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Supplementary Figures and Tables: 

 

 
Supplementary Figure 1. Flow chart of Semi-supervised Character Identification.  
We developed the semi-supervised framework to identify characters in the movie at the frame level. It consists of three 
main stages, requiring minimal human supervision but producing reliable ground truth labels to train our decoding models. 
In the first stage, we split the whole video into cuts based on the scenes (b), then created stable real-time identification of 
characters, i.e. crop clusters, based on human detection (c,d), and tracking and matching algorithm (e). In the second stage, 
we merged crop clusters purely based on facial features with k-means clustering (i) and KNN (j) iteratively. 
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Supplementary Figure 2. Distribution of the Characters’ Presence in Time during the Movie.  
The results from our semi-supervised character identification algorithm are shown. The presence of each of the nine 
characters (rows) in each frame of the movie (x-axis) is indicated by vertical lines. For our subsequent neural decoding 
analysis, we picked the four characters (bottom 4) that were most prominent and were present during different time points 
in the movie. For further details about the character distributions in the movie, see Supplementary Table 4. For visualization 
purposes, each vertical line has been dilated for 50 data points.   
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Supplementary Figure 3. Convolutional Neural Network as an Alternative Architecture to Decode Characters from 
Neural Data (related to Fig. 2).   
a. The structure of the CNN network used for classification. Here, input data was the firing sequence of all neurons 
(colormap; x-axis: time, y-axis: neuron number; brighter shades correspond to higher firing) from a participant within a 
two-second window around each frame. Firing rate maps were passed through four CNN layers followed by two fully 
connected (FC) layers to output a probability distribution over the four main characters in that frame of the movie. b. Frame-
by-Frame comparison of character labels generated by CV and CNN: The labels generated by the CNN and the computer 
vision algorithm for each movie frame are plotted as a function of time. The significant overlap between the two labels (a 
large number of true positives) illustrates the goodness of the decoding algorithm (A manual inspection of the time series 
output of the CNN model for each frame against the true character labels and noted that the model prediction shared high 
overlap with the true labels). c. In an example participant, the normalized confusion matrices for the binary classification 
task for all the four characters are shown. The large numbers on the diagonals (high TPR and TNR) of all the four matrices 
show that the CNN achieves high accuracy in decoding all the four characters. d. The distribution of the entries of the 
confusion matrix overall participants is shown as a bar plot (mean) with errorbar (std) for all four characters. The high mean 
and low standard deviation for the TPR and TNR values in all four matrices shows that the CNN achieves high accuracy in 
decoding all the four characters across participants. e-f. Accuracy (e) and F1-scores (f) for decoding each character are 
shown with each colored dot indicating different participants. The consistently high accuracy and F1-scores across 
participants indicate that the CNN generalizes well in this decoding task. The lines and shaded areas (mean±STD) indicate 
the performance of the chance model (obtained from shuffling labels) across all participants. 



5 

 
 

Supplementary Figure 4. Identification of important regions in decoding characters using a CNN architecture 
(related to Fig. 3). a. The change of KLD loss for each character (row) after knocking out a given region (column) for 
one participant is shown (Region Knockout). The value is normalized by the number of neurons in that region and 
demonstrates how the model performance deteriorated when excluding the units recorded from that region. Important 
regions are those with higher KLD loss values. L and R correspond to the left and right hemisphere respectively. A: 
amygdala, AC: Anterior Cingulate, EC: Entorhinal Cortex, MH: Middle Hippocampus, VMPFC: Ventro-medial Prefrontal 
Cortex. b. The changes in KLD loss after knocking out regions are shown across participants. Different colored dots 
correspond to the change in KLD loss for different characters. Bars indicate the median value of the change in KLD loss 
after region knockout. The following regions resulted in the most notable losses in decoding performance: anterior cingulate 
(22.22, [10.12, 39.15]%), occipital (40.00, [19.12, 63.95]%), Subiculum (37.5, [8.52, 75.51]%), and superior temporal 
(66.67, [34.89, 90.08]%). Reported are the percentage of losses above 0.5 (as well as the binomial fit confidence intervals) 
c. The change in KLD loss for each character (row) after knocking out a given electrode (column) at a time is shown 
(Electrode Knockout) for an example participant (same as in a). Similar to the region knockout results in (a), the loss value 
is normalized by the numbers of units recorded on each electrode. d. The sum of the change in KLD loss following electrode 
knockout (all electrodes within a region) was subtracted from the change in KLD loss following region knockout. Shown 
are these values for the four different characters (rows) from an example participant (same as in a and c). Positive values 
indicate that knocking out a whole region deteriorates the model performance to a greater extent. e. When considering all 
regions from all participants, in most regions, the region knockout loss was greater than the sum of electrode knockout loss 
(each column, and its associated colormap, is the distribution of this measure and the red horizontal line indicates the median 
of the distribution for those that were significantly different from zero) as quantified by Wilcoxon signed-rank tests (*: 
p<0.05; **: p<0.01; ***: p<0.001).  
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Supplementary Figure 5. The Semi-supervised Character Identification Algorithm Generated Multiple Clusters for 
Each Character throughout the Movie.   
Our character identification method resulted in multiple clusters for a single character. Each row represents a cluster and 
the vertical lines indicate the frames in which a given cluster was identified. Note that each cluster corresponds to a visually 
different representation of the same character (snapshots on the right; cluster six refers to all other small clusters merging 
together).  
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Demographics of Participants 

Pt. 
ID Age Handedness Gender 

1 50 R F 
2 22 L F 
3 27 R F 
4 31 R M 
5 49 R F 
6 49 R M 
7 24 R F 
8 37 L M 
9 20 R M 
    

 
Supplementary Table 1. Participant demographics.   
Demographics of the study participants (age, gender, and handedness) are presented.  
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Locs 
Pt. 
ID 

Entorhinal 
Cortex 

Hippocampus 
Para-

hippocampal 
Gyrus 

Subiculum Amygdala 
Superior 
Temporal 

Gyrus 

Anterior 
Cingulate 

Middle & 
Posterior 
Cingulate 

Ventromedial 
Prefrontal 

Cortex 
PreSMA Occipital 

1 - 
L 
R 

- - R  
 L  

R (2) 
- 

L  
 R (3) 

- - - 

2 
L 
R 

-   - - R (2) R  
L 
R 

- 

3* R  - 
L 
R  

L  - - - - - - 
L (2) 

 

4 
L  

R (2) 
L  - - 

L 
R  

- 
L  
R  

- 
L 
R  

L  
R  

- 

5 L  - - L  L  - - - L  - - 

6  L R  - 
L  
R 

- R  - - - - 

7 L  
  

-  - - 
L  
R  

- 
L  
 

- - 
 

R 
- 

8 
L 
R 

L 
R 

- - L  - 
L 
R 

- 
L 
R 

- - 

9 - - - - R  - R  - -  - R(2)  

 
Supplementary Table 2. Electrode Localizations.  
Electrode locations are listed for each participant (rows). Columns indicate the electrode locations (categories that were 
used for group analysis) with R and L referring to the right and left hemispheres respectively. The number in parentheses 
indicates the number of electrodes within each hemisphere. *Participant 3 had units in the parietal region as well. 
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Participant ID Number of Units 
1 56 
2 53 
3 49 
4 84 
5 8 
6 18 
7 29 
8 60 
9 28 
 
Supplementary Table 3. Number of Units Recorded in Each Participant. 
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 Yes No DNK 
C.1  17.96 80.25 1.826 
C.2 10.73 85.73 3.531 
C.3  10.01 89.76 2.230 
C.4  8.683 89.59 1.720 

 

Supplementary Table 4. Distribution of the Character Labels during the Movie Generated by the Semi-supervised 
Framework.  
This table shows the percentage of each label for the four main characters detected by our semi-supervised character 
identification framework on a frame level in the movie. Label Yes (No) was defined as when the character was (not) present 
at the exact time step (frame). Label DNK (Do Not Know) was introduced as a mechanism to particularize the training set 
(Methods). The characters were present in less than 20% of the frames across the movie and, thus, it must be borne in mind 
that the training data used for further neural decoding models were heavily skewed and appropriate measures were taken to 
remedy this issue. The percentage of DNK was around 2% of the total training samples, which indicates that the dropping 
of the data sample would not affect the total information provided to the model. 

  



11 

 

Layers Feature Map Activation  

Input  Neural Signal Nneurons*60 - 
1 Two-layer LSTM 128 - 
2 FC + BatchNorm 128 LeakyReLU 
3 FC 12 Softmax 
 

Supplementary Table 5. LSTM Architecture.   
The input to the LSTM model consisted of the firing rate of all neurons from a participant in time (2 seconds around each 
frame with 60 time-steps). This was first fed into a two-layer LSTM followed by a fully connected layer (FC) and a Batch 
Normalization layer (BatchNorm) with LeakyReLU as the activation function. This was further processed by a connected 
layer followed by a softmax operation to output the confidence scores for three labels (Yes, No, DNK) for each character.  
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 Pt. 1 Pt. 2 Pt. 3 Pt. 4 Pt. 5 Pt. 6 Pt. 7 Pt. 8 Pt. 9 

LSTM 0.8784 0.8766 0.8788 0.8772 0.7597 0.8536 0.8692 0.8793 0.8647 
CNN 0.8738 0.8737 0.8633 0.8755 0.6272 0.8620 0.8400 0.8702 0.8483 

NB 0.1160 0.1144 0.1158 0.1154 0.1180 0.1158 0.1148 0.1137 0.1151 
SVM 0.1782 0.1832 0.1901 0.1799 0.1481 0.1523 0.1501 0.1911 0.1573 
LR 0.1867 0.1503 0.1287 0.2013 0.0000 0.0359 0.0395 0.1682 0.0993 

 

Supplementary Table 6. Comparing NN Model Performances against a Baseline (Naive Bayes) Model and other ML 
models.   
For each participant (columns), average performance (as quantified by F1-scores) is reported for three different methods 
used to decode the visual presence of characters using the neural data. Our main methods, the LSTM and the complimentary 
CNN architectures, fared much (on average 7 times) better when compared against the performance of a Naive Bayes (NB) 
method, which was used as a baseline model. Similarly, our main NN models outperformed both SVM and Logistic 
Regression (LR) models in terms of decoding performance.  
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 Recall Precision F1 score Accuracy 
C. 1 83.59±2.24 87.60±2.15 0.8090±0.0158 90.37±2.30 
C. 2 86.68±4.33 88.65±5.54 0.8222±0.0535 88.29±5.94 
C. 3 94.57±1.06 97.44±0.73 0.9677±0.0048 97.90±0.74 
C. 4 85.06±3.17 88.08±3.81 0.8148±0.0341 89.27±4.17 

 

Supplementary Table 7. Further Quantifications of the LSTM Model Performance in Decoding Characters.  
In addition to the LSTM model F1-scores and accuracy values shown for all participants in Fig. 2e and Fig. 2f, here we 
report mean±STD values of other measures such as recall and precision to quantify model performance in decoding each of 
the characters (rows).   
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Layers Feature Map Kernel Size Stride Activation  

Input Neural Signal Nneurons*60*1 - - - 
1 Conv + BatchNorm n1*60*12 1*1 1 LeakyReLU 
2 Conv + BatchNorm n2*12*12 8*8 1 LeakyReLU 
3 Conv + BatchNorm n3*10*10 3*3 1 LeakyReLU 
4 Conv + BatchNorm 8 3*3 1 LeakyReLU 
5 MaxPooling - 3*3 3  
6 Flatten Variable (see 

below)† 
- - - 

7 FC + BatchNorm 64 - - LeakyReLU 
8 FC 12 - - Softmax 

 

Supplementary Table 8. CNN Architecture.   
The CNN model was used as an independent confirmation of the LSTM model results. Here, too, the windowed neural 
signal (firing rate of all neurons from a participant during a two-second interval around each frame) was the input that 
underwent several convolution layers with LeakyReLU activations and Batch Normalization (BatchNorm) layers in 
between. The output of the last convolutional layer went through a MaxPooling layer and was then flattened to a one-
dimensional vector. This one-dimensional vector was concatenated with the flattened region tag embedding corresponding 
to each region in order to incorporate more information into the model. Finally, the concatenated vector was fed into two 
sequential Fully Connected (FC) layers with LeakyReLU activation and a Batch Normalization in between. The output of 
the last Fully Connected layer was reshaped into a 4*3 matrix corresponding to the confidence scores of the three labels 
(Yes, No, DNK) for each of the four main characters. 

† Given that each participant had a different number of contacts, the number is variable from participant to participant. 

 


