by interpolating toward the
closest monkey face up to an optimized affine transform. Other transformations, such as reducing
contrast, can further reduce the distance to the target image. However, we did not test further
transformations because an excessively transformed image will eventually cease to represent the
target category.
Third, we included a method based on CycleGAN [Zhu et al., 2017]. CycleGAN can learn to trans-
late between two image categories without any paired examples. CycleGAN does not explicitly
optimize pixel-level proximity between the original and translated image. Nevertheless, the trans-
lated image is closely related to the original image, because the original (as opposed to another
instance from the original class) can be approximately recovered from the translated image using
a reverse translation. We trained a CycleGAN on 500 human faces and 300 monkey faces. Using
the trained network, we translated each original human face into the monkey class, then linearly
interpolated between the two at defined noise levels.
Fourth, we tested adversarial images created for an ensemble of convolutional neural networks
(CNNs). Prior work [Elsayed et al., 2018] shows that adversarial images designed for CNNs can
bias human perception, but only under severe viewing time limits and backward masking where ac-
curacy on unmodified images is reduced to around 65% (when chance is 50%). We reproduced this
method in our setting without the same viewing time limit. To create deceptive images between hu-
man and monkey faces, we used CNNs pre-trained on ImageNet [Deng et al., 2009b] and fine-tuned
them on the two face categories together with the original 1000 categories. We built an ensemble
of 14 fine-tuned CNNs comprising Inception, ResNet [He et al., 2016b], ResNeXt [Xie et al., 2017],
DenseNet [Huang et al., 2017b], and SENet [Hu et al., 2018], and created adversarial images for
the model ensemble using iterative gradient descent.
Lastly, we designed a manipulation method tailored to primate vision by building a substitute
model of macaque visual neuron responses (Figure 8.1a). The model comprised a ResNet-101
from the fine-tuned CNN ensemble above, fitted with a linear mapping module that used features
extracted from the last convolutional layer to predict neuronal responses. Similar CNN-based mod-
els comprise the current best models of primate visual neuronal responses [Schrimpf et al., 2018].
The linear mapping was trained on responses of 22 face patch neurons in one monkey (of two in this
study) to around 1,000 pictures of objects [Konkle et al., 2010]. The model could explain around
40% of the neuronal response variance on held-out images not used during fitting. We used this
neuron-fitted model, which was end-to-end differentiable, to stand for the primate visual system
for adversarial attack. To create deceptive images, we used two variants of objective functions and
two variants of optimization algorithms, resulting in four total variants. The objective function
was either 1) to maximize responses in one model neuron that produced monkey-like features in
feature visualization, labelled the single-neuron method; or, 2) to match the model-predicted re-
sponse pattern to the empirical neuron population response pattern to monkey faces, labelled the
pattern method. The objective function was optimized using either 1) iterative gradient descent,
or 2) iterative gradient descent coupled with l2-projection (l2-PGD), i.e., projection to a fixed
noise level (MSE, equivalent to l2) at each step of gradient descent. We refer to these variants
collectively as gray box deceptive images, as they use a limited amount of information about the
system (primate vision) being targeted.
Each method was used to modify 40 unmodified or clean human faces, except the single-neuron
method, the pattern method, and their l2-PGD versions, which were each used to modify 20 images.
Each method produced one deceptive version of each clean image at every noise level. In total, we
tested a total of 2,400 targeted human→monkey deceptive images.
We presented the deceptive images, together with 250 unmodified human faces and 250 monkey
faces to two monkeys in a passive fixation task and recorded neuronal responses using chronically

Chapter 8. Fooling the Primate Brain with Small, Targeted Image Manipulation 145

Model �tting

Gradient descent

ResNet-101

Linear mapping model

Substitute model

Clean image Deceptive image

a bBehavior-levelNeuron-level

c
Noise level: 2 5 10

Human → monkey

Linear
interpolation

A�ne-
aligned
interpolation

CycleGAN
interpolation

Model
ensemble

Gray box
pattern

Monkey → human
2 5 10

Noise → human
2 5 10

0.5 s

1.5 s

no limit

100 ms

150 or 400 ms

150 or 400 ms

Figure 8.1: Overview of image manipulations targeting categorization change. a, The left column
illustrates monkey neuron-level experiments. Monkeys fixated on a red fixation point while images
were presented in random order and neuronal responses were recorded. Images were presented
for 100 ms; inter-stimulus interval was 150 ms for monkey 1 and 400 ms for monkey 2, whose
responses extended over a longer duration. The right column illustrates behavioral experiments
with human subjects. Each image was presented for 1.5 s. Humans were instructed to categorize
the image by pressing a key. There was no time limit for a response. The text in the figure was
not included in the experiment. b, A substitute model was fit on IT neuron responses and used
to generate gray box deceptive images. The substitute model consisted of a pre-trained ResNet-
101 (excluding the final fully-connected layer) and a linear mapping model. Deceptive images
were generated by gradient-based optimization of the image to create a desired neuronal response
pattern as predicted by the substitute model. c. Example images for human→monkey deceptive
images (left), monkey→human deceptive images (center), and brown noise→human face deceptive
images (right) are shown for different noise levels and different image manipulation methods.

146 8.2. Results

PC 1

P
C

 2

PC 1

P
C

 2

PC 1

P
C

 2
H

um
an

 →
 m

on
ke

y

a

200 400 600 800
MSE

0.00

0.05

0.10

0.15

0.20

0.25

S
uc

ce
ss

 ra
te

b c

M
on

ke
y
→

 h
um

an

d e f

N
oi

se
 →

 h
um

an

h ig

200 400 600 800
MSE

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
uc

ce
ss

 ra
te

200 400 600 800
MSE

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 ra
te

monkey face

human face

monkey face

human face

human face

brown
noise

0.00 0.02 0.04 0.06 0.08 0.10
Success rate AUC

linear_interp

aligned_linear_interp

cycleGAN_interp

model_ensemble

single_neuron

single_neuron_l2PGD

pattern

pattern_l2PGD

**
*

**
*

**
*

*

**
*

**
*

**
*

**
*

*** ***
*** ** ** n.s. **

0.0 0.1 0.2 0.3 0.4 0.5
Success rate AUC

linear_interp

aligned_linear_interp

cycleGAN_interp

model_ensemble

pattern

pattern_l2PGD

**
*

**
*

**
*

**
*

**
*

**
*

*

*** *** ***

0.0 0.2 0.4 0.6
Success rate AUC

linear_interp

aligned_linear_interp

cycleGAN_interp

model_ensemble

pattern

pattern_l2PGD

**
*

**
*

**
*

n.s.

**
*

**
*

*
*** *** *** ***

Figure 8.2: Responses to deceptive images by face-selective neurons in monkey IT. a–c corresponds
to human→monkey deceptive images. a, The scatter plot shows a UMAP visualization of the
neuron population representation of images, showing clean human faces, monkey faces, and level
10 deceptive images. The neuron pseudopopulation included IT neurons from the face patches
of two monkeys. The colors indicate image manipulation methods and are labeled in c. b, The
plot shows success rate as a function of noise level (MSE). The scatter points represent method-
level (image-averaged) success rate per noise level. The lines represent logistic regression fit on
image-level success rates. c, The plot shows success rate AUC per manipulation method. Each
point and line indicate the mean and bootstrap 95%-CI of the mean, respectively. The triangle
marker signifies the method with the maximum AUC. The annotations on the right indicate results
of pairwise statistical tests for a difference in AUC. The annotations next to individual methods
indicate whether success rate increased with noise level using a permutation test. *, p < 0.05;
, p < 0.01; *, p < 0.001; and n.s., not significant, all p-values FDR-corrected for multiple
comparisons. d–f are the same as a–c but correspond to monkey→human deceptive images. g–i
are the same as a–c but correspond to brown noise→human deceptive images.

Chapter 8. Fooling the Primate Brain with Small, Targeted Image Manipulation 147

implanted multi-electrode arrays. Specifically, we recorded from face patches in inferior temporal
cortex (IT), which contain neurons that are strongly selective for faces over non-face objects and
that extract face features including species and identity [Tsao et al., 2006, Moeller et al., 2008]. To
collect enough repeat presentations to reliably measure neuron responses, deceptive images were
presented in 4 sessions of 2–3 noise levels each.
We visualized the neuron population representation of clean and deceptive images (level 10) using
Uniform Manifold Approximation and Projection (UMAP) [McInnes et al., 2018] (Figure 8.2a).
Neuronal representations of clean human and monkey faces were clearly separable. Some deceptive
images were shifted away from human faces towards monkey faces. To quantify the fraction of
the deceptive images that would be categorized as the target category, we trained support vector
machines (SVMs) to classify clean images as human or monkey based on neuronal responses. The
SVMs were then used to classify held-out clean images as well as the deceptive images. The
SVMs achieved high test accuracy on held-out clean human and monkey faces (98.3 ± 0.3% and
97.7 ± 0.5%, mean ± sem), confirming that the recorded neurons distinctly represented human
and monkey faces. Nevertheless, a fraction of human→monkey deceptive images were classified
as monkey faces. We call these images successful, and calculated success rate as the fraction of
successful images per method at each noise level). The success rate ranges from 0% to 100%, and
50% does not indicate chance levels. The success rate of almost all manipulation methods increased
with noise level (Figure 8.2b), as reflected in the positive coefficient in logistic regression of
individual image success as a function of noise level (Figure 8.2c). The best manipulation method
was CycleGAN-based interpolation, which reached a success rate of 21 ± 4% (mean ± sem) at
noise level 10, followed by the gray box pattern method (19 ± 6%), pattern l2-PGD (18 ± 5%),
and affine-aligned linear interpolation (16 ± 4%). To summarize and compare across methods, we
calculated the area under the success rate curve (AUC) using the logistic fits. We normalized the
x-value range to 0–1, so that the AUC value is roughly equivalent to the average success rate over
levels. The best method, CycleGAN-based interpolation, was significantly more successful than all
other methods except the gray box pattern method (p = 0.068; permutation test, FDR-corrected
across 7 tests; Figure 8.2c).
Logistic regression also allowed us to infer how much image change would be needed to achieve
50% successful deception with each method). Since no method achieved 50% success rate within
the tested noise levels, this midpoint estimate is necessarily an extrapolation. Nevertheless, an
estimated midpoint may be useful to compare to other directions of image manipulation (below)
and to the much larger MSE separating clean images. CycleGAN interpolation would require
MSE = 1030 (bootstrap 95%-CI: 930–1150) to achieve 50% success rate. Simply replacing a
human face with the closest monkey face among 250 images, while guaranteeing complete success,
requires MSE = 3210 (95%-CI: 1670–4490; this differs from 2800 reported above because the
clean images subjected to manipulation are different from the 250 images used for establishing
a baseline). This closest distance increases to 4560 and 6800 for closest among 25 and 3 images
respectively, a roughly 1.5-fold increase for each order of magnitude; extrapolating in the other
direction suggests that even if the trend continues, there may only be one in over 105 monkey face
images that is MSE ≈ 800 away from an average human face image.Interpolating halfway between
a human face and the closest monkey face among 250 entails MSE = 800 (‘Interp. halfway, closest
in 250’; 95%-CI: 420–1120), but that likely corresponds to lower-than-50% success rate because
empirically, linear interpolation at MSE = 800 achieved only 10 ± 4% success rate. Overall, these
comparisons suggest that the semantic change success achieved by CycleGAN-based interpolation
and the pattern method was not explained by trivially replacing the original image.
Were deceptive images being misclassified simply because noise degraded image quality? To control
for this possibility, we tested two types of control image modifications at noise level 10. The first
was image degradation, including Gaussian noise, Gaussian blur, phase scrambling, and Eidolon
images at three coherence levels [Koenderink et al., 2017, Tramèr et al., 2020]. The second was
versions of targeted deceptive images where the image change (additive pixel value change) was
re-applied flipped upside-down [Elsayed et al., 2018].
Considered together, deceptive images achieved significantly higher success rate than either clean
human face images or non-targeted image modifications (p = 1 × 10-4; permutation test, FDR-

148 8.2. Results

corrected across 2 tests. Considering each method individually, among control images, flipped
CycleGAN images achieved the highest success rate (16 ± 3%), a success rate that was statistically
no lower than success in all targeted manipulation methods (all pairwise p > 0.13; permutation test,
uncorrected). This notwithstanding, the next best among 14 control methods, the flipped single
neuron method, achieved only 4 ± 3% success rate. Thus, we speculate that flipped CycleGAN
images still contain features of a monkey face to which neurons are sensitive. To anticipate, results
below from human categorization support the conclusion that flipped CycleGAN images were not
perceived as monkey faces.

8.2.2 Deceptive images also led to target category-like responses in two
other directions

So far, we described human faces modified to look like monkey faces (human → monkey or h2m
manipulation). In adversarial attacks in CNNs, a given category can be attacked to target any
other category [Szegedy et al., 2013]. Therefore, we attempted to create deceptive images in two
other directions: the reverse monkey→human (m2h) direction and brown noise→human face (b2h
or noise→human) direction, a shift between two distant categories. We tested these directions with
the same methods, except that for the gray box method, we only tested the match-response-pattern
objective and not the excite-single-neuron objective.
Unexpectedly, monkey→human manipulation of neuronal responses was generally easier than the
human→monkey direction, as reflected by overall higher success rates for most methods at most
noise levels (Figure 8.2e,f) and by the highest success rate achieved at noise level 10 (69 ± 34%
for affine-aligned linear interpolation). UMAP visualization (Figure 8.2d) shows that, unlike in
human→monkey manipulation, many monkey→human deceptive images had the target category
(clean human faces) as the majority of near neighbors. However, success rate was also high for
control image modifications, including untargeted image degradation. This cannot be because
neurons did not separate the categories of monkey and human faces; the categories were clearly
separated, as we established above in human→monkey direction and further verified with the
particular experimental sessions here (accuracy on human and monkey faces: 98 ± 5% and 98
± 8%. Instead, we speculate that the idiosyncrasies of the neuronal selectivity or the particular
monkey images used in the manipulation could have prevented SVM generalization. Failing to
certify the SVM-based quantification, we could not meaningfully compare different manipulation
methods or estimate the noise threshold for successful image manipulation. We will show below that
human behavior distinguished effective targeted deceptive images from control image modifications.
Further counter to our intuition, brown noise→human face manipulation was even easier than
the previous two directions. The most successful method, as quantified by AUC, was affine-
aligned linear interpolation, which was significantly better than all other targeted methods (p ≤
0.014; Figure 8.2i) and reached 91 ± 17% success rate at level 10, approaching the accuracy
on clean human face images (98 ± 5%). Linear interpolation (level 10 success rate: 87 ± 20%)
and CycleGAN based-interpolation (76 ± 34%) were also highly effective, together with gray box
manipulation methods (pattern: 81 ± 24%; pattern l2-PGD: 74 ± 25%). The model ensemble
method was ineffective, achieving 0.6 ± 4% success rate at level 10, close to the error rate on brown
noise images (0.4 ± 2%). UMAP visualization (Figure 8.2g) corroborates the quantification: Most
interpolation-based images intermixed with clean human faces, gray box images were close to but
formed a distinct cluster from human faces, and model ensemble images remained embedded in
the noise images cluster. The most successful control image modification (Gaussian blur) achieved
only 16 ± 4% success at level 10, significantly lower than success rates of all targeted methods
(all p = 2 × 10-5; permutation test, FDR-corrected across 6 tests) excluding the model ensemble
method (p = 0.175), indicating that targeted manipulation methods were specific. Using fitted
logistic regression, the estimated noise threshold for 50% successful image manipulation by the
best method (affine-aligned interpolation) was MSE = 470 (95%-CI: 450–490), much lower than
that for simply replacing the noise image with the closest human face (MSE = 1850, 95%-CI:
1530–2220), although close to that for interpolating half way between the two (MSE = 460, 95%-
CI: 380–550). Post hoc, we could rationalize the relative ease of noise→human semantic flip by

Chapter 8. Fooling the Primate Brain with Small, Targeted Image Manipulation 149

suggesting that a face superimposed on noise can still look like a face. This may be attributed to
the heightened sensitivity of primates in detecting faces (pareidolia), or the fact that noise images
do not themselves belong to any category that can supply competing evidence to the positive
evidence of a face.
To summarize, we tested changing image categorization by monkey neuronal responses through
targeted image manipulation in three directions. Within the range of image change tested, we
achieved moderate success in one direction (human→monkey) and high-to-complete success in the
other two (monkey→human and brown noise→human face). In human→monkey manipulation,
although the highest success rate was lower than 50%, the success was not explained by the control
method of interpolating the original image toward the target. In noise→human manipulation,
close to complete success was achieved by control interpolation methods. We could not interpret
the results in monkey→human manipulation since most types of non-targeted image degradation
also achieved high success. We conclude that the ease of deceptive images for monkey neurons was
highly dependent on the involved categories and shift direction. In all manipulation directions,
deceptive images tailored to CNNs (the model ensemble method) did not affect monkey neuronal
representation, consistent with the general intuition that CNN adversarial images do not affect
biological vision. There was no consistent evidence that the model ensemble method was more
successful in the initial part of the response in a time-resolved analysis.

8.2.3 Deceptive images reveal mismatch between primate vision and
ANNs

ANNs are expected to differ from primates in responding to adversarial attack, not least because
ANNs are highly sensitive to ANN-tailored adversarial images (the model ensemble method), which
barely affected humans and monkeys. We measured ANN adversarial robustness in the same
setting as the primate experiments, testing the same ensemble of 14 fine-tuned CNNs used to
generate model ensemble deceptive images. Individual network outputs (logits) were averaged,
then converted into a confidence vector over 1002 classes using the softmax function.
In human→monkey and monkey→human directions with the model ensemble method, success
rate was already saturated at the lowest noise level 1, an expected result since noise level 1 is
already large relative to the typical threshold reported in the machine learning literature. Testing
additional images at lower noise levels, we verified that CNNs could be fooled with a minuscule
amount of image change, with 50% success thresholds at MSE = 2.1 (95%-CI: 2.0–2.2) and 4.3
(95%-CI: 4.1–4.5) respectively for the two manipulation directions. Compared to the threshold for
categorization change for primates as a minimum over methods, the threshold for CNN thresholds
were over 100 times lower. Granted, we could much more readily optimize deceptive image for
CNNs than for primates. Nevertheless, this ratio is a direct, quantitative comparison of model and
primate adversarial robustness.
Unexpectedly, the brown noise→human face direction for CNN models was difficult, requiring a
manipulation threshold at MSE = 5310 (95%-CI: 5290–5340)—even higher than the budget for
simply replacing the noise image with the closest human face (MSE = 1880; 95%-CI: 1620–2210),
an approach that would have led to perfect success.This counterintuitive finding indicated that
a simple gradient descent algorithm could not find the optimal deceptive image at such high
noise levels. The criterion for noise→human shift success might be more stringent than in other
directions, because the deception counted as successful only if confidence in the human category was
higher than confidence in all other 1000 categories (excluding the monkey category). In contrast,
in human→monkey manipulation for example, confidence in the human category only needed to
exceed confidence in the monkey category. Most adversarial attack studies use the stricter one-vs-
all criterion. However, to the best of our knowledge, we are not aware of studies that attempted
adversarial attack starting from a noise image.
How did CNNs respond to deceptive images derived from other manipulation methods? Gray box
methods were the second-most effective group of methods in human→monkey and monkey→human
direction, although not in noise→human direction. In the human→monkey direction, gray box
methods were almost as effective as the model ensemble approach and achieved 80–100% success

150 8.2. Results
M
et
ho

d-
le
ve

l
Im

ag
e-
le
ve

l

−1

0

1

C
on

si
st

en
cy

 w
ith

 M
Tu

rk

Neural

Model

h2m m2h b2h

−1

0

1

C
on

si
st

en
cy

 w
ith

 N
eu

ra
l

MTurk

Model

h2m m2h b2h

0

1

C
on

si
st

en
cy

 w
ith

 M
Tu

rk

Neural

Model

h2m m2h b2h

−0.2

0.4

1.0

C
on

si
st

en
cy

 w
ith

 N
eu

ra
l

MTurk
Model

h2m m2h b2h

a

c

b

d

e

f

All Only
clean

Only
human

face

Only
monkey

face

Only
h2m

Training config:

human
face

monkey
face

h2m

Te
st

 c
at

eg
or

y

0.0

0.1

0.2

0.3

0.4

Fr
ac

tio
n

ex
pl

ai
ne

d

Fi
t a

ll
va

l.
cle

an
Fi

t c
le

an
va

l.
cle

an
Fi

t a
ll

va
l.

de
c.

Fi
t d

ec
.

va
l.

de
c.

Fi
t c

le
an

 A
te

st
 c

le
an

 B
Fi

t d
ec

.
te

st
 c

le
an

Fi
t 1

 c
le

an
te

st
 d

ec
.

Fi
t 2

 c
le

an
te

st
 d

ec
.

0.0

0.2

0.4

0.6

0.8

1.0 human face
monkey face
brown noise
h2m
m2h
b2h

Fr
ac

tio
n

ex
pl

ai
ne

d

Figure 8.3: Deceptive images reveal mismatch between primate vision and ANNs. a, b, The plots
illustrate the similarity, among three visual systems, in method-level (image-averaged) success
of noise-level-10 deceptive images. We compared monkey neuron responses (‘Neural’), human
behavior (‘MTurk’), and ANN model categorization (‘Model’). The similarity in the pattern of
deception success was quantified by Pearson’s correlation across methods (a, b) or images (c, d).
a, c, The success pattern in monkey neurons was compared to human and model. b, d, The
success pattern in human was compared to monkey and model. The scatter points and vertical
lines indicate correlation between visual systems (mean and bootstrap 95%-CI of the mean). The
horizontal lines and shaded areas indicate inter-subject split-half self-consistency (mean and CI).
e, The heat map shows the performance of ANN-based predictive models of monkey neuronal
responses, in conditions of interpolation (testing on held-out images from trained categories) and
extrapolation (testing on images from held-out categories). Model performance was quantified by
the fraction of response predicted (see Methods). Categories included in training are indicated by
small grey squares in the heat map. f, results in e are summarized and combined over different
deceptive image directions. Small dots indicate individual cell values as in e, color coded by the
image category. Larger dots with whiskers indicate mean and bootstrap 95%-CI of the mean within
each training configuration, color coded by whether the result corresponds to interpolation (lighter
color) or extrapolation (darker color) performance; and whether the tested category was clean
(blue) or deceptive (orange) images.

Chapter 8. Fooling the Primate Brain with Small, Targeted Image Manipulation 151

rate starting from noise level 1. This result is unexpected, because although gray box methods used
a ResNet as the feature-extraction backbone, the objective function was independent of weights
in the classification layer of the CNN. Indeed, the gray box approach was not as effective as
model ensemble manipulation in the monkey→human direction. In the noise→human direction,
linear interpolation was the most effective method, followed by CycleGAN interpolation and model
ensemble manipulation.
Thus, the overall pattern of manipulation method effectiveness was different between CNNs and
primates. We directly compared CNNs to primates by correlating perceptual change success on the
method- and individual image-levels as above (Figure 8.3a–d). At the method level, correlation
between model and primate was negative in 3 out of 6 comparisons (monkey or human results, 3
manipulation directions). At the image level, model-primate correlation was always positive, but
lower than primate-primate correlation in 5 out of 6 conditions (in the exception case, monkey-
human correlation was upper-bounded by low internal consistency).
This divergence between CNN and primate behavior suggests that CNN internal representation
may also be less similar to neuronal representation than generally thought. To quantify this, we
used the well-established approach of fitting a linear readout from internal features of a CNN (pre-
trained on ImageNet object categorization) to predict neuronal responses. Typically, CNN-based
predictive models of neuronal responses are tested on interpolation to a held-out random subset of
images that, by construction, are (in expectation) identically distributed as the training images.
Here, we tested holding out entire categories of images, such as deceptive images, to test model ex-
trapolation to images that may come from a different distribution. An example scheme is shown in
Figure 8.3e. Using data involving human→monkey deceptive images, we held out 1–3 categories of
images (human faces, monkey faces, and/or deceptive images), fitted a linear ridge regression model
from features extracted from ResNet-101, and tested the model on interpolation (unseen images
from categories seen during training) or extrapolation (images from categories unseen during train-
ing). The models consistently performed much better on held-out images from categories included
in training than on images from completely held-out categories. The same analysis, performed and
pooled over all three manipulation directions, is presented in Figure 8.3f. When testing on a held-
out subset of image categories seen during training, model validation performance was relatively
high (first four groups in Figure 8.3f). However, when fitting on a subset of categories and testing
on entirely held-out categories, performance was much lower (second four groups). Unexpectedly,
generalization was about as poor from one clean image category to another (fifth group) as it
was from deceptive images to clean images (sixth group) and vice versa (last two groups). Thus,
although deceptive images revealed behavioral differences between CNNs and primates, the lack of
generalization in CNN-based models of neurons could be already revealed by different categories of
clean images, which likely had different statistics because they came from different image datasets.
This conclusion did not change when we systematically repeated the analysis in Figure 8.3e,f
on eight ANN models ranging from classical (ResNet-101, DenseNet169, and AlexNet) to state-of-
the-art (Visual Transformer, EfficientNet[Xie et al., 2020], and CLIP[Radford et al., 2021]) to bi-
ologically focused (CORnet[Kubilius et al., 2019] and VOneNet[Dapello et al., 2020]); and across
four regression methods (ridge regression, partial least squares, principal component regression,
and factor analysis followed by linear regression) in combination with the best tested model, the
Visual Transformer (Supplementary Figures 8.4 and 8.5).

Substitute model. To generate deceptive images, we trained a substitute model to predict IT
neuronal responses. The model was fixed before generating and testing deceptive images. The
substitute model comprised a CNN (a ResNet-101 [He et al., 2016b] pre-trained on ImageNet) and
a linear mapping model (Figure 8.1B). Because the 1,000 pre-trained categories did not include
our categories of interest (human face and monkey face), we collected around one thousand images
for these two categories for fine-tuning the ResNet-101. We trained the linear mapping model to
use image features extracted by the last convolutional layer (layer conv5_3) to predict neuronal re-
sponses. The linear model was factorized in the spatial and feature dimensions [Klindt et al., 2017].
The spatial module was a convolutional kernel Ws. The feature module was a mixing pointwise
convolution Wt, i.e., a weighted sum over the feature dimension. Both Ws and Wt were parame-

152 8.2. Results

terized separately for each IT neuron. Thus, the response for neuron n to image x was modeled as

ŷn =
∑

(Wn
s ∗ ResNetconv5_3(x)) ∗Wn

t +Wn
d , (8.1)

where ∗ denotes elementwise multiplication and Wn
d is a bias parameter. The parameters were

jointly optimized to minimize a loss function Le composed of the prediction error Lp, an L2-
regularization loss L2, and a spatial smoothness loss Llaplace:

Lp =

√∑
n

(ŷn − yn)2 (8.2)

L2 = λs
∑

∥Ws∥2 + λt
∑

∥Wt∥2 (8.3)

Llaplace = λl
∑

Ws ∗

 0 −1 0
−1 4 −1
0 −1 0

 (8.4)

Le = Lp + L2 + Llaplace (8.5)

The hyper-parameters {λs, λt, λl} = {1, 0.1, 0.7} were obtained from a grid-search to produce the
highest prediction accuracy. The substitute model achieved an average correlation of 0.4 between
predicted and actual IT neuron responses on held-out test images.

Model prediction of neuronal responses in Figure 8.3 Instead of using the method de-
scribed above to build a substitute model, for the analysis in Figure 8.3, we used a simpler and
computationally faster modeling approach following Zhuang et al. [Zhuang et al., 2021], which is
in turn similar to prior work [Yamins et al., 2014, Schrimpf et al., 2018]. We fit linear models that
predicted neuronal responses from features extracted by an ImageNet-trained ResNet-101 using
partial least squares (PLS) regression with 5 retained components. We searched for the optimal
ResNet layer (out of 105 layers including raw pixels) to use for each monkey and array, using data
not included in the results. We chose layer ‘layer3.5.conv1’ for monkey 1 and ‘layer3.6.conv1’ for
monkey 2. When training on different combinations of image categories, the number of training
images may differ, so we equalized the total number of training images to 250 (the lowest number
across training conditions) by random subsampling. We training using five-fold cross-validation,
i.e., holding out each 20% of the data in turn for testing. All reported model performance values
were on held-out images. PLS regression and stratified cross-validation was implemented by the
Python package ‘scikit-learn’ [Pedregosa et al., 2011].
The fraction of neuronal responses explained by a model was quantified similar to prior work
[Bashivan et al., 2019, Schrimpf et al., 2018, Zhuang et al., 2021]. Specifically, we calculated the
fraction explained per neuron as the square of a ratio whose nominator was the Pearson correlation
between model prediction and neuron responses, and whose denominator was the split-half self-
consistency of that neuron (Pearson’s r, Spearman-Brown corrected). This value resembles fraction
of variance explained, i.e., coefficient of determination or R2, although they are not equivalent
unless an additional optimal linear transform was fit between the predicted and actual neuronal
responses on the test set to remove any mean and scale differences. The coefficient of determination,
or R2, was not suited for describing model performance on held-out data; R2 was not directly
used in the cited prior studies either. To produce one summary value for each training-testing
configuration and each data set, we took first the average over splits and then the median over
neurons.

Chapter 8. Fooling the Primate Brain with Small, Targeted Image Manipulation 153

Model prediction of neuronal responses in Supplementary Figures 8.4 and8.5 To ver-
ify that the results of Figure 8.3 were not specific to one ANN model and the one fitting method we
tested, we extended the analysis to systematically test eight ANN models and four regression meth-
ods. Using ridge regression, we tested three “classical’ CNN models (ResNet-101, DenseNet169, and
AlexNet), three state-of-the-art ANN models (Visual Transformer, EfficientNet[Xie et al., 2020],
and CLIP[Radford et al., 2021]), and two biologically inspired models (CORnet[Kubilius et al., 2019]
and VOneNet[Dapello et al., 2020]). Table ?? reports the layers used for each model, chosen based
on independent (not included in the results in this) recording sessions from the same monkeys.
Additionally, we tested the Visual Transformer model in combination with four regression methods:
ridge regression (alpha = 2 × 105), partial least squares (PLS, number of components = 27), prin-
cipal component regression (PCR, number of components = 100), and factor analysis followed by
linear regression (Factor, number of components = 250). All regression methods were implemented
in the Python package ‘scikit-learn’.

Model Layer As implemented in

ResNet-101 layer3.5.conv1 (monkey 1),
layer3.6.conv1 (monkey 2) Python ‘torchvision’ package

DenseNet169 features.norm5 Python ‘torchvision’ package
AlexNet features.10 Python ‘torchvision’ package

Visual Transformer blocks.10.norm2 Python ‘timm’ package
EfficientNet blocks.3.0.conv_dw Python ‘timm’ package

CLIP visual.transformer.resblocks.5.mlp.c_proj Github repo for Radford et al., 2021[Radford et al., 2021]
CORnet V4.conv_input Github repo for Kubilius et al., 2019[Kubilius et al., 2019]
VOneNet module.model.layer2.3.conv2 Github repo for Dapello et al., 2020[Dapello et al., 2020]

Table 8.1: The ANN models and layers that were used to build predictive models of neuronal
responses. The implementation and source of pretrained weights are indicated for each model.

Between-experiment consistency in Figure 8.3 The consistency was calculated as Pear-
son’s correlation coefficient on method- (Figure 8.3a, b) or image-averaged success rate values
(Figure 8.3c, d). Inter-subject self-consistency (among monkeys or humans) was calculated as
the correlation between data halves split by subjects. The inter-subject correlation values were
clipped at 0 and corrected using the Spearman-Brown formula.

8.3 Discussion

Perception does not merely mirror reality, as evinced by centuries of visual illusions and a longer
history of art. For ANNs, adversarial images can be interpreted as a kind of visual illusion, since
adversarial images are almost identical to originally unambiguous images, yet come to be confi-
dently miscategorized. We were motivated to study deceptive images for primate vision similar to
adversarial images because only ANNs have been shown to be sensitive to such low levels of image
change, while primates are thought not to be susceptible [Szegedy et al., 2013, Elsayed et al., 2018,
Zhou and Firestone, 2019]. Thus, images related to adversarial attack provide an ideal testing
ground for ANNs as the best current models of the visual cortex [Yamins et al., 2014, Cadena et al., 2019,
Schrimpf et al., 2018].
We designed a variety of methods for creating targeted deceptive images to alter category-selective
monkey neuronal responses and human visual perception. Several methods specifically changed
primate visual categorization beyond chance levels. Revealingly, using a CNN-based model of
neurons to create deceptive images was neither as successful as the model predicted, nor always
more successful than a naive method of simply interpolating toward a target class image. Indeed,
ANN-based models, when only trained on one image category (such as human faces), could not

154 8.3. Discussion

Training categories

a b

c d

Figure 8.4: Related to Figure 8.3e–f. The interpolation and generalization performance in eight
ANN-based predictive models of neuronal responses. We tested three ‘classical’ CNN models
(ResNet-101, DenseNet-169, and AlexNet), three state-of-the-art ANN models (Visual Trans-
former, EfficientNet[Xie et al., 2020], and CLIP[Radford et al., 2021]), and two biologically in-
spired models (CORnet[Kubilius et al., 2019] and VOneNet[Dapello et al., 2020]). The bar plots
illustrate model performance in different training and testing configurations that correspond to
either interpolation or generalization. Each panel corresponds to testing on one image category.
Each condition on the x-axis corresponds to one combination of training categories.

Training categories

a b

c d

Figure 8.5: Related to Figure 8.3e–f. Performance of the Visual Transformer-based predictive
model of neuronal responses using different linear regression methods. We tested ridge regression
(alpha = 2 × 105), partial least squares (PLS, number of components = 27), principal component
regression (PCR, number of components = 100), and factor analysis followed by linear regression
(Factor, number of components = 250). The bar plots illustrate model performance in different
training and testing configurations. Each panel corresponds to testing on one image category. Each
condition on the x-axis corresponds to one combination of training categories.

Chapter 8. Fooling the Primate Brain with Small, Targeted Image Manipulation 155

generalize to predicting responses on another image category (such as monkey faces or deceptive
images). Overall, across the methods we tested, changing primate vision typically required much
higher noise thresholds than changing ANN categorization. The pattern of deceptive image success
across methods and individual images was similar between monkeys and humans, but less similar
between either and CNN models. Deceptive images open up a new paradigm for critically testing
computational models of vision. Our results reveal a shortfall between CNN models and primate
vision that is larger than previous studies have suggested, highlighting a need for better models.

Chapter 9

Human or Machine? Turing Tests for
Vision and Language

Judging the Turing test: which
one is human and which one is
a machine? DALL·E prompt: A
painting of a courtroom in which a
judge with a black coat and a ham-
mer looks at two closed big doors.

As AI algorithms increasingly participate in daily activities
that used to be the sole province of humans, we are in-
evitably called upon to consider how much machines are
really like us. To address this question, we turn to the
Turing test and systematically benchmark current AIs in
their abilities to imitate humans. We establish a method-
ology to evaluate humans versus machines in Turing-like
tests and systematically evaluate a representative set of se-
lected domains, parameters, and variables. The experiments
involved testing 769 human agents, 24 state-of-the-art AI
agents, 896 human judges, and 8 AI judges, in 21,570 Tur-
ing tests across 6 tasks encompassing vision and language
modalities. Surprisingly, the results reveal that current AIs
are not far from being able to impersonate human judges
across different ages, genders, and educational levels in com-
plex visual and language challenges. In contrast, simple AI
judges outperform human judges in distinguishing human
answers versus machine answers. The curated large-scale
Turing test datasets introduced here and their evaluation
metrics provide valuable insights to assess whether an agent
is human or not. The proposed formulation to benchmark
human imitation ability in current AIs paves a way for the research community to expand Turing
tests to other research areas and conditions. All of source code and data are publicly available:
https://tinyurl.com/8x8nha7p

9.1 Introduction

The Turing test, also known as the “imitation game", was proposed by Alan Turing in 1950 as a way
of assessing a machine’s ability to exhibit intelligent behaviors indistinguishable from those of a
human (Fig. 9.1) [Turing, 2009]. Since its inception, whether the Turing test adequately quantifies
intelligence or not has remained controversial [French, 2000, Hayes and Ford, 1995]. The purpose
of this paper is not to argue in favor or against Turing tests as a measure of general intelligence.
Instead, we consider the Turing tests as a quantitative evaluation of how well current AIs can
imitate humans.
With powerful AI technologies being deployed in the real world, it is becoming increasingly im-
portant for lay people,legal judges, doctors, politicians, and other experts to ascertain whether the
agent they are interacting with is a human or not. As two examples out of many, the inability to

156

https://tinyurl.com/8x8nha7p

Chapter 9. Human or Machine? Turing Tests for Vision and Language 157

Figure 9.1: Schematic illustration of Turing tests in six vision and language tasks. A
Turing test works with a judge asking a test subject (either a human or an AI agent) a series of
tasks. Each party is kept in a separate room, so no physical contact is allowed. The AI passes the
Turing test if the judge is unable to distinguish the AI from another human being by using the
responses collected from the given task presented to both. See Fig 9.2 for an overview of the six
tasks.

distinguish a human from an AI bot may lead to cybersecurity breaches resulting in the loss of
private and protected data. Besides, the inability to distinguish real news from AI generated fake
news or DeepFakes [Westerlund, 2019] can have disastrous implications for electoral campaigns
[Westerlund, 2019, Hall, 2018].
The answer to whether current AIs pass the Turing test depends on a plethora of considerations,
including the machine agent, the human agent, the judge, the specific task, contextual conditions,
and many more. Distinct from the original version of the Turing test in unrestricted conversations,
the purpose of the current work is not to exhaustively study all possible combinations of these
parameters and choices. Instead, we aim to: (i) establish a methodology to evaluate human
imitators, (ii) provide a systematic protocol for the AI community to quantify whether a task is
performed by humans or machines, and (iii) introduce evaluation metrics and analysis tools on a
subset of tasks and conditions as a proof-of-principle. Specifically, we benchmarked 24 AI models in
Turing tests on 6 fundamental tasks in computer vision and natural language processing (Fig. 9.2):
color estimation, object detection, attention prediction, image captioning, word associations, and
conversation.
The key contributions of this work are:
(1) We design a systematic format for conducting Turing tests and evaluating AI models over
different tasks involving multiple modalities. This helps the community expand the Turing test to
a wide range of tasks and benchmark future AI models.
(2) We introduce datasets to evaluate current AIs in Turing-like tests in 6 fundamental vision and
language tasks.
(3) We conduct human psychophysics experiments to evaluate human judges in 24 state-of-the-art
vision and language AI models in Turing tests.
(4) We show that simple machine learning algorithms can serve as AI judges to distinguish machines
versus human agents in the same tasks.

9.2 Related Works

9.2.1 Glimpse of the 70-year history of Turing test

The Turing test was introduced as an imitation game where a machine tries to pass as human dur-
ing a conversation and a human judge determines whether they are interacting with a human or not
[Turing, 2009]. The Loebner Prize was introduced in 1991 [Mauldin, 1994] to the programs con-
sidered by human judges to be the most human-like. There was also an award for the most human
human [Christian, 2011]. The Turing test has generated extensive controversy and discussion about
whether it is a valid measure of intelligence [LaCurts, 2011, Hayes and Ford, 1995, Purtill, 1971,

158 9.2. Related Works

Figure 9.2: Schematic of the 6 tasks. We systematically evaluate 3 vision tasks, 1 vision-
language task, and 2 language tasks. a. In Color estimation, the agent is presented with an image
and has to output the main color. b. In Object detection, the agent is presented with an image
and has to provide three objects. c. In Attention prediction, the agent is presented with an image
and the output is a sequence of attention locations or eye movements. d. In Image captioning,
the agent provides a single sentence description of an image. e. In Word associations, the agent is
presented with a word and has to produce a single word related to the cue. f. In Converstaions,
agents produce 24 exchanges. See Sec. 9.3 for detailed description of each task and see Supp.
Material for more example stimuli from both human and AI agents for all tasks. g. The results
of a Turing test with a human judge depend on the characteristics of the judge. As an initial
characterization, we collect basic demographic information indicated in this table.

Gunderson, 1964, Gunderson, 1985], shifting to whether machines can successfully imitate humans
[Harnad, 1991, Harnad, 1994, Harnad, 1999]. Several notable arguments include Searle’s Chinese
room thought experiment [Searle, 1980], Block’s behaviorism [Block, 1981], Harnad’s Total Turing
Test [Harnad, 1989], Watt’s Inverted Turing Test [Watt, 1996], Damassino’s Questioning Turing
Test [Damassino, 2020] and Sejnowski’s Reverse Turing Test [Sejnowski, 2022]. Distinct from these
arguments, our aim is to systematically and quantitatively provide methods, datasets and bench-
mark current AIs in imitating humans through Turing-like tests in multiple vision and language
tasks.

9.2.2 AI versus humans in vision tasks
Current computer vision models can perform a wide range of tasks such as object recognition
and detection Models are often evaluated by comparing their outputs against human ground
truth annotations. Many object recognition studies benchmarked AI versus humans in out-
of-distribution generalization [Bhojanapalli et al., 2021, Dodge and Karam, 2017], adversarial at-
tacks [Elsayed et al., 2018], and contextual variations [Zhang et al., 2020, Bomatter et al., 2021b].
Several studies also compared attention in AI models against humans in saliency prediction [Jiang et al., 2015],
and eye movement prediction [Zhang et al., 2018, Gupta et al., 2021, Yang et al., 2020]. However,
high performance in a particular task does not constitute a Turing test. AI models can show
similar average performance to humans in narrow tasks, or even outperform humans, and still be
distinguishable from humans. Turing tests provide a unique assessment of AI models as imitators
of human behavior which extends and complements current benchmarking frameworks.

9.2.3 AI versus humans in language tasks
Similar observations can be made in natural language processing. AI models are often com-
pared against human ground truth data in discriminative tasks, such as image captioning or
visual question answering [Chandrasekaran et al., 2018, Sheng et al., 2021, Mathew et al., 2021,

Chapter 9. Human or Machine? Turing Tests for Vision and Language 159

Figure 9.3: Schematic illustration of the Turing test for the object detection task. The
judge is presented with an image and three labels and has to decide whether those labels were
produced by a human or by an AI. For screenshots of the Turing test for each of the tasks, see
Supplementary Material.

Yan et al., 2021]. Human evaluation scores are reliable but costly to obtain. To mitigate these
problems, several evaluation metrics have been proposed, such as BLEU [Papineni et al., 2002],
THUMB [Kasai et al., 2021], and METEOR [Denkowski and Lavie, 2014] in image captioning.
However, these metrics focus on n-gram overlaps and are insensitive to semantic information.
Cui et al. proposed a learned critique model acting as a human judge to perform a Turing Test
in image captioning tasks [Cui et al., 2018]. Here we also introduce critique models and compare
them with human judges.
Generative AI models are notoriously difficult to evaluate due to the inherent ambiguities of lan-
guage. For example, human evaluators are often recruited to assess the quality of sentiment and se-
mantic relevance on text generated by BERT [Devlin et al., 2018] or GPT2/3 [Brown et al., 2020a,
Brown et al., 2020a, Karpinska et al., 2021]. Such evaluations are restricted to specific domains of
text generation and the heterogeneity of human judges has not been characterized. Here we pro-
vide an extensive set of Turing tests on multiple large state-of-the-art language models based on
896 judges across different demographics.
Conversation was the key target of the original Turing test and remains a daunting challenge for
AI. There have been numerous early attempts at generating restricted topics during conversations,
such as Colby’s PARRY simulating a paranoid schizophrenic [Colby, 1981, Colby et al., 1971] and
Weizenbaum’s ELIZA simulating a psychiatrist [Weizenbaum, 1966]. However, none of these mod-
els have come close to unrestricted Turing tests. Advances in large language models [Devlin et al., 2018,
Brown et al., 2020a, Collins and Ghahramani, 2021, Shuster et al., 2022b] have led news and social
media to produce anecdotal claims about current AI being sentient in conversations [Wertheimer, ,
Tiku, , Maruf,]. However, few studies rigorously and quantitatively assessed AIs in their ability
to imitate humans in conversation. Preliminary works introduced unrestricted Turing tests in
conversations with one exchange per conversation [Zhang et al., 2019]. Here we provide extensive
evaluations of AIs engaged in conversations with up to 24 exchanges.

9.3 Experiments
We introduce the six tasks (Fig. 9.2), how we created the datasets and how we set up the Turing
tests (Fig. 9.3). Further details about each task, controls, and an example snapshot of the
Amazon Mechanical Turk (AMT) interfaces are provided in the Supp. Sections 9.6. All AMT
experiments are based on “master” workers. We also collected demographic information about the
participants as metadata, including their native language, age, gender, educational background,
and the country they are originally from (Fig. 9.2g). For each task, we collect human answers
and machine answers. During each Turing test, we present a single instance of the answers and
ask participants to indicate whether the answer comes from a human or AI (e.g., Fig. 9.3 for
the Object detection task). Half of the time, the entry shown was from a human. The other half
of the time, an AI answer was shown, sampling with equal probability from one of the different
computational models used for each task. The trial order was randomized. No feedback was
provided to the participants. Additional control trials were introduced for each specific task to

160 9.3. Experiments

Task Num.
Stimulus

Num.
Turing Tests Sources of Datasets AI models

Color estimation 785 1,625 self-collect, MSCOCO [Lin et al., 2014] Google Vision API
Microsoft Azure Cognitive Services, MMCQ [Bloomberg and Leptonica, 2008]

Object detection 808 1,975 self-collect, MSCOCO[Lin et al., 2014] Google Vision API, Microsoft Azure Cognitive Services
Amazon Rekognition, Detectron2 [Wu et al., 2019]

Attention Prediction 547 2,160 NatureDesign [Zhang et al., 2018], FindingWaldo [Zhang et al., 2018]
NatureSaliency [Zhang et al., 2022a] IVSN [Zhang et al., 2018, Gupta et al., 2021, Zhang et al., 2022a], DeepGaze3 [Kümmerer et al., 2022], GBVS [Harel et al., 2006]

Image Captioning 1,000 8,140 self-collect
MSCOCO [Lin et al., 2014], nocaps [Agrawal et al., 2019]

GIT [Wang et al., 2022a], OFA [Wang et al., 2022b], BLIP [Li et al., 2022]
ClipCap [Mokady et al., 2021], Microsoft’s Azure Cognitive Services [mic,]

Word Association 1,500 3,550 self-collect
Word2Vec [Pennington et al., 2014], GPT2 [Radford et al., 2019], GPT3-embedding (davinci) [Brown et al., 2020a],
GPT3-prompt (text-curie-001) [Brown et al., 2020a],
GPT3-prompt (text-Davinci-002) [Brown et al., 2020a].

Conversation 300×8 lengths 4,120 self-collect
Topical-Chat dataset [Gopalakrishnan et al., 2019]

GPT3-text-davinci-002[Ouyang et al., 2022], GPT3-text-curie-001[Ouyang et al., 2022]
Blenderbot[Shuster et al., 2022a], DialogPT [Gopalakrishnan et al., 2019]

Table 9.1: Specifications of six Turing tasks Source datasets, number of Turing tests conducted,
number of stimulus, and AI models used to collect responses are listed for each task. See Section
9.3 for task descriptions.

ensure compliance.

9.3.1 Color Estimation
Dataset. We collected a testing set of 1,000 images sampled from the validation set of MS-
COCO [Lin et al., 2014] to ensure that computational models had not seen these images during
training. We collected human responses for 785 images using AMT in the Color Estimation task.
AMT subjects were asked “What is the dominant color in this image?”, and had to select from 11
possible colors.
For AI models, we collected responses for the dominant color from Google’s Cloud Vision API [vis,],
Microsoft’s Azure Cognitive Services [mic,], and the publicly available Median Cut Color Quan-
tized (MCCQ) algorithm [Bloomberg and Leptonica, 2008]. In total, 3,140 image-response pairs
were collected (785 from humans and 2,355 from AI models, Table 9.1).
Turing test (Human Judge). Subjects were shown an image-response pair collected above, and
asked the question “Was the color description made by a human or a machine?” Subjects were
also asked to predict the gender of the speaker. An auxiliary True (50%)/False (50%) question
about the presence of a background object present in the image was introduced as a control. The
mean accuracy in this control task was 91%. A total of 1,625 responses were collected from human
judges.
Turing test (AI judge). For each image-response pair, we collected image features from the
last layer embedding of a ResNet18 model pretrained on ImageNet, and the textual features for
the color using BERT [Devlin et al., 2018]. These features were then concatenated, and passed
into a Random Forest classifier to predict human versus AI labels, using a 90% / 10% split for
cross-validation.

9.3.2 Object detection
Dataset. We collected responses for 808 images from the set of 1,000 images from MS-COCO in
Section. 9.3.1. Subjects were presented with the question “What do you see in this image?”, and
were asked to enter three single word responses . We introduced several controls, ensuring that
the responses were single words in English and that participants do not repeat the same response
within or across images.
We collected predicted labels from Google’s Cloud Vision API, Microsoft’s Azure Cognitive Ser-
vices, Amazon’s Rekognition API, and Facebook’s Detectron2. For all networks, the top three
predicted labels with the highest prediction score were collected. In total, 4,040 image-response
pairs were collected (808 from humans and 3,232 from the four AI models, Table 9.1).
Turing test (Human judge). The Turing test for human judges was performed using the same
protocol and controls described in Section 9.3.1. A total of 1,975 responses were collected from
human judges.
Turing test (AI judge). As the images were the same for humans and AI models, we used
solely textual features for the AI judge to classify a response as human or AI. We concate-
nated the three responses into a sentence, and collected textual features for the sentence using
BERT [Devlin et al., 2018]. These features were passed into an SVM classifier to classify responses
into humans versus AI, with 90% / 10% split cross-validation.

Chapter 9. Human or Machine? Turing Tests for Vision and Language 161

9.3.3 Attention prediction

Dataset. We used eye movements (overt attention) from human subjects during two visual
search tasks [Zhang et al., 2018], and a free-viewing task [Zhang et al., 2022a]. We evaluated
7,000 scanpaths from 40 participants. For the three datasets, we used a modified version of IVSN
[Zhang et al., 2018, Zhang et al., 2022a], DeepGaze3 [Kümmerer et al., 2022] and GBVS models
[Harel et al., 2006] to generate eye movement predictions.
Turing test (human judge). Separate Turing tests were launched for eye movements from free-
viewing tasks (80 judges) and visual search tasks (100 judges). We presented infinitely repeating
animated clips of eye movements from humans or model predictions with a maximum of 15 fixations
to human judges on AMT. Each judge had to identify if the eye movements were from a human or
a computational model. As a control, judges were also asked to answer “What do you see in the
presented clip?” with one correct answer among 3 options. Responses from judges with a score
< 7 out of 12 were not considered in the analyses.
Turing test (AI judge). We performed Turing tests using an SVM as an AI judge. Sequences
of 10 fixations per trial from humans or computational models were fed as input in the form of an
array of fixation coordinates to train an SVM to classify human versus machine eye movements.
The SVM was trained using 10-fold cross validation. Model performance on validation sets across
folds with 3 random seeds was calculated and averaged.

9.3.4 Image captioning

Dataset. We randomly sampled 250 images each from in-domain, near-domain, and out-of-domain
categories from the validation set of the nocaps dataset [Agrawal et al., 2019] and 250 images from
the MSCOCO test set [Lin et al., 2014], creating a set of 1,000 images. We collected 2,290 human
captions with ≥ 6 words per caption and ≥ 2 captions per image from AMT participants.We
implemented additional controls in our AMT interface. For example, workers were not allowed to
submit a caption before viewing the image for ≥ 4s.
To generate machine captions, we used: GIT [Wang et al., 2022a], OFA [Wang et al., 2022b], BLIP
[Li et al., 2022], ClipCap [Mokady et al., 2021], and Microsoft’s Azure Cognitive Services [mic,]
.For open-source models, we used the largest variants finetuned on the COCO Captions dataset
[Lin et al., 2014, Chen et al., 2015]. We collected 5,000 machine captions with 5 captions per
image.
Turing test (human judge). We collected responses from 293 AMT participants .Each partici-
pant was presented with image-caption pairs and indicated whether the caption was generated by
a human or AI. To ensure that the participants read the captions carefully, we prevented response
times < 3s. We removed responses from non-native English speakers .
Turing test (AI judge). We trained an SVM model for binary classification (human versus
machine) on the dataset of human and machine captions. We randomly sampled 400 captions
from each of the 5 models to get 2,000 machine captions and combined them with our 2,000
human captions. We used the OpenAI API [Neelakantan et al., 2022] to obtain 4,096-dimensional
embeddings (text-similarity-curie-001 model) for each caption as input features to train the SVM
with 10-fold cross-validation and 3 random seeds.

9.3.5 Word associations

Dataset. We chose 150 unique cue words (50 nouns, 50 verbs, and 50 adjectives), spanning a wide
range of occurrence frequencies [Speer et al., 2018]. Associations to each cue word were collected
from human subjects and from the following language models: Word2vec [Pennington et al., 2014],
GPT2 [Radford et al., 2019], GPT3-embedding (based on davinci embedding), GPT3-curie-prompt
(based on "curie" prompt completeion), and GPT3-davinci-prompt (based on "davinci" prompt
completeion) [Brown et al., 2020a]. For the human associations, we followed two procedures: (1)
Free associations, whereby participants provided a one-word answer to the question: “What is the
first word that comes to your mind when you hear the word [cue word]?” and (2) Prompt-based
associations, whereby participants completed a prompt with one word. The prompts used for

162 9.4. Results

the human prompt-completion were the same prompts used for GPT3-curie-prompt and GPT3-
dacinci-prompt.All participants were English native speakers living in the US.
Turing test (human judge). For the human-judge Turing tests, we collected data from 50 native
English speakers on AMT. In each trial, a cue word and a corresponding guess word (association)
were presented and the judge had to choose whether the association was made by a human or by
an AI model.
Turing test (AI judge). We trained a linear SVM classifier with 10-fold cross-validation
[Cortes and Vapnik, 1995] to distinguish between human-made and machine-made associations.
We used the the distance between the cue and guess word embeddings, based on (1) Word2Vec,
(2) GPT2, or (3) GPT3 (davinci).

9.3.6 Conversation

Dataset. We collected 300 conversations between: (1) two humans, (2) a human and an AI model,
(3) two AI models. For the conversations including humans, we recruited 150 fluent English par-
ticipants to have a conversation over a chatting platform. The participants did not know whether
they were speaking with another human or with an AI chatbot (see instructions in Supp. Section
9.6.4). We collected conversations containing 24 exchanges each. For the human-human conver-
sations, we added 40 conversations from the Topical-Chat dataset [Gopalakrishnan et al., 2019],
selected based on a minimum length of 24 exchanges. Multiple example conversations are included
in Supp. Section 9.6.7.
For the AI chatbots, we used three state-of-the-art language models: Blenderbot3 (175B model)
[Shuster et al., 2022a], GPT3 text-davinci-002 [Ouyang et al., 2022], and GPT3 text-curie-001 [Ouyang et al., 2022]
(see settings, pre-processing, prompts, and control details in Supp. Section 9.6.5).
Turing test (human judge). We chunked each conversation into 8 different lengths, including
the initial 3, 6, 9, 12, 15, 18, 21, and 24 exchanges. There were 208 human judges (AMT: 200,
in-lab: 8). The participants were presented with 20 randomly sampled chunked conversations with
different lengths and had to respond, for each of the two speakers, whether the speaker was a
human or a machine and the gender (Fig. 9.19). As a control, speakers also had to select the
general topic of the conversation from a list of five topics. We only considered judges that correctly
classified at least 15 topics out of 20 and removed incorrectly classified trials.
Turing test (AI judge). We evaluated whether simple AI models can discern whether a sentence
was generated by a model or a human. We only examined single sentences here. Therefore, these
results provide only an initial proof-of-principle lower bound for AI judges. We built four corpora,
one containing all the sentences written by humans (the human corpus), and the others with
the sentences produced by Blenderbot, GPT3text-davinci-002 and GPT3text-curie-001 (the AI
corpora). We used BERT embeddings [Devlin et al., 2018] to tokenize each sentence, and fed the
tokenized sentences to a linear SVM trained to classify human vs. AI with 10-fold cross-validation.

9.4 Results

We summarize the results of all the Turing tests in Fig. 9.4, by averaging across all AI models
and all human judge demographics. In the Supplementary Material, we show results separated
by AI model and also for different human judge demographics. For each task, Fig. 9.4 shows the
proportion of times that a trial was classified as human (first column), or AI (second column),
when the ground truth was human (first row), or AI (second row). Entries along each row add up
to 100%. When comparing different AI models for a given task in terms of the ability to imitate
humans, percentages closer to 50% indicate better models. In contrast, when comparing different
judges (e.g., human judges versus AI judges, or human judges of different ages or educational
backgrounds), higher overall accuracy indicates better judges.

Chapter 9. Human or Machine? Turing Tests for Vision and Language 163

Human AI

Human

AI

0.55 0.45

0.42 0.58

Color
Detection

Human AI

0.52 0.48

0.31 0.69

Object
Detection

Human AI

0.63 0.37

0.5 0.5

 Attention
Prediction

Human AI

0.69 0.31

0.55 0.45

Image
Captioning

Human AI

0.6 0.4

0.57 0.43

Word
Association

Human AI

0.58 0.42

0.53 0.47

Conversation

Predicted by Human Judge

Human AI

Human

AI

0.43 0.57

0.66 0.34

(a)

(g)

Human AI

0.9 0.1

0.28 0.72

(b)

(h)

Human AI

0.79 0.21

0.19 0.81

(c)

(i)

Human AI

0.72 0.28

0.17 0.83

(d)

(j)

Human AI

0.9 0.1

0.16 0.84

(e)

(k)

Human AI

0.65 0.35

0.33 0.67

(f)

(l)

0

0.2

0.4

0.6

0.8

1.0

Predicted by AI Judge

Figure 9.4: Results of the Turing test for each task. Turing test results for human judges
(top row) and machine judges (bottom row). For each task, the confusion matrices report the
percentage of times when the trial was labeled “human” (first column) or “AI” (second column)
when the ground truth was human (first row) and AI (second row). Percentages add up to 100
within each row. Here all AI models were averaged together. See Supplementary Material for
results from each AI model and different human judge demographic groups.

9.4.1 Color estimation

Human judges distinguished AI answers as AI 58% of the time and human answers as human
55% of the time (Fig. 9.4a). We broke down performance based on each individual AI model .
The Google API performed slightly better (57%) than Azure API (60%) and MCCQ (65%). Even
though the color MCCQ is a simple metric, it still achieved a moderately good performance in
fooling humans 35% of the time. There was no major difference in performance of human judges
across different age groups , education levels , or genders. In contrast, the AI judge classified
human answers as human 43% of the time and AI answers as AI 34% of the time (Fig. 9.4g).

9.4.2 Object detection

Human judges distinguished AI answers as AI 69% of the time and human answers as human 52%
of the time. We broke down performance based on each individual AI model . Among all the AI
models, Detectron performed the best (49%), with a large gap from the second best, Google API
(65%). This modern object detection algorithm in computer vision not only achieves outstanding
absolute scores in terms of standard evaluation metrics, such as mAP [Ren et al., 2015], its response
patterns also closely mimic humans’ by identifying top-3 salient objects in the scene. Specifically,
we used the variant with MaskRCNN [He et al., 2017] trained on ImageNet and MS-COCO.

Next, we analyzed the classification performance of the AI judge for this task. In start contrast to
human, the AI judge is able to distinguish between AI and human speakers much better Fig 9.4.
The overall classification accuracy of AI judge is 81% (as compared to 56.5% of human judges).
Specifically, AI judge can tell AI responses as AI with a 90% accuracy, and human responses as
human with 72%. The easiest to classify are responses from the Azure API with AI judges getting
a 94% accuracy, while the hardest to classify are Detectron and Amazon’s Rekognition API with
accuracy of 67% each.

164 9.4. Results

9.4.3 Attention prediction

Human judges distinguished human eye movements as human 63% of the time and AI-generated
eye movements as AI 50% of the time (Fig. 9.4c). We examined the Turing test performance
for each AI model separately .IVSN [Zhang et al., 2018, Zhang et al., 2022a] outperformed GBVS
[Harel et al., 2006] and DeepGaze3 [Kümmerer et al., 2022] by 4% and 17%, respectively. We eval-
uated whether the agent’s goals during eye movements might influence the subsequent Turing tests.
Human judges performed 2.5% better in free-viewing compared to visual search tasks . Free-viewing
is mostly driven by pure bottom-up saliency, and it may be easier to discern scanpath patterns
without target-directed modulation. Consistent with this idea, GBVS generated more human-like
scanpaths during free-viewing compared with visual search, whereas DeepGaze3 performed much
worse in free-viewing tasks than visual search. IVSN performance was similar in both tasks, which
emphasizes the importance of incorporating both bottom-up and top-down attention mechanism
in computational models of human attention.
As an initial evaluation of AI judges, we trained an SVM classifier purely based on the sequences
of eye fixations regardless of the image features (Fig. 9.4h). Interestingly, a simple SVM AI judge
performed 20% better than human judges. AI judges outperformed human judges across different
models , and different tasks However, this result should be interpreted with caution since the AI
judge was explicitly trained to classify scanpaths while human judges typically do not have such
prior training.

9.4.4 Image captioning
Human judges distinguished human captions as human 69% of the time and AI captions as AI 45%
of the time (Fig. 9.4d). There were rather large differences among AI models with proportions
of AI captions labeled AI ranging from 37% (BLIP) to 59% (ClipCap). CIDEr is a standard
evaluation metric for assessing the quality of AI-generated captions [Vedantam et al., 2015]. OFA
shows better performance than GIT and ClipCap in CIDEr score [Wang et al., 2022b], but it is not
better at imitating human captions, highlighting the differences between traditional performance
metrics and Turing tests. Human judges labeled captions as humans slightly more often for imgaes
from in-domain nocaps , compared to near-domain nocaps and out-of-domain nocaps .
As a proof-of-principle to build an AI judge, we used the OpenAI Embeddings API (text-similarity-
curie-001 model) to extract features and trained a linear SVM to discriminate human versus ma-
chine responses. Surprisingly, even though this classifier did not use image features, the AI judge
could discern human versus machine answers with 77.5% accuracy, well above the performance of
human judges (Fig. 9.4j). Similar results were observed across all the different AI models.

9.4.5 Word associations

Human judges labeled human word associations as humans 60% of the time and AI word as-
sociations as AI 43% of the time (Fig. 9.4e). Results were similar for different AI models .
Surprisingly, the Word2Vec model produced word associations that were harder to discriminate
from human ones.
We used the various word embedding from GPT-series models and Word2Vec as features to train
3 SVM judges (independent SVM classifiers based on the embedding of each AI model). In con-
trast to human judges, AI judges could easily distinguish human versus machine word associations
(Fig. 9.4k). All AI judges outperformed human judges . As expected, when training an SVM
classifier based on the embedding of the same model whose embedding where also used for gener-
ating the guess words, this model classification performance was essentially perfect. For instance,
on the 3rd row on the left confusion matrix in , the AI judge trained on Word2Vec embedding
indeed perfectly predicted all guess words generated by Word2Vec embeddings as AI. While these
cases are good as a sanity check, they should not be considered in the general evaluation of the AI
judges performance. Hence, we trained 3 different SVM to avoid such biases.

Chapter 9. Human or Machine? Turing Tests for Vision and Language 165

9.4.6 Conversation

Human judges distinguished human participants in conversations as humans 58% of the time and
AI agents as AI 47% of the time (Fig. 9.4f, 9.16, 9.17). Unlike AI models passing the Turing
tests in restricted conversation topics, it is interesting to note an overall accuracy of 53.5% here in
largely unrestricted conversations.
We separately considered human-human, human-AI, and AI-AI conversations (Fig. 9.5). Sur-
prisingly, human-human conversations were classified as human only 61% of the time and AI-AI
conversations were classified as human 56% of the time. Blenderbot was classified as human 64%
of the time, suggesting that AIs can be perceived as more human than humans themselves. In
human-AI conversations, human participants were labeled as humans 61% of the time, and AIs
were classified as AI 55% of the time. The overall classification accuracy in human-AI conversa-
tions was higher than AI-AI conversations (58% versus 41%), suggesting that AIs reveal their true
self more often when talking to humans than amongst themselves. This observation is consistent
with the notion that human judges are more accurate in making comparisions rather than absolute
evaluations.
When comparing different AI models (Fig. 9.5), Blenderbot was most often labeled as hu-
mans, 66% of the time in AI-AI conversations and 50% of the time in human-AI conversations
(Table 9.3). The results of the Turing test depended on the conversation length (Fig. 9.18). AI
models were less adept at passing as humans in longer conversations. Among all the AI models,
GPT3-curie showed the sharpest drop while Blenderbot maintained relatively high performance.
These observations highlight that model sizes, specific training on conversation data, and incorpo-
ration of external memory modeling past conversation history are important factors when imitating
humans in conversations.
Younger judges performed better in discerning AIs from humans than older judges in AI-AI con-
versations (Fig. 9.7, 9.8, 9.9, 9.15a). Surprisingly, male judges performed slightly better than
female judges (60% versus 57.5%), especially in AI-AI conversations (46% versus 39%) (Fig. 9.10,
9.11, 9.15b, Table 9.4). Intriguingly, education had a slight negative relation with classification
accuracy of human judges (54%, 53% and 51% for middle-high school, college and postgraduate
degrees respectively), especially in human-AI conversations. However, this trend was reversed in
AI-AI conversations where postgraduate judges performed better than middle-high school judges
(53% versus 41%) (Fig. 9.12, 9.13, 9.14, 9.15c).
We trained a simple SVM judge to distinguish whether a sentence in a conversation was from
humans or AIs. Consistently with the other experiments, the AI judge beat human judges by
a large margin (66% versus 53.5%, Fig. 9.4l). This AI judge performed particularly well in
classifying Blenderbot sentences (Fig. 9.6), in stark contrast with human judges who were more
easily fooled by Blenderbot than GPT models. Human judges likely focus on high-level conversation
understanding rather than single-sentence statistics in the Turing tests.

9.5 Discussion

The Turing test has been extensively discussed, and contested, as a means to assess general intelli-
gence. Instead, we focus on Turing tests as a metric to evaluate whether an algorithm can imitate
humans or not. Table 9.2 summarizes the observations in a highly simplified binary format; this
table is a grand average and the reader is referred to all the actual numbers for a more accurate
description of the findings.
Remarkably, the algorithms tested throughout the current work seem to be quite close to passing
a Turing test when evaluated by human judges. Given that imitating humans can be very good for
certain purposes but could also easily be turned into potentially evil applications, these observations
call for more extensive and rigorous scrutiny of machines that can imitate AI.
One step to mitigate risks from human imitators is to build AI judges. Our results show that even
simple AI judges like the ones introduced here can do a better job than human judges in detecting
machine answers. The results of current AI judges should not be over-interpreted because AI
judges were explicitly trained to classify responses from humans versus AIs, while human judges

166 9.6. Methods and Additional Results for the Conversation Task

Color
Dect.

Object
Dect.

Att.
Pred.

Image
Cap.

Word
Ass.

Conver-
sation

Age
(<35) ✗ ✗ ✗ ✗ ✓ ✓

Age
(35-45) ✗ ✗ ✗ ✗ ✓ ✓

Age
(>45) ✗ ✗ ✗ ✗ ✓ ✓

Sex
(F) ✗ ✗ ✗ ✗ ✓ ✓

Sex
(M) ✗ ✗ ✗ ✗ ✓ ✓

Edu
L1 ✗ ✗ ✗ ✗ ✓ ✓

Edu
L2 ✗ ✗ ✗ ✗ ✓ ✓

Edu
L3 ✗ ✗ ✓ ✗ ✓ ✓

Over-
all ✗ ✗ ✗ ✗ ✓ ✓

Table 9.2: Summary of Turing test results for human judges.
A tick (✓) indicates that the AI models pass the Turing test (0.45 ≤ top-1 acccuracy ≤ 0.55) in the specific task
(columns), based on evaluations made by specific demographic groups (rows). This table represents only a coarse
grand summary of the results. The actual confusion matrices and quantitative results are presented throughout

the Supplementary Material.

were not. This point raises the possibility that humans may be trained to better recognize machine
answers in the future.
An algorithm’s ability to imitate humans did not always correlate with traditional performance
metrics like accuracy, implying that Turing tests provide a complementary assessment of AI models
to existing benchmarking frameworks. Comparisons between models in Turing tests also provide
insights helpful for developing future AI models that can better align with humans.
The datasets and evaluations introduced here are quite extensive (21570 Turing test trials, 904
human and AI judges, 6 vision and language tasks, several demographic groups), but they barely
scratch the surface of what needs to be done. There are essentially infinite possible Turing tests.
The results of a Turing test depend on the task, the algorithm, how the question is formulated,
the characteristics of the human judge and many other variables
This work provides a comprehensive, yet certainly far from exhaustive, evaluation of state-of-the-
art AI models in terms of human emulation. These efforts pave the way for the research community
to expand Turing tests to other research areas, to build better imitators, and better detectors of
imitators. If more AI models can “blend" in among humans and take over tasks that were originally
unique yardsticks of being humans, this makes us ponder what makes us humans and whether we
are mentally, ethically, and legally ready for the rapid revolution brought forth by AI technologies.

9.6 Methods and Additional Results for the Conversation
Task

Dataset. We collected a dataset containing 300 conversations between two speakers (speaker A and
speaker B). Each speaker could be either a human or an AI agent. Thus, there were three classes
of conversations: human-human, human-AI, and AI-AI. For the human-human and the human-
AI conversations, we recruited approximately 150 volunteers who are fluent English speakers to
have a conversation over a chatting platform. We acted as intermediary in the conversations so
that the volunteers did not know whether they were speaking with another human or with an AI
chatbot. The instructions given to the participants are reported in the Supplementary Section
9.6.4. We collected conversations containing 24 exchanges each, i.e., 12 turns per speaker. After
the conversation was completed, the volunteers were asked whether they thought they spoke with
a person or an AI and the perceived gender and age of the other speaker. To evaluate potential

Chapter 9. Human or Machine? Turing Tests for Vision and Language 167

correlations between the conversation features and the volunteers’ demographics, we also collected
information on the age, gender, college major and field of work for each volunteer. For the human-
human conversations, we combined 18 conversations collected as described above and we also added
40 conversations from the Topical-Chat dataset [Gopalakrishnan et al., 2019], selected based on a
minimum length of 24 entries.
For the human-AI and the AI-AI conversations, we used three state-of-the-art language models:
Blenderbot3 (175B model) [Shuster et al., 2022a], GPT3 text-davinci-002 [Ouyang et al., 2022],
and GPT3 text-curie-001 [Ouyang et al., 2022]. For all conversations with Blenderbot we used
the live interface provided at https://blenderbot.ai/. For the human-GPT3 conversations we
used the playground available at https://beta.openai.com/playground/. We list the settings
in Supplementary Section 9.6.5. For the GPT3-GPT3 conversations, we implemented a custom
python framework for the interaction of two models. For the Blenderbot-Blenderbot conversations,
we kept all the collected conversations in the dataset. Instead, the GPT3-GPT3 conversations were
affected by long-standing issues of NLP, namely repetition of single sentences or multiple consec-
utive exchanges and early exit. When we detected such issues, we resampled the conversations.
Therefore, we built a chatbot out of GPT3 based on prompt engineering and failure criteria. We
did not resample conversations in the case of human-GPT3 conversations. We also attempted to
use the DialoGPT model cite, however, the quality of the conversation was not satisfactory (see
examples in Section 9.6.7 in the Supplementary Material), hence we did not include DialoGPT in
the analysis. We did not perform any preprocessing in the conversations (e.g., did not correct any
misspellings, grammatical errors, logical errors or other inconsistencies).
Turing test. To investigate the results of the Turing test as a function of the length of the
conversation, we chunked each conversation into 8 different lengths, including the initial 3, 6,
9, 12, 15, 18, 21, and 24 turns. In total we collected 40 conversations for each category. To
perform the Turing test on the collected conversations, we recruited 208 participants from Amazon
Mechanical Turk as observers. The participants were presented with 20 randomly sampled chunked
conversations with different lengths. For each of the two speakers, the observers had to state
whether they thought the speaker was a human or a machine and the gender (male or female).
To verify that the observers were carefully reading the conversation, we introduced a control. For
each conversation the observer had to select the general topic of the chat from a list of five topics.
In our analysis we only considered the responses of the workers that correctly classified at least
15 topics out of 20. For those workers, we only considered the responses to the conversations that
were correctly classified. On average we obtained 14 responses per conversation (approximately
2 responses per length). Some examples of conversations are reported in Section 9.6.7 in the
Supplementary Material.
AI judge. We evaluated whether simple ML models are able to discern whether a sentence was
generated by a model or by a person. In this analysis, we only looked at single sentences and
not at the conversation level, therefore the models are only allowed to exploit features such as
sentence length, vocabulary, grammar, syntax and typos, and cannot take into account issues
such as sentence repetition or lack of logic in reasoning. To this goal, we build four corpora,
one containing all the sentences written by humans (the human corpus), and the others with
the sentences produced by Blenderbot, GPT3text-davinci-002 and GPT3text-curie-001 (the AI
corpora).
We used BERT embeddings [Devlin et al., 2018] to tokenize each sentence, and we fed the tokenized
sentence to a SVM linear classifier trained to perform binary classification to the classes human
and AI. We split the corpora into train and test splits (90%, 10%) and used 10-fold cross-validation
for training. In both the train and test splits we used the same number of sentences for human
speakers and for AI agents. For the AI, the sentences where split equally among the three models.

9.6.1 Results
9.6.1.1 Confusion matrix and top1 accuracy

The results for the human judge are reported in Figures 9.5a and 9.5b, which contain respectively
the confusion matrix and the top1 accuracy. The plots show both the overall accuracy for humans

https://blenderbot.ai/
https://beta.openai.com/playground/

168 9.6. Methods and Additional Results for the Conversation Task

Blenderbot GPT3davinci GPT3curie
H-AI conversation ✓ ✗ ✗

AI-AI conversation ✓ ✓ ✗

Table 9.3: Conversations. Results for the Turing test for different AI models and conversation
types.

Human AI
Predicted

Human (all)

Human (in H-H)

Human (in H-AI)

AI (all)

AI (in AI-AI)

AI (in H-AI)

Blenderbot (in AI-AI)

Blenderbot (in H-AI)

GPT3davinci (in AI-AI)

GPT3davinci (in H-AI)

GPT3curie (in AI-AI)

GPT3curie (in H-AI)

Gr
ou

nd
 Tr

ut
h

0.58 0.42

0.57 0.43

0.6 0.4

0.53 0.47

0.56 0.44

0.46 0.54

0.66 0.34

0.5 0.5

0.6 0.4

0.46 0.54

0.42 0.58

0.41 0.59

0.0

0.2

0.4

0.6

0.8

1.0

(a) Confusion matrix

AI
 (a

ll)

AI
 (i

n
AI

-A
I)

AI
 (i

n
H-

AI
)

Bl
en

de
rb

ot
 (i

n
AI

-A
I)

Bl
en

de
rb

ot
 (i

n
H-

AI
)

GP
T3

da
vi

nc
i (

in
 A

I-A
I)

GP
T3

da
vi

nc
i (

in
 H

-A
I)

GP
T3

cu
rie

 (i
n

AI
-A

I)

GP
T3

cu
rie

 (i
n

H-
AI

)0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

(b) Top1 accuracy

Figure 9.5: Conversation. Results of the Turing test for human judges
(a) Confusion matrix (b) Top-1 accuracy.

and for AI averaged over all the cases, as well as the results for the three tested models (Blenderbot,
GPT3text-davinci002, and GPT3text-curie001). We distinguish the three conditions: humans
talking with humans, humans talking with AI, and AI talking with AI.
The results for the SVM judge are reported in Figures 9.6a and 9.6b, which contain respectively
the confusion matrix and the top1 accuracy. The plots show both the overall accuracy for humans
and for AI averaged over all the cases, as well as the results for the three tested models (Blender-
bot, GPT3text-davinci002, and GPT3text-curie001). We do not distinguish the three conditions
(humans talking with humans, humans talking with AI, and AI talking with AI), as the SVM judge
is trained and tested on the single sentences and not on the full conversations.

9.6.1.2 Results on gender perception

The human judges were asked to say whether the speakers of the conversations were male or female,
both in case of classification as human and as machine. Overall, 60% of the speakers (human plus
machines) were classified as male, indicating a bias of the human judges in the gender perception.
In particular, we found that 64% of the human speakers and 58% of the AI agents are classified
as male. Furthermore, when a human judge perceived a speaker as human, he associated the male
gender 58% of the times. Interestingly, when a speaker was classified as machine, 69% of the times
it was also classified as male. This indicates a strong bias in associating the male gender with
chatbots. Table 9.4 summarizes these findings.

9.6.1.3 Results based on demographics

The results in the form of confusion matrix and top1 accuracy for the human judge are reported
in:

• Figures 9.7b, 9.8, and 9.9 for different age ranges;

Chapter 9. Human or Machine? Turing Tests for Vision and Language 169

Human AI
Predicted

Human

AI all

Blenderbot

GPT3davinci

GPT3curie

Gr
ou

nd
 Tr

ut
h

0.65 0.35

0.33 0.67

0.21 0.79

0.34 0.66

0.43 0.57
0.0

0.2

0.4

0.6

0.8

1.0

(a) Confusion matrix

AI
 a

ll

Bl
en

de
rb

ot

GP
T3

da
vi

nc
i

GP
T3

cu
rie

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

(b) Top1 accuracy

Figure 9.6: Conversation. Results of the Turing test for AI judges.
(a) Confusion matrix (b) Top-1 accuracy.

Case [%] classified as male

Overall 60%
Human speaker (true label) 64%
AI speaker (true label) 57%
Human classified (pred. label) 53%
AI classified (pred. label) 68%

Table 9.4: Conversation. Gender perception of human and machines by the human judges.

• Figures 9.10 and 9.11 for female and male gender respectively;

• Figures 9.12, 9.13, and 9.14 for different education levels.

The data on the demographic distribution of the human judges are reported in the pie bins in
Figure 9.15.

9.6.2 Results comparing AMT and in-person experiments
The results for the human judge comparing AMT judges and judges recruited to do the experiment
in person under our supervision are reported in Figures 9.16 and 9.17 respectively.

9.6.3 Results for the human judge on different length of conversations
We investigated whether and to which extend the result of the Turing test depends on the length
of the conversation. Figure 9.18 reports the results. We make the following observations:

• except for very short extracts (three exchanges), humans are classified as humans on average
more than machines (panel a);

• humans are more likely to be classified as humans for longer conversations (panel a)

• machines are less likely to be classified as humans for longer conversations (panel a)

• in human-human and AI-AI conversations, humans and machines have similar frequency of
being classified as human, except for very long conversations (panel b);

• in human-AI conversations, humans are classified more as human than machines, with a gap
increasing with the conversation length (panel c);

170 9.6. Methods and Additional Results for the Conversation Task

Human AI
Predicted

Human (all)

Human (in H-H)

Human (in H-AI)

AI (all)

AI (in AI-AI)

AI (in H-AI)

Blenderbot (in AI-AI)

Blenderbot (in H-AI)

GPT3davinci (in AI-AI)

GPT3davinci (in H-AI)

GPT3curie (in AI-AI)

GPT3curie (in H-AI)

Gr
ou

nd
 Tr

ut
h

0.56 0.44

0.53 0.47

0.59 0.41

0.5 0.5

0.53 0.47

0.46 0.54

0.63 0.37

0.51 0.49

0.57 0.43

0.44 0.56

0.4 0.6

0.45 0.55

0.0

0.2

0.4

0.6

0.8

1.0

(a) Confusion matrix below age
35

AI
 (a

ll)

AI
 (i

n
AI

-A
I)

AI
 (i

n
H-

AI
)

Bl
en

de
rb

ot
 (i

n
AI

-A
I)

Bl
en

de
rb

ot
 (i

n
H-

AI
)

GP
T3

da
vi

nc
i (

in
 A

I-A
I)

GP
T3

da
vi

nc
i (

in
 H

-A
I)

GP
T3

cu
rie

 (i
n

AI
-A

I)

GP
T3

cu
rie

 (i
n

H-
AI

)0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

(b) Top1 accuracy below age 35

Figure 9.7: Conversation. Results of the Turing test for human judges below age 35.
(a) Confusion matrix (b) Top-1 accuracy.

Human AI
Predicted

Human (all)

Human (in H-H)

Human (in H-AI)

AI (all)

AI (in AI-AI)

AI (in H-AI)

Blenderbot (in AI-AI)

Blenderbot (in H-AI)

GPT3davinci (in AI-AI)

GPT3davinci (in H-AI)

GPT3curie (in AI-AI)

GPT3curie (in H-AI)

Gr
ou

nd
 Tr

ut
h

0.58 0.42

0.55 0.45

0.59 0.41

0.51 0.49

0.54 0.46

0.46 0.54

0.65 0.35

0.48 0.52

0.55 0.45

0.54 0.46

0.4 0.6

0.36 0.64

0.0

0.2

0.4

0.6

0.8

1.0

(a) Confusion matrix between
age 35 and age 45

AI
 (a

ll)

AI
 (i

n
AI

-A
I)

AI
 (i

n
H-

AI
)

Bl
en

de
rb

ot
 (i

n
AI

-A
I)

Bl
en

de
rb

ot
 (i

n
H-

AI
)

GP
T3

da
vi

nc
i (

in
 A

I-A
I)

GP
T3

da
vi

nc
i (

in
 H

-A
I)

GP
T3

cu
rie

 (i
n

AI
-A

I)

GP
T3

cu
rie

 (i
n

H-
AI

)0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

(b) Top1 accuracy between age 35
and age 45

Figure 9.8: Conversation. Results of the Turing test for human judges between age 35 and 4.
(a) Confusion matrix (b) Top-1 accuracy.

Chapter 9. Human or Machine? Turing Tests for Vision and Language 171

Human AI
Predicted

Human (all)

Human (in H-H)

Human (in H-AI)

AI (all)

AI (in AI-AI)

AI (in H-AI)

Blenderbot (in AI-AI)

Blenderbot (in H-AI)

GPT3davinci (in AI-AI)

GPT3davinci (in H-AI)

GPT3curie (in AI-AI)

GPT3curie (in H-AI)

Gr
ou

nd
 Tr

ut
h

0.58 0.42

0.58 0.42

0.57 0.43

0.55 0.45

0.61 0.39

0.45 0.55

0.65 0.35

0.48 0.52

0.66 0.34

0.42 0.58

0.48 0.52

0.43 0.57

0.0

0.2

0.4

0.6

0.8

1.0

(a) Confusion matrix above age
45

AI
 (a

ll)

AI
 (i

n
AI

-A
I)

AI
 (i

n
H-

AI
)

Bl
en

de
rb

ot
 (i

n
AI

-A
I)

Bl
en

de
rb

ot
 (i

n
H-

AI
)

GP
T3

da
vi

nc
i (

in
 A

I-A
I)

GP
T3

da
vi

nc
i (

in
 H

-A
I)

GP
T3

cu
rie

 (i
n

AI
-A

I)

GP
T3

cu
rie

 (i
n

H-
AI

)0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

(b) Top1 accuracy above age 45

Figure 9.9: Conversation. Results of the Turing test for human judges above age 45.
(a) Confusion matrix (b) Top-1 accuracy.

Human AI
Predicted

Human (all)

Human (in H-H)

Human (in H-AI)

AI (all)

AI (in AI-AI)

AI (in H-AI)

Blenderbot (in AI-AI)

Blenderbot (in H-AI)

GPT3davinci (in AI-AI)

GPT3davinci (in H-AI)

GPT3curie (in AI-AI)

GPT3curie (in H-AI)

Gr
ou

nd
 Tr

ut
h

0.58 0.42

0.57 0.43

0.59 0.41

0.54 0.46

0.6 0.4

0.44 0.56

0.64 0.36

0.49 0.51

0.64 0.36

0.47 0.53

0.49 0.51

0.38 0.62

0.0

0.2

0.4

0.6

0.8

1.0

(a) Confusion matrix female
gender

AI
 (a

ll)

AI
 (i

n
AI

-A
I)

AI
 (i

n
H-

AI
)

Bl
en

de
rb

ot
 (i

n
AI

-A
I)

Bl
en

de
rb

ot
 (i

n
H-

AI
)

GP
T3

da
vi

nc
i (

in
 A

I-A
I)

GP
T3

da
vi

nc
i (

in
 H

-A
I)

GP
T3

cu
rie

 (i
n

AI
-A

I)

GP
T3

cu
rie

 (i
n

H-
AI

)0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

(b) Top1 accuracy female gender

Figure 9.10: Conversation. Results of the Turing test for male human judges.
(a) Confusion matrix (b) Top-1 accuracy.

172 9.6. Methods and Additional Results for the Conversation Task

Human AI
Predicted

Human (all)

Human (in H-H)

Human (in H-AI)

AI (all)

AI (in AI-AI)

AI (in H-AI)

Blenderbot (in AI-AI)

Blenderbot (in H-AI)

GPT3davinci (in AI-AI)

GPT3davinci (in H-AI)

GPT3curie (in AI-AI)

GPT3curie (in H-AI)

Gr
ou

nd
 Tr

ut
h

0.57 0.43

0.55 0.45

0.59 0.41

0.51 0.49

0.53 0.47

0.46 0.54

0.65 0.35

0.48 0.52

0.55 0.45

0.47 0.53

0.38 0.62

0.43 0.57

0.0

0.2

0.4

0.6

0.8

1.0

(a) Confusion matrix male gen-
der

AI
 (a

ll)

AI
 (i

n
AI

-A
I)

AI
 (i

n
H-

AI
)

Bl
en

de
rb

ot
 (i

n
AI

-A
I)

Bl
en

de
rb

ot
 (i

n
H-

AI
)

GP
T3

da
vi

nc
i (

in
 A

I-A
I)

GP
T3

da
vi

nc
i (

in
 H

-A
I)

GP
T3

cu
rie

 (i
n

AI
-A

I)

GP
T3

cu
rie

 (i
n

H-
AI

)0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

(b) Top1 accuracy male gender

Figure 9.11: Conversation. Results of the Turing test for female human judges
(a) Confusion matrix (b) Top-1 accuracy.

Human AI
Predicted

Human (all)

Human (in H-H)

Human (in H-AI)

AI (all)

AI (in AI-AI)

AI (in H-AI)

Blenderbot (in AI-AI)

Blenderbot (in H-AI)

GPT3davinci (in AI-AI)

GPT3davinci (in H-AI)

GPT3curie (in AI-AI)

GPT3curie (in H-AI)

Gr
ou

nd
 Tr

ut
h

0.58 0.42

0.59 0.41

0.58 0.42

0.53 0.47

0.56 0.44

0.48 0.52

0.67 0.33

0.54 0.46

0.56 0.44

0.43 0.57

0.45 0.55

0.45 0.55

0.0

0.2

0.4

0.6

0.8

1.0

(a) Confusion matrix middle
school and high school

AI
 (a

ll)

AI
 (i

n
AI

-A
I)

AI
 (i

n
H-

AI
)

Bl
en

de
rb

ot
 (i

n
AI

-A
I)

Bl
en

de
rb

ot
 (i

n
H-

AI
)

GP
T3

da
vi

nc
i (

in
 A

I-A
I)

GP
T3

da
vi

nc
i (

in
 H

-A
I)

GP
T3

cu
rie

 (i
n

AI
-A

I)

GP
T3

cu
rie

 (i
n

H-
AI

)0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

(b) Top1 accuracy middle school and
high school

Figure 9.12: Conversation. Results of the Turing test for human judges with highest education
level of middle/high school.

(a) Confusion matrix (b) Top-1 accuracy.

Chapter 9. Human or Machine? Turing Tests for Vision and Language 173

Human AI
Predicted

Human (all)

Human (in H-H)

Human (in H-AI)

AI (all)

AI (in AI-AI)

AI (in H-AI)

Blenderbot (in AI-AI)

Blenderbot (in H-AI)

GPT3davinci (in AI-AI)

GPT3davinci (in H-AI)

GPT3curie (in AI-AI)

GPT3curie (in H-AI)

Gr
ou

nd
 Tr

ut
h

0.58 0.42

0.55 0.45

0.61 0.39

0.52 0.48

0.56 0.44

0.44 0.56

0.65 0.35

0.43 0.57

0.61 0.39

0.5 0.5

0.41 0.59

0.37 0.63

0.0

0.2

0.4

0.6

0.8

1.0

(a) Confusion matrix bachelor
graduates

AI
 (a

ll)

AI
 (i

n
AI

-A
I)

AI
 (i

n
H-

AI
)

Bl
en

de
rb

ot
 (i

n
AI

-A
I)

Bl
en

de
rb

ot
 (i

n
H-

AI
)

GP
T3

da
vi

nc
i (

in
 A

I-A
I)

GP
T3

da
vi

nc
i (

in
 H

-A
I)

GP
T3

cu
rie

 (i
n

AI
-A

I)

GP
T3

cu
rie

 (i
n

H-
AI

)0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

(b) Top1 accuracy bachelor graduates

Figure 9.13: Conversation. Results of the Turing test for human judges with highest education
level of Bachelor.

(a) Confusion matrix (b) Top-1 accuracy.

Human AI
Predicted

Human (all)

Human (in H-H)

Human (in H-AI)

AI (all)

AI (in AI-AI)

AI (in H-AI)

Blenderbot (in AI-AI)

Blenderbot (in H-AI)

GPT3davinci (in AI-AI)

GPT3davinci (in H-AI)

GPT3curie (in AI-AI)

GPT3curie (in H-AI)

Gr
ou

nd
 Tr

ut
h

0.51 0.49

0.48 0.52

0.52 0.48

0.5 0.5

0.54 0.46

0.44 0.56

0.53 0.47

0.52 0.48

0.66 0.34

0.47 0.53

0.43 0.57

0.39 0.61

0.0

0.2

0.4

0.6

0.8

1.0

(a) Confusion matrix postgrad-
uates

AI
 (a

ll)

AI
 (i

n
AI

-A
I)

AI
 (i

n
H-

AI
)

Bl
en

de
rb

ot
 (i

n
AI

-A
I)

Bl
en

de
rb

ot
 (i

n
H-

AI
)

GP
T3

da
vi

nc
i (

in
 A

I-A
I)

GP
T3

da
vi

nc
i (

in
 H

-A
I)

GP
T3

cu
rie

 (i
n

AI
-A

I)

GP
T3

cu
rie

 (i
n

H-
AI

)0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

(b) Top1 accuracy postgraduates

Figure 9.14: Conversation. Results of the Turing test for human judges with highest education
level of Master and Post-graduate.

(a) Confusion matrix (b) Top-1 accuracy.

174 9.6. Methods and Additional Results for the Conversation Task

Age<35[30.3%]

Age(35-45)[35.1%]

Age(>45)[34.6%]

(a) Age distribution

Gender(F)[45.4%]

Gender(M)[54.6%]

(b) Gender dis-
tribution

Middle/High[41.3%]

Bachelor[45.7%]

PostGrad[13.0%]

(c) Education level dis-
tribution

US[98.1%]
China[0.5%]Hong Kong[0.5%]India[0.5%]United States Minor Outlying Islands[0.5%]

(d) Country of origin distribution

Figure 9.15: Conversation. Demographic information for the human judges.
(a) Age. (b) Gender.

Human AI
Predicted

Human (all)

Human (in H-H)

Human (in H-AI)

AI (all)

AI (in AI-AI)

AI (in H-AI)

Blenderbot (in AI-AI)

Blenderbot (in H-AI)

GPT3davinci (in AI-AI)

GPT3davinci (in H-AI)

GPT3curie (in AI-AI)

GPT3curie (in H-AI)

Gr
ou

nd
 Tr

ut
h

0.57 0.43

0.56 0.44

0.59 0.41

0.53 0.47

0.56 0.44

0.46 0.54

0.65 0.35

0.49 0.51

0.6 0.4

0.47 0.53

0.43 0.57

0.41 0.59

0.0

0.2

0.4

0.6

0.8

1.0

(a) Confusion matrix AMT

AI
 (a

ll)

AI
 (i

n
AI

-A
I)

AI
 (i

n
H-

AI
)

Bl
en

de
rb

ot
 (i

n
AI

-A
I)

Bl
en

de
rb

ot
 (i

n
H-

AI
)

GP
T3

da
vi

nc
i (

in
 A

I-A
I)

GP
T3

da
vi

nc
i (

in
 H

-A
I)

GP
T3

cu
rie

 (i
n

AI
-A

I)

GP
T3

cu
rie

 (i
n

H-
AI

)0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

(b) Top1 accuracy AMT

Figure 9.16: Conversation. Results of the Turing test for human judges from data collected on
AMT

(a) Confusion matrix (b) Top-1 accuracy.

Chapter 9. Human or Machine? Turing Tests for Vision and Language 175

Human AI
Predicted

Human (all)

Human (in H-H)

Human (in H-AI)

AI (all)

AI (in AI-AI)

AI (in H-AI)

Blenderbot (in AI-AI)

Blenderbot (in H-AI)

GPT3davinci (in AI-AI)

GPT3davinci (in H-AI)

GPT3curie (in AI-AI)

GPT3curie (in H-AI)

Gr
ou

nd
 Tr

ut
h

0.61 0.39

0.64 0.36

0.58 0.42

0.44 0.56

0.44 0.56

0.44 0.56

0.44 0.56

0.44 0.56

0.5 0.5

0.38 0.62

0.38 0.62

0.42 0.58

0.0

0.2

0.4

0.6

0.8

1.0

(a) Confusion matrix in-person
judges

AI
 (a

ll)

AI
 (i

n
AI

-A
I)

AI
 (i

n
H-

AI
)

Bl
en

de
rb

ot
 (i

n
AI

-A
I)

Bl
en

de
rb

ot
 (i

n
H-

AI
)

GP
T3

da
vi

nc
i (

in
 A

I-A
I)

GP
T3

da
vi

nc
i (

in
 H

-A
I)

GP
T3

cu
rie

 (i
n

AI
-A

I)

GP
T3

cu
rie

 (i
n

H-
AI

)0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

1
Ac

cu
ra

cy

(b) Top1 accuracy in-person judges

Figure 9.17: Conversation. Results of the Turing test for human judges during in-person exper-
iments.

(a) Confusion matrix (b) Top-1 accuracy.

• there is no clear trend distinguishing human classification between human interaction with
humans or with various models (panel d);

• for all models, machines talking with humans are classified more as AI for longer conversa-
tions; GPT3 curie is on average classified more as machine than GPT3 davinci and Blenderbot
(panel e);

• in AI-AI conversations, GPT3 curie is the model that performs the worst; GPT3 davinci and
Blenderbot perform similarly up to 15 exchanges, while for longer conversations Blenderbot
performs better.

9.6.4 Dataset collection: instructions to human participants

One of the investigators acted as an intermediary to pass messages between two speakers. The two
speakers could be two humans, a machine and a human, or two machines. Here we focus on the
conversations involving humans. The participants were presented with the following instructions
before the conversation:
Hey! Would you have a few minutes to help me collect a dataset? We just need to have one or two
conversations on slack/whatsapp for a few minutes (24 messages in total per conversation). Here
are the instructions:

• You will have to ask or answer a question to start and trigger the conversation (I will specify
case by case).

• Please try to get the conversation going for 24 sentences in total (12 from you, 12 from the
other speaker).

• Please write each reply in a single message (do not write a second message until you receive
a reply).

• Just chat as if you are texting either with a friend or someone you don’t know.

176 9.6. Methods and Additional Results for the Conversation Task

a cb

d e f

Figure 9.18: Conversation. Length dependence of Turing test results for different settings and
models.

(a) Average curves over all settings and models. (b) Results for homogeneous settings, i.e.,
human-human and AI-AI conversations, averaged over models. (c) Results for inhomogeneous

settings, i.e., human-AI conversations averaged over models. (d) Results for human speakers for
separate settings (human-human, human-AI with separate models). (e) Results for AI in

human-AI conversations, with separate models. (f) Results for AI in AI-AI conversations, with
separate models.

Chapter 9. Human or Machine? Turing Tests for Vision and Language 177

• Please try to reply quickly so that the entire conversation does not take more than 8-10
minutes.

• Note that I am just an intermediary of the conversation, you are not talking with me directly.

• If you feel that the other speaker is touching a sensitive topic, please write that you are not
comfortable and we will restart the conversation.

Thanks in advance!
After the completion of the conversation, the participants were asked to answer to the following
question:
That’s all! We got the 24 messages! Thank you so much! Do you think you spoke with male AI /
female AI / man / woman and which age (Age and gender also for AI chatbot)?

9.6.5 Dataset collection: prompt and settings for GPT3text-davinci002
and GPT3text-curie-001

The pipeline to collect conversations involving GPT3text-davinci002 or GPT3text-curie-001 is
described below.

• If GPT3 text-davinci-002 or text-curie-001 model open the link https://beta.openai.com/
playground/p/default-chat?model=text-davinci-002

• select the model text-davinci-002 (for davinci) or text-curie-001 (for curie) on the top right

• change temperature to 0.8

• change maximum length to 60

• change stop sequences to two random names (e.g. John: and Alice:) - change the names
everytime

• change Top P to 1

• change Frequency penalty to 2

• change Presence penalty to 2

• remove the Inject start text and Inject restart text

• give the following prompt to the chatbot:
friend1+" greets " +friend2+". "+friend2+" starts to talk about "+topic+". Both ask long
questions, give long responses and often disagree. Then the topic changes. The conversation
never ends."+friend1+": Hi!"+friend2+":"
Choose the same names for friend 1 and friend 2 that you chose for the stop sequences.
Pick a random topic from the list: [’fashion’, ’politics’, ’books’, ’sports’, ’general entertain-
ment’, ’music’, ’science’, ’technology’, ’movies’]
Example: John greets Alice. Alice starts to talk about movies. Both ask long questions, give
long responses and often disagree. Then the topic changes. The conversation never ends.
John: Hi! Alice:

• You decide if the person is John or if the GPT3 is John. The other will be Alice. If the
person is John, then you let the model generate the text. This means that the model has
generated the turn for Alice. After you send the generated sentence to the person, the person
replies, and you copy-paste the reply of the person to the model as: “John: - - here reply -
- . Alice:“ Then you press submit and the model generates a new reply for Alice, and so on
until you reach 24 turns.
Otherwise, if the person is Alice, then you ask the person to start the conversation with a
question, and you copy-paste it after “Alice:” in the prompt above. Then you write “John:”
and press submit, so that the model generates the reply for John. and so on until you collect
24 exchanges (12 for John and 12 for Alice).

https://beta.openai.com/playground/p/default-chat?model=text-davinci-002
https://beta.openai.com/playground/p/default-chat?model=text-davinci-002

178 9.6. Methods and Additional Results for the Conversation Task

Figure 9.19: Conversation. Screenshot of the conversation task performed by human judges on
AMT.

9.6.6 Human judges responses collection
Figure 9.19 shows a screenshot of the conversation task performed by the workers on AMT, contain-
ing a control question, questions on the human vs machine nature of the speakers, and questions
on the gender of the speakers.

9.6.7 Example of collected conversations
9.6.7.1 Example of conversations: human-human

Here is an example conversation between two humans:
A: Hey! How are you doing?
B: Great! And you?
A: I am doing well! Any plan for the weekends?
B: Yeah, I think I’m going to visit the city. Want to come?
A: Wow yeah sure! any place you wanna visit?
B: I saw a park in the south that looks great. I think we can meet there and go for a beer
or something :)
A: yeah sure! what time shall we meet?
B: Maybe around 6-7??
A: Sure it might be already dark by then though. Saturday or Sunday?
B: Saturday better! We can go then a little earlier hahah 5?
A: haha sounds good! 5 works for me. We could even catch the sunset! Hope the weather will
be nice
B: yeeah I hope so :D What are you doing now?
A: I am replying to your text lol. I was checking twitter earlier

Chapter 9. Human or Machine? Turing Tests for Vision and Language 179

B: I was meaning a part from that :D I’m working now, do you want to go out also later?
A: today? haha sure, where do you have in mind?
B: There is a jazz club they told me is really cool
A: oh wow a jazz club! Sure, I was just listening to jazz yesterday
B: Woo cool! I love jazz, what other type of music do you listen to?
A: Depends on what work I do haha, but usually classical
B: Nice! I usually listen also to chopin. Do you play any instrument?
A: wow nice. Unfortunately not. I tried to learn keyboard when I was young but didn’t keep
up with it.
B: Omg I’m a music freak :D I play the piano and I want to learn how to play the guitar one
day, but don’t have time :D
A: wow you play the piano! That’s so cool! I wish I knew how to play piano haha. Yeah it’s
hard to find time to learn. I am sure you will pick it up quickly though, since you already
know how to play piano
B: Yeah is hard to hahaha, but one day I will :) . So I have to go, see you later!

9.6.7.2 Example of conversations: blenderbot-blenderbot

Here is an example conversation between two machines running blenderbot:
A: Hello! How is your day going so far?
B: Ok I suppose, my days always start off slow. How about you? Are you in school?
A: Not any more. I was once though. What do you do for a living? My days are also pretty
slow
B: I’m still in school, but it is summer break now so my days are very long and boring
A: At least its summer break. Your days will go by faster than you think! Where do you live?
B: Ohio, what about you? Do you have any plans for the summer yet? School starts again soon...
A: Florida! No plans really other than watching celebrity family feud on tv. It makes me laugh
and brightens my day
B: My mom loves Steve Harvey, she watches his morning show every morning before work! Which
one is your favorite celebrity to watch on family feud?
A: Probably the arnold swarchenegger team because he’s hilarious and has a great sense of humor
B: Oh yeah he’s hilarious! The grumpy grandpa vibe he gives off is great haha. Do you like
big families or small ones better?
A: I don’t have a big family so I would say small ones are better. There’s more love that way
B: Yeah that’s true, with a big family it can be hard to get close to everyone in the same way
as with a small one
A: Have you seen your family recently since it is summer break? How large is yours anyway?
Are they nice people lol
B: Just called my mother yesterday - she told me that we’re planning to visit them this weekend.
Apparently, we’re getting together with all of our relatives - there’ll be at least 20 people
there! Can’t wait to see them again :)
A: Wow that sounds like a lot of fun!! Will there be lots of kids running around too?? You
must be excited
B: There will definitely be lots of kids running around haha. It should be fun though, even
if they can get annoying sometimes lol
A: Oh yes well at least they are young enough not to know how annoying they can be lol!! Is
your whole family coming or just some of them??
B: We’ll only see some of them this time around unfortunately - most of my extended family lives
out west and it’s too expensive for us to fly out there right now
A: Yes I understand that for sure!! Hopefully next time then!! So what else have you been
up to besides planning this trip??
B: That seems unlikely given our current financial situation haha - hopefully things will improve
soon though so we can travel more often again :) Other than planning the trip, not much else

180 9.6. Methods and Additional Results for the Conversation Task

really - just hanging out with friends mostly
A: Yes being young and poor sure does make things difficult sometimes!! But hang in there because
life gets better as time goes on!! Well that sounds like fun too!!! What kind of stuff do
yall do together??
B: Yes definitely agree with that haha :) Mostly just playing video games together or going
out for food/drinks etc
A: Fun!!! Do yall play online or split screen??? And where do yall go eat/drink at??
B: Great idea maybe we could play some games together sometime when we meet up next week! Maybe
from party mode in mario kart

9.6.7.3 Example of conversations: GPT3textdavinci002-GPT3davincidavinci002 - suc-
cessful

Here is an example of a successful conversation between two machines running GPT3textdavinci002:
A: Hey! I’m so glad you’re here. Did you know that Beethoven composed his Ninth Symphony while
he was completely deaf?
B: Yeah, I did know that. He’s one of my favorite composers.
A: Really? I’m more of a fan of Bach myself.
B: I can see that. Bach is a great composer, but I think Beethoven’s passion for music really
comes through in his work.
A: That’s true, but I think Bach’s work is more complex and innovative.
B: I can see your point, but I think Beethoven’s work is more emotionally moving.
A: That’s a valid point. I think both composers are great in their own way.
B: Absolutely! I’m glad we can agree on that.
A: Me too. So, what kind of music do you like?
B: I like all kinds of music, but I’m particularly fond of classical and jazz.
A: That’s great! I like those genres too. Do you have any favorite composers or artists?
B: Yeah, I do. I really like Bach and Beethoven, as well as Miles Davis and John Coltrane.
A: Wow, you have excellent taste in music! I’m a big fan of Bach and Beethoven too, but I don’t
know much about jazz.
B: Well, jazz is a great genre of music. It’s very complex and often improvisational.
A: That sounds interesting. I’d like to learn more about it.
B: I can recommend some good jazz albums if you’re interested.
A: That would be great! I’m always looking to expand my musical knowledge.
B: I’m sure you are. You have such a passion for music.
A: Yeah, I do. It’s one of the things that makes life worth living for me.
B: I know how you feel. Music is a very important part of my life as well.
A: I’m glad we can share that in common.
B: Absolutely. It’s always great to find someone who shares your interests.
A: I know. It’s one of the best things about life.
B: Well, I should probably get going. It was great talking to you.

9.6.7.4 Example of conversations: GPT3textdavinci002-GPT3davincidavinci002 - dis-
carded

Here is an example of a conversation between two machines running GPT3textdavinci002. This
conversation was discarded. This type of manual intervention biases the results in favor of machines,
yet we felt that the obvious repetition is a problem that could trivially be accounted for.
A: Oh, hi! I’m so glad to see you. I was just talking about books with my friend. Do you
like reading?
B: Yes, I love reading! What kind of books do you like?
A: I like all kinds of books, but I especially love fantasy and fiction. What about you?
B: I also like all kinds of books, but I especially love non-fiction and history.

Chapter 9. Human or Machine? Turing Tests for Vision and Language 181

A: Oh, I love history too! What are some of your favorite historical figures?
B: I love learning about all kinds of historical figures, but my favorites are probably the
Founding Fathers.
A: Oh, I love learning about the Founding Fathers too! What do you think made them so great?
B: I think their dedication to liberty and justice made them great. What do you think?
A: I think their dedication to liberty and justice made them great. What do you think?
B: I think their dedication to liberty and justice made them great. What do you think?
A: I think their dedication to liberty and justice made them great. What do you think?
B: I think their dedication to liberty and justice made them great. What do you think?
A: I think their dedication to liberty and justice made them great. What do you think?
B: I think their dedication to liberty and justice made them great. What do you think?
A: I think their dedication to liberty and justice made them great.
B: I think their dedication to liberty and justice made them great.
A: I think their dedication to liberty and justice made them great.
B: I think their dedication to liberty and justice made them great.
A: I think their dedication to liberty and justice made them great.
B: I think their dedication to liberty and justice made them great. What do you think?
A: I think their dedication to liberty and justice made them great. What do you think?
B: I think their dedication to liberty and justice made them great. What do you think?
A: I think their dedication to liberty and justice made them great. What do you think?
B: I think their dedication to liberty and justice made them great. What do you think?

9.6.7.5 Example of conversations: GPT3textcurie001-GPT3textcurie001 - successful

Here is an example of a successful conversation between two machines running GPT3textcurie001:
A: Hey! What are you up to?

B: Just hanging out with my friends.
A: Do you like to read books?
B: Yeah, I do. What about you? Do you like to read books?
A: I do, but I also like to watch movies.
B: That’s cool! Reading is great, but sometimes it can be boring if you’re not into the book.
Movies let you see the story in a different way, and they can be more fun.
A: I can see that. Do you think movies are more educational than books?
B: I think they can be. Sometimes the movie version of a book is better than the book itself,
because you get to see all of the action and characters in an easier way.
A: That makes sense. Do you like to read for fun or to learn something?
B: I like to read for fun. But I also like to learn something, especially if the book is interesting.
A: That makes sense. Do you have any favorite books?
B: Yeah, I do. One of my favorite books is The Hunger Games by Suzanne Collins. It’s a great
book and it’s really suspenseful.
A: I’ve read that book, and it’s really great. I also like The Maze Runner by James Dashner.
It’s a bit different than most books, but I think it’s really good.
B: I think you’re right. Those are both great books. Do you have any other favorite books?
A: I do have other favorite books, but I don’t want to give them away. They’re all personal
favorites and I’m not sure if everyone would like them. But one of my favorites is The Catcher
in the Rye by J.D. Salinger. It’s a really unique book that
B: I’ve read that book, and it’s really great. I also like The Maze Runner by James Dashner.
It’s a bit different than most books, but I think it’s really good.
A: I think you’re right. Those are both great books. Do you have any other favorite books?
B: I do have other favorite books, but I don’t want to give them away. They’re all personal
favorites and I’m not sure if everyone would like them. But one of my favorites is The Catcher
in the Rye by J.D. Salinger. It’s a really unique book that
A: I’ve read that book, and it’s really great. I also like The Maze Runner by James Dashner.

182 9.6. Methods and Additional Results for the Conversation Task

It’s a bit different than most books, but I think it’s really good.
B: That’s interesting. I’ve never read that book, but I’m definitely going to check it out.
Are there any other books you like that we haven’t talked about?
A: Yes, there are. I really like The Girl with the Dragon Tattoo by Stieg Larsson and Gone
Girl by Gillian Flynn. They’re both great books that have a lot of suspense and mystery in
them.
B: I’ve read both of those books, and they’re really good. They definitely have a lot of suspense
and mystery in them, which I love.
A: I can see that. Do you have any other favorite books?
B: Yes, I do. One of my favorite books is The Lord of the Rings by J.R.R Tolkien. It’s a really
great book and it’s really epic.

9.6.7.6 Example of conversations: Human-Blenderbot

Here is an example of a conversation between a person and a machine running Blenderbot. A is
Blenderbot and B is a person.
A: Hi! What’s new with you?

B: Nothing much, how about yourself!
A: Well... My son was just accepted to the college of his dreams. I’m so proud of him!
B: Damn! That’s awesome. Congratulations :) Where’s he going
A: Thanks! He is going to michigan state. I will be sad when he leaves, but it’s a good school.
B: It is! I’m from Wisconsin, so I’m all about the Midwest pick haha. Does he want to do engineering?
A: He does! His dream job would be working for michigan tech in houghton, michigan. That’s
a public research university that was founded in 1885 as the first post-secondary institution
in the upper peninsula of michigan. Have you heard of it?
B: I haven’t! Michigan St is a really great school for engineering.
A: Nice, it seems like a lot of people go there and then end up working at michigan tech because
they have such good connections there.
B: Hey, it pays to know people, right. Everything else has been good for you?
A: Aside from being sad about my son leaving for college soon, things are pretty good here at
home. How about you? What have you been up to lately?
B: Oh, a little school, a little work. I recently moved so I’m just trying to keep my head
on my shoulders haha
A: Right on - where did you move from and where did you move to? Did your job let you relocate
or did you find something new after moving?
B: Just a move from one part of the city to another. I’m a grad student so I don’t really have
the luxury of leaving the city
A: Right - do you live near campus or somewhere else in town? Do they offer grad housing or
anything like that at your school?
B: They do, but I opted not to use it. I live close enough to walk in. I actually moved farther
away from the campus haha
A: Wow - what made you decide that living further away was better than living closer and having
access to grad housing if needed/wanted? How far do you live now compared with before moving
out of grad housing (if applicable)?
B: Yea, I never lived in grad housing. I moved from 1 off campus place to another. Definitely
the location. My old neighborhood was inundated with undergrads
A: Have any students come by your place since moving into your new neighborhood yet? My nephew
is starting college next year and we’re looking for some places near campus for him
B: Cool! What school is going to. I’ve had a bunch of my friends (who are all grad students
haha) over.
A: All over really; we’re still deciding between ucla and ucsb but he wants something warm since
we’re coming from minnesota
B: I would not recommend anywhere near me then haha. The winters are cold (though not as bad
as Wisconsin). I’m actually not familiar with ucsb!

Chapter 9. Human or Machine? Turing Tests for Vision and Language 183

A: Isla vista killings were pretty bad though; california can be scary sometimes lol but its
also beautiful
B: Isla vista killings?? Is that like the golden state killer?

9.6.7.7 Example of conversations: Human-GPT3textdavinci002

Here is an example of a conversation between a person and a machine running GPT3textdavinci002.
A is a person and B is the machine.
A: Do you play games?

B: Yes, I love playing games!
A: what game do you play?
B: I love playing all sorts of games!
A: I play video games alot, especially ARPG and MOBA. I also play board games. what about you
?
B: I love playing games! I especially enjoy strategy games and games that require a lot of
thinking.
A: I like League of Legends and DOTA. In terms of ARPGS, I like Path of Exile and Diablo. Board
game wise, Coup and monopoly is pretty good. And you?
B: I love playing all sorts of games! I especially enjoy strategy games and games that require
a lot of thinking.
A: I like MOBA. MOBA is especially fun with 5 man stacks. POE and Diablo is fun because I like
the grind.
B: I love playing all sorts of games! I especially enjoy strategy games and games that require
a lot of thinking.
A: What kind of strategy games ?
B: I love playing all sorts of strategy games! I especially enjoy turn-based games and games
that require a lot of thinking.
A: Interesting ! Are you talking about some games like Civilization VI ?
B: Yes, I love playing Civilization VI! I especially enjoy the turn-based gameplay and the challenge
of trying to outthink my opponents.
A: How did you outthink your opponents ?
B: I love playing all sorts of strategy games! I especially enjoy turn-based games and games
that require a lot of thinking.
A: But how did you win the game ?
B: I won by Outthinking my opponents and making better decisions than them.
A: In the Civilization VI ?
B: Yes, in Civilization VI.
A: Sounds good. You must have played for hours.
B: Yes, I played for hours and hours, and I loved every minute of it!
A: Recently I downloaded a lot of games from the Stream. It cost me a lot to buy games.
B: That sounds like a lot of fun! I love playing games, and I’m always happy to try out new
ones.

9.6.7.8 Example of conversations: Human-GPT3textcurie001

Here is an example of a conversation between a person and a machine running GPT3textcurie001.
A is the machine and B is the person.
A: Hey! How are you?

B: Hey, I’m doing great. What about you???
A: I’m good. I just finished up work and am looking for something to do.
B: Did you go for work today???
A: Yeah, I went to the office.
B: We had vacation for a week and the amount of assignments are killing me
A: Yeah, I know. Is there anything you’re interested in doing?
B: Right now I’m very much occupied with my university’s thing that I don’t even have time for

184 9.6. Methods and Additional Results for the Conversation Task

other things but I’d love to spend some time learning Korean
A: Korean?
B: Yeah, the language
A: Oh, I see. That’s really interesting and something that I would like to learn too one day.
Would you like me to teach you?
B: Can you? I never knew you know Korean
A: I learned it while living in South Korea for a year. It’s not as hard to learn as people
think and I would be happy to teach you.
B: I’d love that! Where did you stay in South Korea?
A: I stayed in Seoul.
B: It’s so pretty!! I badly want to visit Seoul and attend BTS’s concert
A: You should! BTS is amazing. They’re my favorite group.
B: Omg!! Whom do you like the most in the band??
A: I really like Jin, Suga and J-Hope.
B: They’re awesome. Which our the bands you know??
A: I like EXO, BTS and 2NE1.
B: Have been to any concert??
A: No, I haven’t. But I’d love to go to one!
B: Where are you staying right now??

9.6.7.9 Example of conversations: DialoGPT-DialoGPT

Here is an example dialog between two machines running DialoGPT:
A: Sure thing , anything in particular you need to know or want to talk about ?
B: What do you think your insecurities are and what do you think about people using you ?
A: Please elaborate on this , since it’s going to sound very accusatory .
B: Alright , so i’m working on a project , and I’m going to make a post once i have written
one .
A: Thanks for the quick response ! I look forward to reading it .
B: Sure thing !
A: Happy to provide any feedback !
B: I’ve already put it on r LifeProTips , so you’ll be
A: Oooo
B: Thanks !
A: I’ll stop
B: honeste
A: Thank you
B: In the kid
A: Thanks !
B: So much

Part 3

Discussion

185

Chapter 10

Discussion

Artificial machines climbing
the mountain of biological intel-
ligence. DALL·E prompt: A cubist
painting of a robot standing at the
top of a mountain.

I will use this discussion chapter for three purposes. First,
I will summarize the contribution of the thesis and outline
the links between my work and the parallel quest for the im-
plementation of brain-like hardware. Secondly, I will outline
the current challenges and most promising directions of the
research that I envision for the next decade in the interplay
between neuroscience and deep learning. I will include some
thoughts both from my vision and ideas collected through
discussions with colleagues and during seminars. Finally, I
will conclude by flashing a few debatable, maybe provocative
questions.

10.1 Summary and Outlook

The introduction of the feedback alignment algorithm
[Lillicrap et al., 2016] in 2016 has demonstrated that arti-
ficial neural networks can be trained with learning rules al-
ternative to backpropagation and compatible with the ar-
chitecture and dynamics of biological circuits. Since then,
intense effort in the computational neuroscience community has focused on developing training
algorithms complying with the constraints of biological networks. This thesis proposes two origi-
nal ways to integrate biological principles into the learning dynamics of artificial networks. First,
the GRAPES optimizer (Chapter 5 and [Dellaferrera et al., 2022b]) enhances the dynamics of
both backpropagation and feedback alignment algorithms with principles inspired by the biolog-
ical mechanism of synaptic integration. This work demonstrates that the performance of neural
networks can benefit from the introduction of biologically inspired dynamics in the learning rules,
in terms of accuracy, convergence rate, and ability to perform continual learning. Though this
work focuses mostly on the synaptic integration mechanism, it suggests that machine learning can
greatly benefit from the integration of mathematically grounded algorithms such as backpropaga-
tion with intuitively modeled biological mechanisms. Second, the PEPITA learning rule (Chapter
6 and [Dellaferrera and Kreiman, 2022]) presents a novel strategy to compute the updates of the
weight connections during learning, addressing simultaneously the issues of weight transport, non-
locality, freezing of activity and update locking. This work is framed in the research line paved by
the feedback alignment schemes and is the first method relying solely on forward computations.
Its performance is comparable with that of feedback alignment on simple networks and simple im-
age classification tasks. Currently, we are working on enabling PEPITA-based training on deeper
networks and more complex datasets by enhancing the network dynamics with the training of the
projection matrix and the introduction of machine learning strategies such as weight decay. Addi-
tionally, we are working on providing rigorous proof of the convergence analysis through methods

186

Chapter 10. Discussion 187

developed for direct feedback alignment [Refinetti et al., 2021].
In another research line, spiking neural networks represent an alternative answer to designing
biologically plausible neural networks. Chapter 7 of this thesis presents how spiking neural networks
can be used to perform key tasks of human auditory and visual perception. Specifically, we show
how a simple network trained with a self supervised learning rule is able to reproduce the behavioral
features of human subjects in a psychophysics experiment of auditory blind source separation.
We envision performing future work in this direction to obtain a fully spiking model that could
eventually be embedded in neuromorphic chips for low-power implementation of audio source
separation on hardware [Dellaferrera et al., 2022a].
As demonstrated in the literature [Kubilius et al., 2019, Bashivan et al., 2019, Ponce et al., 2019,
Walker et al., 2019], not only neuroscience can lead to the development of novel schemes in machine
learning, but deep learning is a powerful tool to investigate neuroscientific mechanisms. In this
thesis, Chapter 8 shows how artificial neural networks mapped to the visual ventral stream can be
used to create visual patterns that guide the neural population activity toward prescribed patterns
[Yuan et al., 2020]. This work constitutes an important step toward creating machine learning-
based pipelines to perform adversarial attacks on the primate brain. Additionally, our results
provide a rigorous quantification of the discrepancy in robustness to noise between the animal
brain and neural networks.
Finally, also in the context of quantifying the gap between human and machine performance,
Chapter 9 proposes a methodology inspired by the Turing test to quantify the gap between human
and AI responses in various tasks, including vision and language tasks. We show that state-of-the-
art models are close to bridging the gap between humans and AI, often fooling human observers.
This work presents many avenues for follow-up works, including investigating to which extent
human observers can be trained to distinguish responses between humans and machines.

10.2 A parallel quest: the design of neuromorphic hardware

This thesis has mostly focused on how neuroscience can drive the development of new models and
learning rules for artificial intelligence from the software point of view. It is crucial to remark
that, in parallel, the neuromorphic community is making critical progress in developing hard-
ware that can run bio-inspired networks in an efficient and robust fashion. In particular, spiking
neural networks exhibit desirable properties of sparsity and energy efficiency, however, they need
dedicated hardware to be able to run with low energy consumption comparable with that ob-
served in biological systems. Both academic groups and laboratories in industries have taken up
the challenge of building low-power technologies for neuro-inspired AI. Examples are the Dynap-
se chips from the Institute of Neuroinformatics in Zurich [Moradi et al., 2018], the Alive chip
from the Institute of Neuroinformatics in Zurich [Cartiglia et al., 2022], the Loihi chip from Intel
[Davies et al., 2018], the TrueNorth chip from IBM [DeBole et al., 2019], the Spinnaker technol-
ogy from the University of Manchester, and the phase change memory (PCM) devices from IBM
[Tuma et al., 2016, Khaddam-Aljameh et al., 2021]. Analogously to its algorithmic counterpart,
the design of neuromorphic hardware grounds its inspiration in brain mechanisms. For example,
the ALIVE chip contains layers of neurons that exhibit a biologically realistic multicompartmental
structure, where the dendrites integrate the signal and forward propagate it to the soma. The
synapses can be programmed to be adjusted through a local learning rule which is related to the
delta rule with a teaching signal. Another example is represented by the PCM devices which em-
bed artificial neurons retaining similarities with biological neurons. Similarly to biological neurons,
artificial neurons have a dynamic governed by the membrane potential, which is represented by
the phase configuration of the device and evolves according to the integration of inputs integrated
by the dendrites. Furthermore, the neurons exhibit intrinsic stochasticity emulating the significant
irregularities of neuronal dynamics due to intrinsic and extrinsic neuronal noise that originates in
the biochemical processes.
Although my Ph.D. work has primarily focused on algorithmic solutions, I have explored, in collabo-
ration with my colleagues in the hardware field, the possibility of applying my proposed frameworks

188 10.3. How crucial is neuroscience for the progress of AI

to train networks on neuromorphic hardware. Together with M. Fabre, we did some preliminary
work in applying GRAPES, the biologically inspired optimizer described in Chapter 5, to train fully
connected neural networks on PCM devices. Specifically, we found that, when used in combination
with the feedback alignment algorithm, GRAPES was able to significantly improve the convergence
rate and the accuracy of the trained models. These results are coherent with our computational
finding that GRAPES makes the learning algorithms more robust to noise and reduced precision
[Dellaferrera et al., 2022b], which are inherent characteristics of PCM devices. Another connec-
tion between my Ph.D. research and neuromorphic devices is the possibility of using PEPITA, the
learning algorithm based on forward computations described in Chapter 6, to train neural networks
on chips containing artificial dendritic neurons with teacher signals such as ALIVE, as preliminary
discussed with G. Indiveri and A. Rubino. PEPITA is a potential candidate to implement spatially
local learning on hardware containing two compartmental neurons. PEPITA requires storing the
activations of the first forward pass until a second forward pass is completed layer-wise. Biologi-
cally, this strategy may exploit the mismatch between dendritic and somatic activity to adjust the
synaptic strength. We envision the application of PEPITA for training neuromorphic chips with
multilayer networks, which so far has been an unexplored avenue on the ALIVE chip.

10.3 How crucial is neuroscience for the progress of AI

Throughout the introduction and the first part of this thesis, I have motivated the quest for
biologically inspired learning algorithms as a promising solution to bridge the gap between the
achievements of AI and the properties of the animal brain. Biological circuits are robust against
noise, against forgetting, and are able to generalize, thus it seems natural to infer that under-
standing learning in the brain may lead to neural networks with desirable properties of robustness,
generalization, and continual learning. However, mimicking biological learning may not be the
only way to this robust deep learning.
There are dissonant opinions among researchers in this field. According to Tommaso Poggio, who
pioneered computational neuroscience models of the visual cortex, achieving intelligence with AI re-
quires taking inspiration from neuroscience. Among all the aspects, including architecture, dataset,
and training strategies, the most promising breakthrough will come from a learning algorithm that
is biologically plausible and possibly trains networks layer-wise. In contrast, Demis Hassabis, the
founder of DeepMind, in one of the recent committee meetings of the Center of Brain Minds and
Machines, claimed that, in his opinion, the probability of engineers winning the race for intelli-
gence without help from neuroscience went from 10% to about 50% with the recent developments
of AI. Examples like AlphaFold, for instance, have demonstrated that incredible results can come
without neuroscientific background. It would not inconceivable if Alphafold [Jumper et al., 2021]
was the first machine to win the Nobel Prize. Another remarkable example is represented by state-
of-the-art models for Natural Language Processing that have outstanding performance relying on
a linguistic theory that we as humans do not grasp [Tenney et al., 2019]. The NLP networks are
learning some models of language which share some similarities with the human language, but
training occurs differently compared to the brain, for example in NLP the same model is probed
repeatedly in different ways, while in neuroscience we get disjoint snapshots. Our preliminary
results in the Turing test framework demonstrated that such state-of-the-art models are close to
passing as humans (see Chapter 9).

10.4 How crucial is AI for the progress of neuroscience

While, according to some researchers, neuroscience might not be critical to drive the advancement
of AI, there is a general consensus that neuroscience research is greatly benefitting from deep
learning. Recordings of neural activity, including electrophysiology recordings and functional mag-
netic resonance imaging, generate a vast amount of data that is very challenging to handle and
analyze. Machine learning algorithms are a powerful tool to learn and detect patterns which are
hard to recognize through manual inspection. Numerous studies employing deep learning to model

Chapter 10. Discussion 189

and understand neural patterns have revealed unknown properties of the brain. For example, the
research work done in Yamins’ group was able to map artificial networks to the auditory cortex,
revealing which areas of the cortex perform speech recognition and which ones recognize music
[Savage, , Kell et al., 2018].
In this context, it is worth reporting the dissonant perspective offered by Schaeffer’s analysis
[Schaeffer et al., 2022] which warns that there is ‘no free lunch for deep learning in neuroscience’.
He claims that the predictions made by machine learning models on properties of neural activity in
some cases emerge as a result of ad hoc fine-tuning to model brain mechanisms already discovered
experimentally. For Schaeffer, deep learning techniques would have unlikely predicted such proper-
ties without the guidance of experimental observations. This is an essential result to keep in mind
when interpreting the outcomes of artificial models of brain areas. However, some findings obtained
in the framework of substitute models of the brain are undeniably dependent on deep learning.
Among all, driving neural populations towards one-hot activity patterns through synthetic stimuli
could only be achieved thanks to artificial networks-based modeling [Bashivan et al., 2019].
Overall, the application of deep learning in neuroscience has allowed us to extract patterns and
predictions from neural data in ways that had not been possible before the advent of AI, not
only yielding improved accuracy but also paving the way to original approaches to old and new
questions. Furthermore, as witnessed by Sussillo, a computational neuroscientist in Google Brain,
introducing machine learning to analyze the data has changed the way neuroscience research is
carried out daily. Tedious data analysis is automated, and researchers can dedicate their efforts to
conceiving new questions, designing experimental and computational paradigms, and interpreting
the results.

10.5 Some unanswered, and possibly unanswerable, questions

To conclude the thesis, I will flash some questions on the future of artificial intelligence and
computational neuroscience which are still open – and may continue to remain unanswered for the
next decades. The points are not organized in a specific order.

• The animal brain integrates information from highly diverse sensory areas. It is a single
machine able to solve tasks of very different natures and purposes. State-of-the-art neural
networks are engineered to perform highly specialized tasks and cannot be reused across
different fields. Does the quest for obtaining intelligence in artificial models need to over-
come this difference? If it does not require it, would deep models benefit from approaches
integrating more sensorial areas and tasks?

• The animal brain is highly interconnected with the body. Learning occurs through experience
which is mostly unsupervised and made possible by physical exploration and manipulation
of the world, for example in the context of vision and audio. Is the integration of artificial
networks learning in a physical machine shaping the environment the key to reaching artificial
intelligence?

• The brain is a highly redundant system, able to adapt to changes and injuries. Artificial
networks may survive the removal of a few connections and can be re-tuned through further
training to reach similar performances, however, they are brittle systems, that cannot regen-
erate automatically. What are the mechanisms of the brain that allow for self-reparation?
How can we emulate them to make deep networks more robust?

• Partially discussed above: do we really need neuroscience to achieve intelligence in artificial
machines?

• In Chapter 9 we quantified the gap between human and artificial performance in the frame-
work of the Turing test. Is this an appropriate metric to define intelligence? Are there better
ways to define intelligence, not only in the artificial neural networks field?

190 10.5. Some unanswered, and possibly unanswerable, questions

• Can machines come up with a completely new way of creating music and visual art? or
will they just be able to emulate existing art? How can we rigorously distinguish between
creativity and emulation?

• Neural networks are often defined as black boxes. For example, in natural language processing
architectures, it is hard to understand the language model learnt by the networks. It is
true that the huge number of parameters makes it challenging to interpret the solutions
found through training of deep models. However, as Raukur and colleagues pointed out
[Räukur et al., 2022], even the most complex networks are the result of simple mathematical
operations, that humans design and understand, combined in a complex system. To what
extent, then we can still say that neural networks cannot be interpreted?

• We can remove part of the brain in primates, and still the animal is perfectly functioning.
Are some parts of the brain not serving a specific purpose?

• Which is the progress in computational neuroscience that is most needed for boosting the
design of artificial networks?

• Spiking neural networks have been studied intensively for a relatively shorter time than the
standard artificial models. Despite huge progress being made in both neuromorphic software
and hardware, the research on standard artificial models proceeds with the same – if not
greater – pace, leading to sparse and energy-efficient algorithms as well. Will the progress
in spiking neural networks ever reach the continuously improving performances of standard
artificial architectures? Is there a lower ceiling of power efficiency and sparsity for artificial
models than for spiking networks?

• Artificial models of the brain are often designed to explain properties of the brain that have
been found through experiments. Then, where are the gaps in knowledge that neuroscientists
would urge the computational community to focus on when looking for unveiled properties?

Chapter 11

Author Contributions

In this section, I outline my contribution in each of the presented research works.
Chapter 5 is based on the paper [Dellaferrera et al., 2022b]. Giorgia Dellaferrera conceived the
idea. Giorgia Dellaferrera, Stanislaw Wozniak, Giacomo Indiveri, Angeliki Pantazi, and Evange-
los Eleftheriou identified the properties of the proposed algorithm in terms of error modulation,
scalability, catastrophic forgetting and behaviour under hardware constraints. Giorgia Dellaferrera
designed and performed the simulations. Giorgia Dellaferrera, Stanislaw Wozniak, Giacomo Indi-
veri, Angeliki Pantazi, and Evangelos Eleftheriou analyzed the results. Giorgia Dellaferrera wrote
the manuscript with input from the other authors.
Chapter 6 is based on the paper [Dellaferrera and Kreiman, 2022]. Giorgia Dellaferrera conceived
the idea. Giorgia Dellaferrera designed and performed the simulations, with input from Gabriel
Kreiman. Giorgia Dellaferrera and Gabriel Kreiman analyzed the results. Giorgia Dellaferrera and
Gabriel Kreiman wrote the manuscript.
Chapter 7 is based on the paper [Dellaferrera et al., 2022a]. Tomoki Fukai, Giorgia Dellaferrera
and Toshitake Asabuki conceived the idea. Giorgia Dellaferrera designed and performed the simu-
lations, with input from Toshitake Asabuki. All authors analyzed the results. Giorgia Dellaferrera
and Tomoki Fukai wrote the manuscript. Toshitake Asabuki and Giorgia Dellaferrera wrote the
Supplementary material.
Chapter 8 is based on the paper [Yuan et al., 2020]. Jiashi Feng, Will Xiao, and Li Yuan conceived
of the study. Gabriel Kreiman, Margaret S. Livingstone, Will Xiao, and Li Yuan designed the
experiments. Li Yuan developed the code for creating adversarial images. Margaret S.Livingstone
and Will Xiao acquired the neuronal recording data. Li Yuan acquired the human behavior data. Li
Yuan and Will Xiao analyzed the data and drafted the manuscript. Giorgia Dellaferrera performed
the systematic testing of ANN architectures and fitting methods for building neuronal encoding
models. All authors interpreted the data and revised the manuscript. Gabriel Kreiman, Margaret
S. Linvingstone, Francis E.H. Tay, and Jiashi Feng provided funding.
Chapter 9 is based on the manuscript [Zhang et al., 2022b]. Mengmi Zhang and Gabriel Kreiman
conceived the general idea of the work. Giorgia Dellaferrera designed and implemented the pipeline
for the conversational AI study. Giorgia Dellaferrera collected the conversation dataset with the
help of all authors. Ankur S. designed and implemented the pipeline for the image captioning
task. Marcelo Armendariz and Prachi Agrawal designed and implemented the pipeline for the
visual search task. Spandan Madan designed and implemented the pipeline for the color detection
and object detection tasks. Noga Mudrik designed and implemented the pipeline for the word
association analysis. All authors anaylized the results and co-wrote the manuscript.

191

Bibliography

[vis,] Google vision api. https://cloud.google.com/vision. Accessed: 2022-10-30.

[mic,] Microsoft azure cognitive api. https://azure.microsoft.com/en-us/products/
cognitive-services/. Accessed: 2022-10-30.

[BBC, 1991] (1991). Bbc sound effects library. Compact disc.;Digital and analog record-
ings.;Detailed contents on insert in each container.;Recorded: 1977-1986.

[Fus, 1993] (1993). I. introduction and executive summary. Fusion Engineering and Design, 21:3–
15.

[Alz, 2020] (2020). Review of deep learning: concepts, cnn architectures, challenges, applications,
future directions. Journal of Big Data, 8(1):1–74.

[phi, 2019] (Retrieved in 2019). Instruments.

[Abraham, 2008] Abraham, W. (2008). Metaplasticity: Tuning synapses and networks for plastic-
ity. Nature reviews. Neuroscience, 9:387.

[Agrawal et al., 2019] Agrawal, H., Desai, K., Wang, Y., Chen, X., Jain, R., Johnson, M., Batra,
D., Parikh, D., Lee, S., and Anderson, P. (2019). Nocaps: Novel object captioning at scale. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 8948–8957.

[Ahmad and Hawkins, 2016] Ahmad, S. and Hawkins, J. (2016). How do neurons operate on sparse
distributed representations? a mathematical theory of sparsity, neurons and active dendrites.

[Ahveninen et al., 2011] Ahveninen, J., Hämäläinen, M., Jääskeläinen, I. P., Ahlfors, S. P., Huang,
S., Lin, F.-H., Raij, T., Sams, M., Vasios, C. E., and Belliveau, J. W. (2011). Attention-driven
auditory cortex short-term plasticity helps segregate relevant sounds from noise. Proceedings of
the National Academy of Sciences, 108(10):4182–4187.

[Akrout et al., 2019] Akrout, M., Wilson, C., Humphreys, P., Lillicrap, T., and Tweed, D. (2019).
Deep learning without weight transport. In NeurIPS.

[Almomani et al., 2019] Almomani, D., Alauthman, M., Alweshah, M., Dorgham, O., and Albalas,
F. (2019). A comparative study on spiking neural network encoding schema: implemented with
cloud computing. Cluster Computing, 22.

[Amari et al., 1995] Amari, S., Cichocki, A., and Yang, H. (1995). A new learning algorithm for
blind signal separation. volume 8, pages 757–763.

[Amodei and Hernandez, 2018] Amodei, D. and Hernandez, D. (2018). Ai and compute.

[Anastasio and Robinson, 1989] Anastasio, T. J. and Robinson, D. A. (1989). Distributed parallel
processing in the vestibulo-oculomotor system. Neural Comput., 1(2):230–241.

[Asabuki and Fukai, 2020] Asabuki, T. and Fukai, T. (2020). Somatodendritic consistency check
for temporal feature segmentation. Nature Communications, 11.

192

https://cloud.google.com/vision
https://azure.microsoft.com/en-us/products/cognitive-services/
https://azure.microsoft.com/en-us/products/cognitive-services/

Bibliography 193

[Asari et al., 2006] Asari, H., Pearlmutter, B. A., and Zador, A. M. (2006). Sparse representations
for the cocktail party problem. Journal of Neuroscience, 26(28):7477–7490.

[Atilgan et al., 2018] Atilgan, H., Town, S. M., Wood, K. C., Jones, G. P., Maddox, R. K., Lee,
A. K., and Bizley, J. K. (2018). Integration of visual information in auditory cortex promotes
auditory scene analysis through multisensory binding. Neuron, 97(3):640–655.e4.

[Ba and Caruana, 2014] Ba, J. and Caruana, R. (2014). Do deep nets really need to be deep? In
Advances in Neural Information Processing Systems, volume 27, pages 2654–2662.

[Ba et al., 2016] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization.

[Bachem et al., 2015] Bachem, O., Lucic, M., and Krause, A. (2015). Coresets for nonparametric
estimation - the case of dp-means. In Bach, F. and Blei, D., editors, Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 209–217, Lille, France. PMLR.

[Bahroun et al., 2021] Bahroun, Y., Chklovskii, D. B., and Sengupta, A. M. (2021). A normative
and biologically plausible algorithm for independent component analysis.

[Bai et al., 2021] Bai, H., Sun, R., Hong, L., Zhou, F., Ye, N., Ye, H.-J., Chan, S.-H. G., and Li, Z.
(2021). Decaug: Out-of-distribution generalization via decomposed feature representation and
semantic augmentation. In AAAI.

[Bailey et al., 2000] Bailey, C., Giustetto, M., Huang, Y.-Y., Hawkins, R., and Kandel, E. (2000).
Is heterosynaptic modulation essential for stabilizing hebbian plasticity and memory? Nature
reviews. Neuroscience, 1:11–20.

[Banino et al., 2018] Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T. P., Mirowski, P. W.,
Pritzel, A., Chadwick, M. J., Degris, T., Modayil, J., Wayne, G., Soyer, H., Viola, F., Zhang, B.,
Goroshin, R., Rabinowitz, N. C., Pascanu, R., Beattie, C., Petersen, S., Sadik, A., Gaffney, S.,
King, H., Kavukcuoglu, K., Hassabis, D., Hadsell, R., and Kumaran, D. (2018). Vector-based
navigation using grid-like representations in artificial agents. Nature, 557:429–433.

[Barnett and Ceci, 2002] Barnett, S. and Ceci, S. (2002). When and where do we apply what we
learn? a taxonomy for far transfer. Psychological bulletin, 128:612–37.

[Barth and Poulet, 2012] Barth, A. and Poulet, J. (2012). Experimental evidence for sparse firing
in the neocortex. Trends in neurosciences, 35:345–55.

[Bartunov et al., 2018] Bartunov, S., Santoro, A., Richards, B. A., Marris, L., Hinton, G. E.,
and Lillicrap, T. P. (2018). Assessing the scalability of biologically-motivated deep learning
algorithms and architectures. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, page 9390–9400.

[Bashivan et al., 2019] Bashivan, P., Kar, K., and DiCarlo, J. J. (2019). Neural population control
via deep image synthesis. Science, 364(6439):eaav9436.

[Bee and Micheyl, 2008] Bee, M. and Micheyl, C. (2008). The cocktail party problem: What is
it? how can it be solved? and why should animal behaviorists study it? Journal of comparative
psychology (Washington, D.C. : 1983), 122:235–51.

[Belilovsky et al., 2020] Belilovsky, E., Eickenberg, M., and Oyallon, E. (2020). Decoupled greedy
learning of cnns.

[Bell and Sejnowski, 1995] Bell, A. and Sejnowski, T. (1995). An information-maximization ap-
proach to blind separation and blind deconvolution. Neural computation, 7:1129–59.

[Bengio, 2014] Bengio, Y. (2014). How auto-encoders could provide credit assignment in deep
networks via target propagation.

194 Bibliography

[Bengio et al., 2016] Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T., and Lin, Z. (2016).
Towards biologically plausible deep learning. Preprint at https://arxiv.org/abs/1502.04156.

[Benna and Fusi, 2016] Benna, M. and Fusi, S. (2016). Computational principles of synaptic mem-
ory consolidation. Nature Neuroscience, 19.

[Berardino et al., 2017] Berardino, A., Laparra, V., Ballé, J., and Simoncelli, E. (2017). Eigen-
distortions of hierarchical representations. In Advances in neural information processing systems,
pages 3530–3539.

[Bhojanapalli et al., 2021] Bhojanapalli, S., Chakrabarti, A., Glasner, D., Li, D., Unterthiner,
T., and Veit, A. (2021). Understanding robustness of transformers for image classification.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10231–
10241.

[Bhumbra, 2018] Bhumbra, G. S. (2018). Deep learning improved by biological activation func-
tions.

[Bienenstock et al., 1982] Bienenstock, E., Cooper, L. N., and Munro, P. W. (1982). Theory for
the development of neuron selectivity: orientation specificity and binocular interaction in visual
cortex. In The Journal of neuroscience : the official journal of the Society for Neuroscience.

[Bird et al., 2021] Bird, A. D., Jedlicka, P., and Cuntz, H. (2021). Dendritic normalisation im-
proves learning in sparsely connected artificial neural networks. PLOS Computational Biology,
17(8):1–24.

[Block, 1981] Block, N. (1981). Behaviourism and psychologism. Philosophical Review, 90(5):43.

[Bloomberg and Leptonica, 2008] Bloomberg, D. S. and Leptonica (2008). Color quantization us-
ing modified median cut.

[Blundell et al., 2015] Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015).
Weight uncertainty in neural networks. In Proceedings of the 32nd International Conference
on International Conference on Machine Learning - Volume 37, ICML’15, page 1613–1622.
JMLR.org.

[Boahen, 2005] Boahen, K. A. (2005). Neuromorphic microchips. Scientific American, 292 5:56–63.

[Boden, 1998] Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence,
103(1):347–356. Artificial Intelligence 40 years later.

[Bohnstingl et al., 2022] Bohnstingl, T., Woźniak, S., Pantazi, A., and Eleftheriou, E. (2022).
Online spatio-temporal learning in deep neural networks. IEEE Transactions on Neural Networks
and Learning Systems, pages 1–15.

[Bomatter et al., 2021a] Bomatter, P., Zhang, M., Karev, D., Madan, S., Tseng, C., and Kreiman,
G. (2021a). When pigs fly: Contextual reasoning in synthetic and natural scenes.

[Bomatter et al., 2021b] Bomatter, P., Zhang, M., Karev, D., Madan, S., Tseng, C., and Kreiman,
G. (2021b). When pigs fly: Contextual reasoning in synthetic and natural scenes. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 255–264.

[Brandt and Lin, 1996] Brandt, R. D. and Lin, F. (1996). Supervised learning in neural networks
without feedback network. Proceedings of the 1996 IEEE International Symposium on Intelligent
Control, pages 86–90.

[Brette, 2015] Brette, R. (2015). Philosophy of the spike: Rate-based vs. spike-based theories of
the brain. Frontiers in Systems Neuroscience, 9:151.

[Bronkhorst, 2015] Bronkhorst, A. (2015). The cocktail-party problem revisited: early processing
and selection of multi-talker speech. Attention, perception & psychophysics, 77.

Bibliography 195

[Brown et al., 2001] Brown, G., Yamada, S., and Sejnowski, T. (2001). Independent component
analysis at neural cocktail party. Trends in neurosciences, 24:54–63.

[Brown et al., 2020a] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020a). Language models are few-shot
learners. Advances in neural information processing systems, 33:1877–1901.

[Brown et al., 2020b] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M.,
Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, I., and Amodei, D. (2020b). Language models are few-shot learners.

[Burbank and Kreiman, 2012] Burbank, K. and Kreiman, G. (2012). Depression-biased reverse
plasticity rule is required for stable learning at top-down connections. PLoS Computational
Biology, 8:1–16.

[Buzsáki and Mizuseki, 2014] Buzsáki, G. and Mizuseki, K. (2014). The log-dynamic brain: How
skewed distributions affect network operations. Nature reviews. Neuroscience, 15:264–278.

[Cadena et al., 2019] Cadena, S. A., Denfield, G. H., Walker, E. Y., Gatys, L. A., Tolias, A. S.,
Bethge, M., and Ecker, A. S. (2019). Deep convolutional models improve predictions of macaque
v1 responses to natural images. PLoS computational biology, 15(4):e1006897.

[Carandini and Heeger, 2011] Carandini, M. and Heeger, D. (2011). Normalization as a canonical
neural computation. nat. Nature reviews. Neuroscience, 13:51–62.

[Carrillo et al., 2013] Carrillo, S., Harkin, J., McDaid, L. J., Morgan, F., Pande, S., Cawley, S.,
and McGinley, B. (2013). Scalable hierarchical network-on-chip architecture for spiking neural
network hardware implementations. IEEE Transactions on Parallel and Distributed Systems,
24(12):2451–2461.

[Cartiglia et al., 2022] Cartiglia, M., Rubino, A., Narayanan, S., Frenkel, C., Haessig, G., Indi-
veri, G., and Payvand, M. (2022). Stochastic dendrites enable online learning in mixed-signal
neuromorphic processing systems.

[Casper et al., 2021] Casper, S., Nadeau, M., Hadfield-Menell, D., and Kreiman, G. (2021). Robust
feature-level adversaries are interpretability tools.

[Castro et al., 2018] Castro, F. M., Marín-Jiménez, M. J., Guil, N., Schmid, C., and Alahari, K.
(2018). End-to-End Incremental Learning. In Ferrari, V., Hebert, M., Sminchisescu, C., and
Weiss, Y., editors, ECCV 2018 - European Conference on Computer Vision, volume 11216 of
Lecture Notes in Computer Science, pages 241–257, Munich, Germany. Springer.

[Caya-Bissonnette, 2020] Caya-Bissonnette, L. (2020). Heterosynaptic plasticity in cortical in-
terneurons. Journal of Neuroscience, 40(9):1793–1794.

[Chandrasekaran et al., 2018] Chandrasekaran, A., Prabhu, V., Yadav, D., Chattopadhyay, P.,
and Parikh, D. (2018). Do explanations make vqa models more predictable to a human? arXiv
preprint arXiv:1810.12366.

[Chaudhry et al., 2018] Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny, M. (2018).
Efficient lifelong learning with a-gem.

[Chen et al., 2015] Chen, X., Fang, H., Lin, T.-Y., Vedantam, R., Gupta, S., Dollár, P., and
Zitnick, C. L. (2015). Microsoft coco captions: Data collection and evaluation server. arXiv
preprint arXiv:1504.00325.

196 Bibliography

[Chen et al., 2021a] Chen, X., Hsieh, C.-J., and Gong, B. (2021a). When vision transform-
ers outperform resnets without pretraining or strong data augmentations. arXiv preprint
arXiv:2106.01548.

[Chen et al., 2021b] Chen, X., Wu, Y., Wang, Z., Liu, S., and Li, J. (2021b). Developing real-time
streaming transformer transducer for speech recognition on large-scale dataset. In ICASSP 2021
- 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5904–5908.

[Cherry, 1953] Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and
with two ears. The Journal of the Acoustical Society of America, 25(5):975–979.

[Chicca and Indiveri, 2020] Chicca, E. and Indiveri, G. (2020). A recipe for creating ideal hybrid
memristive-CMOS neuromorphic processing systems. Applied Physics Letters, 116(12):120501.

[Chistiakova et al., 2014] Chistiakova, M., Bannon, N. M., Bazhenov, M., and Volgushev, M.
(2014). Heterosynaptic plasticity: Multiple mechanisms and multiple roles. The Neuroscientist,
20(5):483–498.

[Cho et al., 2014] Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., and
Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical
machine translation. CoRR, abs/1406.1078.

[Christian, 2011] Christian, B. (2011). The most human human: What talking with computers
teaches us about what it means to be alive. Anchor.

[Cichocki et al., 2006] Cichocki, A., Zdunek, R., and Amari, S. (2006). New algorithms for non-
negative matrix factorization in applications to blind source separation. In 2006 IEEE Inter-
national Conference on Acoustics Speech and Signal Processing Proceedings, volume 5, pages
V–V.

[Cireşan et al., 2010] Cireşan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J.
(2010). Deep, big, simple neural nets for handwritten digit recognition. Neural Computation,
22(12):3207–3220.

[Clark et al., 2021] Clark, D. G., Abbott, L. F., and Chung, S. (2021). Credit assignment through
broadcasting a global error vector.

[Clopath and Gerstner, 2010] Clopath, C. and Gerstner, W. (2010). Voltage and spike timing
interact in stdp – a unified model. Frontiers in Synaptic Neuroscience, 2.

[Coesmans et al., 2004] Coesmans, M., Weber, J., De Zeeuw, C., and Hansel, C. (2004). Bidirec-
tional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron, 44:691–700.

[Cohen et al., 2017] Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. (2017). Emnist: Extend-
ing mnist to handwritten letters. In 2017 International Joint Conference on Neural Networks
(IJCNN), pages 2921–2926.

[Colby, 1981] Colby, K. M. (1981). Modeling a paranoid mind. Behavioral and Brain Sciences,
4(4):515–534.

[Colby et al., 1971] Colby, K. M., Weber, S., and Hilf, F. D. (1971). Artificial paranoia. Artificial
Intelligence, 2(1):1–25.

[Collins and Ghahramani, 2021] Collins, E. and Ghahramani, Z. (2021). Lamda: our breakthrough
conversation technology. The Keyword, May, 18.

[Colombo et al., 2018] Colombo, F., Brea, J., and Gerstner, W. (2018). Learning to generate music
with bachprop. CoRR, abs/1812.06669.

Bibliography 197

[Colombo et al., 2017] Colombo, F., Seeholzer, A., and Gerstner, W. (2017). Deep artificial com-
poser: A creative neural network model for automated melody generation. pages 81–96.

[Colombo, 2021] Colombo, F. F. (2021). Learning music composition with recurrent neural net-
works. page 158.

[Colton and Wiggins, 2012] Colton, S. and Wiggins, G. (2012). Computational creativity: The
final frontier? Frontiers in Artificial Intelligence and Applications, 242:21–26.

[Comon, 1994] Comon, P. (1994). Independent component analysis, a new concept? Signal Pro-
cess., 36:287–314.

[Corradi et al., 2021] Corradi, F., Adriaans, G., and Stuijk, S. (2021). Gyro: A digital spiking
neural network architecture for multi-sensory data analytics. In Proceedings of the 2021 Drone
Systems Engineering and Rapid Simulation and Performance Evaluation: Methods and Tools
Proceedings, DroneSE and RAPIDO ’21, page 9–15, New York, NY, USA. Association for Com-
puting Machinery.

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine
learning, 20(3):273–297.

[Coulom, 2006] Coulom, R. (2006). Efficient selectivity and backup operators in monte-carlo tree
search. In Computers and Games.

[Coulom, 2007] Coulom, R. (2007). Computing elo ratings of move patterns in the game of go.
ICGA Journal, 30.

[Crick, 1989] Crick, F. (1989). The recent excitement about neural networks. Nature, 337:129–132.

[Cueva and Wei, 2018] Cueva, C. J. and Wei, X.-X. (2018). Emergence of grid-like representations
by training recurrent neural networks to perform spatial localization. In International Conference
on Learning Representations.

[Cui et al., 2018] Cui, Y., Yang, G., Veit, A., Huang, X., and Belongie, S. (2018). Learning to
evaluate image captioning. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5804–5812.

[Czarnecki et al., 2017] Czarnecki, W. M., Swirszcz, G., Jaderberg, M., Osindero, S., Vinyals, O.,
and Kavukcuoglu, K. (2017). Understanding synthetic gradients and decoupled neural interfaces.
In Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
page 904–912. JMLR.org.

[Damasio et al., 1994] Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., and Damasio,
A. R. (1994). The return of phineas gage: Clues about the brain from the skull of a famous
patient. Science, 264(5162):1102–1105.

[Damassino, 2020] Damassino, N. (2020). The questioning turing test. Minds and Machines,
30(4):563–587.

[Daoulas et al., 2021] Daoulas, V., Tampouratzis, N., Mousouliotis, P., and Papaefstathiou, I.
(2021). An open-source implementation of lstm and gru in the ptolemy simulation framework.
In 2021 IEEE/ACM 25th International Symposium on Distributed Simulation and Real Time
Applications (DS-RT), pages 1–8.

[Dapello et al., 2020] Dapello, J., Marques, T., Schrimpf, M., Geiger, F., Cox, D., and DiCarlo,
J. J. (2020). Simulating a primary visual cortex at the front of cnns improves robustness to
image perturbations. Advances in Neural Information Processing Systems, 33:13073–13087.

[Darken et al., 1992] Darken, C., Chang, J., and Moody, J. (1992). Learning rate schedules for
faster stochastic gradient search. In Neural Networks for Signal Processing II Proceedings of the
1992 IEEE Workshop, pages 3–12.

198 Bibliography

[Davies et al., 2018] Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H.,
Dimou, G., Joshi, P., Imam, N., Jain, S., Liao, Y., Lin, C.-K., Lines, A., Liu, R., Mathaikutty,
D., McCoy, S., Paul, A., Tse, J., Venkataramanan, G., Weng, Y.-H., Wild, A., Yang, Y., and
Wang, H. (2018). Loihi: A neuromorphic manycore processor with on-chip learning. IEEE
Micro, 38(1):82–99.

[Dayan and Abbott, 2005] Dayan, P. and Abbott, L. F. (2005). Theoretical Neuroscience: Com-
putational and Mathematical Modeling of Neural Systems. The MIT Press.

[DeBole et al., 2019] DeBole, M. V., Taba, B., Amir, A., Akopyan, F., Andreopoulos, A., Risk,
W. P., Kusnitz, J., Ortega Otero, C., Nayak, T. K., Appuswamy, R., Carlson, P. J., Cassidy,
A. S., Datta, P., Esser, S. K., Garreau, G. J., Holland, K. L., Lekuch, S., Mastro, M., McKinstry,
J., di Nolfo, C., Paulovicks, B., Sawada, J., Schleupen, K., Shaw, B. G., Klamo, J. L., Flickner,
M. D., Arthur, J. V., and Modha, D. S. (2019). Truenorth: Accelerating from zero to 64 million
neurons in 10 years. Computer, 52(5):20–29.

[Degrave et al., 2022] Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F.,
Ewalds, T., Hafner, R., Abdolmaleki, A., de las Casas, D., Donner, C., Fritz, L., Galperti, C.,
Huber, A., Keeling, J., Tsimpoukelli, M., Kay, J., Merle, A., Moret, J.-M., Noury, S., Pesamosca,
F., Pfau, D., Sauter, O., Sommariva, C., Coda, S., Duval, B., Fasoli, A., Kohli, P., Kavukcuoglu,
K., Hassabis, D., and Riedmiller, M. (2022). Magnetic control of tokamak plasmas through deep
reinforcement learning. Nature, 602(7897):414–419.

[Dellaferrera et al., 2022a] Dellaferrera, G., Asabuki, T., and Fukai, T. (2022a). Modeling the
repetition-based recovering of acoustic and visual sources with dendritic neurons. Frontiers in
Neuroscience, 16.

[Dellaferrera and Kreiman, 2022] Dellaferrera, G. and Kreiman, G. (2022). Error-driven input
modulation: Solving the credit assignment problem without a backward pass. In Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pages 4937–4955. PMLR.

[Dellaferrera et al., 2022b] Dellaferrera, G., Woźniak, S., Indiveri, G., Pantazi, A., and Eleftheriou,
E. (2022b). Introducing principles of synaptic integration in the optimization of deep neural
networks. Nature Communications, 13.

[Deng et al., 2009a] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009a).
Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255.

[Deng et al., 2009b] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009b).
Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee.

[Denkowski and Lavie, 2014] Denkowski, M. and Lavie, A. (2014). Meteor universal: Language
specific translation evaluation for any target language. In Proceedings of the ninth workshop on
statistical machine translation, pages 376–380.

[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-
training of deep bidirectional transformers for language understanding.

[Diba and Buzsáki, 2007] Diba, K. and Buzsáki, G. (2007). Diba, k. and buzsaki, g. forward and
reverse hippocampal place-cell sequences during ripples. nat. neurosci. 10, 12411242. Nature
neuroscience, 10:1241–2.

[Diehl and Cook, 2015] Diehl, P. and Cook, M. (2015). Unsupervised learning of digit recognition
using spike-timing-dependent plasticity. Frontiers in Computational Neuroscience, 9:99.

Bibliography 199

[Dill et al., 2008] Dill, K., Ozkan, S., Shell, M., and Weikl, T. (2008). The protein folding problem.
Annual review of biophysics, 37:289–316.

[Ding and Simon, 2012] Ding, N. and Simon, J. Z. (2012). Neural coding of continuous speech in
auditory cortex during monaural and dichotic listening. Journal of Neurophysiology, 107(1):78–
89. PMID: 21975452.

[Dodge and Karam, 2017] Dodge, S. and Karam, L. (2017). A study and comparison of human
and deep learning recognition performance under visual distortions. In 2017 26th international
conference on computer communication and networks (ICCCN), pages 1–7. IEEE.

[Dong et al., 2016] Dong, J., Colburn, H. S., and Sen, K. (2016). Cortical transformation of spatial
processing for solving the cocktail party problem: A computational model. eNeuro, 3(1).

[Dong et al., 2018a] Dong, L., Xu, S., and Xu, B. (2018a). Speech-transformer: A no-recurrence
sequence-to-sequence model for speech recognition. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5884–5888.

[Dong et al., 2018b] Dong, M., Huang, X., and Xu, B. (2018b). Unsupervised speech recognition
through spike-timing-dependent plasticity in a convolutional spiking neural network. PLOS
ONE, 13(11):1–19.

[Dosovitskiy et al., 2021] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. ICLR.

[Douglas et al., 1995] Douglas, R., Mahowald, M. A., and Mead, C. (1995). Neuromorphic ana-
logue vlsi. Annual review of neuroscience, 18:255–81.

[Draelos et al., 2016] Draelos, T. J., Miner, N. E., Lamb, C. C., Vineyard, C. M., Carlson, K. D.,
James, C. D., and Aimone, J. B. (2016). Neurogenesis deep learning. CoRR, abs/1612.03770.

[EDDINGTON, 1920] EDDINGTON, A. S. (1920). The internal constitution of the stars. Nature,
106(2653):14–20.

[Elhilali, 2013] Elhilali, M. (2013). Bayesian inference in auditory scenes. Conference proceedings :
... Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE Engineering in Medicine and Biology Society. Conference, 2013:2792–2795.

[Elhilali and Shamma, 2009] Elhilali, M. and Shamma, S. (2009). A cocktail party with a cortical
twist: How cortical mechanisms contribute to sound segregation. The Journal of the Acoustical
Society of America, 124:3751–71.

[Elsayed et al., 2018] Elsayed, G., Shankar, S., Cheung, B., Papernot, N., Kurakin, A., Goodfellow,
I., and Sohl-Dickstein, J. (2018). Adversarial examples that fool both computer vision and time-
limited humans. In Advances in Neural Information Processing Systems, pages 3910–3920.

[Etherington et al., 2010] Etherington, S. J., Atkinson, S. E., Stuart, G. J., and Williams, S. R.
(2010). Synaptic integration. Encyclopedia of Life Sciences.

[Feldman and Valiant, 2009] Feldman, V. and Valiant, L. G. (2009). Experience-induced neural
circuits that achieve high capacity. Neural Comput., 21(10):2715–2754.

[Fiete et al., 2010] Fiete, I. R., Senn, W., Wang, C. Z. H., and Hahnloser, R. H. R. (2010). Spike-
time-dependent plasticity and heterosynaptic competition organize networks to produce long
scale-free sequences of neural activity. Neuron, 65(4):563—576.

[Foster and Wilson, 2006] Foster, D. J. and Wilson, M. A. (2006). Reverse replay of behavioural
sequences in hippocampal place cells during the awake state. Nature, 440:680–683.

200 Bibliography

[Frémaux et al., 2010] Frémaux, N., Sprekeler, H., and Gerstner, W. (2010). Functional re-
quirements for reward-modulated spike-timing-dependent plasticity. Journal of Neuroscience,
30(40):13326–13337.

[French, 1999] French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in
Cognitive Sciences, 3(4):128 – 135.

[French, 2000] French, R. M. (2000). The turing test: the first 50 years. Trends in cognitive
sciences, 4(3):115–122.

[Frenkel et al., 2019] Frenkel, C., Lefebvre, M., and Bol, D. (2019). Learning without feedback:
Direct random target projection as a feedback-alignment algorithm with layerwise feedforward
training. Preprint at https://arxiv.org/abs/1909.01311.

[Frommolt et al., 2006] Frommolt, K.-H., Bardeli, R., Kurth, F., and Clausen, M. (2006). The
animal sound archive at the Humboldt-University of Berlin: Current activities in conservation
and improving access for bioacoustic research.

[Fukushima, 1980] Fukushima, K. (1980). Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics,
36(4):193–202.

[Gatys et al., 2016] Gatys, L. A., Ecker, A. S., and Bethge, M. (2016). Image style transfer using
convolutional neural networks. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2414–2423.

[Geirhos, 2018] Geirhos, R. (2018). generalisation-humans-dnns.

[Geirhos et al., 2018] Geirhos, R., Temme, C. R. M., Rauber, J., Schütt, H. H., Bethge, M., and
Wichmann, F. A. (2018). Generalisation in humans and deep neural networks. arXiv preprint
arXiv:1808.08750.

[Gelbard-Sagiv et al., 2008] Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R., and Fried, I.
(2008). Internally generated reactivation of single neurons in human hippocampus during free
recall. Science, 322(5898):96–101.

[Gers et al., 2000] Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning to forget:
Continual prediction with lstm. Neural Computation, 12(10):2451–2471.

[Gers et al., 2003] Gers, F. A., Schraudolph, N. N., and Schmidhuber, J. (2003). Learning precise
timing with lstm recurrent networks. J. Mach. Learn. Res., 3(null):115–143.

[Gerstner and Kistler, 2002] Gerstner, W. and Kistler, W. M. (2002). Spiking Neuron Models:
Single Neurons, Populations, Plasticity. Cambridge University Press.

[Gerstner et al., 2014a] Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014a). Neu-
ronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge Uni-
versity Press, USA.

[Gerstner et al., 2014b] Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014b). Neu-
ronal Dynamics: From Single Neurons to Networks and Models of Cognition. Introduction: neu-
rons and mathematics, page 3–27. Cambridge University Press.

[Gerstner and M Kistler, 2002] Gerstner, W. and M Kistler, W. (2002). Spiking Neuron Models.

[Gerstner et al., 1993] Gerstner, W., Ritz, R., and van Hemmen, L. (1993). Why spikes? hebbian
learning and retrieval of time-resolved excitation patterns. Biological Cybernetics, 69:503–515.

[Ghosh-Dastidar and Adeli, 2009] Ghosh-Dastidar, S. and Adeli, H. (2009). Spiking neural net-
works. International Journal of Neural Systems, 19(04):295–308.

Bibliography 201

[Gilbert and Li, 2013] Gilbert, C. and Li, W. (2013). Top-down influences on visual processing.
Nature reviews. Neuroscience, 14:350–363.

[Glasberg and Moore, 1990] Glasberg, B. R. and Moore, B. C. (1990). Derivation of auditory filter
shapes from notched-noise data. Hearing Research, 47(1):103–138.

[Glorot and Bengio, 2010] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of train-
ing deep feedforward neural networks. In Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, volume 9, pages 249–256.

[Glorot et al., 2011] Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural
networks. In Gordon, G., Dunson, D., and Dudík, M., editors, Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of
Machine Learning Research, pages 315–323, Fort Lauderdale, FL, USA. PMLR.

[Golumbic et al., 2013] Golumbic, E. Z., Cogan, G. B., Schroeder, C. E., and Poeppel, D. (2013).
Visual input enhances selective speech envelope tracking in auditory cortex at a “cocktail party”.
The Journal of Neuroscience, 33:1417 – 1426.

[Goodfellow et al., 2014a] Goodfellow, I. J., Mirza, M., Da, X., Courville, A. C., and Bengio, Y.
(2014a). An empirical investigation of catastrophic forgeting in gradient-based neural networks.
In Bengio, Y. and LeCun, Y., editors, 2nd International Conference on Learning Representa-
tions, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings.

[Goodfellow et al., 2014b] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014b). Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572.

[Gopalakrishnan et al., 2019] Gopalakrishnan, K., Hedayatnia, B., Chen, Q., Gottardi, A., Kwa-
tra, S., Venkatesh, A., Gabriel, R., and Hakkani-Tür, D. (2019). Topical-Chat: Towards
Knowledge-Grounded Open-Domain Conversations. In Proc. Interspeech 2019, pages 1891–1895.

[Graves et al., 2005] Graves, A., Fernández, S., and Schmidhuber, J. (2005). Bidirectional lstm
networks for improved phoneme classification and recognition. In Proceedings of the 15th In-
ternational Conference on Artificial Neural Networks: Formal Models and Their Applications -
Volume Part II, ICANN’05, page 799–804, Berlin, Heidelberg. Springer-Verlag.

[Gregory Ashby and Helie, 2011] Gregory Ashby, F. and Helie, S. (2011). A tutorial on computa-
tional cognitive neuroscience: Modeling the neurodynamics of cognition. Journal of Mathemat-
ical Psychology, 55(4):273–289.

[Grossberg, 1987] Grossberg, S. (1987). Competitive learning: From interactive activation to adap-
tive resonance. Cognitive Science, 11(1):23–63.

[Guerguiev et al., 2017] Guerguiev, J., Lillicrap, T. P., and Richards, B. A. (2017). Towards deep
learning with segregated dendrites. eLife, 6:e22901.

[Gunderson, 1964] Gunderson, K. (1964). The imitation game. Mind, 73(290):234–245.

[Gunderson, 1985] Gunderson, K. (1985). Mentality and machines. U of Minnesota Press.

[Guo et al.,] Guo, C., Lee, M. J., Leclerc, G., Dapello, J., Rao, Y., Madry, A., and DiCarlo,
J. J. Adversarially trained neural representations may already be as robust as corresponding
biological neural representations. Proceedings of the 38th International Conference on Machine
Learning.

[Gupta et al., 2021] Gupta, S. K., Zhang, M., Wu, C.-C., Wolfe, J., and Kreiman, G. (2021).
Visual search asymmetry: Deep nets and humans share similar inherent biases. Advances in
Neural Information Processing Systems, 34:6946–6959.

202 Bibliography

[Hadjeres et al., 2017] Hadjeres, G., Pachet, F., and Nielsen, F. (2017). Deepbach: A steerable
model for bach chorales generation. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, page 1362–1371. JMLR.org.

[Hafting et al., 2005] Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., and Moser, E. (2005).
Microstructure of a spatial map in the entorhinal cortex. Nature, 436:801–6.

[Hall, 2018] Hall, H. K. (2018). Deepfake videos: When seeing isn’t believing. Cath. UJL & Tech,
27:51.

[Harel et al., 2006] Harel, J., Koch, C., and Perona, P. (2006). Graph-based visual saliency. Ad-
vances in neural information processing systems, 19.

[Harnad, 1989] Harnad, S. (1989). Minds, machines and searle. Journal of Experimental & Theo-
retical Artificial Intelligence, 1(1):5–25.

[Harnad, 1991] Harnad, S. (1991). Other bodies, other minds: A machine incarnation of an old
philosophical problem. Minds and Machines, 1(1):43–54.

[Harnad, 1994] Harnad, S. (1994). Levels of functional equivalence in reverse bioengineering. Ar-
tificial life, 1(3):293–301.

[Harnad, 1999] Harnad, S. (1999). Turing on reverse-engineering the mind. Journal of Logic,
Language, and Information.

[Harris, 2008] Harris, K. D. (2008). Stability of the fittest: organizing learning through retroaxonal
signals. Trends in Neurosciences, 31(3):130–136.

[Hawley et al., 2004] Hawley, M. L., Litovsky, R. Y., and Culling, J. F. (2004). The benefit of
binaural hearing in a cocktail party: Effect of location and type of interferer. The Journal of
the Acoustical Society of America, 115(2):833–843.

[Hayes and Ford, 1995] Hayes, P. and Ford, K. (1995). Turing test considered harmful. In IJCAI
(1), pages 972–977. Citeseer.

[Hayes et al.,] Hayes, T., Kafle, K., Shrestha, R., Acharya, M., and Kanan, C. Remind your
neural network to prevent catastrophic forgetting. European Conference on Computer Vision.

[Haykin and Chen, 2005] Haykin, S. and Chen, Z. (2005). The cocktail party problem. Neural
computation, 17:1875–902.

[Hazan et al., 2018] Hazan, H., Saunders, D. J., Sanghavi, D. T., Siegelmann, H. T., and
Kozma, R. (2018). Unsupervised learning with self-organizing spiking neural networks. CoRR,
abs/1807.09374.

[He et al., 2017] He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Pro-
ceedings of the IEEE international conference on computer vision, pages 2961–2969.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages 1026–1034.

[He et al., 2016a] He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778. IEEE.

[He et al., 2016b] He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778.

Bibliography 203

[Hebb, 1949] Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory.
Wiley, New York.

[Herculano-Houzel, 2012] Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary,
human brain as a scaled-up primate brain and its associated cost. Proceedings of the National
Academy of Sciences of the United States of America, 109 Suppl 1:10661–8.

[Hilgetag and Goulas, 2020] Hilgetag, C. C. and Goulas, A. (2020). ‘hierarchy’ in the organiza-
tion of brain networks. Philosophical Transactions of the Royal Society B: Biological Sciences,
375(1796):20190319.

[Hinton and McClelland, 1987] Hinton, G. E. and McClelland, J. L. (1987). Learning representa-
tions by recirculation. In Proceedings of the 1987 International Conference on Neural Informa-
tion Processing Systems, NIPS’87, page 358–366, Cambridge, MA, USA. MIT Press.

[Hinton et al., 2012] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhut-
dinov, R. (2012). Improving neural networks by preventing co-adaptation of feature detectors.
Preprint at https://arxiv.org/abs/1207.0580.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term
Memory. Neural Computation, 9(8):1735–1780.

[Hodgkin and Huxley, 1952] Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description
of membrane current and its application to conduction and excitation in nerve. The Journal of
Physiology, 117(4):500–544.

[Hoefler et al., 2021] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and Peste, A. (2021).
Sparsity in deep learning: Pruning and growth for efficient inference and training in neural
networks.

[Hu et al., 2018] Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages 7132–7141.

[Huang et al., 2017a] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017a).
Densely connected convolutional networks. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2261–2269.

[Huang et al., 2017b] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017b).
Densely connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708.

[Hubel and Wiesel, 1959] Hubel, D. H. and Wiesel, T. N. (1959). Receptive fields of single neurones
in the cat’s striate cortex. The Journal of Physiology, 148(3):574–591.

[Hyvärinen and Oja, 1997] Hyvärinen, A. and Oja, E. (1997). A fast fixed-point algorithm for
independent component analysis. Neural Computation, 9(7):1483–1492.

[Ibata et al., 2008] Ibata, K., Sun, Q., and Turrigiano, G. (2008). Rapid synaptic scaling induced
by changes in postsynaptic firing. Neuron, 57:819–26.

[Illing et al., 2019] Illing, B., Gerstner, W., and Brea, J. (2019). Biologically plausible deep learn-
ing — but how far can we go with shallow networks? Neural Networks, 118:90–101.

[Illing et al., 2021] Illing, B., Ventura, J., Bellec, G., and Gerstner, W. (2021). Local plasticity
rules can learn deep representations using self-supervised contrastive predictions.

[Indiveri and Horiuchi, 2011] Indiveri, G. and Horiuchi, T. K. (2011). Frontiers in neuromorphic
engineering.

204 Bibliography

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Bach, F. and Blei, D., editors, Pro-
ceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pages 448–456, Lille, France. PMLR.

[Isomura and Toyoizumi, 2019] Isomura, T. and Toyoizumi, T. (2019). Multi-context blind source
separation by error-gated hebbian rule. Scientific Reports, 9:7127.

[Iyer et al., 2013] Iyer, R., Menon, V., Buice, M., Koch, C., and Mihalas, S. (2013). The influence
of synaptic weight distribution on neuronal population dynamics. PLOS Computational Biology,
9(10):1–16.

[Jacobsen et al., 2005] Jacobsen, T., Schröger, E., Winkler, I., and Horváth, J. (2005). Familiarity
Affects the Processing of Task-irrelevant Auditory Deviance. Journal of Cognitive Neuroscience,
17(11):1704–1713.

[Jaderberg et al., 2016] Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A.,
Silver, D., and Kavukcuoglu, K. (2016). Decoupled neural interfaces using synthetic gradients.

[Jaderberg et al., 2017] Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A.,
Silver, D., and Kavukcuoglu, K. (2017). Decoupled neural interfaces using synthetic gradients. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
page 1627–1635. JMLR.org.

[Jaiswal et al., 2020] Jaiswal, A., Babu, A. R., Zadeh, M. Z., Banerjee, D., and Makedon, F.
(2020). A survey on contrastive self-supervised learning.

[Jalilian et al., 2017] Jalilian, E., Uhl, A., and Kwitt, R. (2017). Domain adaptation for cnn based
iris segmentation. In 2017 International Conference of the Biometrics Special Interest Group
(BIOSIG), pages 1–6.

[Jefferson, 1949] Jefferson, G. (1949). The mind of mechanical man*. British Medical Journal,
1:1105 – 1110.

[Jiang et al., 2015] Jiang, M., Huang, S., Duan, J., and Zhao, Q. (2015). Salicon: Saliency in
context. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1072–1080.

[Jumper et al., 2021] Jumper, J. M., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger,
O., Tunyasuvunakool, K., Bates, R., Zídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl,
S. A. A., Ballard, A., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T.,
Petersen, S., Reiman, D. A., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Bergham-
mer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P.,
and Hassabis, D. (2021). Highly accurate protein structure prediction with alphafold. Nature,
596:583 – 589.

[Kaack et al., 2022] Kaack, L., Donti, P., Strubell, E., Kamiya, G., Creutzig, F., and Rolnick, D.
(2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change,
12.

[Kameoka et al., 2018] Kameoka, H., Li, L., Inoue, S., and Makino, S. (2018). Semi-blind source
separation with multichannel variational autoencoder. ArXiv, abs/1808.00892.

[Kamperis, 2019] Kamperis, S. (2019). Energy considerations for training deep neural networks.

[Kandel, 2000] Kandel, E. R. (2000). Principles of Neural Science. McGraw-Hill Education.

[Karamatli et al., 2018] Karamatli, E., Cemgil, A. T., and Kirbiz, S. (2018). Weak label super-
vision for monaural source separation using non-negative denoising variational autoencoders.
CoRR, abs/1810.13104.

Bibliography 205

[Karpinska et al., 2021] Karpinska, M., Akoury, N., and Iyyer, M. (2021). The perils of using
mechanical turk to evaluate open-ended text generation. arXiv preprint arXiv:2109.06835.

[Kasai et al., 2021] Kasai, J., Sakaguchi, K., Dunagan, L., Morrison, J., Bras, R. L., Choi, Y.,
and Smith, N. A. (2021). Transparent human evaluation for image captioning. arXiv preprint
arXiv:2111.08940.

[Kaski and Kohonen, 1994] Kaski, S. and Kohonen, T. (1994). Winner-take-all networks for phys-
iological models of competitive learning. Neural Networks, 7(6):973–984. Models of Neurody-
namics and Behavior.

[Kell et al., 2018] Kell, A., Yamins, D., Shook, E., Norman-Haignere, S., and McDermott, J.
(2018). A task-optimized neural network replicates human auditory behavior, predicts brain
responses, and reveals a cortical processing hierarchy. Neuron, 98.

[Kemker et al., 2018] Kemker, R., McClure, M., Abitino, A., Hayes, T., and Kanan, C. (2018).
Measuring catastrophic forgetting in neural networks. Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1).

[Kerlin et al., 2010] Kerlin, J., Shahin, A., and Miller, L. (2010). Attentional gain control of
ongoing cortical speech representations in a "cocktail party". The Journal of neuroscience : the
official journal of the Society for Neuroscience, 30:620–8.

[Khacef et al., 2022] Khacef, L., Klein, P., Cartiglia, M., Rubino, A., Indiveri, G., and Chicca, E.
(2022). Spike-based local synaptic plasticity: A survey of computational models and neuromor-
phic circuits.

[Khaddam-Aljameh et al., 2021] Khaddam-Aljameh, R., Stanisavljevic, M., Mas, J., Karunaratne,
G., Braendli, M., Liu, F., Singh, A., Muller, S., Egger, U., Petropoulos, A., Antonakopoulos,
T., Brew, K., Choi, S., Ok, I., Lie, F., Saulnier, N., Chan, V., Ahsan, I., Narayanan, V., and
Eleftheriou, E. (2021). Hermes core – a 14nm cmos and pcm-based in-memory compute core
using an array of 300ps/lsb linearized cco-based adcs and local digital processing. pages 1–2.

[Kingma and Ba, 2015] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic opti-
mization. In ICLR (Poster).

[Kirkpatrick et al., 2017] Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G.,
Rusu, A. A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath,
C., Kumaran, D., and Hadsell, R. (2017). Overcoming catastrophic forgetting in neural networks.
Proceedings of the National Academy of Sciences, 114(13):3521–3526.

[Klindt et al., 2017] Klindt, D., Ecker, A. S., Euler, T., and Bethge, M. (2017). Neural system
identification for large populations separating “what” and “where”. In Advances in Neural Infor-
mation Processing Systems, pages 3506–3516.

[Kocsis and Szepesvari, 2006] Kocsis, L. and Szepesvari, C. (2006). Bandit based monte-carlo
planning. In ECML.

[Koenderink et al., 2017] Koenderink, J., Valsecchi, M., van Doorn, A., Wagemans, J., and Gegen-
furtner, K. (2017). Eidolons: Novel stimuli for vision research. Journal of Vision, 17(2):7–7.

[Konkle et al., 2010] Konkle, T., Brady, T. F., Alvarez, G. A., and Oliva, A. (2010). Conceptual
distinctiveness supports detailed visual long-term memory for real-world objects. Journal of
experimental Psychology: general, 139(3):558.

[Kording and König, 2001] Kording, K. and König, P. (2001). Supervised and unsupervised learn-
ing with two sites of synaptic integration. Journal of computational neuroscience, 11:207–15.

206 Bibliography

[Krause-Solberg and Iske, 2015] Krause-Solberg, S. and Iske, A. (2015). Non-negative dimension-
ality reduction for audio signal separation by nnmf and ica. 2015 International Conference on
Sampling Theory and Applications, SampTA 2015, pages 377–381.

[Kreiman, 2021a] Kreiman, G. (2021a). Biological and Computer Vision. Cambridge University
Press, Cambridge, UK.

[Kreiman, 2021b] Kreiman, G. (2021b). Biological and Computer Vision. Cambridge University
Press.

[Krishnan et al., 2014] Krishnan, L., Elhilali, M., and Shamma, S. (2014). Segregating complex
sound sources through temporal coherence. PLOS Computational Biology, 10(12):1–10.

[Krizhevsky et al., a] Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10 (canadian institute for
advanced research).

[Krizhevsky et al., b] Krizhevsky, A., Nair, V., and Hinton, G. Cifar-100 (canadian institute for
advanced research).

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet clas-
sification with deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L.,
and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc.

[Kubilius et al., 2019] Kubilius, J., Schrimpf, M., Hong, H., Majaj, N. J., Rajalingham, R., Issa,
E. B., Kar, K., Bashivan, P., Prescott-Roy, J., Schmidt, K., Nayebi, A., Bear, D., Yamins, D.
L. K., and DiCarlo, J. J. (2019). Brain-Like Object Recognition with High-Performing Shallow
Recurrent ANNs. In Wallach, H., Larochelle, H., Beygelzimer, A., D’Alché-Buc, F., Fox, E., and
Garnett, R., editors, Neural Information Processing Systems (NeurIPS), pages 12785—-12796.
Curran Associates, Inc.

[Kümmerer et al., 2022] Kümmerer, M., Bethge, M., and Wallis, T. S. (2022). Deepgaze iii: Mod-
eling free-viewing human scanpaths with deep learning. Journal of Vision, 22(5):7–7.

[Kwag and Paulsen, 2009] Kwag, J. and Paulsen, O. (2009). The timing of external input controls
the sign of plasticity at local synapses. Nature neuroscience, 12:1219–21.

[Laborieux et al., 2021] Laborieux, A., Ernoult, M., Scellier, B., Bengio, Y., Grollier, J., and Quer-
lioz, D. (2021). Scaling equilibrium propagation to deep convnets by drastically reducing its
gradient estimator bias. Frontiers in Neuroscience, 15.

[LaCurts, 2011] LaCurts, K. (2011). Criticisms of the turing test and why you should ignore (most
of) them. Official blog of MIT’s course: Philosophy and theoretical computer science.

[Lansdell et al., 2020] Lansdell, B. J., Prakash, P. R., and Kording, K. P. (2020). Learning to solve
the credit assignment problem. In International Conference on Learning Representations.

[Larkum, 2013] Larkum, M. (2013). A cellular mechanism for cortical associations: an organizing
principle for the cerebral cortex. Trends in Neurosciences, 36(3):141–151.

[Larkum et al., 1999] Larkum, M., Zhu, J., and Sakmann, B. (1999). A new cellular mechanism
for coupling inputs arriving at different cortical layers. Nature, 398:338–41.

[Launay et al., 2020a] Launay, J., Poli, I., Boniface, F., and Krzakala, F. (2020a). Direct feedback
alignment scales to modern deep learning tasks and architectures. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY,
USA. Curran Associates Inc.

[Launay et al., 2019] Launay, J., Poli, I., and Krzakala, F. (2019). Principled training of neural
networks with direct feedback alignment.

Bibliography 207

[Launay et al., 2020b] Launay, J., Poli, I., Müller, K., Carron, I., Daudet, L., Krzakala, F., and
Gigan, S. (2020b). Light-in-the-loop: using a photonics co-processor for scalable training of
neural networks.

[le Cun, 1986] le Cun, Y. (1986). Learning process in an asymmetric threshold network.

[LeCun, 2012] LeCun, Y. (2012). Learning invariant feature hierarchies. In ECCV Workshops.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,
521:436–44.

[Lecun et al., 1998a] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998a). Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[Lecun et al., 1998b] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998b). Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86:2278 – 2324.

[LeCun and Cortes, 2010] LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit database.

[Lecun and Soulie Fogelman, 1987] Lecun, Y. and Soulie Fogelman, F. (1987). Modeles connex-
ionnistes de l’apprentissage. Intellectica, special issue apprentissage et machine, 2.

[Lee and Wilson, 2003] Lee, A. and Wilson, M. (2003). Memory of sequential experience in the
hippocampus during slow wave sleep. Neuron, 36:1183–94.

[Lee et al., 2015] Lee, D.-H., Zhang, S., Fischer, A., and Bengio, Y. (2015). Difference target
propagation. pages 498–515.

[Lee et al., 2017] Lee, S.-W., Kim, J.-H., Jun, J., Ha, J.-W., and Zhang, B.-T. (2017). Overcoming
catastrophic forgetting by incremental moment matching.

[Legenstein et al., 2010] Legenstein, R., Chase, S. M., Schwartz, A. B., and Maass, W. (2010). A
reward-modulated hebbian learning rule can explain experimentally observed network reorgani-
zation in a brain control task. Journal of Neuroscience, 30(25):8400–8410.

[Lewald and Getzmann, 2015] Lewald, J. and Getzmann, S. (2015). Electrophysiological correlates
of cocktail-party listening. Behavioural brain research, 292:157–166.

[Lewis and Durrant, 2011] Lewis, P. A. and Durrant, S. J. (2011). Overlapping memory replay
during sleep builds cognitive schemata. Trends in Cognitive Sciences, 15(8):343–351.

[Lewis and Harris, 2014] Lewis, S. N. and Harris, K. D. (2014). The neural marketplace: I. general
formalism and linear theory. bioRxiv.

[Li et al., 2022] Li, J., Li, D., Xiong, C., and Hoi, S. (2022). Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation. In ICML.

[Li et al., 2020] Li, X., Luo, S., and Xue, F. (2020). Effects of synaptic integration on the dynamics
and computational performance of spiking neural network. Cognitive Neurodynamics, 14(3):347–
357.

[Li et al., 2017] Li, Y., Wang, F., Chen, Y., Cichocki, A., and Sejnowski, T. (2017). The Effects
of Audiovisual Inputs on Solving the Cocktail Party Problem in the Human Brain: An fMRI
Study. Cerebral Cortex, 28(10):3623–3637.

[Li and Hoiem, 2016] Li, Z. and Hoiem, D. (2016). Learning without forgetting.

[Liao et al., 2016] Liao, Q., Leibo, J. Z., and Poggio, T. (2016). How important is weight symmetry
in backpropagation?

[Lillicrap et al., 2020] Lillicrap, T., Santoro, A., Marris, L., Akerman, C., and Hinton, G. (2020).
Backpropagation and the brain. Nature Reviews Neuroscience, 21.

208 Bibliography

[Lillicrap et al., 2016] Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016).
Random synaptic feedback weights support error backpropagation for deep learning. Nature
Communications, 7:13276.

[Lillicrap and Scott, 2013] Lillicrap, T. P. and Scott, S. H. (2013). Preference distributions of
primary motor cortex neurons reflect control solutions optimized for limb biomechanics. Neuron,
77(1):168–179.

[Lin, 2021] Lin, B. (2021). Regularity normalization: Neuroscience-inspired unsupervised attention
across neural network layers. Entropy, 24:59.

[Lin et al., 2021] Lin, T., Wang, Y., Liu, X., and Qiu, X. (2021). A survey of transformers. CoRR,
abs/2106.04554.

[Lin et al., 2014] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
and Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In European conference
on computer vision, pages 740–755. Springer.

[Lindsay, 2021] Lindsay, G. W. (2021). Convolutional Neural Networks as a Model of the Visual
System: Past, Present, and Future. Journal of Cognitive Neuroscience, 33(10):2017–2031.

[Liu et al., 2021] Liu, Q., Huang, Y., Hao, Y., Xu, J., and Xu, B. (2021). Limuse: Lightweight
multi-modal speaker extraction. In arXiv:2111.04063.

[Lomonaco et al., 2021] Lomonaco, V., Pellegrini, L., Cossu, A., Carta, A., Graffieti, G., Hayes,
T. L., De Lange, M., Masana, M., Pomponi, J., van de Ven, G. M., Mundt, M., She, Q., Cooper,
K., Forest, J., Belouadah, E., Calderara, S., Parisi, G. I., Cuzzolin, F., Tolias, A. S., Scardapane,
S., Antiga, L., Ahmad, S., Popescu, A., Kanan, C., van de Weijer, J., Tuytelaars, T., Bacciu, D.,
and Maltoni, D. (2021). Avalanche: An end-to-end library for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
pages 3600–3610.

[Lopez-Paz and Ranzato, 2017] Lopez-Paz, D. and Ranzato, M. (2017). Gradient episodic memory
for continual learning.

[López-Serrano et al., 2019] López-Serrano, P., Dittmar, C., Özer, Y., and Müller, M. (2019). Nmf
toolbox: Music processing applications of nonnegative matrix factorization.

[Louie et al., 2013] Louie, K., Khaw, M. W., and Glimcher, P. W. (2013). Normalization is a
general neural mechanism for context-dependent decision making. Proceedings of the National
Academy of Sciences, 110(15):6139–6144.

[M., 2019] M., W. (2019). cifar10-resnet. https://github.com/matthias-wright/
cifar10-resnet.

[Madan et al., 2020] Madan, S., Henry, T., Dozier, J., Ho, H., Bhandari, N., Sasaki, T., Durand,
F., Pfister, H., and Boix, X. (2020). On the capability of neural networks to generalize to unseen
category-pose combinations. CoRR, abs/2007.08032.

[Madan et al., 2022] Madan, S., You, L., Zhang, M., Pfister, H., and Kreiman, G. (2022). What
makes domain generalization hard?

[Marblestone et al., 2016] Marblestone, A. H., Wayne, G., and Kording, K. P. (2016). Toward an
integration of deep learning and neuroscience. Frontiers in Computational Neuroscience, 10.

[Markram et al., 1995] Markram, H., Helm, P. J., and Sakmann, B. J. (1995). Dendritic calcium
transients evoked by single back-propagating action potentials in rat neocortical pyramidal neu-
rons. The Journal of Physiology, 485.

https://github.com/matthias-wright/cifar10-resnet
https://github.com/matthias-wright/cifar10-resnet

Bibliography 209

[Markram et al., 1997] Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regula-
tion of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science, 275(5297):213–
215.

[Maruf,] Maruf, R. Google fires engineer who contended its ai technology was sentient. CNN.

[Mateos-Aparicio and Rodríguez-Moreno, 2019] Mateos-Aparicio, P. and Rodríguez-Moreno, A.
(2019). The impact of studying brain plasticity. Frontiers in Cellular Neuroscience, 13.

[Mathew et al., 2021] Mathew, M., Karatzas, D., and Jawahar, C. (2021). Docvqa: A dataset for
vqa on document images. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pages 2200–2209.

[Mauldin, 1994] Mauldin, M. L. (1994). Chatterbots, tinymuds, and the turing test: Entering the
loebner prize competition. In AAAI, volume 94, pages 16–21.

[Mazzoni et al., 1991] Mazzoni, P., Andersen, R. A., and Jordan, M. I. (1991). A more biologically
plausible learning rule for neural networks. Proceedings of the National Academy of Sciences,
88(10):4433–4437.

[Mcclelland et al., 1995] Mcclelland, J., Mcnaughton, B., and O’Reilly, R. (1995). Why there are
complementary learning systems in the hippocampus and neocortex: Insights from the successes
and failures of connectionist models of learning and memory. Psychological review, 102:419–57.

[McCulloch and Pitts, 1943a] McCulloch, W. S. and Pitts, W. (1943a). A logical calculus of the
ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133.

[McCulloch and Pitts, 1943b] McCulloch, W. S. and Pitts, W. (1943b). A logical calculus of the
ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5:115–133.

[McDermott, 2009] McDermott, J. H. (2009). The cocktail party problem. Current Biology,
19(22):R1024–R1027.

[McDermott et al., 2011] McDermott, J. H., Wrobleski, D., and Oxenham, A. J. (2011). Recover-
ing sound sources from embedded repetition. Proceedings of the National Academy of Sciences,
108(3):1188–1193.

[McFee et al., 2015] McFee, B., Raffel, C., Liang, D., Ellis, D., Mcvicar, M., Battenberg, E., and
Nieto, O. (2015). librosa: Audio and music signal analysis in python. pages 18–24.

[McInnes et al., 2018] McInnes, L., Healy, J., and Melville, J. (2018). UMAP: Uniform manifold
approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.

[Mermillod et al., 2013] Mermillod, M., Bugaiska, A., and Bonin, P. (2013). The stability-plasticity
dilemma: Investigating the continuum from catastrophic forgetting to age-limited learning ef-
fects. Frontiers in psychology, 4:504.

[Mesgarani and Chang, 2012] Mesgarani, N. and Chang, E. (2012). Selective cortical representa-
tion of attended speaker in multi-talker speech perception. Nature, 485:233–6.

[Meulemans et al., 2020] Meulemans, A., Carzaniga, F. S., Suykens, J. A., Sacramento, J. a., and
Grewe, B. F. (2020). A theoretical framework for target propagation. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY,
USA. Curran Associates Inc.

[Meulemans et al., 2021] Meulemans, A., Tristany Farinha, M., Garcia Ordonez, J., Vil-
imelis Aceituno, P., Sacramento, J. a., and Grewe, B. F. (2021). Credit assignment in neural
networks through deep feedback control. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang,
P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems, volume 34,
pages 4674–4687. Curran Associates, Inc.

210 Bibliography

[Meulemans et al., 2022] Meulemans, A., Zucchet, N., Kobayashi, S., von Oswald, J., and Sacra-
mento, J. (2022). The least-control principle for learning at equilibrium.

[Michaelis and Menten, 1913] Michaelis, L. and Menten, M. (1913). Kinetik der invertinwirkung.
Biochem. Zeitung, 49:333–369.

[Middlebrooks and Waters, 2020] Middlebrooks, J. C. and Waters, M. F. (2020). Spatial mecha-
nisms for segregation of competing sounds, and a breakdown in spatial hearing. Frontiers in
Neuroscience, 14:966.

[Mika et al., 2020] Mika, D., Budzik, G., and Józwik, J. (2020). Ica-based single channel source
separation with time-frequency decomposition. In 2020 IEEE 7th International Workshop on
Metrology for AeroSpace (MetroAeroSpace), pages 238–243.

[Moeller et al., 2017] Moeller, S., Crapse, T., Chang, L., and Tsao, D. Y. (2017). The effect of face
patch microstimulation on perception of faces and objects. Nature neuroscience, 20(5):743–752.

[Moeller et al., 2008] Moeller, S., Freiwald, W. A., and Tsao, D. Y. (2008). Patches with links: a
unified system for processing faces in the macaque temporal lobe. Science, 320(5881):1355–1359.

[Mokady et al., 2021] Mokady, R., Hertz, A., and Bermano, A. H. (2021). Clipcap: Clip prefix for
image captioning. arXiv preprint arXiv:2111.09734.

[Moradi et al., 2018] Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scal-
able multicore architecture with heterogeneous memory structures for dynamic neuromorphic
asynchronous processors (dynaps). IEEE Transactions on Biomedical Circuits and Systems,
12(1):106–122.

[Mordvintsev et al., 2015] Mordvintsev, A., Olah, C., and Tyka, M. (2015). Inceptionism: Going
deeper into neural networks.

[Mostafa et al., 2018] Mostafa, H., Ramesh, V., and Cauwenberghs, G. (2018). Deep supervised
learning using local errors. Frontiers in Neuroscience, 12.

[Moulin et al., 2020] Moulin, T. C., Rayêe, D., Williams, M. J., and Schiöth, H. B. (2020). The
synaptic scaling literature: A systematic review of methodologies and quality of reporting. Fron-
tiers in Cellular Neuroscience, 14:164.

[Muñoz-Martín et al., 2019] Muñoz-Martín, I., Bianchi, S., Pedretti, G., Melnic, O., Ambrogio,
S., and Ielmini, D. (2019). Unsupervised learning to overcome catastrophic forgetting in neu-
ral networks. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits,
5(1):58–66.

[Nair and Hinton, 2010] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Conference on International Con-
ference on Machine Learning, ICML’10, page 807–814, Madison, WI, USA. Omnipress.

[Nandakumar et al., 2018] Nandakumar, S. R., Le Gallo, M., Boybat, I., Rajendran, B., Sebastian,
A., and Eleftheriou, E. (2018). Mixed-precision architecture based on computational memory for
training deep neural networks. In 2018 IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1–5.

[Narayan et al., 2008] Narayan, R., Best, V., Ozmeral, E., McClaine, E., Dent, M., Shinn-
Cunningham, B., and Sen, K. (2008). Cortical interference effects in the cocktail party problem.
Nature neuroscience, 10:1601–7.

[Nayebi et al., 2021] Nayebi, A., Attinger, A., Campbell, M., Hardcastle, K., Low, I., Mallory,
C. S., Mel, G., Sorscher, B., Williams, A. H., Ganguli, S., Giocomo, L., and Yamins, D. (2021).
Explaining heterogeneity in medial entorhinal cortex with task-driven neural networks. In Ran-
zato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in
Neural Information Processing Systems, volume 34, pages 12167–12179. Curran Associates, Inc.

Bibliography 211

[Neelakantan et al., 2022] Neelakantan, A., Xu, T., Puri, R., Radford, A., Han, J. M., Tworek,
J., Yuan, Q., Tezak, N., Kim, J. W., Hallacy, C., et al. (2022). Text and code embeddings by
contrastive pre-training. arXiv preprint arXiv:2201.10005.

[Neftci et al., 2017] Neftci, E., Augustine, C., Paul, S., and Detorakis, G. (2017). Event-driven
random backpropagation: Enabling neuromorphic deep learning machines. In 2017 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), pages 1–4.

[Nesterov, 1983] Nesterov, Y. (1983). A method for solving the convex programming problem with
convergence rate o(1/k2). Proceedings of the USSR Academy of Sciences, 269:543–547.

[Netzer et al., 2011] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011).
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning 2011.

[Nguyen et al., 2019] Nguyen, C. V., Achille, A., Lam, M., Hassner, T., Mahadevan, V., and
Soatto, S. (2019). Toward understanding catastrophic forgetting in continual learning.

[Nguyen et al., 2017] Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. (2017). Variational
continual learning.

[Nokland, 2016] Nokland, A. (2016). Direct feedback alignment provides learning in deep neural
networks. In Proceedings of the 30th International Conference on Neural Information Processing
Systems, NIPS’16, page 1045–1053, Red Hook, NY, USA. Curran Associates Inc.

[Nøkland and Eidnes, 2019] Nøkland, A. and Eidnes, L. H. (2019). Training neural networks with
local error signals. In Proceedings of the 36th International Conference on Machine Learning,
volume 97, pages 4839–4850.

[Oja, 1982] Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal
of Mathematical Biology, 15:267–273.

[O’Keefe and Dostrovsky, 1971] O’Keefe, J. and Dostrovsky, J. O. (1971). The hippocampus as a
spatial map. preliminary evidence from unit activity in the freely-moving rat. Brain research,
34 1:171–5.

[Oore et al., 2017] Oore, S., Simon, I., Dieleman, S., and Eck, D. (2017). Learning to create piano
performances.

[Oore et al., 2020] Oore, S., Simon, I., Dieleman, S., Eck, D., and Simonyan, K. (2020). This time
with feeling: learning expressive musical performance. Neural Computing and Applications, 32.

[O’Reilly, 1996] O’Reilly, R. C. (1996). Biologically Plausible Error-Driven Learning Using Lo-
cal Activation Differences: The Generalized Recirculation Algorithm. Neural Computation,
8(5):895–938.

[O’Sullivan et al., 2014] O’Sullivan, J., Power, A., Mesgarani, N., Rajaram, S., Foxe, J., Shinn-
Cunningham, B., Slaney, M., Shamma, S., and Lalor, E. (2014). Attentional selection in a
cocktail party environment can be decoded from single-trial eeg. Cerebral cortex (New York,
N.Y. : 1991), 25.

[Ouyang et al., 2022] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P.,
Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., and Lowe, R. (2022). Training
language models to follow instructions with human feedback.

[Oxenham, 2018] Oxenham, A. J. (2018). How we hear: The perception and neural coding of
sound. Annual Review of Psychology, 69(1):27–50. PMID: 29035691.

212 Bibliography

[O’Neill et al., 2010] O’Neill, J., Pleydell-Bouverie, B., Dupret, D., and Csicsvari, J. (2010). Play it
again: reactivation of waking experience and memory. Trends in Neurosciences, 33(5):220–229.

[O’Reilly, 2006] O’Reilly, R. (2006). Biologically based computational models of high-level cogni-
tion. Science (New York, N.Y.), 314:91–4.

[O’Reilly and Norman, 2002] O’Reilly, R. C. and Norman, K. A. (2002). Hippocampal and neo-
cortical contributions to memory: advances in the complementary learning systems framework.
Trends in Cognitive Sciences, 6:505–510.

[Pallier et al., 2003] Pallier, C., Dehaene, S., Poline, J.-B., LeBihan, D., Argenti, A.-M., Dupoux,
E., and Mehler, J. (2003). Brain Imaging of Language Plasticity in Adopted Adults: Can a
Second Language Replace the First? Cerebral Cortex, 13(2):155–161.

[Papineni et al., 2002] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of
the Association for Computational Linguistics, pages 311–318.

[Parisi et al., 2018] Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2018).
Continual lifelong learning with neural networks: A review. CoRR, abs/1802.07569.

[Parvizi et al., 2012] Parvizi, J., Jacques, C., Foster, B. L., Withoft, N., Rangarajan, V., Weiner,
K. S., and Grill-Spector, K. (2012). Electrical stimulation of human fusiform face-selective
regions distorts face perception. Journal of Neuroscience, 32(43):14915–14920.

[Pascanu et al., 2013] Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2013). How to construct
deep recurrent neural networks.

[Pascanu et al., 2012] Pascanu, R., Mikolov, T., and Bengio, Y. (2012). Understanding the ex-
ploding gradient problem. CoRR, abs/1211.5063.

[Patel et al., 2015] Patel, V., Gopalan, R., Li, R., and Chellappa, R. (2015). Visual domain adap-
tation: A survey of recent advances. Signal Processing Magazine, IEEE, 32:53–69.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825–2830.

[Pehlevan and Chklovskii, 2019] Pehlevan, C. and Chklovskii, D. B. (2019). Neuroscience-inspired
online unsupervised learning algorithms: Artificial neural networks. IEEE Signal Processing
Magazine, 36(6):88–96.

[Pehlevan et al., 2017] Pehlevan, C., Mohan, S., and Chklovskii, D. B. (2017). Blind Nonnegative
Source Separation Using Biological Neural Networks. Neural Computation, 29(11):2925–2954.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543.

[Pfeiffer et al., 2010] Pfeiffer, M., Nessler, B., Douglas, R. J., and Maass, W. (2010). Reward-
Modulated Hebbian Learning of Decision Making. Neural Computation, 22(6):1399–1444.

[Pfeiffer and Pfeil, 2018] Pfeiffer, M. and Pfeil, T. (2018). Deep learning with spiking neurons:
Opportunities and challenges. Frontiers in Neuroscience, 12:774.

[Pfeil et al., 2012] Pfeil, T., Potjans, T., Schrader, S., Potjans, W., Schemmel, J., Diesmann, M.,
and Meier, K. (2012). Is a 4-bit synaptic weight resolution enough? – constraints on enabling
spike-timing dependent plasticity in neuromorphic hardware. Frontiers in Neuroscience, 6:90.

[Pfister and Gerstner, 2006] Pfister, J.-P. and Gerstner, W. (2006). Triplets of spikes in a model
of spike timing-dependent plasticity. Journal of Neuroscience, 26(38):9673–9682.

Bibliography 213

[Phuong and Hutter, 2022] Phuong, M. and Hutter, M. (2022). Formal algorithms for transform-
ers.

[Polydoros and Nalpantidis, 2017] Polydoros, A. and Nalpantidis, L. (2017). Survey of model-
based reinforcement learning: Applications on robotics. Journal of Intelligent & Robotic Systems,
86:153–.

[Ponce et al., 2019] Ponce, C. R., Xiao, W., Schade, P. F., Hartmann, T. S., Kreiman, G., and
Livingstone, M. S. (2019). Evolving images for visual neurons using a deep generative network
reveals coding principles and neuronal preferences. Cell, 177(4):999–1009.e10.

[Popham et al., 2018] Popham, S., Boebinger, D., Ellis, D., Kawahara, H., and McDermott, J.
(2018). Inharmonic speech reveals the role of harmonicity in the cocktail party problem. Nature
Communications, 9.

[Purtill, 1971] Purtill, R. L. (1971). Beating the imitation game. Mind, 80(318):290–294.

[Radford et al., 2021] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S.,
Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. (2021). Learning
transferable visual models from natural language supervision. In Meila, M. and Zhang, T.,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 8748–8763. PMLR.

[Radford et al., 2019] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.
(2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

[Rajalingham and DiCarlo, 2019] Rajalingham, R. and DiCarlo, J. J. (2019). Reversible inactiva-
tion of different millimeter-scale regions of primate it results in different patterns of core object
recognition deficits. Neuron, 102(2):493–505.

[Ramesh et al., 2022] Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. (2022). Hier-
archical text-conditional image generation with clip latents.

[Ramesh et al., 2021] Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen,
M., and Sutskever, I. (2021). Zero-shot text-to-image generation. In Meila, M. and Zhang, T.,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 8821–8831. PMLR.

[Rao and Ballard, 1999] Rao, R. and Ballard, D. (1999). Predictive coding in the visual cortex:
a functional interpretation of some extra-classical receptive-field effects. Nature neuroscience,
2:79–87.

[Ratcliff, 1990] Ratcliff, R. (1990). Connectionist models of recognition memory: constraints im-
posed by learning and forgetting functions. Psychological review, 97 2:285–308.

[Räukur et al., 2022] Räukur, T., Ho, A., Casper, S., and Hadfield-Menell, D. (2022). Toward
transparent ai: A survey on interpreting the inner structures of deep neural networks. arXiv
preprint arXiv:2207.13243.

[Reed, 1993] Reed, R. (1993). Pruning algorithms-a survey. IEEE Transactions on Neural Net-
works, 4(5):740–747.

[Refinetti et al., 2021] Refinetti, M., D’Ascoli, S., Ohana, R., and Goldt, S. (2021). Align, then
memorise: the dynamics of learning with feedback alignment. In Meila, M. and Zhang, T.,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 8925–8935. PMLR.

[Ren et al., 2015] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in neural information processing
systems, 28.

214 Bibliography

[Rich et al., 2014] Rich, P., Liaw, H.-P., and Lee, A. (2014). Place cells. large environments reveal
the statistical structure governing hippocampal representations. Science (New York, N.Y.),
345:814–7.

[Richards et al., 2019] Richards, B., Lillicrap, T., Beaudoin, P., Bengio, Y., Bogacz, R., Chris-
tensen, A., Clopath, C., Costa, R., Berker, A., Ganguli, S., Gillon, C., Hafner, D., Kepecs, A.,
Kriegeskorte, N., Latham, P., Lindsay, G., Miller, K., Naud, R., Pack, C., and Kording, K.
(2019). A deep learning framework for neuroscience. Nature Neuroscience, 22:1761–1770.

[Ritter et al., 2018] Ritter, H., Botev, A., and Barber, D. (2018). Online structured laplace ap-
proximations for overcoming catastrophic forgetting.

[Rives et al., 2021] Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M.,
Zitnick, C. L., Ma, J., and Fergus, R. (2021). Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences. Proceedings of the National
Academy of Sciences, 118(15):e2016239118.

[Robins, 1995] Robins, A. (1995). Catastrophic forgetting, rehearsal and pseudorehearsal. Con-
nection Science, 7(2):123–146.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65 6:386–408.

[Royer and Paré, 2003a] Royer, S. and Paré, D. (2003a). Conservation of total synaptic weight
through balanced synaptic depression and potentiation. Nature, 422:518–22.

[Royer and Paré, 2003b] Royer, S. and Paré, D. (2003b). Conservation of total synaptic weight
through balanced synaptic depression and potentiation. Nature, 422:518–22.

[Rumelhart et al., 1995] Rumelhart, D. E., Durbin, R., Golden, R., and Chauvin, Y. (1995). Back-
propagation: The Basic Theory, page 1–34. L. Erlbaum Associates Inc., USA.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
representations by back-propagating errors. nature, 323(6088):533–536.

[Sacramento et al., 2018a] Sacramento, J. a., Ponte Costa, R., Bengio, Y., and Senn, W. (2018a).
Dendritic cortical microcircuits approximate the backpropagation algorithm. In Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc.

[Sacramento et al., 2018b] Sacramento, J. a., Ponte Costa, R., Bengio, Y., and Senn, W. (2018b).
Dendritic cortical microcircuits approximate the backpropagation algorithm. In Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc.

[Sagi et al., 2001] Sagi, B., Nemat-Nasser, S. C., Kerr, R., Hayek, R., Downing, C., and Hecht-
Nielsen, R. (2001). A Biologically Motivated Solution to the Cocktail Party Problem. Neural
Computation, 13(7):1575–1602.

[Salimans and Kingma, 2016] Salimans, T. and Kingma, D. P. (2016). Weight normalization: A
simple reparameterization to accelerate training of deep neural networks. In Lee, D., Sugiyama,
M., Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc.

[Salzman et al., 1990] Salzman, C. D., Britten, K. H., and Newsome, W. T. (1990). Cortical
microstimulation influences perceptual judgements of motion direction. Nature, 346(6280):174–
177.

Bibliography 215

[Santosh and Bharathi, 2017] Santosh, K. S. and Bharathi, S. H. (2017). Non-negative matrix
factorization algorithms for blind source sepertion in speech recognition. In 2017 2nd IEEE
International Conference on Recent Trends in Electronics, Information Communication Tech-
nology (RTEICT), pages 2242–2246.

[Savage,] Savage, N. Marriage of mind and machine.

[Sawada et al., 2019] Sawada, H., Ono, N., Kameoka, H., Kitamura, D., and Saruwatari, H. (2019).
A review of blind source separation methods: Two converging routes to ilrma originating from
ica and nmf. APSIPA Transactions on Signal and Information Processing, 8.

[Saxe et al., 2020] Saxe, A. M., Nelli, S., and Summerfield, C. (2020). If deep learning is the
answer, then what is the question? arXiv: Neurons and Cognition.

[Scellier and Bengio, 2017] Scellier, B. and Bengio, Y. (2017). Equilibrium propagation: Bridg-
ing the gap between energy-based models and backpropagation. Frontiers in Computational
Neuroscience, 11.

[Schaeffer et al., 2022] Schaeffer, R., Khona, M., and Fiete, I. R. (2022). No free lunch from deep
learning in neuroscience: A case study through models of the entorhinal-hippocampal circuit.
In ICML 2022 2nd AI for Science Workshop.

[Schmidhuber, 2015] Schmidhuber, J. (2015). Deep learning in neural networks: An overview.
Neural Networks, 61:85–117.

[Schmidt and Römer, 2011] Schmidt, A. K. D. and Römer, H. (2011). Solutions to the cocktail
party problem in insects: Selective filters, spatial release from masking and gain control in
tropical crickets. PLOS ONE, 6(12):1–9.

[Schrimpf et al., 2018] Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa,
E. B., Kar, K., Bashivan, P., Prescott-Roy, J., Schmidt, K., et al. (2018). Brain-score: Which
artificial neural network for object recognition is most brain-like? BioRxiv, page 407007.

[Schrimpf et al., 2020] Schrimpf, M., Kubilius, J., Lee, M. J., Murty, N. A. R., Ajemian, R., and
DiCarlo, J. J. (2020). Integrative benchmarking to advance neurally mechanistic models of
human intelligence. Neuron.

[Schwaller et al., 2019] Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C., Bekas, C., and
Lee, A. (2019). Molecular transformer: A model for uncertainty-calibrated chemical reaction
prediction. ACS Central Science, 5.

[Searle, 1980] Searle, J. R. (1980). Minds, brains, and programs. Behavioral and brain sciences,
3(3):417–424.

[Sejnowski, 2022] Sejnowski, T. (2022). Large language models and the reverse turing test. arXiv
preprint arXiv:2207.14382.

[Serre, 2019] Serre, T. (2019). Deep learning: the good, the bad, and the ugly. Annual Review of
Vision Science, 5:399–426.

[Sharma et al., 2000] Sharma, J., Angelucci, A., and Sur, M. (2000). Induction of visual orientation
modules in auditory cortex. Nature, 404:841–7.

[Shen et al., 2020] Shen, Y., Wang, J., and Navlakha, S. (2020). A correspondence between nor-
malization strategies in artificial and biological neural networks.

[Shen et al., 2021] Shen, Z., Liu, J., He, Y., Zhang, X., Xu, R., Yu, H., and Cui, P. (2021). Towards
out-of-distribution generalization: A survey.

216 Bibliography

[Sheng et al., 2021] Sheng, S., Singh, A., Goswami, V., Magana, J., Thrush, T., Galuba, W.,
Parikh, D., and Kiela, D. (2021). Human-adversarial visual question answering. Advances in
Neural Information Processing Systems, 34:20346–20359.

[Shimegi et al., 2016] Shimegi, S., Kimura, A., Sato, A. Y., Aoyama, C., Mizuyama, R., Tsunoda,
K., Ueda, F., Araki, S., Goya, R., and Sato, H. (2016). Cholinergic and serotonergic modulation
of visual information processing in monkey v1. Journal of Physiology-Paris, 110:44–51.

[Shin et al., 2017] Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual learning with
deep generative replay. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

[Shuster et al., 2022a] Shuster, K., Xu, J., Komeili, M., Ju, D., Smith, E. M., Roller, S., Ung, M.,
Chen, M., Arora, K., Lane, J., Behrooz, M., Ngan, W., Poff, S., Goyal, N., Szlam, A., Boureau,
Y.-L., Kambadur, M., and Weston, J. (2022a). Blenderbot 3: a deployed conversational agent
that continually learns to responsibly engage.

[Shuster et al., 2022b] Shuster, K., Xu, J., Komeili, M., Ju, D., Smith, E. M., Roller, S., Ung, M.,
Chen, M., Arora, K., Lane, J., et al. (2022b). Blenderbot 3: a deployed conversational agent
that continually learns to responsibly engage. arXiv preprint arXiv:2208.03188.

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T. P., Leach, M., Kavukcuoglu, K.,
Graepel, T., and Hassabis, D. (2016). Mastering the game of go with deep neural networks and
tree search. Nature, 529:484–489.

[Sinz et al., 2019] Sinz, F. H., Pitkow, X., Reimer, J., Bethge, M., and Tolias, A. S. (2019). Engi-
neering a less artificial intelligence. Neuron, 103(6):967–979.

[Sjostrom and Hausser, 2006] Sjostrom, P. and Hausser, M. (2006). A cooperative switch deter-
mines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron,
51:227–38.

[Skaggs and McNaughton, 1996] Skaggs, W. E. and McNaughton, B. L. (1996). Replay of neu-
ronal firing sequences in rat hippocampus during sleep following spatial experience. Science,
271(5257):1870–1873.

[Smaragdis and Brown, 2003] Smaragdis, P. and Brown, J. (2003). Non-negative matrix factor-
ization for polyphonic music transcription. In 2003 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (IEEE Cat. No.03TH8684), pages 177–180.

[Sodhani et al., 2020] Sodhani, S., Chandar, S., and Bengio, Y. (2020). Toward training recurrent
neural networks for lifelong learning. Neural Computation, 32(1):1–35.

[Soltoggio and Stanley, 2012] Soltoggio, A. and Stanley, K. O. (2012). From modulated hebbian
plasticity to simple behavior learning through noise and weight saturation. Neural Networks,
34:28–41.

[Song et al., 2000] Song, S., Miller, K., and Abbott, L. (2000). Competitive hebbian learning
through spike timing-dependent plasticity. Nature neuroscience, 3:919–26.

[Song et al., 2005] Song, S., Sjöström, P. J., Reigl, M., Nelson, S., and Chklovskii, D. B. (2005).
Highly nonrandom features of synaptic connectivity in local cortical circuits. PLOS Biology,
3(3):e68.

Bibliography 217

[Sorscher et al., 2019] Sorscher, B., Mel, G., Ganguli, S., and Ocko, S. (2019). A unified theory
for the origin of grid cells through the lens of pattern formation. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc.

[Speer et al., 2018] Speer, R., Chin, J., Lin, A., Jewett, S., and Nathan, L. (2018). Luminosoin-
sight/wordfreq: v2.2.

[Spruston, 2008] Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic inte-
gration. Nature reviews. Neuroscience, 9:206–21.

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdi-
nov, R. (2014). Journal of Machine Learning Research, 15(56):1929–1958.

[Srivastava et al., 2015] Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015). Highway net-
works. CoRR, abs/1505.00387.

[Srivastava et al., 2013] Srivastava, R. K., Masci, J., Kazerounian, S., Gomez, F., and Schmidhu-
ber, J. (2013). Compete to compute. In Burges, C., Bottou, L., Welling, M., Ghahramani, Z.,
and Weinberger, K., editors, Advances in Neural Information Processing Systems, volume 26.
Curran Associates, Inc.

[Steiner et al., 2021] Steiner, A., Kolesnikov, A., , Zhai, X., Wightman, R., Uszkoreit, J., and
Beyer, L. (2021). How to train your vit? data, augmentation, and regularization in vision
transformers. arXiv preprint arXiv:2106.10270.

[Stevens et al., 1937] Stevens, S. S., Volkmann, J., and Newman, E. B. (1937). A scale for the
measurement of the psychological magnitude pitch. The Journal of the Acoustical Society of
America, 8(3):185–190.

[Strubell et al., 2019] Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy
considerations for deep learning in NLP. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 3645–3650, Florence, Italy. Association for
Computational Linguistics.

[Stuart and Sakmann, 1994] Stuart, G. J. and Sakmann, B. J. (1994). Active propagation of
somatic action potentials into neocortical pyramidal cell dendrites. Nature, 367:69–72.

[Sturm et al., 2016] Sturm, B. L., Santos, J. F., Ben-Tal, O., and Korshunova, I. (2016). Music
transcription modelling and composition using deep learning.

[Szegedy et al., 2013] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Good-
fellow, I., and Fergus, R. (2013). Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199.

[Teki et al., 2013] Teki, S., Chait, M., Kumar, S., Shamma, S., and Griffiths, T. D. (2013). Segre-
gation of complex acoustic scenes based on temporal coherence. eLife, 2:e00699.

[Tenney et al., 2019] Tenney, I., Das, D., and Pavlick, E. (2019). BERT rediscovers the classical
NLP pipeline. CoRR, abs/1905.05950.

[Teramae and Fukai, 2014] Teramae, J. and Fukai, T. (2014). Computational implications of log-
normally distributed synaptic weights. Proceedings of the IEEE, 102(4):500–512.

[Teyler and Rudy, 2007] Teyler, T. J. and Rudy, J. W. (2007). The hippocampal indexing theory
and episodic memory: Updating the index. Hippocampus, 17(12):1158–1169.

[Thakur et al., 2015] Thakur, C., Wang, R., Afshar, S., Hamilton, T., Tapson, J., Shamma, S.,
and van Schaik, A. (2015). Sound stream segregation: a neuromorphic approach to solve the
“cocktail party problem” in real-time. Frontiers in Neuroscience, 9:309.

218 Bibliography

[Thompson et al., 2020] Thompson, N. C., Greenewald, K., Lee, K., and Manso, G. F. (2020).
The computational limits of deep learning. Preprint at https://arxiv.org/abs/2007.05558.

[Tieleman and Hinton, 2012] Tieleman, T. and Hinton, G. (2012). Lecture 6.5—RmsProp: Divide
the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning.

[Tiku,] Tiku, N. The google engineer who thinks the company’s ai has come to life. Washington-
Post.

[Toews, 2021] Toews, R. (2021). Alphafold is the most important achievement in ai-ever.

[Tolstikhin et al., 2021] Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Un-
terthiner, T., Yung, J., Steiner, A., Keysers, D., Uszkoreit, J., Lucic, M., and Dosovitskiy,
A. (2021). Mlp-mixer: An all-mlp architecture for vision. arXiv preprint arXiv:2105.01601.

[Tramèr et al., 2020] Tramèr, F., Behrmann, J., Carlini, N., Papernot, N., and Jacobsen, J.-H.
(2020). Fundamental tradeoffs between invariance and sensitivity to adversarial perturbations.
In International Conference on Machine Learning, pages 9561–9571. PMLR.

[Tsao et al., 2006] Tsao, D. Y., Freiwald, W. A., Tootell, R. B., and Livingstone, M. S. (2006). A
cortical region consisting entirely of face-selective cells. Science, 311(5761):670–674.

[Tuma et al., 2016] Tuma, T., Pantazi, A., Gallo, M., Sebastian, A., and Eleftheriou, E. (2016).
Stochastic phase-change neurons. Nature Nanotechnology, 11.

[Turing, 2009] Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the turing
test, pages 23–65. Springer.

[Turrigiano, 2008] Turrigiano, G. (2008). The self-tuning neuron: Synaptic scaling of excitatory
synapses. Cell, 135:422–35.

[Turrigiano et al., 1998] Turrigiano, G., Leslie, K., Desai, N., Rutherford, L., and Nelson, S. (1998).
Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature, 391:892–6.

[Urbanczik and Senn, 2014] Urbanczik, R. and Senn, W. (2014). Learning by the dendritic pre-
diction of somatic spiking. Neuron, 81(3):521–528.

[van de Ven et al., 2020] van de Ven, G., Siegelmann, H., and Tolias, A. (2020). Brain-inspired
replay for continual learning with artificial neural networks. Nature Communications, 11:4069.

[van de Ven and Tolias, 2018] van de Ven, G. M. and Tolias, A. S. (2018). Generative replay
with feedback connections as a general strategy for continual learning. arXiv e-prints, page
arXiv:1809.10635.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc.

[Vedantam et al., 2015] Vedantam, R., Lawrence Zitnick, C., and Parikh, D. (2015). Cider:
Consensus-based image description evaluation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 4566–4575.

[Walker et al., 2019] Walker, E. Y., Sinz, F. H., Cobos, E., Muhammad, T., Froudarakis, E., Fahey,
P. G., Ecker, A. S., Reimer, J., Pitkow, X., and Tolias, A. S. (2019). Inception loops discover
what excites neurons most using deep predictive models. Nature neuroscience, 22(12):2060–2065.

[Wang et al., 2021] Wang, B., Mayo, D., Deza, A., Barbu, A., and Conwell, C. (2021). On the use
of cortical magnification and saccades as biological proxies for data augmentation. In SVRHM
2021 Workshop @ NeurIPS.

Bibliography 219

[Wang et al., 2022a] Wang, J., Yang, Z., Hu, X., Li, L., Lin, K., Gan, Z., Liu, Z., Liu, C., and
Wang, L. (2022a). Git: A generative image-to-text transformer for vision and language. arXiv
preprint arXiv:2205.14100.

[Wang et al., 2022b] Wang, P., Yang, A., Men, R., Lin, J., Bai, S., Li, Z., Ma, J., Zhou, C., Zhou,
J., and Yang, H. (2022b). Ofa: Unifying architectures, tasks, and modalities through a simple
sequence-to-sequence learning framework. In International Conference on Machine Learning,
pages 23318–23340. PMLR.

[Watt, 1996] Watt, S. (1996). Naive psychology and the inverted turing test. Psycoloquy,
7(14):463–518.

[Weizenbaum, 1966] Weizenbaum, J. (1966). Eliza—a computer program for the study of natural
language communication between man and machine. Communications of the ACM, 9(1):36–45.

[Wertheimer,] Wertheimer, T. Blake lemoine: Google fires engineer who said ai tech has feelings.
BBC news.

[Westerlund, 2019] Westerlund, M. (2019). The emergence of deepfake technology: A review.
Technology Innovation Management Review, 9(11).

[White and King, 2003] White, L. and King, S. (2003). The eustace speech corpus. Centre for
Speech Technology Research, University of Edinburgh.

[Whittington and Bogacz, 2017] Whittington, J. and Bogacz, R. (2017). An approximation of the
error backpropagation algorithm in a predictive coding network with local hebbian synaptic
plasticity. Neural Computation, 29:1–34.

[Whittington and Bogacz, 2019] Whittington, J. and Bogacz, R. (2019). Theories of error back-
propagation in the brain. Trends in Cognitive Sciences, 23:235–250.

[Wickens, 2002] Wickens, T. D. (2002). Elementary signal detection theory. Elementary signal
detection theory. Oxford University Press, New York, NY, US.

[Widrow and Hoff, 1960] Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. In 1960
IRE WESCON Convention Record, Part 4, pages 96–104, New York. IRE.

[Wiesler et al., 2014] Wiesler, S., Richard, A., Schlüter, R., and Ney, H. (2014). Mean-normalized
stochastic gradient for large-scale deep learning. In 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 180–184.

[Williams, 1992] Williams, R. J. (1992). Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Mach. Learn., 8(3–4):229–256.

[Williams and Atkinson, 2008] Williams, S. and Atkinson, S. (2008). Dendritic synaptic integra-
tion in central neurons. Current biology : CB, 18:R1045–7.

[Williams and Stuart, 2001] Williams, S. R. and Stuart, G. J. (2001). Synaptic Integration. Amer-
ican Cancer Society.

[Wilson and McNaughton, 1994] Wilson, M. A. and McNaughton, B. L. (1994). Reactivation of
hippocampal ensemble memories during sleep. Science, 265(5172):676–679.

[Woods and McDermott, 2018] Woods, K. J. P. and McDermott, J. H. (2018). Schema learning for
the cocktail party problem. Proceedings of the National Academy of Sciences, 115(14):E3313–
E3322.

[Wozniak et al., 2020] Wozniak, S., Pantazi, A., Bohnstingl, T., and Eleftheriou, E. (2020). Deep
learning incorporating biologically inspired neural dynamics and in-memory computing. Nature
Machine Intelligence, 2:325–336.

220 Bibliography

[Wu et al., 2019] Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R. (2019). Detectron2.
https://github.com/facebookresearch/detectron2.

[Wythoff, 1993] Wythoff, B. J. (1993). Backpropagation neural networks: A tutorial. Chemomet-
rics and Intelligent Laboratory Systems, 18(2):115–155.

[Xiang et al., 2010] Xiang, J., Simon, J., and Elhilali, M. (2010). Competing streams at the cock-
tail party: Exploring the mechanisms of attention and temporal integration. Journal of Neuro-
science, 30(36):12084–12093.

[Xiao et al., 2017] Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a
Novel Image Dataset for Benchmarking Machine Learning Algorithms. Preprint at
https://arxiv.org/abs/1708.07747.

[Xiao et al., 2018] Xiao, W., Chen, H., Liao, Q., and Poggio, T. (2018). Biologically-plausible
learning algorithms can scale to large datasets.

[Xie et al., 2020] Xie, Q., Luong, M.-T., Hovy, E., and Le, Q. V. (2020). Self-training with noisy
student improves imagenet classification. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10684–10695.

[Xie et al., 2017] Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1492–1500.

[Xie and Seung, 2003] Xie, X. and Seung, H. S. (2003). Equivalence of Backpropagation and
Contrastive Hebbian Learning in a Layered Network. Neural Computation, 15(2):441–454.

[Xu et al., 2019] Xu, H., Ma, Y., Liu, H., Deb, D., Liu, H., Tang, J., and Jain, A. K. (2019).
Adversarial attacks and defenses in images, graphs and text: A review. CoRR, abs/1909.08072.

[Yala et al., 2019] Yala, A., Lehman, C., Schuster, T., Portnoi, T., and Barzilay, R. (2019). A
deep learning mammography-based model for improved breast cancer risk prediction. Radiology,
292(1):60–66. PMID: 31063083.

[Yamins et al., 2014] Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., and
DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural responses in
higher visual cortex. Proceedings of the National Academy of Sciences, 111(23):8619–8624.

[Yan et al., 2021] Yan, M., Xu, H., Li, C., Tian, J., Bi, B., Wang, W., Chen, W., Xu, X., Wang,
F., Cao, Z., et al. (2021). Achieving human parity on visual question answering. arXiv preprint
arXiv:2111.08896.

[Yang and Lisberger, 2014] Yang, Y. and Lisberger, S. G. (2014). Purkinje-cell plasticity and
cerebellar motor learning are graded by complex-spike duration. Nature, 510(7506):529—532.

[Yang et al., 2020] Yang, Z., Huang, L., Chen, Y., Wei, Z., Ahn, S., Zelinsky, G., Samaras, D., and
Hoai, M. (2020). Predicting goal-directed human attention using inverse reinforcement learning.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
193–202.

[Youhui Zhang et al., 2016] Youhui Zhang, Yu Ji, Wenguang Chen, and Yuan Xie (2016). Neu-
ral network transformation under hardware constraints. In 2016 International Conference on
Compliers, Architectures, and Sythesis of Embedded Systems (CASES), pages 1–1.

[Yu, 2020] Yu, D. (2020). Solving Cocktail Party Problem – From Single Modality to Multi-
Modality. In Proc. 6th International Workshop on Speech Processing in Everyday Environments
(CHiME 2020).

https://github.com/facebookresearch/detectron2

Bibliography 221

[Yuan et al., 2020] Yuan, L., Xiao, W., Dellaferrera, G., Kreiman, G., Tay, F. E. H., Feng, J., and
Livingstone, M. S. (2020). Preprint: arXiv:2011.05623.

[Zenke and Neftci, 2021] Zenke, F. and Neftci, E. O. (2021). Brain-inspired learning on neuromor-
phic substrates. Proceedings of the IEEE, 109(5):935–950.

[Zenke et al., 2017] Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning through
synaptic intelligence. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages
3987–3995. PMLR.

[Zhai et al., 2022] Zhai, X., Wang, X., Mustafa, B., Steiner, A., Keysers, D., Kolesnikov, A., and
Beyer, L. (2022). Lit: Zero-shot transfer with locked-image text tuning. CVPR.

[Zhang et al., 2022a] Zhang, M., Armendariz, M., Xiao, W., Rose, O., Bendtz, K., Livingstone, M.,
Ponce, C., and Kreiman, G. (2022a). Look twice: A generalist model predicts return fixations
across tasks and species. PLoS Computational Biology, page In Press.

[Zhang et al., 2021] Zhang, M., Badkundri, R., Talbot, M. B., Zawar, R., and Kreiman, G. (2021).
Hypothesis-driven online video stream learning with augmented memory.

[Zhang et al., 2022b] Zhang, M., Dellaferrera, G., Sikarwar, A., Armendariz, M., Mudrik, N.,
Agrawal, P., Madan, S., Barbu, A., Yang, H., Kumar, T., Sadwani, M., Dellaferrera, S., Piz-
zochero, M., Pfister, H., and Kreiman, G. (2022b). Human or machine? turing tests for vision
and language.

[Zhang et al., 2018] Zhang, M., Feng, J., Ma, K. T., Lim, J. H., Zhao, Q., and Kreiman, G. (2018).
Finding any waldo with zero-shot invariant and efficient visual search. Nature communications,
9(1):1–15.

[Zhang et al., 2020] Zhang, M., Tseng, C., and Kreiman, G. (2020). Putting visual object recogni-
tion in context. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12985–12994.

[Zhang et al., 2019] Zhang, Y., Sun, S., Galley, M., Chen, Y.-C., Brockett, C., Gao, X., Gao, J.,
Liu, J., and Dolan, B. (2019). Dialogpt: Large-scale generative pre-training for conversational
response generation. arXiv preprint arXiv:1911.00536.

[Zhou et al., 2007] Zhou, C., Zemanová, L., Zamora-López, G., Hilgetag, C., and Kurths, J. (2007).
Hierarchical organization unveiled by functional connectivity in complex brain networks. Physical
review letters, 97:238103.

[Zhou and Firestone, 2019] Zhou, Z. and Firestone, C. (2019). Humans can decipher adversarial
images. Nature communications, 10(1):1–9.

[Zhu et al., 2017] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international
conference on computer vision, pages 2223–2232.

[Zhuang et al., 2021] Zhuang, C., Yan, S., Nayebi, A., Schrimpf, M., Frank, M. C., DiCarlo, J. J.,
and Yamins, D. L. (2021). Unsupervised neural network models of the ventral visual stream.
Proceedings of the National Academy of Sciences, 118(3).

[Zhuang et al., 2022] Zhuang, J., Gong, B., Yuan, L., Cui, Y., Adam, H., Dvornek, N., Tatikonda,
S., Duncan, J., and Liu, T. (2022). Surrogate gap minimization improves sharpness-aware
training. ICLR.

[Zinkevich, 2003] Zinkevich, M. (2003). Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of the Twentieth International Conference on International
Conference on Machine Learning, ICML’03, page 928–935. AAAI Press.

[Zipser and Andersen, 1988] Zipser, D. and Andersen, R. A. (1988). A back-propagation pro-
grammed network that simulates response properties of a subset of posterior parietal neurons.
Nature, 331:679–684.

Institute of Neuroinformatics
Prof. Dr. Giacomo Indiveri
Prof. Dr. Valerio Mante
Prof. Dr. Evangelos Eleftheriou
Dr. Angeliki Pantazi
Prof. Dr. Wulfram Gerstner
Prof. Dr. Emre Neftci

Title of work:

Unveiling Principles of Neural Computations: From Biologi-
cal to Artificial Intelligence, and Back

Thesis type and date:

Ph.D. Thesis, January 2023

Supervision:

Prof. Dr. Giacomo Indiveri
Prof. Dr. Valerio Mante
Prof. Dr. Evangelos Eleftheriou
Dr. Angeliki Pantazi
Prof. Dr. Wulfram Gerstner
Prof. Dr. Emre Neftci

Student:

Name: Giorgia Dellaferrera
E-mail: gde@zurich.ibm.com

	Abstract
	1 Introduction
	Introduction to the Thesis Structure
	The context
	Thesis contribution

	Artificial Neural Networks: Methods, Success and Limitations from a biological perspective
	Biological roots of artificial neural networks
	Plasticity and learning
	Learning in biology
	Learning in artificial neural networks

	Network architectures under a biological lens
	Similarities between biological circuits and artificial networks
	Fully connected neural networks
	Convolutional neural networks
	Recurrent neural networks
	Transformers

	Representative examples of state-of-the-art achievements
	Computer vision benchmarks
	Playing games: AlphaGo
	Writing human-like text: GPT3, LaMDA
	Driving plasma fusion: Tokamak and reinforcement learning
	Predicting protein structure: AlphaFold
	Medical diagnosis: predicting pathologies before onset
	Generating art: image and music

	Longstanding challenges of artificial neural networks
	Catastrophic forgetting
	Lack of out-of-distribution generalization
	Susceptibility to adversarial attack
	Temporal and spatial credit assignment problem
	Energy and data-hungry models

	Biologically Inspired Algorithms for Neural Networks
	Principles of biological computations
	Addressing catastrophic forgetting with biologically inspired strategies
	Approaches inspired by synaptic consolidation
	Approaches inspired by the replay mechanism

	Towards bio-plausible training for ANNs
	The neural gradient representation by activity differences (NGRAD) framework and predictive coding
	Supervised learning
	Self supervised learning

	Addressing energy consumption: spiking neural networks
	The potential in the efficiency of SNNs compared to ANNs
	Neuronal dynamics and elements of neuronal systems
	Leaky integrate and fire neuron models
	Spike encoding
	Power efficiency of spiking neural networks
	The spiking neural unit

	Modeling the Mind
	Digital twins of the brain
	The encoding and the decoding problems
	Examples of ANNs to study biological vision
	Brain-Score
	Substitute models to drive perception

	Limitations of deep learning applied to neuroscience
	No free lunch from deep learning in neuroscience
	A roadmap for neuroscience research
	The brain as a highly social network

	2 Results
	GRAPES: a Biologically Inspired Optimizer
	Introduction
	Results
	The GRAPES algorithm
	Convergence analysis of GRAPES applied to SGD
	Main steps of the convergence analysis
	Simulation results on handwritten digit classification
	Performance under various learning rules and data sets
	Mitigation of catastrophic forgetting
	Application of GRAPES to biologically inspired neural networks
	Behaviour of GRAPES under hardware constraints

	Discussion
	Methods

	PEPITA: a Biologically Plausible Training Scheme
	Introduction
	Background and related work
	Credit assignment in conventional networks
	Credit assignment without random feedback path

	Error-driven input modulation
	Overview of the proposed learning rule
	The learning rule
	Extension to convolutional layers

	Results
	Methods
	Experimental results
	Analytic results
	Final weight distribution

	Discussion

	Dendritic Learning for Blind Source Separation
	Introduction
	Results
	Learning of repeated input patterns by a two-compartment neuron model
	Synthesized and natural auditory stimuli
	Learning of mixture sounds in the network model
	Experiment 1: sound segregation with single and multiple mixtures of synthesized sounds
	Experiment 2: sound segregation with alternating multiple mixtures of synthesized sounds
	Experiment 3: effect of temporal delay in target presentation with synthesized sounds
	Experiment 4: sound segregation with single and multiple mixtures of real-world sounds
	Experiment 5: image segregation with single and multiple mixtures of real-world images

	Discussion
	Materials and methods
	Datasets
	Neuron model
	Network architecture
	Experimental settings and performance measure

	Fooling the Primate Brain with Small, Targeted Image Manipulation
	Introduction
	Results
	Deceptive images of human faces evoked monkey face-like neuronal responses
	Deceptive images also led to target category-like responses in two other directions
	Deceptive images reveal mismatch between primate vision and ANNs

	Discussion

	Human or Machine? Turing Tests for Vision and Language
	Introduction
	Related Works
	Glimpse of the 70-year history of Turing test
	AI versus humans in vision tasks
	AI versus humans in language tasks

	Experiments
	Color Estimation
	Object detection
	Attention prediction
	Image captioning
	Word associations
	Conversation

	Results
	Color estimation
	Object detection
	Attention prediction
	Image captioning
	Word associations
	Conversation

	Discussion
	Methods and Additional Results for the Conversation Task
	Results
	Results comparing AMT and in-person experiments
	Results for the human judge on different length of conversations
	Dataset collection: instructions to human participants
	Dataset collection: prompt and settings for GPT3text-davinci002 and GPT3text-curie-001
	Human judges responses collection
	Example of collected conversations

	3 Discussion
	Discussion
	Summary and Outlook
	A parallel quest: the design of neuromorphic hardware
	How crucial is neuroscience for the progress of AI
	How crucial is AI for the progress of neuroscience
	Some unanswered, and possibly unanswerable, questions

	Author Contributions
	Bibliography

