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Abstract

“Forward-only” algorithms, which train neural
networks while avoiding a backward pass, have re-
cently gained attention as a way of solving the bi-
ologically unrealistic aspects of backpropagation.
Here, we first discuss the similarities between
two “forward-only” algorithms, the Forward-
Forward and PEPITA frameworks, and demon-
strate that PEPITA is equivalent to a Forward-
Forward framework with top-down feedback con-
nections. Then, we focus on PEPITA to address
compelling challenges related to the “forward-
only” rules, which include providing an analyti-
cal understanding of their dynamics and reducing
the gap between their performance and that of
backpropagation. We propose a theoretical analy-
sis of the dynamics of PEPITA. In particular, we
show that PEPITA is well-approximated by an
“adaptive-feedback-alignment” algorithm and we
analytically track its performance during learning
in a prototype high-dimensional setting. Finally,
we develop a strategy to apply the weight mirror-
ing algorithm on “forward-only” algorithms with
top-down feedback and we show how it impacts
PEPITA’s accuracy and convergence rate.

1. Introduction
In machine learning, the credit assignment (CA) problem
refers to estimating how much each parameter of a neural
network has contributed to the network’s output and how the
parameter should be adjusted to decrease the network’s error.
The most common solution to CA is the Backpropagation
algorithm (BP) (Rumelhart et al., 1995), which computes
the update of each parameter as a derivative of the loss func-
tion. While this strategy is effective in training networks
on complex tasks, it is problematic in at least two aspects.
First, BP is not compatible with the known mechanisms of
learning in the brain (Lillicrap et al., 2020). While the lack
of biological plausibility does not necessarily represent an
issue for machine learning, it may eventually help us un-
derstand how to address shortcomings of machine learning,
such as the lack of continual learning and robustness, or
offer insight into how learning operates in biological neu-
ral systems (Richards et al., 2019). Second, the backward
pass of BP is a challenge for on-hardware implementations
with limited resources, due to higher memory and power
requirements (Khacef et al., 2022; Kendall et al., 2020).

These reasons motivated the development of alternative so-
lutions to credit assignment, relying on learning dynamics
that are more biologically realistic than BP. Among these,
several algorithms modified the feedback path carrying the
information on the error (Lillicrap et al., 2016b; Nøkland,
2016; Akrout et al., 2019; Clark et al., 2021) or the target
(Lee et al., 2015; Frenkel et al., 2021) to each node, while
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Figure 1. Overview of different error transportations and weight mirroring configurations. Green arrows indicate forward paths and orange
arrows indicate error paths. (a) Feedback alignment (FA). (b) Present the Error to Perturb the Input To modulate Activity (PEPITA). (c)
PEPITA with Weight Mirroring. (d) Forward-Forward (FF).

maintaining the alternation between a forward and a back-
ward pass. More recently, “forward-only” algorithms were
developed, which consist of a family of training schemes
that replace the backward pass with a second forward pass.
These approaches include the Forward-Forward algorithm
(FF) (Hinton, 2022) and the Present the Error to Perturb the
Input To modulate the Activity learning rule (PEPITA) (Del-
laferrera & Kreiman, 2022). Both algorithms present a clean
input sample in the first forward pass (positive phase for
FF, standard pass for PEPITA). In FF, the second forward
pass consists in presenting the network with a corrupted
data sample obtained by merging different samples with
masks (negative phase). In PEPITA, instead, in the second
forward pass the input is modulated through information
about the error of the first forward pass (modulated pass).
For simplicity, from now on we will denote the first and
second forward pass as clean and modulated pass, respec-
tively, for both FF and PEPITA. These algorithms avoid
the issues of weight transport, non-locality, freezing of ac-
tivity, and, partially, the update locking problem (Lillicrap
et al., 2020). Furthermore, as they do not require precise
knowledge of the gradients, nor any non-local information,
they are well-suited for implementation in neuromorphic
hardware. Indeed, the forward path can be treated as a black
box during learning and it is sufficient to measure forward
activations to compute the weight update.

Despite the promising results, the “forward-only” algo-
rithms are still in their infancy. Most importantly, neither
Hinton (2022) nor Dellaferrera & Kreiman (2022) present
an analytical argument explaining why the algorithms work
effectively. In addition, they present some biologically unre-
alistic aspects. For instance, the FF requires the generation
of corrupted data and their presentation in alternation with
clean data, while PEPITA needs to retain information from
the first forward pass until the second forward pass, there-
fore the algorithm is local in space but not local in time. Ad-
ditionally, the algorithms present a performance gap when

compared with other biologically inspired learning rules,
such as feedback alignment (FA). Our work addresses all
the mentioned limitations of the “forward-only” algorithms,
focusing on PEPITA, and discusses similarities and differ-
ences between the FF and the PEPITA frameworks. Here,
we make the following contributions:

• We demonstrate that PEPITA can be formulated as a
sum of Hebbian and anti-Hebbian terms, making it
local both in space and in time (Sec. 3.1 and 3.3);

• We analytically show the equivalence of the Heb-
bian version of PEPITA with the Forward-Forward
algorithm (Hinton, 2022) with top-down feedback
(Sec. 3.2);

• We show that PEPITA effectively implements
“feedback-alignment” with an adaptive feedback matrix
that depends on the upstream weights (Sec. 4.1);

• Focusing on PEPITA, we use the above result to ana-
lytically characterize the online learning dynamics of
“forward-only” algorithms and explain the phenomenon
of alignment of forward weights and top-down connec-
tions observed in original work (Sec. 4.2);

• We demonstrate that PEPITA can be applied to net-
works deeper than those tested by Dellaferrera &
Kreiman (2022) (Sec. 5);

• We propose two strategies to extend the weight mirror-
ing (WM) method to training schemes other than FA
and show that PEPITA enhanced with WM achieves
better alignment, accuracy, and convergence (Sec. 6).

The code to reproduce the experiments and the details on
the simulation parameters are available at this link.

https://drive.google.com/drive/folders/1wqHqtZx2NVuxpdjQuYUVVf1A8v-88oFS?usp=share_link
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2. Background and relevant work
2.1. Feedback Alignment and Weight mirroring

Several training rules for artificial neural networks (ANNs)
have been proposed to break the weight symmetry constraint
required by BP (Lillicrap et al., 2016b; Nøkland, 2016; Liao
et al., 2016; Nøkland & Eidnes, 2019; Frenkel et al., 2021;
Hazan et al., 2018; Kohan et al., 2018; Clark et al., 2021;
Meulemans et al., 2021; Halvagal & Zenke, 2022; Journé
et al., 2022). The Feedback Alignment (FA) algorithm
(Lillicrap et al., 2016b) replaces the transposed forward
weights W in the feedback path with random, fixed (non-
learning) weight matrices F , thereby solving the weight
transport problem (Fig. 1a) (Lillicrap et al., 2016b). The
feedback signals driving learning in the forward weights
push the forward matrices to become roughly proportional
to the transposes of the fixed feedback matrices. While FA
achieves a performance close to BP on simple tasks such as
MNIST and CIFAR-10 with relatively shallow networks, it
fails to scale to complex tasks and architectures (Bartunov
et al., 2018; Xiao et al., 2018; Moskovitz et al., 2018).

In order to improve FA’s performance, Akrout et al. (2019)
proposed the Weight-Mirror (WM) algorithm, an approach
to adjust the feedback weights as well as the forward
weights, to improve their agreement. The network’s training
consists of two alternating phases. In engaged mode, the for-
ward weightsW are trained using the standard FA. In mirror
mode, the initially random feedback weights F are trained
to approximate the transpose of the W . To avoid weight
transport, the F s are adjusted only based on their input and
output vectors. Each layer ` is given as input a noisy signal ξ
with zero-mean and equal variance σ2

ξ , and outputs a signal
r = W`ξ. The input and output information is used to up-
date the F` matrix with the transposing rule ∆F` = ηF ξr

>,
where E[ξr>] = σ2

ξW
>
` . As a consequence, F integrates

a signal that is proportional to W> on average. The re-
sulting increase in the alignment between the two matrices
allows the FA enhanced with WM to train neural networks
with complex architectures (ResNet-18 and ResNet-50) on
complex image recognition tasks (ImageNet).

2.2. Theoretical analyses

The theoretical study of online learning with one-hidden-
layer neural networks has brought considerable insights to
statistical learning theory (Saad & Solla, 1995a;b; Riegler
& Biehl, 1995; Goldt et al., 2020; Refinetti et al., 2021b).
We leverage these works to understand learning with bio-
logically plausible algorithms. Through similar analysis,
Refinetti et al. (2021a) analytically confirmed the previous
results of Lillicrap et al. (2016a); Nøkland (2016); Frenkel
et al. (2021) showing that the key to learning with direct
feedback alignment (DFA) is the alignment between the

network’s weights and the feedback matrices, which allows
for the DFA gradient to be aligned to the BP gradient. The
authors further show that the fixed nature of the feedback
matrices induces a degeneracy-breaking effect where, out of
many equally good solutions, a network trained with DFA
converges to the one that maximizes the alignment between
feedforward and feedback weights. This effect, however,
imposes constraints on the structure of the feedback weights
for learning, and possibly explains the difficulty of training
convolutional neural networks with DFA.

Bordelon & Pehlevan (2022) derived self-consistent equa-
tions for the learning curves of DFA and FA in infinite-width
networks via a path integral formulation of the training dy-
namics and investigated the impact of feedback alignment
on the inductive bias.

2.3. The PEPITA learning rule

Here, we introduce notation and summarize the original
learning rule proposed by Dellaferrera & Kreiman (2022).

Given a fully connected network with L layers, an input
signal x, and one-hot encoded labels y (Fig. 1b), we first
perform a clean forward pass through the network. The
hidden unit and output unit activations are computed as:

h1 = σ1(W1x),

h` = σ`(W`h`−1) for 2 ≤ ` ≤ L,
(1)

where σl is the non-linearity at the output of the `th layer
and W` is the matrix of weights between layers `− 1 and `.
At the modulated pass, the activations are computed as:

herr1 = σ1(W1(x− Fe)),
herr` = σ`(W`h

err
`−1) for 2 ≤ ` ≤ L,

(2)

where e ≡ hL − y denotes the network error and F is the
fixed random matrix used to project the error on the input.
We denote the output of the network either as hL or ŷ. After
the two forward passes, the weights are updated according
to the PEPITA learning rules for the first, intermediate, and
final layers, respectively:

∆W1 = (h1 − herr1 )(x− Fe)>; (3)

∆W` = (h` − herr` )(herr`−1)> for 2 ≤ ` < L; (4)

∆WL = e(herrL−1)>. (5)

Note that, compared to the original paper, we changed the
sign convention to read−Fe rather than +Fe in (2) and (3).
Because the distribution of F entries is symmetric around
zero, this has no consequence on the results. This change
will appear useful when describing the weight mirroring
applied to PEPITA in Section 6. Finally, the updates are
applied depending on the chosen optimizer. For example,
using stochastic gradient descent with learning rate η:

W (t+ 1) = W (t)− η∆W. (6)



Forward Learning with Top-Down Feedback

The pseudocode is reproduced in Sup. Section A.

2.4. The Forward-Forward algorithm

Analogously to PEPITA, the FF algorithm removes the need
for a backward pass and consists instead of two forward
passes per sample (Fig. 1d). The clean pass and the mod-
ulated pass operate on real data and on appropriately dis-
torted data, respectively. The distorted data is generated
to exhibit very different long-range correlations but very
similar short-range correlations. This forces FF to focus
on the longer-range correlations in images that characterize
shapes. In practice, the modulated samples are hybrid im-
ages obtained by adding together one digit image times a
mask with large regions of ones and zeros and a different
digit image times the reverse of the mask.

In the clean pass, the weights are updated to increase a
“goodness” in every hidden layer, and in the modulated pass
to decrease it. Hinton (2022) proposes to use the sum of
the squared neural activities as goodness and specifies that
the best results are achieved by minimizing this quantity for
positive data and maximizing it on negative data.

3. On the relationship between FF and
PEPITA

In this section, we demonstrate that PEPITA is equivalent to
a FF framework with top-down connections. First, propose
a minor change to the PEPITA update rule that exposes its
Hebbian foundation. This version can also be applied in a
time-local fashion. We then analytically demonstrate that
the update rule proposed in the Forward-Forward (FF) algo-
rithm (Hinton, 2022) is essentially equivalent to PEPITA’s
when the negative samples are based on high-level feedback.

3.1. PEPITA’s formulation as Hebbian and
anti-Hebbian phases

In their paper, Dellaferrera & Kreiman (2022) mention that
the presynaptic term (herr`−1) in the learning rule of eqn. (4)
can be replaced interchangeably with the same term, com-
puted instead during the first forward pass (h`−1). Taking
this a step further, we separate the brackets in eqn. (4) and
mix the two choices for the presynaptic term obtaining an
approximately equivalent rule for hidden layer weights:

∆W` = h`h
err>
`−1 − herr` herr>`−1

' h`h>`−1 − herr` herr>`−1 .
(7)

The learning rule (7) now contains two Hebbian terms, each
a product of the activity of the presynaptic and the postsy-
naptic node. We dub this approximation PEPITA-Hebbian.
Fig. 3a shows that the approximation in eqns. (7) has negli-
gible impact on the accuracy.

3.2. Similarities between the weight updates of PEPITA
and FF

In FF, in the clean pass, the weights are updated to increase
a “goodness” in every hidden layer, and in the modulated
pass to decrease it, where the goodness can be the sum of
the squared neural activities (in our notation, ‖h`‖2, for the
clean and ‖herr` ‖2 for the modulated pass). Hinton (2022)
chooses a loss based on the logistic function σ applied to
the goodness, minus a threshold, θ: p = σ

(
‖hl‖2 − θ

)
.

This choice emphasizes the separation between positive and
negative representations. For simplicity, we work directly
on the goodness. This is equivalent to minimizing, at each
layer `, a loss function defined as:

J` = ‖h`‖2 − ‖herr` ‖2, (8)

We then compute a weight update for FF as the derivative
of the loss function (8) with respect to the weights:

1

2

∂J`
∂W`

=
1

2

(
∂‖h`‖2

∂W`
− ∂‖herr` ‖2

∂W`

)
=

1

2

(
∂‖σ(W`h`−1)‖2

∂W`
−
∂‖σ(W`h

err
`−1)‖2

∂W`

)

= σ(W`h`−1)� σ′(W`h`−1)h>`−1

− σ(W`h
err
`−1)� σ′(W`h

err
`−1)herr>`−1

= (σ′(W`h`−1)� h`h>`−1
− σ′(W`h

err
`−1)� herr` herr`−1)

= (h′` � h`)h>`−1 − (herr
′

` � herr` )herr>`−1 .

(9)

where � indicates the Hadamard product.

We note that the terms h′` ≡ σ′(W`h`−1) and herr
′

` ≡
σ′(W`h

err
`−1) can be omitted in the common case where σ

is a ReLU function because they are 0 if and only if h` is
already 0, and equal 1 otherwise. Likewise, they are always
equal to 1 if σ is linear. In these cases, therefore

1

2

∂J`
∂W`

= h`h
>
`−1 − herr` herr>`−1 , (10)

which is equivalent to eqn. (7), apart from a factor 1/2 that
can be incorporated in the learning rate. Since both Hinton
(2022) and Dellaferrera & Kreiman (2022) generally use
ReLUs as activations functions, we conclude that the FF
update rule with loss (8) is equivalent to the previously
proposed PEPITA in terms of the weight update rule.

For other choices of activation functions σ, since the error
term Fe is much smaller than the input x, the derivative of
the activations in the two forward passes are close enough
to approximate σ′(W`h`−1) ' σ′(W`h

err
`−1). In this case,

the equivalence between the two learning rules (7) and (8)
is only approximate.
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Figure 2. (a) Test accuracy as a function of training epochs for experiments with the MNIST dataset and a one-hidden-layer network
with 1024 hidden units and ReLU activation. The blue dots represent the “vanilla” PEPITA algorithm (without momentum) while the
purple crosses mark the AFA approximation (eqn. 11). (b) Generalization error as a function of the training time for the experiments with
the PEPITA algorithm (blue dots) and its AFA approximation (purple crosses), and the theoretical curves derived in the Sup. Section E
marked by full lines. Parameters: D = 500, lr = .05, erf activation, two hidden units in both teacher and student. (c) Alignment angle
between the teacher and student second-layer weights W̃>2 W2 (dark green), between the student and a degenerate solution (light green),
and between the adaptive feedback matrix and the student W>2 FW1 (orange) as a function of training time. (d) We plot the unit vectors
in the direction of the student W2, the adaptive feedback W1F and the teacher W̃2 as well as the degenerate solutions. The time shots are
taken at different training times, marked by vertical dashed lines in panel (c).

We remark that the equivalence of PEPITA and FF holds
for the general FF framework minimizing and maximizing
the square of the activities. However, the weight update
reported by Hinton (2022) presents analytical differences
from (10) due to their use of thresholding and non-linearity
applied to the goodness. Another notable difference lies
in the way the “modulated” samples are generated in the
two frameworks: as described, in PEPITA’s modulated pass,
the input is modulated by the error. In the FF algorithm, in
contrast, the negative samples are data vectors corrupted by
external means, e.g. hybrid images in which one digit image
times a binary mask and a different digit image times the
reverse of the mask are added together. Furthermore, FF
maximizes and minimizes the square of the activities for the
clean pass and the modulated pass, respectively. In contrast,
the activations of the two passes are not statistically different
in PEPITA, presumably due to the small perturbation of the
input in the second pass (Sup. Fig. 5).

3.3. Time locality

Due to the negative sign in the gradient descent formula-
tion, the first term of the PEPITA-Hebbian update (7) has an
anti-Hebbian effect, while the second term is Hebbian. The
weight update therefore consists of two separate phases that
can contribute to learning without knowledge of the activity
of the other, i.e. learning is time-local. Specifically, the term
h`h
>
`−1 can be applied online, immediately as the activations

of the first pass are computed. Analogously, the second term
−herr` herr>`−1 can be applied immediately during the second
forward pass. Sup. Section A provides a pseudocode imple-
mentation of this version of the algorithm, which we name
PEPITA-time-local. While PEPITA-Hebbian has the same
accuracy as PEPITA (Fig. 3a), PEPITA-time-local has a neg-
ative impact on the network’s performance compared to the

original formulation of PEPITA (Sup. Fig. 4). This decrease
in accuracy may be related to the fact that in the original
PEPITA, like in FA, DFA, and BP, the last layer is trained
by delta-rule, while in the time-local version, the update
of the last layer is split into two terms applied at different
steps. To ensure that the hidden-layer updates prescribed by
PEPITA are useful, we compared the test curve of PEPITA-
time-local against a control with F = 0 (Sup. Fig. 4), and
found that removing the feedback decreases the accuracy
from approx. 40% to approx. 18%. We leave the exploration
to reduce the gap between PEPITA-time-local and PEPITA
for further work.

Regarding the time-locality of FF, in FF the two forward
passes can be computed in parallel, as the modulated pass
does not need to wait for the computation of the error of the
first pass. However, according to the available implementa-
tions (Mukherjee, 2023) the updates related to both passes
are applied together at the end of the second forward pass.

4. Theoretical analysis of the learning
dynamics of PEPITA

In this section, we present a theory for the “forward-only”
learning frameworks, focusing specifically on PEPITA in
two-layer networks. We propose a useful approximation of
the PEPITA update, that we exploit to derive analytic ex-
pressions for the learning curves, and investigate its learning
mechanisms in a prototype teacher-student setup.

4.1. Taylor expansion and Adaptive Feedback rule

First, we observe that the perturbation applied in the mod-
ulation pass is small compared to the input: ‖Fe‖ � ‖x‖.
Indeed, in the experiments, the entries of the feedback ma-
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Table 1. Test accuracy [%] achieved by BP, FA, DRTP, and PEPITA in the experiments, with and without weight decay, normalization of
the activations and weight mirroring. Mean and standard deviation are computed over 10 independent runs. All training schemes are
tested with ReLU nonlinearity except DRTP which uses tanh nonlinearity. The hyperparameters obtained through grid search are reported
in Sup. Table 4. Bold fonts refer to the best results exclusively among PEPITA and its improvements.

W. DECAY NORM. MIRROR MNIST CIFAR-10 CIFAR-100

BP 7 7 7 98.72±0.06 57.60±0.20 29.36±0.19
3 7 7 98.66±0.04 57.92±0.19 29.93±0.27

FA 7 7 7 98.48±0.05 56.76±0.23 22.75± 0.28
3 7 7 98.35±0.04 57.19±0.24 22.62±0.25

DRTP 7 7 7 95.45±0.09 46.92±0.21 16.99±0.16
3 7 7 95.44±0.09 46.92±0.27 17.59±0.18

PEPITA 7 7 7 98.02±0.08 52.45±0.25 24.69±0.17
3 7 7 98.12±0.08 53.05±0.23 24.86±0.18
7 3 7 98.41±0.08 53.51±0.23 22.87±0.25
7 7 3 98.05±0.08 52.63±0.30 27.07±0.11
3 7 3 98.10±0.12 53.46±0.26 27.04±0.19
7 3 3 98.42±0.05 53.80±0.25 24.20±0.36

trix F are drawn with standard deviation σF = κ/
√
D,

where D is the input dimension – typically large – and κ is
a constant set by grid search, while the input entries are of
order one. Thus, it is reasonable to Taylor-expand the presy-
naptic term h1 − herr1 , which results in the approximate
update rule:

∆W1 ' [(W1Fe)� h′1]x>, (11)

where we have used x instead of (x− Fe) since the small
perturbation has been found to be negligible for the perfor-
mance (Dellaferrera & Kreiman, 2022). Eqn. (11) shows
that PEPITA is effectively implementing a “DFA-like” up-
date (equivalent to FA in two-layer networks), but using an
adaptive feedback (AF) matrix where the random term is
modulated by the network weights. In light of this observa-
tion, it is natural to expect the alignment between W1F and
W2. This simple approximation, which we call Adaptive
Feedback Alignment (AFA), is actually very accurate, as
we verified numerically in Fig. 2a, displaying experiments
on MNIST, and in Fig. 6 of Sup. Section D for the CIFAR-
10 and CIFAR-100 datasets. AFA approximates PEPITA
very accurately also in the teacher-student regression task
depicted in Fig. 2b, which we study analytically in the next
section.

4.2. ODEs for AFA with online learning for the
teacher-student regression task

To proceed in our theoretical analysis, it is useful to as-
sume a generative model for the data. We focus on the
classical teacher-student setup (Gardner & Derrida, 1989;
Seung et al., 1992; Watkin et al., 1993; Engel & Van den
Broeck, 2001; Zdeborová & Krzakala, 2016). We con-
sider D−dimensional standard Gaussian input vectors x ∼

N (0, ID), while the corresponding label y = W̃2 σ̃(W̃1x)
is generated by a two-layer teacher network with fixed ran-
dom weights W̃1, W̃2 and activation function σ̃(·). The two-
layer student network outputs a prediction ŷ = W2 σ(W1x)
and is trained with the AFA rule and an online (or one-pass)
protocol, i.e., employing a previously unseen example xµ,
µ = 1, . . . , N , at each training step. We characterize the
dynamics of the mean-squared generalization error

εg ≡
1

2
Ex
[
(ŷ − y)2

]
≡ 1

2
Ex
[
e2
]
, e ≡ ŷ − y, (12)

in the infinite-dimensional limit of both input dimension
and number of samples D,N →∞, at a rate N/D ∼ O(1)
where the training time is t = µ/D. The hidden-layer size
is of order one in both teacher and student. We follow the
derivation in the seminal works of Biehl & Schwarze (1995);
Saad & Solla (1995d;c), which has been put on rigorous
ground by Goldt et al. (2019), and extend it to include the
time-evolution of the adaptive feedback. As discussed in
detail in Sup. Section E, the dynamics of the error εg as a
function of training time t is fully captured by the evolution
of the AF matrix and a set of low-dimensional matrices
encoding the alignment between student and teacher. We
derive a closed set of ODEs tracking these key matrices,
and we integrate them to obtain our theoretical predictions.
Furthermore, in Sup. Section E.1, we perform an expansion
at early training times t� 1, which elucidates the alignment
mechanism and the importance of the “teacher-feedback
alignment”, i.e. W̃2W̃1F , as well as the norm of ‖W̃1F‖.

For the sake of the discussion, we consider sigmoidal ac-
tivations σ̃(·) = σ(·) = erf(·), keeping in mind that the
symmetry erf(−x) = −erf(x) induces a degeneracy of
solutions.

Fig. 2b shows our theoretical prediction for the general-
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ization error as a function of time, compared to numerical
simulations of the PEPITA and AFA algorithms. We find ex-
cellent agreement between our infinite-dimensional theory
and experiments, even at moderate system size (D = 500).

Fig. 2c shows the dynamic changes in the alignment of the
second-layer student weights W2 with different matrices:
the AF matrix W1F , the second-layer teacher weights W̃2,
the second-layer teacher weights of the closest degenerate
solution. We clearly observe that the error is stuck at a
plateau until “adaptive-feedback alignment” happens (t ∼
103). The lower panel depicts the directions of W2, W1F ,
and W̃2 at different times, marked by vertical dashed lines
in the above panel. It is crucial to notice that, in this case,
the feedback matrix also evolves in time, giving rise to a
richer picture, that we further discuss in Sup. Section D. In
the special case of Fig. 2c, while the direction of W1F is
almost constant, its norm increases, speeding up the learning
process, as shown in Fig. 7. Similar behavior was observed
in Dellaferrera & Kreiman (2022).

5. Testing PEPITA on deeper networks
The theoretical analysis above focuses on a two-layer net-
work, as used in the proof-of-principle demonstration of
PEPITA’s function in the original article. To the best of
our knowledge, PEPITA has been tested so far only on
two-layer networks. Since we consider this its most severe
limitation until now, here, we use simulations to show that
the algorithm can be extended to train deeper networks.

5.1. Methods

We applied PEPITA to train fully connected models with
up to five hidden layers. We tested two initialization strate-
gies, He uniform (as in Dellaferrera & Kreiman, 2022) and
He normal. F is initialized by sampling its entries from a
uniform or normal distribution, respectively. This distribu-
tion has a mean of zero and standard deviation reported in
Sup. Tab. 4. When not specified, we used the He normal ini-
tialization. Furthermore, we enhanced the basic operations
of PEPITA with standard techniques in machine learning,
namely weight decay (WD) (Krogh & Hertz, 1991) and
activation normalization (as in Hinton, 2022). For all simu-
lations, we tuned the hyperparameters by grid search. The
optimal parameters are reported in Sup. Table 4.

5.2. Results

Regarding the initialization schemes, we verified that He
uniform and normal performed equally (Fig. 3a). Weight
decay and activation normalization improved the network’s
accuracy (Fig. 3b and Table 1). On a one-hidden-layer
network trained on the CIFAR-10 dataset, weight decay and
normalization improved PEPITA’s performance by 0.6%

and 1.1%, respectively (Fig. 3b and Table 1).

We compared PEPITA’s performance to three baselines, BP,
FA, and Direct Random Target Projection (DRTP, Frenkel
et al., 2021) with and without weight decay. For the base-
lines, we used the code by Frenkel et al. (2021). Our use of
learning rate decay meant the grid search returned different
hyperparameters, which explains some discrepancies in the
accuracies compared to Frenkel et al. (2021).

Overall, we observe that PEPITA is able to train networks
with three hidden layers without loosing accuracy with depth
(Fig. 3a). Furthermore, with normalization of the activations,
networks with up to five hidden layers can be trained, how-
ever they exhibit a decrease in performance (Sup. Fig. 8).

6. Enhancing PEPITA with weight mirroring
Besides adding more layers, we can also work on improving
the performance of PEPITA and narrowing the gap with
BP. In Section 4.1, we have shown that PEPITA is closely
related to FA. Therefore, it is natural to adopt the weight mir-
ror (WM) algorithm (Akrout et al., 2019), which has been
shown to greatly improve alignment between the forward
and backward connections and the consequent accuracy of
FA. Here, we propose a generalization of WM for learning
rules where the dimensionalities of the feedback and feed-
forward weights do not match, such as PEPITA, but also
including DFA.

6.1. Methods

In a network trained with FA, the WM algorithm aligns, for
each layer `, a backward matrix F` with the transpose of
the corresponding forward matrix W` (Fig. 1a). In PEPITA,
there is no one-to-one correspondence between forward and
backward connections, as there is only one projection matrix
F (Fig. 1b). In order to recover the one-to-one correspon-
dence of WM, we propose to factorize the F matrix into
the product of as many matrices as the number of layers:
F =

∏L
`=1 F` (Fig. 1c). We initialize each of these matrices

by sampling the entries from a normal distribution, then ap-
ply WM layer-wise. Note that this strategy could be applied
to enhance other training schemes, such as DFA, with WM.

After each standard WM update, we also normalize each F`

multiplying it by a factor
(
σ
(0)
F /σ

(t)
F

)1/L
. This keeps the

standard deviation σ(t)
F of the updated F at step t constant

at its initialization value (σ(0)
F , see Sup. Table 4). This

is because PEPITA is sensitive to the magnitude of the
feedback ‖Fe‖, which must be kept non-zero for learning,
but small enough for the approximation (11) to be valid.
WM can be applied even before learning starts, to bring the
initial random weights into alignment. This configuration is
called pre-mirroring. We benchmarked our networks both
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a b c

Figure 3. (a), (b) Test accuracy of fully connected networks with increasing depth trained with PEPITA on the CIFAR-10 dataset. (a)
PEPITA uniform and PEPITA normal refer to the initialization of the weights and F (Sec. 5.1). “PEPITA-Hebbian” refers to the learning
rule explained in Section 3.1. (b) Effect of weight decay. (c) Alignment angle between F and Wtot during training with or without WM.
PreM refers to pre-mirroring (Sec. 6.1). The hyperparameters are reported in Sup. Table 4.

with five epochs of pre-mirroring, and without.

6.2. Results

Alignment Fig. 3c shows that, when weight mirroring is
applied, the W and F matrices achieve a better alignment
than with the standard PEPITA. The improvement of the
alignment is more enhanced for one- and two-hidden-layer
than for three-hidden-layer networks (Sup. Fig. 10).

Accuracy The improved alignment obtained with WM is
reflected in improved accuracy, especially for one-hidden-
layer networks (Table 1), but also for two- and three-hidden-
layer networks (Sup. Table 2). Remarkably, on the CIFAR-
10 dataset, WM combined with activation normalization
leads to 53.8%, an improvement of 1.3% compared to the
standard PEPITA. On CIFAR-100 WM improves the accu-
racy by over 2%, reducing the gap with BP.

Convergence rate The original paper reported that
PEPITA’s convergence rate is in between BP (the fastest)
and FA (the slowest). Here, we demonstrate that we can
narrow the gap with BP by using pre-mirroring. We evaluate
the learning speed using the plateau equation for learning
curves proposed in Dellaferrera et al. (2022). By fitting the
test curve to this function, we extract the slowness parame-
ter, which quantifies how fast the network reduces the error
during training.

With pre-mirroring, the convergence rate improves for one-
hidden-layer models, as quantified by the lower slowness
(Sup. Table 3). This is compatible with the “align, then
memorize” paradigm (Refinetti et al., 2021a): pre-mirroring
already provides the initial alignment phase as part of weight
initialization, before the network sees the data.

7. Discussion
In the quest for biologically inspired learning mechanisms,
the FF algorithm (Hinton, 2022) and the PEPITA algorithm
(Dellaferrera & Kreiman, 2022) are “forward-only” algo-
rithms which train neural networks with local information,
without weight transport, without freezing the network’s ac-
tivity, and without backward locking. Here, we first demon-
strate that PEPITA is a special case of the FF framework,
where the input to the second forward pass is provided by
top-down feedback connections. The main difference be-
tween the two algorithms is in how the negative samples
are generated. In FF, they are built by overlapping two dif-
ferent images according to binary masks. In PEPITA, they
are built by integrating error information e to the clean im-
age. Thus, the error-driven generation of the input samples
avoids the biologically unrealistic requirement of corrupting
the images entailed by FF. Hinton (2022) himself suggests
the alternative possibility that the negative data may be pre-
dicted by the neural net using top-down connections, rather
than being externally provided. PEPITA is precisely an
example of this possibility, which is compatible with biolog-
ical mechanisms of neuromodulation and thalamo-cortical
projections.

Through approximations of the PEPITA learning rule, we
demonstrate that the updates can be written in a version
which is local both in time and in space. Both time locality
and the Hebbian formulation are relevant to the biological
plausibility of PEPITA: to learn, each synapse needs no
information about the past activity, or about the state of
other synapses. This is believed to be the case for biological
networks (Sjöström et al., 2001; Caporale & Dan, 2008;
Markram et al., 2011), so that much contemporary literature
in computational neuroscience is dedicated to finding local,
bio-plausible learning algorithms (Richards et al., 2019;
Lillicrap et al., 2020). Locality in time, moreover, would be
especially important in the perspective of an implementation
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on an analog neuromorphic chip, where storing data in
memory is difficult and online learning is desirable (Mitra
et al., 2008; Demirag et al., 2021; Khacef et al., 2022).

Focusing on PEPITA, we show that its update rule can be ap-
proximated by an FA-like algorithm, where the error is prop-
agated to the input layer via the project matrix F “adapted”
through the forward synaptic matrix. We perform a theo-
retical characterization of the generalization dynamics that
provides intuition on the alignment mechanisms. This of-
fers novel theoretical insight into the family of forward-only
learning algorithms and links together PEPITA, Forward-
Forward, and Feedback Alignment. In the future, we envi-
sion that further research could build a unified theoretical
framework for these and other forward-only algorithms,
leading to higher accuracy, network depth, and biological
plausibility.
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A. Pseudocode for PEPITA
Algorithm 1 describes the original PEPITA as presented in Dellaferrera & Kreiman (2022).
Algorithm 2 describes our modification of PEPITA, which is Hebbian and local both in space and in time (Pepita-time-local).

Algorithm 1 Implementation of PEPITA
Require: Input x and one-hot encoded label y

# standard forward pass
h0 = x
for ` = 1, ..., L do
h` = σ`(W`h`−1)

end for
e = hL − y
# modulated forward pass
herr0 = x+ Fe
for ` = 1, ..., L do
herr` = σ`(W`h

err
`−1)

if ` < L then
∆W` = (h` − herr` )(herr`−1)>

else
∆W` = e(herr`−1)>

end if
W`(t+ 1) = W`(t)− η∆W` # apply update

end for

Algorithm 2 Implementation of PEPITA-time-local
Require: Input x and one-hot encoded label y

# standard forward pass
h0 = x
for ` = 1, ..., L do
h` = σ`(W`h`−1)
∆W+

` = h`h
>
`−1

W+
` (t+ 1) = W`(t)− η∆W+

` # apply 1st update
end for
e = hL − y
# modulated forward pass
herr0 = x− Fe
for ` = 1, ..., L do
herr` = σ`(W

+
` h

err
`−1)

if ` < L then
∆W−` = −herr` herr>`−1

else
∆W−` = −yherr>`−1

end if
W`(t+ 1) = W+

` (t+ 1)−η∆W−` # apply 2nd update
end for

The updates for PEPITA-Hebbian are:

• for the hidden layers:

∆W` = h`h
err>
`−1 − herr` herr>`−1

' h`h>`−1 − herr` herr>`−1 ,
(13)

• for the first and last layers

∆W1 ' h1x> − herr1 (x− Fe)>;

∆WL ' hLh>L−1 − yherr>L−1 .
(14)

These updates are applied at the end of both forward passes for PEPITA-Hebbian, similarly as in pseudocode 1.
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B. Training with the time-local rule

Figure 4. Test curve for PEPITA in its time-local formulation (Sec. 3.3) and time-local PEPITA with F=0 (i.e., only the last layer is
trained) on the CIFAR-10 dataset. The network has 1 hidden layer with 1024 units. The forward matrices are initialized using the He
normal initialization. F entries are sampled from a normal distribution with standard deviation 0.5·2

√
6/(32 · 32 · 3). We use learning

rate 0.0001 and weight decay with λ = 10−4. The learning is reduced by a factor of ×0.1 at epoch 50. The solid line is the mean over 10
independent runs. The shaded colored area shows the standard deviation over the 10 runs. Time-local PEPITA achieves a significantly
higher accuracy than the time-local, F=0 scheme.

C. Distribution of the goodness in PEPITA

a b c

Figure 5. Difference of the norm of the squared activities of the first hidden layer between the clean and modulated pass in PEPITA
(a) before training, (b) after 50 epochs, and (c) at the end of training. The network is a 2-hidden-layer network trained with WD with
λ = 10−4 on the CIFAR-10 dataset. The activites are recorded on the test set. We remark that in PEPITA the input of the second forward
pass is modulated by the error. Since the error decreases during training, also the difference of the activations in the two passes decreases
with training. This explains why the distribution of the difference of the norm of the squared activities has a lower standard deviation in
the middle of training (b) and at the end of training (c), than before training (a). In contrast, the modulation of the input in FF is constant
during training, and the scope of training is maximising the difference of the goodness in the two passes.
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D. Additional figures on the AFA approximation
Fig. 6 displays the comparison between the “vanilla” PEPITA algorithm and the AFA approximation introduced in eqn. (11)
of the main text. The test accuracy as a function of training epochs is depicted for the CIFAR-10 dataset in the left panel and
for the CIFAR-100 dataset in the right panel.

Fig. 7 depicts the norm of the adaptive feedback matrix f = W1F/D as a function of training time. The symbols mark the
numerical simulations at dimension D = 500, while the full line represents our theoretical prediction. We observe that,
for this run, the norm of the adaptive feedback increases over time. We have observed by numerical inspection that this
behavior is crucial to speed up the dynamics, as also observed in (Dellaferrera & Kreiman, 2022).

Figure 6. Comparison between the test accuracy as a function of training epochs between the “vanilla” PEPITA algorithm and its AFA
approximation (eqn. (11) of the main text) for the CIFAR-10 (left panel) and CIFAR-100 (right panel) datasets.
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Figure 7. Norm of the alignment matrix f =W1F/D as a function of training time, for the same parameters as in Fig. 2 of the main text:
D = 500, lr = .05, erf activation, two hidden units in both teacher and student (K =M = 2).

E. ODEs for online learning in the teacher-student regression task
In this section, we present the details of the teacher-student model under consideration and we sketch the derivation of
the ordinary differential equations (ODEs) tracking the online learning dynamics of the AFA rule. We consider a shallow
student network trained with AFA to solve a supervised learning task. The input data are random D−dimensional vectors
x ∈ RD with independent identically distributed (i.i.d.) standard Gaussian entries xj ∼ N (0, 1), j = 1, . . . , D, and the
(scalar) labels are generated as the output of a one-hidden-layer teacher network with parameters θ̃ = (W̃1, W̃2,M, σ̃):

y =

M∑
m=1

W̃m
2 σ̃(νm), νm =

W̃m
1 x√
D

, (15)

where M is the size of the teacher hidden layer, νm denotes the teacher preactivation at unit m ∈ {1, . . . ,M}, and σ̃(·) is
the activation function. The student is a one-hidden-layer neural network parametrized by θ = (W1,W2,K, σ) that outputs
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the prediction

ŷ =

K∑
k=1

W k
2 σ(λk), λk =

W k
1 x√
D
, (16)

where K is the size of the student hidden layer, σ(·) the student activation function, λk the student preactivation at unit
k ∈ {1, . . . ,K}. For future convenience, we write explicitly the scaling with respect to the input dimension. Therefore, at
variance with the main text, in this supplemementary section we always rescale the first layer weights as well as the feedback
by 1/

√
D.

We focus on the online (or one-pass) learning protocol, so that at each training time the student network is presented
with a fresh example xµ, µ = 1, . . . N , and N/D ∼ O(1). The weights are updated according to the Adaptive Feedback
Alignment (AFA) rule defined in eqn. (11):

W1(µ+ 1) = W1(µ)− η1∆W1(µ), ∆W1 =
W1F

D
eh′1

x>√
D
, (17)

W2(µ+ 1) = W2(µ)− η2∆W2(µ), ∆W2 = e h>1 . (18)

We consider fixed learning rates η1 = η, η2 = η/D. Different learning rate regimes have been explored in (Veiga et al.,
2022). It is crucial to notice that the mean squared generalization error

εg(θ, θ̃) =
1

2
Ex

( K∑
k=1

W k
2 σ(λk)−

M∑
m=1

W̃m
2 σ̃(νm)

)2
 (19)

depends on the high-dimensional input expectation only through the low-dimensional expectation over the preactivations
{λk}Kk=1, {νm}Mm=1. Notice that, in this online-learning setup, the input x is independent of the weights, which are held
fixed when taking the expectation. Furthermore, due to the Gaussianity of the inputs, the preactivations are also jointly
Gaussian with zero mean and second moments:

Qkl = Ex
[
λkλl

]
=
W k

1 ·W l
1

D
, Rkm = Ex

[
λkνm

]
=
W k

1 · W̃m
1

D
, Tmn = Ex [νmνn] =

W̃m
1 · W̃n

1

D
. (20)

The above matrices are named order parameters in the statistical physics literature and play an important role in the
interpretation. The matrices Q and T capture the self-overlap of the student and teacher networks respectively, while the
matrix R encodes the teacher-student overlap. In the infinite-dimensional limit discussed above, the generalization error is
only a function of the order parameters Q,T,R and of the second layer weights W̃2,W2 of teacher and student respectively.
Therefore, by tracking the evolution of these matrices via a set of ODEs – their “equations of motion” – we obtain theoretical
predictions for the learning curves. The update equations for Q,R,W2 can be obtained from eqns. (17) according to the
following rationale. As an example, we consider the update equation for the matrix Q:

Qkl(µ+ 1)−Qkl(µ) =
1

D

[
W k

1 (µ)− η∆W k
1 (µ)

]
·
[
W l

1(µ)− η∆W l
1(µ)

]
− 1

D
W k

1 (µ) ·W l
1(µ)

= − 1

D
η fk e σ′(λk)λl − 1

D
η f l e σ′(λl)λk +

1

D
η2 fk f l σ′(λk)σ′(λl)e2,

(21)

where we have defined the adaptive feedback f := W1F/D, we have used that ‖xµ‖2 = D as D → ∞ and omitted
the µ−dependence on the right hand side for simplicity. By taking t = µ/D, as shown in (Goldt et al., 2019), in the
infinite-dimensional limit Qkl(µ) concentrates to the solution of the following ODE:

dQkl

dt
= −ηfkE

[
σ′(λk)λle

]
− ηf lE

[
σ′(λl)λke

]
+ η2fkf lE

[
σ′(λk)σ′(λl)e2

]
, (22)

Similarly, we can derive ODEs for the evolution of R,W2 and the adaptive feedback f :

dRkm

dt
= −η fkE

[
σ′(λk)νme

]
,

dW k
2

dt
= −ηE

[
σ(λk)e

]
,

dfk

dt
= −ηfkE

[
ρσ′(λk)e

]
, (23)
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where the expectations are taken over the preactivatons and ρ = F x/
√
D, and we have Ex[λkρ] = fk, Ex[νmρ] = f̃m :=

W̃1F/D, qf := F · F/D. The generalization error can be rewritten as

lim
D→∞

εg(θ, θ̃) =
1

2

K∑
k,l=1

W k
2W

l
2 I2(k, l) +

1

2

M∑
m,n=1

W̃m
2 W̃

n
2 I2(m,n)−

K∑
k=1

M∑
m=1

W k
2 W̃

m
2 I2(k,m), (24)

where I2 generically encodes the averages over the activations

I2(α, β) = E
[
σα(γα)σβ(γβ)

]
, γα =

{
λk if α = k, l

νm if α = m,n
, σα =

{
σ if α = k, l

σ̃ if α = m,n
. (25)

The other averages in eqns. can be expressed in a similar way and estimated by Monte Carlo methods. In the case of
sigmoidal activation σ(x) = erf(x/

√
2), the function I2 has an analytic expression.

I2(α, β) =
2

π
arcsin

Cαβ
√

1 + Cαα
√

1 + Cββ
, Ckl = Qkl, Ckm = Rkm, Cmn = Tmn. (26)

E.1. Early-training expansion

As done by (Refinetti et al., 2021a) for DFA, it is instructive to consider an expansion of the ODEs at early training times.
We assume the following initialization: W k

2 (0) = 0, ∀k ∈ {1, . . . ,K}, while the first layer is assumed to be orthogonal to
the teacher W k

1 (0) · W̃m
1 = 0 and of fixed norm ‖W k

1 (0)‖2/D = q0, ∀k ∈ {1, . . . ,K},∀m ∈ {1, . . . ,M}. We also take
orthogonal first-layer teacher weights, such that T is the identity matrix. This initialization leads to:

Rkm(0) = 0 ,
d

dt
W k

2

∣∣∣∣
t=0

= 0 ,
d

dt
Rkm

∣∣∣∣
t=0

=

√
2

π
√

1 + q0
η fk(0) W̃m

2 . (27)

We can therefore compute the second-layer update to linear order:

d

dt
W k

2 (t) =
2

π2(1 + q0)
η2 fk(0) ‖W̃2‖22 t+O(t2). (28)

Eqn. (28) shows that the update of the second-layer weights at early training times is in the direction of the adaptive feedback
matrix, in agreement with the alignment phase observed in experiments. Crucially, it is necessary that fk(0) 6= 0 ∀k in
order to have non-zero updates, i.e. the feedback F must not be orthogonal to the first-layer weights at initialization. We
now inspect the behavior of the adaptive feedback at the beginning of training. We have that the update at time zero is:

d

dt
fk
∣∣∣∣
t=0

=
2

π
η

fk(0)√
(1 + q0)(1 + qf )− fk(0)2

(W̃2 · f̃), (29)

and

fk(t) = fk(0) +
2

π
η

fk(0)√
(1 + q0)(1 + qf )− fk(0)2

(W̃2 · f̃) t+O(t2). (30)

Eqn. (29) illustrates that the feedback-teacher alignment f̃ plays an important role in speeding up the dynamics. Indeed, if
‖f̃‖22 is close to zero, the feedback update slows down inducing long plateaus in the generalization error. A similar role is
played by the alignment angle between W̃2 and f̃ .
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F. PEPITA’s results compared to the Baselines

Table 2. Test accuracy [%] achieved by BP, FA, DRTP, PEPITA, and PEPITA with weight mirroring in the experiments. Mean and
standard deviation are computed over 10 independent runs. The nonlinearity is ReLU for all algorithms except DRTP, for which is
tanh. WM was used in combination with weight decay with λ = 10−4 for the networks trained on the CIFAR-10 dataset and for the
3-hidden-layer networks trained on the CIFAR-100 dataset. The other networks are trained without weight decay. Bold fonts refer to the
best results exclusively among PEPITA and its improvements.

2 hidden layers 3 hidden layers

MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100

BP 98.85±0.06 59.69±0.25 32.28±0.17 98.89±0.04 60.07±0.28 32.80±0.16
FA 98.64±0.05 57.76±0.39 22.90±0.14 97.48±0.06 52.99±0.21 22.81±0.21
DRTP 95.36±0.09 47.48±0.19 20.55±0.30 95.74±0.10 47.44±0.19 21.81±0.24

PEPITA 98.19±0.07 52.39±0.27 24.88±0.15 95.07±0.11 52.47±0.24 01.00±0.00
PEPITA

+WD 98.09±0.07 53.09±0.33 24.64±0.24 95.09±0.16 52.56±0.31 23.13±0.21

PEPITA
+WM 98.13±0.05 53.44±0.28 26.95±0.24 96.33±0.12 52.80±0.33 23.03±0.28

G. Slowness results
Table 3 shows that the best convergence rate for PEPITA (i.e., small slowness value) is obtained in general by PEPITA
with Weight Mirroring (MNIST, CIFAR-100). Compared to the baselines, PEPITA has a better convergence than all the
algorithms on MNIST, is the slowest on CIFAR-10, and the second best after BP on CIFAR-100. However, these results are
strongly dependent on the chosen learning rate.

Table 3. Convergence rate in terms of slowness value obtained by BP, FA, DRTP and PEPITA in the experiments for the fully connected
models trained on MNIST, CIFAR-10 and CIFAR-100 (same simulations reported in Table 1). PreM refers to pre-mirroring (Sec. 6.1).
The smallest the slowness value, the better the convergence rate. The slowness is computed on the first 60 epochs of the test curve (before
the learning rate decay), averaged over 10 independent runs. All the networks are trained without weight decay. The slowness result of FA
on CIFAR-10 is lower than in (Dellaferrera & Kreiman, 2022) as our grid search returned a higher value for the learning rate. Bold fonts
refer to the best results exclusively among PEPITA and its improvements.

1×1024 FULLY CONNECTED MODELS

MNIST CIFAR-10 CIFAR-100

BP 0.061±0.001 0.421±0.016 1.406±0.053
FA 0.081±0.002 0.463±0.020 4.946±0.123
DRTP 0.059±0.002 0.362±0.021 12.904±0.443

PEPITA 0.052±0.004 0.894±0.071 2.695±0.166
PEPITA+WM 0.047±0.005 0.890±0.081 2.333±0.102
PEPITA+WM+PREM 0.040±0.002 0.856±0.051 1.999±0.059
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H. Hyperparameters

Table 4. 1-hidden-layer network architectures and settings used in the experiments. The nonlinearity is ReLU for all algorithms except
DRTP, for which is tanh.

1 HIDDEN LAYER 1 HIDDEN LAYER - NORMALIZATION

MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100

INPUTSIZE 28×28×1 32×32×3 32×32×3 28×28×1 32×32×3 32×32×3
HIDDEN UNITS 1×1024 1×1024 1×1024 1×1024 1×1024 1×1024
OUTPUT UNITS 10 10 100 10 10 100

η BP 0.1 0.01 0.1 − − −
η FA 0.1 0.01 0.01 − − −
η DRTP 0.01 0.001 0.001 − − −
η PEPITA 0.1 0.01 0.01 100 10 100
λ WEIGHT DECAY 10−5 10−4 10−5 0.0 0.0 0.0
η DECAY RATE ×0.1 ×0.1 ×0.1 ×0.5 ×0.1 ×0.1
DECAY EPOCH 60,90 60,90 60,90 60,90 60,90 60,90
BATCH SIZE 64 64 64 64 64 64
η WM 0.1 0.001 0.1 0.001 0.001 0.001
λ WEIGHT DECAY WM 0.0 0.1 0.5 0.1 0.1 0.1

σ
(0)
F (UNIFORM) 0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN

σ
(0)
F (NORMAL) 0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN

FAN IN 28 · 28 · 1 32 · 32 · 3 32 · 32 · 3 28 · 28 · 1 32 · 32 · 3 32 · 32 · 3
#EPOCHS 100 100 100 100 100 100
DROPOUT 10% 10% 10% 10% 10% 10%

Table 5. 2-, 3-hidden-layer network architectures and settings used in the experiments. The nonlinearity is ReLU for all algorithms except
DRTP, for which is tanh. (*) For the 3-hidden-layer network trained with PEPITA on the MNIST dataset, we did not use learning rate
decay, as indicated by the grid search.

2 HIDDEN LAYERS 3 HIDDEN LAYERS

MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100

INPUTSIZE 28×28×1 32×32×3 32×32×3 28×28×1 32×32×3 32×32×3
HIDDEN UNITS 2×1024 2×1024 2×1024 3×1024 3×1024 3×1024
OUTPUT UNITS 10 10 100 10 10 100

η BP 0.1 0.01 0.1 0.1 0.01 0.1
η FA 0.1 0.01 0.01 0.01 0.001 0.01
η DRTP 0.001 0.001 0.001 0.001 0.001 0.001
η PEPITA 0.1 0.01 0.01 0.001 0.01 0.01
λ WEIGHT DECAY 10−5 10−4 10−5 10−5 10−4 10−4

η DECAY RATE (*) ×0.1 ×0.1 ×0.1 ×0.1 ×0.1 ×0.1
DECAY EPOCH 60,90 60,90 60,90 60,90 60,90 60,90
BATCH SIZE 64 64 64 64 64 64
η WM 0.00001 1.0 1.0 0.1 0.001 0.001
λ WD WM 0.0 0.1 0.1 0.001 0.1 0.1

σ
(0)
F (UNIFORM) 0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN
0.05·2

√
6

FANIN

σ
(0)
F (NORMAL) 0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN
0.05·

√
2

FANIN

FAN IN 28 · 28 · 1 32 · 32 · 3 32 · 32 · 3 28 · 28 · 1 32 · 32 · 3 32 · 32 · 3
#EPOCHS 100 100 100 100 100 100
DROPOUT 10% 10% 10% 10% 10% 10%
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I. Training deeper fully-connected models

a b c

Figure 8. Test accuracy obtained with PEPITA and normalization of the activations for 1- to 5-hidden-layer networks on (a) MNIST, (b)
CIFAR-10, and (c) CIFAR-100. Note that compared to Fig. 3 the trend is decreasing, as here we used activation normalization to obtain
convergence for 4 and 5 hidden layers, which we did not use for Fig. 3.
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J. Additional figures on weight mirroring

Figure 9. Alignment angle between F and Wtot during training with (pink and purple curves) or without (blue curve) WM for the MNIST
(left panel) and CIFAR-100 (right panel) datasets. PreM refers to pre-mirroring (Sec. 6.1). The hyperparameters are reported in Sup. Table
4. The curves are averaged over 10 independent runs.

a b c

Figure 10. Alignment angle between F and Wtot during training with (pink curve) or without (blue curve) WM for the CIFAR-10 dataset
for (a) 1-, (b) 2-, (c) 3-hidden-layer networks. The hyperparameters are reported in Sup. Table 4. The curves are averaged over 10
independent runs.


