
Under review as a conference paper at ICLR 2023

Asher Trockman and J. Zico Kolter. Patches are all you need? ArXiv, abs/2201.09792, 2022.

Danil Tyulmankov, Ching Fang, Annapurna Vadaparty, and Guangyu Robert Yang. Biological key-
value memory networks. Advances in Neural Information Processing Systems, 34, 2021.

Aäron van den Oord, Oriol Vinyals, and K. Kavukcuoglu. Neural discrete representation learning.
In NIPS, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Ziheng Wang. Sparsert: Accelerating unstructured sparsity on gpus for deep learning inference.
Proceedings of the ACM International Conference on Parallel Architectures and Compilation
Techniques, 2020.

Marjorie Xie, Samuel P. Muscinelli, Kameron Decker Harris, and Ashok Litwin-Kumar. Task-
dependent optimal representations for cerebellar learning. bioRxiv, 2022.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. In NeurIPS, 2018.

Daniel Yamins, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and James J.
DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proceedings of the National Academy of Sciences, 111:8619 – 8624, 2014.

Chris I. De Zeeuw. Bidirectional learning in upbound and downbound microzones of the cerebellum.
Nature Reviews Neuroscience, 22:92–110, 2020.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
Proceedings of machine learning research, 70:3987–3995, 2017.

Mengmi Zhang, Rohil Badkundri, Morgan B. Talbot, and Gabriel Kreiman. Hypothesis-driven
stream learning with augmented memory. ArXiv, abs/2104.02206, 2021.

Appendix

Table of Contents
A SDM 16

A.1 SDM Training Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
A.2 SDM Biological Plausibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
A.3 Learning SDM Neuron Addresses with the Top-K Activation Function . . . . . . 19
A.4 Why SDM Originally Required Fixed Neuron Addresses . . . . . . . . . . . . . 19
A.5 Additional Modifications to SDM . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.6 SDM Write Operation Relation to MLP Backpropagation . . . . . . . . . . . . 22
A.7 Rate Code Activations Maintain SDM’s Approximation to Transformer Attention 22

B GABA Switch 25
B.1 Biologically Implausible Solutions to the Dead Neuron Problem . . . . . . . . . 25
B.2 GABA Switch Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
B.3 GABA Switch Practical Considerations . . . . . . . . . . . . . . . . . . . . . . 27

C Top-K 30
C.1 Inhibitory Interneurons Approximate Top-K . . . . . . . . . . . . . . . . . . . 30

15



Under review as a conference paper at ICLR 2023

C.2 Optimized Top-K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

D Stale Momentum 35

E Training Regime Ablations 39
E.1 Training Directly on Image Pixels . . . . . . . . . . . . . . . . . . . . . . . . . 39
E.2 No Pretraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

F Additional Datasets 42
F.1 CIFAR10 Extra Figure and Table . . . . . . . . . . . . . . . . . . . . . . . . . 42
F.2 CIFAR100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
F.3 Split MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
F.4 Split FashionMNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

G Baseline Implementations 47
G.1 Beta Coefficient for Elastic Weight Consolidation and Synaptic Intelligence . . . 47
G.2 FlyModel Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

H Investigating Differences in Continual Learning Abilities 48

A SDM

A.1 SDM TRAINING ALGORITHM

Here we present in full the training loop used for the SDMLP.

Algorithm 1 SDMLP Training Algorithm
Input: Model weights: (Xa, Xv), Tasks: (T1, . . . , Tn), Top-K params: kmax, ktarget, Train steps: s
Output: Trained model weights: (Xa, Xv)
Xv ← LayerInit(Xv) // Reset neuron output weights
for i in (1,. . . ,n) do

X,Y ← Ti // Obtain data and class labels for current task
for j in (1,. . . ,s) do

x,y ∼ X,Y // Sample a data point from the task
x← x/||x|| // L2 normalize the data
a←XT

a x // Get neuron activations
a← Top-K(a) // Apply Top-K Eq.4
ŷ← XT

v a // Get model predictions
∇θXa,∇θXv ← ComputeGradients(ŷ,y) // Compute Loss and Gradients
Xa, Xv ← GradientStep(∇θXa,∇θXv) // Update model weights
Xa, Xv ← [Xa]+, [Xv]+ // Clamp all weights to be positive
Xa ← Xa/||Xa|| // L2 normalize the neuron addresses

end
end
return Xa, Xv

A.2 SDM BIOLOGICAL PLAUSIBILITY

Here we summarize the biological foundations of SDM.8 The biological plausibility of our new
modifications to SDM that allow it to learn the data manifold and be implemented as a deep learning
model can be found in Appendix A.5. The biological plausibility of the GABA switch can be found
in Appendix B.2.

8A more extensive treatment of how SDM may be implemented by the cerebellum can be found in Chapter
9 of the SDM book (Kanerva, 1988) and (Kanerva, 1993).
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Figure 5 overlays SDM notation and operations on the cerebellar circuitry. Mossy Fibers repre-
sent incoming queries ξ and pattern addresses pa through their firing activity. Each Granule cell
represents an SDM neuron x, with its dendrites as the neuron address vector xa and post-synaptic
connections with Purkinje cells as the storage vector xv . In branching perpendicularly, each Gran-
ule cells axon (called a Parallel Fiber), forms contacts with thousands of Purkinje cells with many
granule cells (Hoxha et al., 2016). The strength of each contact represents a counter recording the
value of a particular element in the neuron storage vector (xv)i, where i indexes this vector element.

Figure 5: SDM Mapping to the Cerebellum. The operations are as follows: #1. A pattern pa (blue)
or query ξ (red) enters via firing of the Mossy Fibers (Mo). #2. Mossy fibers activate Granule Cells
(Gr), with the Gr dendrites representing xa. Here we show two different Granule cells and their
addresses x1

a and x2
a. These Granule Cells project their axons (called Parallel Fibers (Pa)) upwards

and across Purkinje Cells (Pu) where their synaptic connections encode their storage vectors. Each
contact with a Purkinje Cell encodes a single element of the storage vector. Here we show one of
these elements with the first Purkinje Cell with the subscript 1, [x1

v]1 and [x2
v]1. We will come back

to these. #3. A Golgi (Go) inhbitory interneuron gets input from a number of neuron types including
Granule cells, it inhibits these Granule cells with a value of −I , implementing an approximate
Top-K. #4. If and only if we are writing in a pattern pv , it comes through a climbing fiber (Cl)
that wraps around a single Purkinje Cell to produce large action potentials that induce long term
potentiation/depression (LTP/LTD). Here we show the Climbing fiber that writes to the Purkinje Cell
representing the first element of the storage vectors with [pv]1. #5. The Granule Cells that are firing
excite the Purkinje cells in proportion to the strength of their synaptic connections that represent
their storage vectors. In the case of writing, this updates these synapses. #6. If we are reading
from the system, the Purkinje Cell integrates signals from all activate neurons’ storage vectors and
determines whether or not to fire, implementing a non-linear activation function that outputs [y]1
(the first element of the vector in this case). The neuron types not mentioned previously are, going
clockwise starting in the top right: St=Stellate cell (inhibitory interneuron) and Ba=Basket cell
(inhibitory interneuron). Displayed originally without the SDM notation overlayed as Figure 3.11
of (Kanerva, 1993), reprinted with permission from Pentti Kanerva to whom all rights belong.
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During SDM read operations, this Purkinje cell can thus sum over index i of all activated neuron
storage vectors and use its firing rate to represent the value of yi. During SDM write operations,
the Climbing Fibers are used to update the Purkinje cell counter of each active neuron with the
pattern value at this index position (pv)i. The most demanding part of SDM’s implementation
in a biological circuit that is strikingly satisfied by the cerebellum is the three way interface and
specificity that exists between Purkinje cells, Climbing Fibers, and Parallel Fibers. This allows for
Granule cells to have storage vectors that are precisely written to and read from. We also provide
Figure 6 to give an additional perspective on the biological mapping.

While our improved version of SDM assigns functionality to five different cell types in the cerebel-
lar circuit, there is more of the circuitry to be mapped such as the Basket cells and Deep Cerebellar
Nuclei (Sezener et al., 2021). There is also additional neuroscientific evidence required to confirm
that the cerebellum operates as SDM predicts, for example that granule cells fire sparsely (Kan-
erva, 1988; Bricken & Pehlevan, 2021; Giovannucci et al., 2017). Within the scope of our model,
the weakest biological plausibility is how well Top-K actually approximates the Golgi inhibitory
interneuron (Appendix C.1) and how L2 normalization is implemented (Appendix A.5).

(a) (b)

Figure 6: Another perspective on the mapping from SDM to the cerebellar circuitry. (a) The
computational circuitry necessary to implement SDM. (b) The biological implementation of SDM
where the labels of (a) have been replaced by their biological components. The Purkinje cell is
shown as an oval to represent the synaptic contacts with the granule cells. See the text for explana-
tions of the architectural features.
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A.3 LEARNING SDM NEURON ADDRESSES WITH THE TOP-K ACTIVATION FUNCTION

SDM was built on the assumption that its neuron addresses, Xa, are randomly initialized and fixed in
place (Kanerva, 1988). This was for reasons of both biological plausibility and analytical tractability
when determining the maximum memory capacity and convergence dynamics of the model (see
Appendix A.4). However, these random and fixed neuron addresses will often not be within cosine
similarity c of the real-world patterns existing on some lower dimensional manifold in the vector
space. As a result, these neurons will often never be written to or read from.

Keeler (1988) outlined how SDM could both retain its theoretical results and allow for neuron ad-
dresses to learn the data manifold. This is by replacing the fixed cosine similarity activation thresh-
old c that activates a variable number of neurons, with a variable threshold that activates a fixed k
neurons. Intuitively, with random neuron and pattern addresses, a fixed c would result in a pattern
or query activating some k neurons in expectation, keeping neuron utilization constant. However,
using the same fixed c with non-random addresses would vary the number of neurons being acti-
vated and utilized. Over-utilized neurons would store too many pattern values in their storage vector
superposition, harming pattern fidelity. Instead, we can achieve the same constant neuron utilization
as in the random address setting by varying c such that only k neurons are always activated.

How can c be dynamically adjusted to keep a constant k neurons active in a biologically plausible
fashion? Via an inhibitory interneuron that creates a negative feedback loop: the more neurons that
are active, the more activated the interneuron becomes, and the more it inhibits, keeping only k active
at convergence.9 Sparsity inducing interneurons are ubiquitious across layers of cortical processing
in the brain, particularly relevant to SDM is the cerebellar Golgi interneuron (Marr, 1969; Keeler,
1988; Paiton et al., 2020).

A.4 WHY SDM ORIGINALLY REQUIRED FIXED NEURON ADDRESSES

In attempting to be biologically plausible, SDM was designed to respect Dale’s Principle, whereby a
synaptic connection can be either excitatory or inhibitory but not transition between them (Dale,
1935). Using the original binary vector formulation, neurons could compute if they were near
enough to an incoming pattern or query to be activated (within some Hamming distance threshold)
through the following steps:

1. Converting the neuron’s binary address to bipolar weights {+1,−1} corresponding to be-
ing excitatory or inhibitory, respectively.

2. Activating those weights where the incoming query has a 1 in its address and summing
over them. This corresponds to how many 1s in the query and neuron address vectors agree
– if the addresses match then an excitatory weight is activated, giving a +1, if they disagree
then a negative weight is activated, giving a -1.

3. Rescaling the binary Hamming distance threshold if the neuron is activated by the total
number of 1s in the neuron address. See (Kanerva, 1988; 1993) for details beyond this
summary.

Formally, the binary neuron address can be converted into weights wi = ±1 with:

wi =
(
2 ∗ [xτ

a]i
)
− 1,∀i ∈ {1, ..., n}. (5)

Where τ is used to denote a specific neuron address, the query vector is ξ, and the function to
determine if the neuron should be activated is a(·, ·) that returns a binary action potential. We can
write:

a(ξ,xτ
a) = I

[( n∑
i=1

wiξi

)
> d

]
= I

[( n∑
i=1

(
(2 ∗ [xτ

a]i)− 1
)
ξi

)
> d

]
,

where there is the action potential threshold d for the neuron to fire and I[·] is the indica-
tor function. The interval of values for address decoding is the number of 1s in the address,
[−
∑n

i [x
τ
a]i,
∑n

i [x
τ
a]i]. By adjusting our d value to account for the possible number of matches,

we can implement the Hamming distance threshold for each neuron.

9Appendix C.1 discusses of how well inhibitory interneurons can be approximated by Top-K.
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The potential for changing the magnitude of neuron weights was considered but a change of their
sign was banned due to Dale’s Principle. It was acknowledged in (Kanerva, 1988) that changing the
magnitudes of the neuron weights results in a weighted sum where the matching of some bits in the
addresses matters more than others for calculating if the neuron is activated. However, the crucial
feature is the sign of the weights, determining if there is a match or mismatch. This sign change is
what was banned by Dale’s Principle, making the neuron addresses fixed both to their sign and to
their specific value by the use of binary vectors that cannot represent nuances in weight magnitude
(Kanerva, 1988; 1993).

However, the original SDM approach still in fact violated Dale’s Principle by mapping the binary
neuron address to bipolar because of what this means for the pre-synaptic input neurons. Consider
the 3rd element of the input vector (either a pattern or a query) being on (a 1 value). The neuron that
is active and represents this value will not have a mixture of both excitatory and inhibitory efferent
connections with the SDM neuron addresses. In the cerebellar mapping, mossy fibers represent the
pattern/query inputs and release glutamate. This means they are always excitatory to granule cells
and the 0s in a neuron address should correspond to having no weight (no dendritic connection)
rather than a negative weight (inhibitory connection).

An additional issue with the original SDM formulation is that the neuron addresses are dense vectors;
this is not the case for the granule cells that they are mapped onto in the cerebellum where each has
only ∼ 4 dendrites (Litwin-Kumar et al., 2017) (see (Jaeckel, 1989a) for a solution that makes the
weights of SDM sparse).

Taken together, these issues can be resolved by having the binary neuron addresses be sparse and
staying binary rather than becoming bipolar. We can then allow our neuron addresses to use positive
real values, simultaneously allowing for changes in weight strengths and respecting Dale’s Principle.
In this work, we use positive real values but do allow for our weights to be dense, leaving high
degrees of weight sparsity to future exploration (Jaeckel, 1989a;b).

A.5 ADDITIONAL MODIFICATIONS TO SDM

The five modifications made to SDM for it to be implemented in a deep learning framework and that
differentiate it from a vanilla MLP are explained in full here. These modifications are:

1. Using continuous instead of binary neuron activations

2. L2 normalization of inputs and weights

3. No bias term

4. Only positive weights

5. Backpropagation

1. Continuous Activations - SDM originally modelled neurons as having binary action potentials
by using a Heaviside step function. However, this is non-differentiable and we want to use backprop-
agation for training our model. This can be resolved by viewing a neuron’s action potentials over a
time interval, referred to in the neuroscience literature as a rate code (Dayan & Abbott, 2001). We
believe this is compatible with SDM, whereby neurons with addresses closer to an incoming pattern
or query will receive stronger stimulation and fire more action potentials by having more dendritic
connections stimulated by excitatory neurotransmitters.

We can represent neuronal activation as an expected firing rate with a real positive number a ∈ [0, t]
where t is some maximum firing rate. This may look like a rectified tanh function where, due to
refractory periods, there are diminishing returns to more stimulation (Glorot et al., 2011). However,
because our neurons are already constrained by L2 normalization to be in the cosine similarity
bounds of [−1, 1] we simply use a ReLU activation function.

Implementing weighted read and write operations in our original SDM Eqs. 1 and 2, we would
replace our binarizing function b(·) with a weight coefficient proportional to the distance between
the input and neuron addresses. We show in Appendix A.7 that this modification has minimal impact
on how SDM weights different patterns. This means it should have minimal effect on memory
capacity and is still approximately exponential, maintaining its relationship to Transformer Attention
(Bricken & Pehlevan, 2021).
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2. L2 Normalization - SDM requires a valid distance metric to compute if neurons and pat-
terns/queries are sufficiently close to each other to produce an activation. We make SDM continuous
so that it is differentiable by following (Bricken & Pehlevan, 2021) and replacing its original Ham-
ming distance with cosine similarity.

In SDM’s mapping to the cerebellum (outlined in Appendix A.2), mossy fibers represent input pat-
terns/queries and granule cell dendrites represent neuron addresses. It remains to be experimentally
established if and how these specific cell types enforce L2 normalization. However, contrast en-
coding and heterosynapticity are both ubiquitous mechanisms that can approximate L2 normaliza-
tion for the mossy fiber activations and granule dendrites, respectively (Sterling & Laughlin, 2015;
Rumelhart & Zipser, 1985; Tononi & Cirelli, 2014). From a deep learning perspective, LayerNorm
and BatchNorm are both used ubiquitously and can also be viewed as approximations to L2 normal-
ization (Ioffe & Szegedy, 2015; Ba et al., 2016).

3. No Bias Term - In order to have our neuron activations represent cosine similarities, we must
remove the bias term. We also remove the bias term from the output layer so that outputs represent
only a summation of the neuron storage vectors that are activated. The absence of both of these bias
terms is clear in the SDM Eq. 2 compared to the MLP Eq. 3.

Bias terms can be viewed biologically as representing a neuron activation threshold (if negative) or
a baseline tonic firing rate (if positive). In SDM’s cerebellar mapping, granule cells that represent
the neurons do not have a tonic baseline firing rate meaning that positive bias terms should not
be allowed (Powell et al., 2015; Giovannucci et al., 2017). Purkinje cell firing that represents the
output layer is much more complex such that keeping or removing the bias term is hard to justify
biologically (Zeeuw, 2020) but we follow the SDM equation in also removing it.

While removing positive bias terms from the granule cells fits neurobiology, removing negative bias
terms corresponding to an activation threshold is less justified. However, as it relates to learning
dynamics and the ability for Top-K to still be approximated, the ordinary differential equations of
(Gozel & Gerstner, 2021) (summarized in C.1), still maintain approximately k neurons firing while
using activation thresholds. This is because the fewer neurons that are firing, the less the inhibitory
interneuron is activated, keeping more neurons active. As a result, and in line with SDM Eq. 2, we
make the simplifying assumption of not allowing for negative bias terms either, thus removing bias
terms entirely.

An additional benefit of SDM having no bias term, in conjunction with positive weights, is that all
neurons will have positive activations by default. This allows for k annealing instead of the GABA
switch that is otherwise needed to inject positive current into each neuron when learning the data
manifold (also discussed in Appendix B.3). Having all neurons active also guarantees that there will
always be at least k active neurons to use in the Top-K.

It is noteworthy that the removal of the bias terms is seeing a resurgence in state of the art models
such as the 540B parameter PaLM Transformer language model (Chowdhery et al., 2022), which
noted that removal of bias terms resulted in more stable training.

4. Positive Weights - The connection between mossy fibers and granule cells is excitatory so the
weights should be positive. Allowing for both positive and negative weights would violate Dale’s
Principle (Dale, 1935). As discussed in the last section, the combination of only positive weights and
no bias term gives the added benefit of ensuring that all neuronal activations are positive, allowing
for the use of the simpler k annealing algorithm.

Coincidentally, having only positive weights also gives better continual learning performance as
shown in the ablations of Table 2. A final benefit is the creation of sparse weights but this advantage
has its limitations. In models trained on our ConvMixer embeddings, we found only ∼20% weight
sparsity. Meanwhile, when trying to jointly train a ConvMixer with SDM on top, too many weights
were set to 0, resulting in failed training runs.

5. Backpropagation - Gradient descent via backpropagation used to train MLPs is likely to be
biologically implausible (Lillicrap et al., 2020; Goodfellow et al., 2015). However, there exist a
number of local Hebbian learning rules associated with inhibitory interneurons and manifold tiling
that we see as viable alternatives (Sengupta et al., 2018; Krotov & Hopfield, 2019; Gozel & Gerstner,
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2021). In addition, the cerebellum receives supervised learning signals, via climbing fibers10, that
are known to be capable of encoding heteroassociative relationships such as an eyeblink response to
a tone. This circuitry is considered in (Sezener et al., 2021) and presents yet another alternative to
backpropagation for training the cerebellum.

A.6 SDM WRITE OPERATION RELATION TO MLP BACKPROPAGATION

The original SDM write operation directly updates the neuron value vector with the pattern value
xv = xv +αpv where α weights the pattern by the amount each neuron was activated. Meanwhile,
the backpropgation write operation updates xv with the error between the model output and the
true class one-hot (using cross entropy loss). During model training all inputs are considered write
operations. After training, during inference, all inputs are considered queries that perform the SDM
read operation. pa corresponds to a CIFAR image and pv is a one hot label of its encoding.

There are a few reasons why this difference is compatible with SDM:

First, an optimal solution for xv that will result in zero error is the one hot encoding used by the
original SDM write operation.

Second, the original SDM write is only appropriate when the neuron addresses are fixed and xv

is the only thing learnt. Otherwise, as neurons update their address xa, this changes the patterns
they are activated by and what pv they should store in xv . Using the backpropagation approach to
continuously update xv as a function of the patterns it is currently activated by is a viable solution.

Finally, from a biological perspective, the error signal used by backpropagation is a closer approxi-
mation to how the cerebellar circuit that SDM maps to updates xv (Bidirectional learning in upbound
and downbound microzones of the cerebellum, De Zeeuw, 2021). While backpropagation through
multiple layers of a deep network has been argued to be biologically implausible, this update to the
output layer is directly connected to the error computation making it possible.

In summary, SDM will explicitly write in pv while the MLP with backprop will compute a delta
between pv and the network output but this approach is compatible with the same solution, works
better when also learning neuron addresses, and is likely to be more biologically plausible.

A.7 RATE CODE ACTIVATIONS MAINTAIN SDM’S APPROXIMATION TO TRANSFORMER
ATTENTION

It was shown in (Bricken & Pehlevan, 2021) that the Attention operation of Transformers closely
approximates the SDM read operation (Vaswani et al., 2017). This is because the weighting assigned
to each pattern in SDM is approximately exponential, resulting in the softmax rule.

However, this result is derived where SDM has binary activations of neurons when reading and
writing, not weighting each pattern by its distance. Here, we show that with linear or exponential
pattern weightings, SDM remains a close approximation to Attention. This makes the results of
previous work continue to hold in our case where SDM is written as an MLP, giving an interesting
relation between MLPs and Attention (see Section 6).

The algorithm derived in (Bricken & Pehlevan, 2021) for the size of each circle intersection is
summarized before showing how it can implement the weighting coefficient and the effects of this
weighting.

As in the original SDM formulation, we are using n dimensional binary vectors with a Hamming
activation threshold of d and the distance between the addresses of a query ξ and pattern pa is
dv := d(ξ,pa). We can group the elements of ξ and pa into two disjoint sets: the n− dv elements

10It is an open question if the climbing fiber signals encode errors or the target to be learnt but we use
“supervised” here as a superset of the two and distinct from unsupervised learning without any “teacher” signal.
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where they agree and the dv elements where they disagree11:

ξ = [

n−dv︷ ︸︸ ︷
1, . . . , 1 | 0, . . . , 0 |

dv︷ ︸︸ ︷
1, . . . , 1 | 0, . . . , 0] (6)

pa = [1, . . . , 1 | 0, . . . , 0︸ ︷︷ ︸
a+z

| 0, . . . , 0 | 1, . . . , 1︸ ︷︷ ︸
b+c

]

Now imagine a third vector, representing a potential neuron address. This neuron has four possible
groups that the elements of its vector can fall into:

• a - agree with both ξ and pa

• z - disagree with both ξ and pa

• b - agree with ξ and disagree with pa

• c - agree with pa and disagree with ξ

We want to constraint the values of a, z, b and c such that the neuron address exists inside the circle
intersection between ξ and pa. This produces the following constraints:

a+ b+ c+ z = n

a+ b ≥ n− d

a+ c ≥ n− d

a+ z = n− dv

b+ c = dv

Using the notation of (Vaswani et al., 2017), we can write the total number of neurons that exist in
the intersection of the read and write circles as:

n−dv∑
a=n−d−⌊ dv

2 ⌋

dv−(n−d−a)∑
c=max(0,n−d−a)

wType(a, c, dv, n)

((
n− dv

a

)
·
(
dv
c

))
,

where introduce the weight coefficient wType() that can be:

wBinary(a, c, dv, n) = 1 (7)

wLinear(a, c, dv, n) =
a+ c

n
· a+ (dv − c)

n
(8)

wExp(a, c, dv, n) = exp
(
− β

(
n− (a+ c)

))
· exp

(
− β

(
n− (a+ (dv − c))

))
, (9)

where wBinary is the original weighting of 1 for everything; wLinear applies a linear decay from 1
for a perfect vector match to 0 for the maximum distance allowed between vectors; and wExp is an
exponential decay weighting that uses a β coefficient for its decay rate.

As we will now show, the linear weighting applies the most weight to patterns right in the middle of
the pattern and query with a gradual, symmetric decline around this point. Meanwhile, the exponen-
tial weighting cancels out to apply a constant weight re-scaling to everything. Letting x represent
the distance of a neuron to the read and write vectors it is weighted by, x := (n−z)−(a+c) = b−z.
Because we want to know the weighting coefficient that applies to neurons at all possible distances
from the pattern and query, without loss of generality we can set z = 0 for the analysis that follows:

wLinear(a, c, dv, n) =
n− x

n
· n− ((dv + z)− x)

n

=
n− x

n
· n− (C − x)

n

=
n2 − x2 − nC + xC

n2

= Z +
−x(x− C)

n2
(10)

11This formulation was first inspired by (Jaeckel, 1989b;a).
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where C = (dv+z) is a constant as is Z = n2−nC
n2 . We can take the first and second derivatives of Eq.

10 to know that the most weight is applied at the distance right between the read and write vectors,
C/2. This linear weighting applies different weights to neurons at different distances. As a result,
the patterns stored in superposition will also have different weightings. However, empirically, this
has a negligible effect on the SDM exponential approximation, as shown in Fig. 7. We hypothesize
that this is due to two factors: (i) the difference in weight values is not particularly large; (ii) neurons
receiving the largest weights are the most numerous. Therefore, the weighting is correlated with the
approximately exponential decay in the number of neurons that exist in the circle intersection as
vector distance changes.

As for the exponential, it cancels to a constant term that depends upon the choice of β:

wExp(a, c, dv, n) = exp
(
− βx

)
· exp

(
− β(C − x)

)
= exp

(
− βC

)
. (11)

This constant term modification to the weighting of all patterns is then removed by the normalization
term in the softmax operation, resulting in no effect on the output.

We confirm our results empirically for the three optimal SDM hamming distances d∗ and n = 64
dimensional canonical Transformer Attention setting used throughout (Bricken & Pehlevan, 2021)
in Fig. 7.

(a) (b)

(c)

Figure 7: Weighting neuron read and write operations has a negligible effect on SDM. The
Exponential weighting (green) as expected gives the same result as if there was a Binary weighting
(blue) making it overlap perfectly. The Linear weighting (orange) results in a negligible difference
that is barely visible due to high overlap.
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B GABA SWITCH

B.1 BIOLOGICALLY IMPLAUSIBLE SOLUTIONS TO THE DEAD NEURON PROBLEM

The dead neuron problem is where neurons are never activated by any input data and are a waste
of resources. This is particularly a problem with the Top-K activation function, especially at initial-
ization where it is possible for a small subset of neurons that happen to already exist closest to the
data manifold to always be activated and in the Top-K. This means that none of the other neurons
are ever activated, and thus never receive weight updates, preventing them from learning the data
manifold and becoming useful.

The first set of strategies to solve the dead neuron problem initializes neurons immediately on or
near the data manifold, for example, using PCA or SVD (Rumelhart & Zipser, 1985; McInnes &
Healy, 2018). Biologically, this would assume that priors on the location of the data manifold are
encoded in our genome and pre-determine the structure of neuronal dendrites. However, dendrites
often form in a highly dynamic and stochastic way (Dhar et al., 2018; Purves et al., 2001).

In addition, this solution requires the genome to store a large amount of information and would
limit an organism’s adaptability to learn new data manifolds during its development, for example
by moving to a new environmental niche. It is popular in deep learning to initialize weights not
using the data directly but with optimized strategies such as Xavier (Glorot & Bengio, 2010) that
empirically work well, even for the sparse ReLU activation function. However, as evidenced by the
continued development of new initialization strategies, this approach remains heuristic and does not
generalize across datasets, networks, and training techniques (Aguirre, 2019; Chang et al., 2020b;
Goodfellow et al., 2015).

The second set of approaches to solve the dead neuron problem ensures that all neurons, independent
of their initialization, are active and update to learn the data manifold. This is a major cited reason
why ReLU is often avoided (Goodfellow et al., 2015; Hendrycks & Gimpel, 2016), even though
in practice it often does not seem to significantly harm performance (Pedamonti, 2018; Trockman
& Kolter, 2022). The Top-K model of (Ahmad & Scheinkman, 2019), VQ-VAE (van den Oord
et al., 2017), and Switch Transformer (Fedus et al., 2021) all address their dead neuron problems
in biologically implausible ways. When using the Top-K activation function, the work of (Ahmad
& Scheinkman, 2019) artificially “boosted” the ranking for each neuron to be in the Top-K, with
more inactive neurons getting higher rankings. This solution makes the biologically implausible
assumption that neurons fire as a function of how inactive they are and undergo ubiquitous anti-
Hebbian plasticity. Meanwhile, the VQ-VAE and Switch Transformer both used terms in their loss
function to increase the utilization of “dead” code vectors and expert modules, respectively.

B.2 GABA SWITCH BIOLOGY

We summarize how the GABA switch works biologically in Fig. 8 (Gozel & Gerstner, 2021).
Neurons are excited by GABA early in development before being inhibited by it due to changes in
intracellular CL− concentration. After neurogenesis, neurons express NKCC1 which imports CL−

into the cell causing the CL− reversal potential to be more positive than resting potential (Gozel
& Gerstner, 2021; Heigele et al., 2016). When GABA is present, CL− flows towards its reversal
potential, resulting in depolarization. Over time, this GABA activation indirectly results in increased
KCC2, which instead pumps CL− out of the cell (Ganguly et al., 2001; Connor et al., 1987). This
makes the CL− reversal potential more negative than the resting potential and hyper-polarization
during GABA activation.

This biological mechanism suggests that our GABA switch implementation in Eq. 12 could be
made more sophisticated. Rather than counting up the number of times the neuron is simply active
(a binary outcome), it could switch as a function of the actual activation amount that the neuron
experiences or size of gradient updates.
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Figure 8: Summary of GABA Switch Biology. Here we visualize the ion transporters inside young
versus adult neurons and how they change over time. The left side of the figure shows how as a
neuron gets activated more times it swaps out the concentration of its ion transporters from NKCC1
(blue) to KCC2 (red). This causes the neuron to go from importing chloride ions (Cl-) to exporting
them. The right side of the figure shows the consequence of this transition where the reversal po-
tential of chloride goes from being more positive than the neuron’s resting potential – resulting in
GABA being excitatory – to more negative – resulting in GABA being inhibitory.
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B.3 GABA SWITCH PRACTICAL CONSIDERATIONS

There are three conclusions from this section on when and how to use the GABA switch to avoid
dead neurons, improving continual learning:

• If the positive weight constraint is being used then annealing k gives the same performance
as the full GABA switch. If you allow for negative weights then the GABA switch should
be used.

• The subtraction operation works much better for continual learning than masking. How-
ever, the inverse is true in a non continual learning setting. We provide some initial analysis
of why this is the case.

• The value of s for the GABA switch should consider the complexity of the data manifold,
optimizer, and learning rate. When in doubt there is no harm in setting s larger aside from
requiring more training epochs.

We first give the full GABA switch algorithm that was developed and is used for the SDMLP
throughout the paper. We then outline why the k annealing approximation works just as well when
we constrain our weights and inputs to be only positive. Next, we discuss why subtracting to enforce
Top-K instead of masking leads to better continual learning performance. We conclude with other
considerations on how to avoid dead neurons with interactions between the data manifold, learning
rate, and hyperparameter s.

The GABA Switch Algorithm

Formally, the GABA switch algorithm is implemented as:

a∗i = [ai − λiI]+

I = descending-sort([a]+)(ktarget+1)

λi = min
(
1,max

(
− 1,−1 + 2Ci/s

))
(12)

This algorithm is slightly more complex than the K annealing one presented in Eq. 4 of the main
text. Ci is a counter for each neuron, recording the number of times that it has been activated since
the start of training. λi linearly increases from -1 to 1 as a function of Ci, and [·]+ is the ReLU
operation. s is a hyperparameter that determines the number of activations required for this neuron
to switch from being excitated by GABA to being inhibited. When training on top of the ConvMixer
embeddings, we found that s = 250, 000 ensured all neurons could move onto the data manifold,
resulting in none being dead. As an example, if we assume all neurons are activated before the
GABA switch, with this s value the switch occurs after just 2.5 epochs of training on CIFAR10
(there are 50,000 training examples). However, this value depends significantly upon the learning
rate and complexity of the manifold where in the case of training on raw CIFAR10 images, to
ensure there are no dead neurons we set s = 5, 000, 000 requiring 100 epochs for the GABA switch
to occur. However, in this case we did not try to find the lower bound on s.

Why k annealing works just as well as the GABA switch when weights are positive

Because of Dale’s Principle, we implement SDM with positive weights and inputs. Empirically, this
also boosts continual learning performance and introduces weight sparsity12 that would increase
computational efficiency if unstructured sparsity can be taken advantage of (Wang, 2020).

When positive weights are used, we found no change in the number of dead neurons or continual
learning performance using Eq. 4 linear annealing. This was true for both the ImageNet32 Con-
vMixer embeddings and raw pixel datasets. However, when negative weights are allowed this was
no longer the case and only the full GABA switch algorithm avoided dead neurons. We speculate
that this is because when GABA is excitatory, the full algorithm will inject positive activation into
neurons that may otherwise have negative activity and not fire thus failing to get a gradient update.
Meanwhile, with positive weights and inputs the activation for every neuron is always positive re-
sulting in every neuron being active unless Top-K is enforced. Thus the positive weights and inputs

12We found that ∼ 20% of weights in two models checked (trained on the ImageNet32 ConvMixer embed-
ding and directly on pixels) had values less than 0.01 meaning they could likely be pruned, however, we leave
further investigations of sparsity including the introduction of L1 losses, etc to future work.
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Figure 9: Linear k Annealing needs Positive Weights. All lines overlap at the bottom of the plot
aside from Linear Annealing when negative weights are allowed (green). The GABA Switch excites
neurons that can otherwise be inactivated due to their negative weights. This ensures all neurons
update onto the data manifold and are not dead. However, linear k annealing presented in Eq. 4
does not excite leaving these neurons dead. Training is directly on the CIFAR10 manifold which is
more difficult to learn than the ConvMixer embeddings.

ensure that every neuron receives gradient updates and moves onto the data manifold. In Figure 9,
we present this result training directly on CIFAR10 pixels, a more difficult manifold to learn than
the ConvMixer embeddings.

Note that while positive weights allow for linear k annealing, it can also result in all weights be set
to 0, leading to dead neurons and model training to fail.

Why subtracting works better than masking for Continual Learning

Empirically, masking results in much higher validation accuracies during pretraining than subtrac-
tion (Fig. 10b). However, during continual learning, subtraction works better as shown in the
ablations of Table 2 and Fig. 10a. To work out why subtracting is better for continual learning we
analyzed the learning dynamics of both in Appendix H and discuss them here. We leave an analysis
of why masking works better during pretraining to future work as we do not care about maximizing
validation accuracy for our pretraining task here.

Top-K with subtraction utilizes more neurons during continual learning as shown in Fig. 10c. This
result is supported by Appendix H Fig. 23 where there are fewer neurons that are consistently
activated and they are more polysemantic, being used for multiple tasks.

Motivated by the stale momentum results of Appendix D, we wondered if the larger activation values
preserved by masking may lead to more dead neurons when using SGDM as our momentum based
optimizer. However, using SGD did not lead to any change in results and in hindsight our gradients
being less than 1 means that the results in Appendix D hold independent of the gradient values.

This means that the gradients must actually be smaller for subtraction and lead to slower updating.
At first glance, the subtraction operation just reduces the activity of the k neurons that remain active
by a constant term. This will scale the size of each gradient, equivalent to modifying the learning
rate.

However, the situation is more complex. The activity of the k neurons and their learning rate is
conditioned upon the activity of the k+1th neuron. If this neuron is almost as active as those in the
k subset, all of their activities will be very close to zero. Meanwhile, if the k + 1th neuron is much
less active than the k subset, their activities will remain large and they will receive a larger gradient
update. These two situations correspond to the input being in densely and sparsely tiled regions of
the data manifold, respectively.

We can think of this situation as approximating a Bayesian one where we have a mixture of Gaus-
sians defining a posterior distribution over the data manifold. The number of neurons in a region is
inversely proportional to the variance in the distribution at that location and thus changes the amount
the likelihood of our current data point updates the distribution. In other words, the subtraction op-
eration introduces a dynamic learning rate.
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(a)

(b) (c)

Figure 10: (a) Subtraction beats Masking for Continual Learning. However, as shown in (b) it
is worse for pretraining. During pretraining, neither method creates any dead neurons. (c) During
continual learning, across each task, there are fewer dead neurons when subtracting that may explain
the better memory retention of previous tasks. Because these plots are not crowded, error bars show
the min and max range across the five random continual learning data splits instead of the standard
error of the mean.

During continual learning when the task changes and a new subregion of the data manifold is pre-
sented, we want those neurons closest to the subregion and only those neurons to update and move
onto it. In our stochastic optimization setting, it is possible that neurons not necessarily closest to
new subregion are updated towards it instead, leading to an over-allocation of neurons to the new
task. We hypothesize that the subtraction operation helps avoid this problem by making the learning
rate both lower and dynamic. However, we believe the dynamic learning effect is more influen-
tial than stochasticity because even when increasing the batch size from 128 to 10,000, we see that
subtraction is still more robust to catastrophic forgetting.

It is likely that the reduced and dynamic learning rate is a doubled edged sword where while it
is better at remembering, it is also worse at learning new information. Both in pretraining and
within each data split, the subtraction achieves worse training and validation accuracies. Why the
subtraction operation does worse during the pretraining on a single task we leave to future work.

As an interesting aside, the Top-K subtraction operation implemented by an inhibitory interneuron
when k = 1 is the same as a Vickrey second price auction used in (Chang et al., 2020a) to model
neurons as individual agents with their own utility functions. The winning neuron places a “bid”
represented by its activity amount. It has its activity subtracted by that of the second most active
neuron (thus paying the second highest price) and its remaining activity determines its exposure to
the next gradient update.

Other GABA Switch Considerations - Data Manifolds, Optimizers, and Learning Rates

Note that for the ConvMixer embedding, dead neurons are not as much of a problem and either
the GABA switch or k annealing can avoid any dead neurons within just a few epochs and with
or without positive weights. This is because the manifold is much easier to learn as it is lower
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dimensional both in the size of vectors (256 versus 3072) and the data manifold being far more
meaningfully correlated.

Fig. 11 shows how a learning rate that is too low will cause SGD to produce dead neurons. The
number of neurons dying being inversely proportional to the learning rate and the sudden jump in
dead neurons before it plateaus just after the GABA switch both support the theory that the learning
rate is too low. This means that neurons do not update quickly enough onto the data manifold before
the GABA switch occurs. This sudden jump and plateau in dead neurons is in contrast to Adam
and RMSProp optimizers shown in Fig. 15 where neurons will continue dying over time due to the
stale momentum problems (Kingma & Ba, 2015; Geoffrey Hinton, 2012). Meanwhile, SGDM does
not suffer from Stale Momentum problems to the same extent and is much more robust to choice of
learning rate making it a good choice for pretraining. However, it is still suffers somewhat from the
stale momentum problem in the continual learning setting as shown in the ablations of Table 2.

To avoid dead neurons when using SGD either the learning rate can be tuned, the GABA switch
value s can be increased, or a sparse optimizer that avoids the stale momentum problem can be used
(however, the success of these sparse optimizers remains to be validated in future work). Also keep
in mind that the learning rate chosen will be affected by the L2 normalization.

Figure 11: The GABA switch needs to account for the learning rate. We train SDM directly on
CIFAR10 pixels to test its ability to learn the manifold and avoid dead neurons. The GABA switch
occurs at epoch ∼150 and each line denotes a different learning rate “lr”. For reasons outlined in
Appendix D, SGD should result in the fewest dead neurons. However, the learning rate needs to be
carefully set in relation to the GABA switch threshold, s. If the learning rate is too small, neurons
won’t update onto the data manifold quickly enough and will die instead.

C TOP-K

C.1 INHIBITORY INTERNEURONS APPROXIMATE TOP-K

At a high level, inhibitory interneurons exist to regulate the firing of excitatory neurons, introducing
sparse firing and keeping only the most active on.13 This makes the brain likely to be highly sparse
in the number of neurons firing at any given time. Estimates suggest that “an average neuron in the
human brain transmits a spike about 0.1-2 times per second.” (Impacts, 2022), while action poten-
tials and refractory periods happen on a time interval of roughly 10ms (Sterling & Laughlin, 2015).
Assuming neurons fire randomly within this 10ms time interval, this gives a back of the envelope
calculation that a maximum of 10ms/100ms = 10% neurons will fire within the time interval. This
aligns well with the prediction of 15% by (Attwell & Laughlin, 2001). Sparse firing also makes
sense from the perspective of metabolic costs where action potentials are expensive, consuming

13Inhibitory interneurons can also inhibit each other resulting in disinhibition but this is still used to perform
more sophisticated forms of excitatory neuron regulation.
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∼20% of the brain’s energy (Sterling & Laughlin, 2015; Attwell & Laughlin, 2001; Sengupta et al.,
2010).

However, in practice, it is unrealistic to assume that an inhibitory neuron can keep exactly k neurons
active for any given input because its afferent and efferent synaptic connections are heterogeneous.
The inhibitory interneuron sums together the activations from all neurons, weighted by their presy-
naptic strengths and then outputs an inhibitory value that is scaled by the strengths of post synaptic
connections. The weighted summation of inputs to the interneuron removes information on how
many neurons are firing and at what rate. The heterogenous post synaptic connections will weight
the effects of inhibitory on each neuron differently.

Keeping these concerns in mind, there are a few reasons that we draw from for optimism that Top-K
can be approximated. First, inhibitory horizontal cells in the retina compute the mean activation
value of thousands of nearby cone photoreceptors and inhbits them so that they encode contrast
(Chapter 13 of (Sterling & Laughlin, 2015)). Not only do horizontal cells have carefully tuned
weights for their gap junction connections to compute this mean, but also will dynamically change
its pre and post synaptic connectivity strengths to accurately compute mean activity under different
lighting conditions. In a low light setting, the horizontal cell will average over a larger number of
neurons to reduce the variance in its estimate of the mean (page 252 of (Sterling & Laughlin, 2015)).
If inhibitory interneurons in general come close to the level of sophistication shown by horizontal
cells in calibrating their synaptic connectivity, then it is possible the interneuron can compute how
much it should inhibit to implement Top-K reliably.

Second, looking at biological evidence of Top-K from cerebellum-like structures, there is strong
evidence of Top-K being approximated in the Drosophila Mushroom Body by its Golgi interneuron
analog (Lin et al., 2014). In mammals, the evidence is more complicated with some papers finding
dense granule cell activations (Giovannucci et al., 2017). However, other experimental evidence and
theory suggests that granule cell sparsity in the mammalian cerebellum may be a function of task
complexity (Lanore et al., 2021; Xie et al., 2022). The lower complexity the task, the more dense the
representations can afford to be as there are fewer stimuli that must be unique encoded. Meanwhile,
high complexity tasks require a larger number of orthogonal codes resulting in the need for sparser
representations that lose fidelity as a result (Xie et al., 2022). Ultimately, the density of granule cell
firing remains an open question in need of lower latency voltage indicators and the ability to record
from more neurons simultaneously across a more diverse range of tasks (Lanore et al., 2021).

(a) (b)

Figure 12: Inhibitory Interneuron Approximates Top-K. We reproduce the Hebbian learning rule
of (Gozel & Gerstner, 2021). (a) We show that it approximates having k ≈ 200 of the 1000 neurons
active for 50 different MNIST inputs. (b) We show an example of the average neuron activity
running the ODEs given in Eq. 13 until convergence.

Finally, we tried to model the ability for an inhibitory interneuron to approximate Top-K under
the simplifying assumption that its pre and post synaptic weights are fixed and homogenous. We
first analyzed the k neurons still on using the Hebbian learning dynamics of (Gozel & Gerstner,
2021). We then looked at our SDMLP during learning and the relationship between the total sum of
excitatory activations and the k+1-th inhibitory value used in Eq. 4 to keep only k neurons still on.
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The work that introduces the GABA switch (Gozel & Gerstner, 2021) uses a Hebbian learning rule
with an inhibitory interneuron. An MNIST digit is presented for the network to learn and it obeys the
following ordinary differential equations to determine the activities of the excitatory and inhibitory
neurons:

e0 = WT
inpx

i0 = 0

pt
a = e0 +WIEi

t−1

pt
i = e0 +WEIe

t−1

ga =
1

τa

(
− et−1 + tanh ([(pt

a − b)/L]+)
)

gi =
1

τi

(
− it−1 + [(pt

i − bi)]+
)

et = et−1 +∆ga

it = it−1 +∆gi, (13)

where e is a vector describing excitatory neuron activities, i the inhibitory neurons, and ∆ is the
learning rate. The excitation and inhibition time constants are τa and τi, respectively. L is a smooth-
ing term, b is a firing threshold learnt for each neuron. WIE and WEI are the weight matrices from
excitatory to inhibition neurons and vice versa; they are fixed and have homogenous weights. Winp
are the weights that respond to the input x. bi is the firing threshold for the inhibitory interneurons
that a fixed scalar and can be thought of as resulting in a noisy approximate k value. During training,
we use a Hebbian learning rule (not given) to train Winp and run the ODEs shown to converge to
approximately k neurons remaining on.

These dynamics are simplifications because the weights between excitatory and inhbitory neurons
are fixed and homogenous. WEI is initialized where every excitatory neuron is connected to each
inhibitory with a probability of 90% and strength of 1. WIE is initialized with the same connectivity
probability but with a strength of 1/(0.9rI) where rI is the number of inhibitory neurons. This
makes the synaptic weights connecting inhibitory to excitatory neurons sum to 1 in expectation.

Putting aside these simplifying assumptions, when we run the model and analyse the number of
neurons that remain active, it is approximately a constant k neurons as shown in Fig. 12a. Given
the inhibitory activation threshold bi, approximately 20% of the neurons remain on for each input
giving k ≈ 200. We also show how the average activity of the excitatory neurons evolves over time
in Fig. 12b to emphasize that the inhibitory interneuron does not have to make a single guess for
how to correctly inhibit all but k neurons. Instead, this is a dynamic process defined by the ODEs of
Eq. 13.

We also looked for our SDMLP at the k + 1-th highest activity value used by the inhibitory neuron
to implement Top-K and how this relates to the total unweighted sum of neuron activations entering
the inhibitory interneuron. After the GABA switch when neurons tile the data manifold and form
subnetworks, this relationship is largely linear where the k + 1-th highest activity value is the total
sum of all neuron activations before inhibition, divided by the total number of neurons. This is
again a simplification by assuming all input and output weights are homogenous and equal to one.
However, again, if the interneuron can modify its pre and post synaptic strengths with the same
degree of precision displayed by horizontal cells (Sterling & Laughlin, 2015) then these results
support the possibility of the interneuron approximating Top-K, using a simple function to respond
to the sum of its inputs.
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C.2 OPTIMIZED TOP-K

The k value is a parameter which must be chosen in our model and can significantly affect perfor-
mance. We present empirical results for ablating k on both pretraining and continual learning across
a number of different data manifolds.

To summarize our findings:

• A larger k gives better pretraining but worse continual learning and vice versa.

• k depends upon the complexity of the data manifold and number of neurons, r.

• SDM will approximately tile whatever data manifold it is given. Joint training of SDM
with other model components such as a CNN will improve pretraining. However, learning
a non static manifold in this joint training setting is difficult for SDM.

Optimal k values for Pretraining or Continual Learning?

Sparsity in the SDM setting presents a fundamental tradeoff between performing well in continual
learning (CL) and non continual learning (NCL) settings. This tradeoff exists because sparsity
limits the representational capacity of the model and should be expected to reduce NCL accuracy.
Meanwhile, the more sparse the model is, the better it is able to form subnetworks that are not
overwritten by future CL tasks. Additionally, SDM will tile the data manifold it is given, which
depending on the manifold, can be poorly correlated with maximizing classification accuracy.

(a) (b)

Figure 13: Two perspectives on how the k value influences the ability to learn the ImageNet32
pretraining task and the Split CIFAR10 continual learning task. (a) Validation Accuracies for final
NCL ImageNet pretraining (blue) and final CL Split-CIFAR10 (orange) over all tasks as a function
of k values. (b) The pareto frontier between ImageNet pretraining accuracy (x-axis) and CIFAR10
continual learning (y-axis). Each blue dot is a different k value. This plot makes evident the better
pretraining performance for k < 8.

We see this tradeoff in Figure 13 that summarizes ablating k during pretraining on ImageNet32 em-
beddings from the ConvMixer and testing on Split CIFAR10. As the k value decreases, continual
learning accuracy improves while pretraining accuracy declines. However, it is unclear why perfor-
mance on the original ImageNet32 training is parabolic, slightly improving for k < 8. While we are
indifferent to the NCL pretraining task here, using it as a way for the neurons to specialize across
an arbitrary manifold of real-world images, it is worth acknowledging the performance is worse.
That this performance decline is caused by sparsity is even more evident during a single training
run as GABA switches and k is slowly annealed. Fig. 14a shows this for smaller k values where
performance declines.

To emphasize how the optimal k value changes as a function of the number of neurons and data
manifold, we describe a number of additional results:

For the same ConvMixer embeddings of ImageNet32 pretraining and Split CIFAR10 testing, if we
use 10K neurons instead of 1K then there is the same linear decline in pretraining performance as
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in Fig. 13 but k = 5 outperforms all k ≤ 50, it is also the best for continual learning. Meanwhile,
k = 1 becomes the worst for pretraining and the second best for continual learning.

With the same setup again but operating directly on pixels without using the ConvMixer embeddings,
k = 10 is the best for pretraining but k = 1 is the best at continual learning as shown in Fig. 18 of
Appendix E.1.

In all of the above cases we are given a static manifold for SDM to learn. This always results in worse
pretraining accuracy than an equivalent ReLU MLP, even when using large k values. This is because
the ReLU MLP is not constrained to the data manifold, having a bias term and no L2 normalization.
This allows it to learn weights and biases that better maximize NCL validation accuracy.

(a) (b)

Figure 14: Sufficiently small k values harm network training. ConvMixers with an SDM layer
at the end trained on CIFAR10. All networks perform the same for the first 20 epochs at which
point Top-K is approximately fully implemented (the GABA switch occurs around epoch 10). (a)
Validation accuracy for all models. The smaller the k value, the worse accuracy is. (b) The fraction
of neurons that are not active for any of the validation inputs (this is an upper bound on the true
number of dead neurons that may be inactive for the training data). Training the CNN portion of
the network along with the SDM neurons leads to many dead neurons. We think this is because the
manifold is still updating. As more neurons die, the representational capacity of the model declines.

If we perform joint training of the ConvMixer and SDM module then the ConvMixer can learn to
create a manifold for SDM to tile that does maximize validation accuracy, performing on par with
the ReLU MLP. This is what happens in a test where we train on the whole CIFAR10 dataset in
the NCL setting, as long as k ≥ 250, but independent of if there are 1,000 or 10,000 neurons in
the SDM layer. This result is shown in Fig. 14a and suggests that the ReLU network only needs at
least 250 neurons in its final layer to backpropagate gradients and achieve high prediction accuracy.
There is evidence that artificial neural networks are overparameterized at the start of training and
functionally sparse, as supported by results from network pruning, most notably the Lottery Ticket
Hypothesis (Frankle & Carbin, 2019).

However, this result is again manifold dependent whereby training instead on ImageNet32, even
with k = 2, 500 and 10,000 neurons still harms performance compared to a ReLU network. We
believe this is because ImageNet32 has a dramatically more complex data manifold with ∼ 1.2M
images from 1,000 different classes, compared to 50,000 images in 10 classes for CIFAR10. This
means that even a k of 2500 is too small and harms the model’s representational capacity.

An additional difficulty with joint training is the timing of the GABA switch to avoid dead neurons.
This is because the manifold SDM learns is dynamically changing over time and we believe it
explains the neuron death that is inversely proportional to k shown in Fig. 14b.

We leave it to future work to further investigate optimal k values and joint training versus using
frozen, pretrained models. We are optimistic that the best way to resolve the tradeoff from sparsity
limiting representational capacity is to make the network layers wider rather than the number of
neurons that can be active, k, fewer. This is feasible because sparse activations are computationally
cheap – while computing the k most active neurons requires multiplying the input with each neuron
(this can be parallelized) and then sorting them, a constant k << r neurons produce outputs and
receive gradient updates. Computing which neurons are active would also be cheaper with sparse
weights (Jaeckel, 1989a; Ahmad & Scheinkman, 2019).
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SDM Theory to derive optimal k values

Before concluding this section, we want to flag to readers that SDM, with a few simplifying assump-
tions, is able to analytically derive optimal k values under a few different conditions of optimality:
(i) Optimising the signal to noise ratio of every pattern; (ii) Optimizing for the maximum number
of patterns that can be stored, within a certain retrieval probability; (iii) Maximizing the distance a
query can be from its target pattern while still converging correctly. These derivations and further
discussion be found in (Kanerva, 1993; Bricken & Pehlevan, 2021).

While flagging that these analytical results exist and are interesting, there are all concerned with
maximizing the information content of the patterns stored that is most relevant to a reconstruc-
tion task. In this paper, we care about two different objective functions somewhat uncorrelated
with maximizing information content: (i) Classification accuracy, where better performance can be
achieved without trying to model the data manifold; (ii) Continual learning, where while we care
about modelling the data manifold, we also want the formation of unique subnetworks that can out-
put the correct classification label. In addition, SDM’s analytical results assume that the patterns
are random. For correlated real-world datasets, we need ways to quantify the complexity of the data
manifold and a full exploration of this problem and solutions is beyond the scope of this work.

D STALE MOMENTUM

Imagine a neuron is activated for three training batches, then inactive for the next 10 batches, and
finally activated two more times. During the first set of activations there are no problems, the neuron
will update its weights and its momentum term, using up to date gradient information. During
inactivity, problems begin as the inactive neuron will still update its weights and do so using an
increasingly out of date momentum term. Problems continue when this neuron is activated again
because the momentum term decays slowly and will significantly boost the gradient in an out of
date direction.

These stale momenta are especially harmful in the Top-K competitive activation setting where a
neuron needs to be the k most active for at least one input to continue receiving gradient updates,
otherwise it will permanently die. Using Stochastic Gradient Descent (SGD) that is free from any
momentum term removes this problem. SGD with momentum works worse than SGD without
momentum, but still better than Adam or RMSProp (Kingma & Ba, 2015; Geoffrey Hinton, 2012;
Goodfellow et al., 2015).

Figure 15: The GABA switch occurs by epoch ∼100 and Top-K is fully implemented by ∼200
epochs. At this point, the RMS and Adam optimizers begin continuously killing off neurons such
that they are never activated for any training or validation data. These results are for training directly
on CIFAR10 images. See the text for a discussion of training on ConvMixer embeddings.

We discovered the Stale Momentum effect when training our models directly on CIFAR10 images
that have a much more complex data manifold than the ConvMixer embeddings. Figure 15 shows
that after the GABA switch, when Top-K is fully implemented around epoch 200, Adam and RM-
SProp continue killing off neurons (Kingma & Ba, 2015; Geoffrey Hinton, 2012). These neurons
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are dead in that they are never activated by any training or validation data. Our results are robust
across learning rates for the different optimizers.

While these dead neurons from Adam and RMSProp don’t appear when pretraining on ImageNet32
embeddings, the Stale Momentum problem still leads to incorrect gradient updates that harm con-
tinual learning as shown in the ablations of Table 2. This is because fewer neurons are covering the
data manifold and able to retain memories of separate tasks.

Notably, a ReLU network trained with Adam or RMSProp also kills off up to 95% of its neurons
with only minor effects on train and validation accuracy when trained directly on CIFAR10 pixels.
SGDM and SGD again do not kill off any neurons for this network.

(a) (b)

Figure 16: Empirical Stale Momenta Seen During Training. (a) We take all neurons that are dead
during a batch and record the mean L2 magnitude that its weights experience during the update.
Adam (teal) has the largest updates to dead neurons. Note that these magnitudes are still 5-10x
smaller than the average for alive neurons. SGDM (purple) also updates dead neurons but to a lesser
degree. SGD (yellow) and RMSProp (orange) are not visible because they do not apply any updates
to dead neurons. We start our x-axis at training step 300k because this is when there are enough dead
neurons for their gradient updates to be meaningfully calculated. (b) We track all gradient updates
applied to ten random neurons during the course of training and pick a representative to display
here. We track gradient updates starting right as the GABA switch occurs around epoch 100 and
all training steps from this point on are shown along the x-axis. RMSProp (orange) has the highest
variance and magnitude in gradient updates followed by Adam (teal).

We logged the gradients of neuron weights during training to confirm that neurons are receiving
gradient updates even while they are dead as shown in Figure 16a. This figure is initially confusing
because, while Adam and RMSProp kill off the most neurons in Fig. 15, it is Adam and SGDM that
keep updating dead neurons in Fig. 16a (Kingma & Ba, 2015; Geoffrey Hinton, 2012). Looking at
every gradient update applied to a single neuron right after GABA switches in Fig. 16b provides a
different perspective. Here, the highest variance and largest gradient magnitudes (as quantified by
their L2 norm) are produced by RMSProp and Adam. These gradient spikes appear particularly in
cases where the neuron is dead for some time and then activated again.

To investigate further, we implemented each optimizer in a toy environment tracking a single weight
that receives sparse gradient updates to see how the moving averages respond.14 We were able to
reproduce the much larger gradient spikes displayed by Adam and RMSProp upon the first few
gradient updates after a period of quiescence. These results are shown in Fig. 17a, where we show
the ∆Optimizer term for each optimizer, independent of the learning rate. Initializing their respective
terms shown in Eqs. 14 with zeros, we first introduce two gradient updates and then have periods of
quiescence before injecting gradient updates.

In Fig. 17a we show four different gradient injection periods and that RMSProp has the largest
response, followed by Adam and then SGDM, reproducing the gradient spikes seen in Fig. 16b.
Figure 17b explains these larger gradients by plotting the Adam and RMSProp numerator and de-
nominators for only two gradient injection periods. Note in particular that for Adam, its numerator
mt (dark orange) declines somewhat quickly, having a decay of β = 0.9, however, its denomina-

14Further details for this toy experiment can be found and reproduced in our github repository in the Jupyter
Notebook in the notebooks/ directory with the filename StaleGradients.ipynb
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tor
√
vt (light orange) has a much slower decay of β2 = 0.999, staying large for much longer and

causing the new gradient inputs to explode in size.

Finally, Figure 17c quantifies how large the gaps in gradient update magnitude are between the three
optimizers and the actual gradient when we vary the time between gradient injections.

To summarize, we believe it is more the gradient explosions after quiescence rather than updating
of neurons currently dead that causes Adam and RMSProp to kill off neurons as in Fig. 15. The
denominators present in these optimizers, given in Eqs. 16 and 17 are to blame because they are
such slow moving averages and inflate the sparse gradients.

The update rules for SGDM, Adam, and RMSProp are as follows where we let λ be the learning
rate, θt are the parameters at time t, gt is the gradient, and γ = 0.9 β1 = 0.9, β2 = 0.999, α = 0.99
are hyperparameters for the various algorithms with their standard values.

θt = θt−1 − λ∆Optimizer (14)

∆SGD = gt

∆SGDM = γθt−1 + gt (15)

∆Adam =
m̂t√
v̂t

(16)

m̂t =
mt

1− β1

v̂t =
vt

1− β2

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

∆RMSProp =
gt√
vt

(17)

vt = αvt−1 + (1− α)g2t

Note that these results are robust for any gradient updates gt < 1, otherwise SGDM has larger
gradient spikes than Adam. However, this is never the case in our training regime because of the L2

normalization term for our weights and inputs which means that no weight or neuron activation value
is ever larger than 1. If this were not the case then we predict that SGDM would have sufficiently
large jumps in its gradients to also result in dead neurons.

Practical Takeaways Below we give our reasoning for why SGD is the best solution but needs
careful hyperparameter tuning of the learning rate and GABA switch s. Sparse optimizers (Spa) are
another alternative that should be investigated in future work.

Because SGD has no momentum term it does not suffer from stale momenta and is the most prin-
cipled solution. However, lacking a momentum term, SGD is also the most sensitive to learning
rate choice and can introduce either slow or poor convergence if it is too high or low, respectively.
Setting the learning rate too low is particularly problematic in our setting with the excitatory period
of the GABA switch because neurons can fail to receive enough gradient updates to move onto the
data manifold, resulting in dead neurons. In Fig. 11 of Appendix B.3 we show how a learning rate
that is too low will result in dead neurons that never learn the manifold before the GABA switch
occurs.

Given these hyperparameter tuning requirements for SGD, we recommend using SGDM to pretrain
SDMLP while using SGD for continual learning. SGDM pretraining does not result in dead neurons
as shown in Fig. 15 and is more robust to choice of learning rate. For example in this instance
of SGDM on CIFAR10 pixels, varying the learning rate from 0.01 to 0.09 did not affect either
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(a)

(b) (c)

Figure 17: Toy experiment of how Adam, RMSProp and SGDM introduce stale momenta. (a)
Gradient updates of 0.2 are injected at four different time points visible by the large RMSProp green
dots. We first apply two gradient updates, then four, then one and one. Note how RMSProp am-
plifies the gradient magnitudes but does not apply any gradient update when the neuron is inactive.
Meanwhile, Adam (orange) and SGDM (blue) will keep applying gradient updates that slowly de-
cay over time. Also note that the Adam gradient magnitudes are larger than those for SGDM. (b)
We inject gradients at single time points twice and observe how the numerators (darker color) and
denominators (lighter color) for Adam and RMSProp change. The denominators decay very slowly.
(c) We see how the delta between the actual gradient value of 0.2 and the gradient value applied by
the different optimizers changes depending on the interval between the last gradient update. Note
that the y-axis is log10. RMSProp has a 10/0.2 =50x amplified gradient and Adam is a 1/0.2 = 5x.
Note that SGDM without a denominator term is the only optimizer that over longer periods of time
stops amplifying the gradient value. All results generalize for gradient values that are < 1.

convergence speed or kill off any additional neurons. Meanwhile, as shown in the ablations of Table
2, in the continual learning setting, SGD is the best choice.

Another alternative are sparse optimizers like “sparse Adam” which does not apply gradient updates
to any neuron that is dead (Spa). However, failing to update the momentum term in a novel way will
theoretically still result in what we believe to be the larger problem of exploding re-activated neuron
gradients. The only way to use sparse Adam in Pytorch is to implement sparse weight layers and we
leave it to future work to empirically test sparse momentum based optimizers.

This section lacks many citations because we are unaware of existing literature around other mod-
els in the sparse activation regime, using either Top-K or Mixture of Experts (Fedus et al., 2021;
Roller et al., 2021; Shazeer et al., 2017) that discuss the stale momentum problem and issues with
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momentum based optimizers.15 We also could not find an academic citation for the sparse Adam
implementation provided in PyTorch or the motivations for implementing it. Suggestively, in Tensor-
Flow the algorithm is called “LazyAdam” and advertised as being advantageous for computational
efficiency reasons without any mention of dead neurons. This is unsurprising in light of the fact that
the dead neuron problem is only an issue in the sparse regime and even in this case can go unnoticed
if validation accuracy is the only metric of interest. For example, training on CIFAR10 pixels with
a ReLU network and Adam results in 95% dead neurons with minor effects to validation accuracy.

E TRAINING REGIME ABLATIONS

E.1 TRAINING DIRECTLY ON IMAGE PIXELS

Figure 18: Rank ordering of continual learning algorithms remains approximately the same
for training directly on CIFAR10. Here SDMLP with 10K neurons (yellow) actually does better
than SDMLP+EWC (green) that was the best performer in the main text Fig. 3(a). However, we did
not tune the hyperparameters for the EWC loss coefficient or the β parameter for training directly
on pixels. SDMLP+EWC with 10K neurons fails to terminate within the 15 hours of GPU time
allocated however it is clear that SDM outperforms it. Results are for the 5 random seed splits of
Split CIFAR 10.

We remove the ConvMixer preprocessing and train models directly on ImageNet32 pixels before
testing their continual learning abilities on Split CIFAR10 pixels. This is a way to address con-
cerns that the ConvMixer preprocessing was manipulating the CIFAR10 data manifold to make the
continual learning task too easy. Figure 18 shows the results and Table 3. We only tested the best
performing models with reference to Table 1 and chose EWC over MAS because it gives the best
model overall and otherwise performs similarly. We did not test the FlyModel because it assumes
the presence of preprocessed latent embeddings rather than the 3072 dimensional CIFAR10 flattened
image vectors. All training settings and parameters are kept the same as in the Table 1 tests.

Interestingly, all EWC methods fail to perform as well as they did before. This is likely because we
did not tune our loss coefficient or β parameter for training directly on pixels. As a result, the best
performing model is now SDM with 10K neurons (yellow) instead of SDMLP+EWC (green). Also
note that while SDMLP with k = 1 (pink) does worse, it fails to learn each task within the 2,000
epochs, e.g. at the end of 2,000 epochs the validation accuracy is ∼10% while the other methods
maximize the accuracy within task of ∼20%. This means that SDM with k = 1 could potentially
do better with more epochs or a higher learning rate.

15Interestingly, (Shazeer et al., 2017) modifies Adam to reduce its parameter count by setting β1 = 0 and
taking averages over vt, both of which may have inadvertently helped avoid stale momenta.
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We use the same 5 random seeds and 2,000 epochs per task. Training takes longer because the im-
ages are 3x32x32=3072 pixels rather than the 256 ConvMixer embeddings and the most complicated
model, SDMLP+EWC with 10K neurons fails to terminate in the 15 hours of GPU time allocated to
each run but makes it to the last learning task where it’s performance can be inferrred.

Table 3: Pixel Training - Split CIFAR10 Validation Accuracy

Method Neurons k Val. Acc.

SDMLP 1K 1 0.33
SDMLP 10K 10 0.42
EWC 1K NA 0.19
SDMLP+EWC 1K 10 0.28
SDMLP+EWC* 10K 10 0.32

Oracle 1K NA 0.53
Oracle 10K NA 0.53

The most competitive models, pretrained on ImageNet32 and tested on Split CIFAR10 without any
ConvMixer embedding. SDMLP+EWC with 10K neurons has a * to denote that it did not finish
training. Average of 5 random task splits.
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E.2 NO PRETRAINING

Figure 19: Rank ordering of continual learning algorithms remains for no ImageNet32 pre-
training. Solid lines denote different algorithms. Dotted lines denote variants of an algorithm.
SDMLP+EWC (green) with 10K neurons does the best then SDMLP with 10K neurons (yellow).
The 1K algorithms all do approximately the same including EWC (purple), SDMLP+EWC (dotted
brown), and SDMLP k=1 (pink). Results are for the 5 random seed splits of Split CIFAR 10. TopK
and ReLU benchmarks both do poorly and were not run for the full set of random seeds or shown as
a result.

Figure 19 shows the results for the most competitive continual learning algorithms without any
ImageNet32 pretraining and tested on the ConvMixer embedded Split CIFAR10. See Table 4 for the
final validation results.

We train for 2,000 epochs on each task and 10,000 epochs in total. The GABA switch occurs well
within the first task where s = 5, 000, 000 with GABA switching at epoch ∼ 50 and Top-K being
fully implemented by epoch ∼ 100. Performances are lower than with the ImageNet32 pretraining,
for example the best performing SDMLP+EWC is 84% versus the 86% in Table 1. Most notable
is the worse performance for the 1K neuron models that lack sufficient capacity to learn the data
manifolds of new tasks without the benefits of pretraining.

Table 4: No Pretraining - Embedded Split CIFAR10 Validation Accuracy

Method Neurons k Val. Acc.

SDMLP 1K 1 0.56
SDMLP 10K 10 0.77
FlyModel 1K 32 0.69
FlyModel 10K 32 0.82
EWC 1K NA 0.52
SDMLP+EWC 1K 10 0.54
SDMLP+EWC 10K 10 0.84
Oracle 1K NA 0.93
Oracle 10K NA 0.93
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F ADDITIONAL DATASETS

F.1 CIFAR10 EXTRA FIGURE AND TABLE

Table 5 shows the Split CIFAR10 results for the 1K neuron setting. Figure 20 shows the extent to
which the SDMLP forgets previous tasks when compared to the baseline ReLU model. This figure
gives extra context to the headline continual learning results of Fig. 3.

Table 5: Split CIFAR10 - 1K Neurons - Validation Accuracy

Method Neurons k Val. Acc.

SDMLP 1K 1 0.70
SDMLP 1K 10 0.63
Top-K 1K 10 0.29
FlyModel 1K 64 0.70
MAS 1K NA 0.69
EWC 1K NA 0.67
SI* 1K NA 0.34
NISPA ∼1K NA 0.19
L2 1K NA 0.23
Dropout 1K NA 0.21
SDMLP+MAS 1K 10 0.83
SDMLP+EWC 1K 10 0.83
Oracle 1K NA 0.93

Split CIFAR10 Final Validation Accuracy - We highlight the best performing SDMLP, baseline,
and overall performer in the 1K neuron setting. Oracle was trained on the full CIFAR10 dataset. SI
has a * denoting some of its runs failed. NISPA uses a three hidden layer network with 400 hidden
units per layer but this is close in parameter count to one hidden layer with 1K neurons. All results
are the average of 5 random task splits.

Figure 20: SDMLP gradually forgets previous tasks. Solid lines along the top show SDMLP
forgetting previous tasks over time in comparison to ReLU that catastrophically forgets (dashed
lines along the bottom). Validation accuracy is now computed within tasks and to avoid clutter we
only show the learning curves for the first three tasks. Both plots use the average of 5 random seeds
and error bars show standard error of the mean.

F.2 CIFAR100

To better assess the true memory capacity of our models, we use the same pretraining on ImageNet32
and then test continual learning on 50 splits of CIFAR100, shown in Fig. 21 and Table 6. We allow
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for 500 epochs per task and 25,000 epochs in total. We used three random seeds instead of five, the
same hyperparameters found for CIFAR10, and only tested the best performers from Table 1.

It is with CIFAR100 that the SDM models including the FlyModel and SDMLP+EWC really shine
over the regularization baselines. In the 1K neuron setting, SDMLP+EWC is the best performer with
42%. Meanwhile, in the 10K setting the FlyModel takes the lead getting 58% and SDMLP+EWC
behind it at 51% against the oracle of 72%. The next closest baseline is 40% for MAS. The large
performance jumps in the FlyModel going from 1K to 10K neurons for CIFAR10 and CIFAR100
highlight the importance of dimensionality for the fixed neuron addresses that perform a random
projection. Interestingly, when looking at the validation accuracy on Task 1 for each of the models,
which shows how it forgets the task over time, SDMLP+EWC performs better than the FlyModel,
however the FlyModel retains later tasks better.

Figure 21: Top - Rank ordering of continual learning algorithms remains similar for CI-
FAR100. The FlyModel with neurons (magenta) now outperforms SDMLP+EWC (green). The
SDM algorithm does the next best (yellow) with MAS (blue) again close behind and then EWC
(purple) and Top-K (orange) performing poorly. Bottom - SDM methods are robust to forget-
ting. The first task of CIFAR100 and its validation accuracy for this task over the entire course of
training on 49 other tasks is shown for each method. SDMLP+EWC is the most robust to forgetting
(green), then the FlyModel (magenta) and SDMLP (yellow). It is interesting that the SDMLP+EWC
forgets less for this first task than the FlyModel. Top-K shows some retained memory but only a
small amount while MAS and EWC both catastrophically forget over time within ∼ 5 tasks (2,500
epochs).
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Table 6: Split CIFAR100 Validation Accuracy

Method Neurons k Val. Acc.

SDMLP 1K 1 0.32
SDMLP 1K 10 0.39
Top-K 1K 10 0.11
FlyModel 1K 32 0.36
MAS 1K NA 0.24
EWC 1K NA 0.12
SDMLP+EWC 1K 10 0.42

Method Neurons k Val. Acc.

SDMLP 10K 10 0.43
FlyModel 10K 32 0.58
MAS 10K NA 0.40
EWC 10K NA 0.16
SDMLP+EWC 10K 10 0.51

Oracle 10K NA 0.72

We bold the best performing model within the 1K and 10K neuron settings. Oracle was trained on
the full CIFAR10 dataset. Average of 3 random task splits.
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F.3 SPLIT MNIST

For the sake of completeness and providing an easier benchmark for other methods, we use the Split
MNIST dataset but keep the class incremental setting. Results are presented in Table 7 and approx-
imate the general rank ordering of performance whereby the FlyModel with 10K neurons does the
best, SDMLP+EWC comes second, then SDMLP on its own and then the parameter importance reg-
ularization methods. We did extensive hyperparameter tuning of the EWC and MAS regularization
coefficients and β parameter along with the FlyModel parameters (Appendix G.2).

We do not use any pretraining and train directly on MNIST pixels. We train for 500 epochs on each
task meaning 2,500 epochs in total. We use just three random seeds to initialize model weights but
always use naive split where task 1 contains digits 0 and 1, task 2 contains digits 2 and 3, etc.

As one of our benchmarks we used Active Dendrites (Iyer et al., 2022). We used the code provided
but found that it failed to generalize beyond the easier Permuted MNIST task incremental benchmark
used in the paper.

NISPA has a * in the number of neurons column of Table 7 because it used three hidden layers
of 400 neurons each as in its original implementation. This is approximately the same number of
parameters as the 1K neurons in a single layer (637600 vs 794000 ignoring bias terms).16

Table 7: Split MNIST Validation Accuracy

Method Neurons k Val. Acc.

SDMLP 1K 1 0.69
SDMLP 1K 10 0.53
SDMLP 10K 10 0.53
FlyModel 1K 64 0.77
FlyModel 10K 32 0.91
EWC 1K NA 0.61
EWC 10K NA 0.67
MAS 1K NA 0.49
MAS 10K NA 0.58
SI 1K NA 0.36
Top-K 1K 10 0.22
NISPA * NA 0.40
Active Dendrites 1K NA 0.20
ReLU 1K NA 0.21
SDMLP+EWC 1K 10 0.83
SDMLP+EWC 10K 10 0.86

Oracle 1K NA 0.98
Oracle 10K NA 0.99

Models trained directly on MNIST pixels and without any pretraining. We bold the best performing
method. We run these results on three random seeds and using 500 epochs for each split (this is
much higher than other baselines (Hsu et al., 2018)).

Interestingly, the SDMLP with 1K neurons does better than with 10K neurons. We also found
that the SDMMLP+EWC models were still learning the last task at the end of training. However,
increasing training times did not result in the last task being learnt better, suggesting that the model
has run out of new neurons to avoid overwriting, or that the regularization coefficient for EWC
should be reduced for the combination with SDM.17

16NISPA is 80% weight sparse here but this aids its continual learning and we do not consider the activation
sparsity of the Top-K models in our parameter counts either. It also takes many more FLOPs to train because
of the iterative weight growth and pruning.

17This effect was also observed for the FashionMNIST results in Appendix F.4.

45



Under review as a conference paper at ICLR 2023

F.4 SPLIT FASHIONMNIST

We also evaluate our most successful models and baselines on the FashionMNIST dataset that has
ten different classes of fashion items as grayscale 28x28 images. This task is slightly harder than
MNIST with our oracles getting 90% instead of 99% for MNIST. Table 8 shows these results as the
average of 3 random seeds used to initalize the model weights. The rank ordering of results agrees
with that of Split MNIST Table 7.

Table 8: Split FashionMNIST Validation Accuracy

Method Neurons k Val. Acc.

SDMLP 1K 1 0.73
SDMLP 1K 10 0.53
SDMLP 10K 10 0.52
FlyModel 1K 64 0.67
FlyModel 10K 64 0.76
EWC 1K NA 0.68
EWC 10K NA 0.72
MAS 1K NA 0.33
MAS 10K NA 0.34
Top-K 1K 10 0.23
ReLU 1K NA 0.21
SDMLP+EWC 1K 10 0.74
SDMLP+EWC 10K 10 0.72

Oracle 1K NA 0.90
Oracle 10K NA 0.90

Models trained directly on FashionMNIST pixels and without any pretraining. We bold the best
performing method.
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G BASELINE IMPLEMENTATIONS

G.1 BETA COEFFICIENT FOR ELASTIC WEIGHT CONSOLIDATION AND SYNAPTIC
INTELLIGENCE

The paper (Hsu et al., 2018) considers a number of baseline continual learning algorithms with
different continual learning settings. This includes the most realistic class incremental setting that
we use. The paper also open sourced their implementations of these different algorithms and found
that the regularization methods of EWC, MAS and SI (Kirkpatrick et al., 2017; Aljundi et al., 2018;
Zenke et al., 2017) all catastrophically forget Split MNIST.

However, in our hands by more carefully tuning the loss coefficient for the regularization term in
the loss function we were able to improve performance. Tuning the loss coefficient for EWC and SI
did not increase their performance. But when we looked at the EWC and SI learning dynamics, we
found that because they were getting 100% accuracy on each task split, there was no gradient from
the loss that could be used to infer the importance of each weight to be regularized for future tasks.
In order to give the model gradient information, we modified its cross entropy loss, introducing a
β < 1 coefficient that made the model less confident in its prediction. Formally:

pi =
exp (βli)∑o
i=1 exp (βli)

, (18)

where li ∈ R are the real valued outputs (logits) for each of the o output classes, indexed by i. And
when put through the softmax distribution this gives a probability distribution where

∑o
i=1 pi =

1. In the original algorithm of (Hsu et al., 2018), β = 1 by not being a hyperparameter to tune
and this β = 1 is large enough that it results in the model output for the correct class getting a
probability of ∼ 1 with values of 0 for all other classes, giving a loss of 0 and no gradient. By
having β < 1, we force our model to be less confident in its prediction of the correct class, creating
a loss and gradient information to infer which parameters are important. Note that this β term
is only used when inferring parameter importance, not when training the model. By tuning the
β value in conjuction with the regularization loss coefficient, we were able to avoid catastrophic
forgetting and again exceed the baseline reported in (Hsu et al., 2018) for EWC and SI. While this
is another hyperparameter that must be tuned, and is not a modification mentioned in the original
algorithms of (Kirkpatrick et al., 2017; Zenke et al., 2017), or other literature that we are aware of,
it is a straightforward modification that boosts performance and retains the original essence of the
algorithm. Therefore, we feeling that it is an appropriate modification to create more meaningful
baselines.

Table 9: Improved Regularization Baselines on Split MNIST

Name Loss Coef. β New Val. Acc. Original

EWC (Kirkpatrick et al., 2017) 200 0.005 63.23 19.80
SI (Zenke et al., 2017) 1500 0.005 35.76 19.67
MAS (Aljundi et al., 2018) 0.5 NA 24.99 19.52
L2 (Goodfellow et al., 2014) 10 NA 36.77 22.52

Testing a 1,000 neuron single hidden layer MLP on Split MNIST with 10 epochs per split we get
the final validation accuracies after hand trying a few different hyperparameters shown in Table 9.18

We show the hyperparameters used and present results from the class incremental setting of Table 2
in (Hsu et al., 2018) for comparison.

Note that the number of epochs here is fewer than in the full Split MNIST analysis of Appendix F.3.
This is to relate our results to other baselines that use only a small number of epochs per task (Hsu
et al., 2018). If you compare Table 9 with Table 7 of F.3 you will see that training for more epochs
does affect the performance of EWC and MAS.

18For our full experiments using Split CIFAR10 in the pretraining setting shown in Table 1, we do more
extensive Bayesian hyperparameter searches to maximize the performance of each baseline.
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G.2 FLYMODEL PARAMETERS

The FlyModel is unique in being trained for only one epoch and not using backpropagation. The
authors outlined a method for the model to be trained for more than one epoch on each task, however,
this introduces synaptic decay that would likely reduce performance via forgetting. It was never
implemented in (Shen et al., 2021) and so we present the strongest version of the algorithm trained
for one epoch on each task here.

We used the parameters outlined in (Shen et al., 2021) as a starting point. Because the dimensionality
of our ConvMixer embeddings is 256, half of the 512 used in the original paper, we were able to cut
in half the number of Kenyon cells from 20,000 to 10,000, conveniently fitting the number of neurons
considered in our other experiments. We also varied the number of projection neuron connections
between 64 and 3, finding that 32 performed better in both the 10,000 and 1,000 neuron settings. We
experimented with the learning rate and found that the value of 0.005 worked best for the MNIST
and CIFAR10 experiments. For CIFAR100, we got better performance using a learning rate of 0.2
but only for the 10,000 Kenyon cell model. The best results for each run across the random seeds is
what is presented in the text.

H INVESTIGATING DIFFERENCES IN CONTINUAL LEARNING ABILITIES

We investigated why SDM is robust to catastrophic forgetting while baseline models and SDMLP
models that ablate specific features all fail.

To summarize our findings:

• ReLU - neurons never learn to tile the data manifold and every neuron is activated by almost
every input.

• Top-K - the lack of L2 normalization and the use of a bias term means neurons don’t tile the
data manifold. This means they are not only activated by more tasks, forgetting previous
ones. Additionally, there are more dead neurons reducing memory capacity.

• SDM Top-K Mask - masking leads to more dead neurons and the neurons that are alive be-
ing more polysemantic, failing to have subnetworks that avoid being overwritten by future
tasks.

• SDM No L2 Norm - there are few neurons with massive weight norms that are active for up
to 50% of all inputs. These neurons are active for all tasks, resulting in memory overwriting
and catastrophic forgetting.

During Split CIFAR10 continual learning we checkpoint our model every 100 epochs, training on
each data split for 300 epochs for a total of 1,500. We also track the number of times that each
neuron is active across the entirety of training and visualize this on the log10 plots shown in Fig. 22.

Fig. 22a compares SDM to Top-K and ReLU where it is clear that ReLU neurons (green) are all
activated many times without the Top-K activation function. While Top-K has fewer activations
(orange), its neurons lack the bimodal distribution of SDM (blue) that we believe corresponds to the
unique subnetworks only activated for a specific task. Fig. 22b looks at SDMLP ablations that use a
Top-K Mask instead of subtraction and no L2 normalization. Note the small blip of neurons for no
L2 norm (green) that corresponds to the greedy neurons always in the Top-K for all tasks. Also note
that the Top-K mask (orange) is slightly shifted towards larger activation values.

For all of our analysis that follow we do not show dead neurons. These dead neurons are only really
a problem for Top-K that has 55% dead neurons and 18% for SDM without an L2 norm.

To look at how specialized each neuron is to specific tasks and data classes, we take the final models
after Split CIFAR10 continual learning and pass all of the CIFAR10 training data through them,
recording which neurons are in the Top-K for each input. For each neuron, we count the number
of times it is active for each of the 10 input classes and use this to create a probability distribution
over the classes the neuron is activated by. We take the entropy of this distribution as a metric for
how polysemantic each neuron is. We plot the entropy of each neuron against the percentage of time
it is in the Top-K in Fig. 23. We also combine these two metrics to weight each neurons’ entropy
by the amount of time it is in the Top-K to compute the average entropy of activated neurons and
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(a) (b)

Figure 22: SDM Neurons are more specialized than Top-K or ReLU. We track the number of
times every neuron is activated during continual learning and present this as a histogram with a
log10 scale. (a) We compare SDM (blue) to the Top-K (orange) and ReLU (green) baselines. (a)
We compare SDM (blue) to two ablations, SDM with a Top-K mask (orange) and SDM without L2

normalization (green).

present this in Table 10 alongside the continual learning performance of each method. There is a
clear inverse correlation between the average entropy of activated neurons and continual learning.19

Table 10: Mean Neuron Entropy Weighted by Top-K Presence

Name Mean Weighted Entropy Val. Accuracy

SDMLP 0.99 0.54
SDMLP Linear Mask 1.36 0.35
SDMLP No L2 Norm 1.96 0.20
Top-K 1.48 0.29
ReLU 2.25 0.21

Figure 23 and the summary in Table 10 effectively convey the subnetwork formation by SDM that
enables strong continual learning performance. SDM (Fig. 23a) has the lowest mean entropy of
activated neurons followed by SDM with the Top-K mask (Fig. 23b). The SDM with Top-K Mask
Fig. 23b shows how the most polysemantic (highest entropy) neurons are also the most active which
will result in forgetting across tasks. Figure 23c strikingly shows 13 “greedy” neurons in the top
right that are not only highly polysemantic but active for many inputs (compare the y-axis going up
to 6% compared to 1.4% for SDM). Top-K in Fig. 23d looks like the SDM with Top-K Mask but
the average polysemantism of each neuron is much higher. Finally, the ReLU network in Fig. ??,
while haved a very even distribution of neuron activations, having the lowest y-axis range of 0.16%,
the neurons are all highly polysemantic.

Notably, the fact that SDM in Fig. 23a does not have every neuron activated and in the Top-K
the same percentage of the time means that it’s neurons do not perfectly tile the data manifold in
proportion to the density of the data. However, this may be because we are optimizing the network
for classification performance instead of reconstruction loss.

19Note that in these experiments we used the SGDM optimizer instead of SGD. This means the validation
accuracies for SDM and the linear mask are lower than they otherwise would be, however, we believe the
insights we drawn here are unaffected and SGD would have just resulted in fewer dead neurons.
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(a) (b)

(c) (d)

(e)

Figure 23: SDM Neurons are specialized and participate democratically in learning. Plotting
the entropy of each neuron (the distribution of data classes that the neuron is activated by) against
the percentage of time that it is in the Top-K for all inputs.
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(a) (b)

(c) (d)

(e)

Figure 24: CIFAR10 projected onto a UMAP embedding of the SDM weights tiles the manifold
the best. (a) is shown as Fig. 6 of the main text and the only approach that manages to tile the
manifold such that the UMAP plot has meaningful structure.
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(a) (b)

(c) (d)

(e)

Figure 25: SDM Weights Tile the CIFAR10 UMAP Embedding the Best. The two SDMLP
models in the top row ((a) and (b)) do the best tiling of the manifold. This is unlike the previous
Fig. 24 where only SDM in (a) showed good tililng. The CIFAR10 data manifold looks different
here for the top row, forming three distinct blobs because of the L2 normalization operation.
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We present a number of additional plots that show the manifold tiling abilities of SDM in compar-
ison to the other methods. Figure 24 fits the UMAP projection on the weights of the pretrained on
ImageNet32 models and then uses this projection for the CIFAR10 data. Figure 25 does the in-
verse where it fits a UMAP (McInnes & Healy, 2018) projection to ConvMixer embedded CIFAR10
training data and uses this projection for the trained model weights. Both Figures show that SDM
learns to tile the data manifold most effectively with the full SDMLP being the only method to tile
the manifold in both figures. This shows that upon pretraining, the neurons of SDM have learnt to
differentiate across the manifold of general image statistics, forming subnetworks that will be useful
for continual learning.20

We emphasize that while there is manifold tiling and subnetwork formation, the ImageNet32 pre-
training does not result in SDM already knowing the CIFAR10 data or perfectly tiling the CIFAR10
manifold. Figure 27 shows a UMAP plot with the projection fit to the SDMLP trained directly on
CIFAR10 pixels and projecting the same CIFAR10 data, note how much tighter the manifold tiling
is here. Further evidence of manifold tiling is evident in this pixel based training where in Figure
26 we take the weights of ten random SDMLP neurons and reshape them into 3x32x32 dimensions
to reveal the neurons have specialized to specific classes in the data. This is in stark contrast to the
weights of the ReLU neurons shown adjacently. SDM neurons specialize to not only specific image
classes but even specific examples within the class, analogous to the hypothetical “grandmother neu-
ron” (Gross, 2002; Quiroga et al., 2005). This figure shows the trained weights of randomly chosen
neurons from an SDMLP trained on CIFAR10 pixels and reshaped into their image dimensions. A
bird, frog, and multiple deer and horses are visible.

Note that if we directly visualize these L2 normalized weights and our L2 normalized CIFAR10
images, they all look black because the pixel values denoting RGB colors are between 0 and 1 while
our normalization makes them much smaller. We rescale our weights back into pixel values by
first subtracting the minimum pixel value x−min (x) and then multiplying x ∗ 1/(max (x)) that is
standard practice.

(a) (b)

Figure 26: Learned Neuron Weights for SDM (a) versus ReLU (b). We train our models directly
on CIFAR10 and visualize the weights of nine randomly chosen neurons by reshaping them into
their image dimensions. SDM results in significantly more interpretable receptive fields for the
neurons.

To fully emphasize that these neurons and their interpretable receptive fields are on meaningful parts
of the manifold, we take a neuron that has a frog receptive field and show where it is located on the
manifold. We then scan the CIFAR10 training data and take the 3 images that maximally activate

20The fact that the neurons are unique and dispersed across the data manifold, when combined with the
Top-K activation function, ensures that subnetworks of neurons of will be active for different input classes.
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(a) (b)

Figure 27: Analyzing neuron receptive fields of SDM in relation to the data manifold. (a)
A UMAP plot fit on neuron weights trained on CIFAR10 pixels (orange) with the CIFAR10 data
(blue). The black dot in the top left shows the location of the neuron weights that give the frog image
displayed as an inset. (b) The neuron weights are shown in the center, in the top row above are the
three CIFAR10 images that maximally activate this neuron showing that the neuron weights learn
a superposition of similar frog images. In the bottom row are the three closest images determined
by euclidian distance on the UMAP embedding. This embedding will be less precise but still shows
that the manifold largely captures similar classes, aside from the horse.

this neuron, plotting them in the top row of Figure 27. We also look at the UMAP embedded images
that have the smallest euclidian distance to the UMAP embedding of our neuron weights and show
the closest three images. This UMAP apporach does contain a horse but this approach will be less
precise due to the UMAP embedding mapping the 3072 dimensional images into 2 dimensions.

We use our neuron UMAP embeddings to visualize the number of times that each neuron is activated
in Fig. 28. This uses the same overall activation values across continual learning presented in the
histograms of Fig. 22 with yellow indicating the most activations and purple the fewest.

Finally, we show the data manifold tiling of SDM in Fig. 29 where we assign each CIFAR10 class
a different color in the left plot and then show the positions of each neuron assigning the color that
activates this neuron the most.
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(a) (b)

(c) (d)

(e)

Figure 28: Neurons colored by the number of times they have been activated. This plot makes it
clear how SDM with no L2 norm (c) only activates a few neurons to do all of its learning, resulting
in catastrophic forgetting. Meanwhile, ReLU in (e) activates almost all of its neurons. All models
that use Top-K: SDM (a), SDM with Top-K masking (b) and Top-K (d) activate subsets of neurons
making it harder to distinguish their learning dynamics without the additional analyses presented in
this section.
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(a) (b)

Figure 29: SDM neurons tile the regions of the manifold that they are most activated by. We
use the same UMAP plot as in Fig. 25 but color the data by its class in (a) and the neurons by the
class that activates each the most in (b).
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