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Abstract 29 

The ability to transiently remember what happened where and when is a cornerstone of 30 

cognitive function. Forming and recalling working memories depends on detecting novelty, 31 

building associations to prior knowledge, and dynamically retrieving context-relevant 32 

information. Previous studies have scrutinized the neural machinery for individual components 33 

of recognition or associative memory under laboratory conditions, such as recalling elements 34 

from arbitrary lists of words or pictures. In this study, we implemented a well-known card-35 

matching game that integrates multiple components of memory formation together in a 36 

naturalistic setting to investigate the dynamic neural processes underlying complex natural 37 

human memory. We recorded intracranial field potentials from 1,750 depth or subdural 38 

electrodes implanted in 20 patients with pharmacologically-intractable epilepsy while they were 39 

performing the task. We leveraged generalized linear models to simultaneously assess the 40 

relative contribution of neural responses to distinct task components. Neural activity in the 41 

gamma frequency band signaled novelty and graded degrees of familiarity, represented the 42 

strength and outcome of associative recall, and finally reflected visual feedback on a trial-by-trial 43 

basis. We introduce an attractor-based neural network model that provides a plausible first-order 44 

approximation to capture the behavioral and neurophysiological observations. The large-scale 45 

data and models enable dissociating and at the same time dynamically tracing the different 46 

cognitive components during fast, complex, and natural human memory behaviors. 47 

 48 

 49 

 50 

  51 



 52 

Introduction  53 

Working memory serves as a fundamental component of our cognitive abilities, enabling 54 

us to store and retrieve immediate information. In stark contrast to most efforts in current 55 

artificial intelligence algorithms, the transient storage of memories occurs in a largely 56 

unsupervised fashion, with single or limited exposure. The formation and recall of memories 57 

require assessing novelty versus familiarity, building bridges between sensory inputs and prior 58 

knowledge, connecting spatial and temporal cues and effectively retrieving information in the 59 

context of current task demands. While substantial literature exists on neural responses in 60 

laboratory-based tasks for separate components of working memory, our understanding of how 61 

these components are integrated and coordinated in real-life tasks remains limited.  62 

Non-associative recognition memory refers to the ability to judge the prior occurrence of 63 

a stimulus. Judging whether an item is novel or not is necessary for its successful memory 64 

encoding1, and recognizing an item as familiar facilitates memory retrieval2. Several studies have 65 

documented correlates of recognition memory for novelty versus familiarity, primarily but not 66 

exclusively, in medial temporal lobe (MTL) structures in rodents, monkeys, and humans3-14. Many 67 

studies have focused on tasks that involve presenting a list of items, such as words, pictures, or 68 

video clips, and either recalling items from these lists or assessing recognition memory for those 69 

items (e.g.,6,8-12,15-20). Both novel and familiar items need to be incorporated into the body of prior 70 

knowledge by forming novel associations. Associative memory refers to the ability to link items 71 

or evaluate the correctness of such associations (e.g.,21-30). Associative memory has been 72 

commonly investigated by having participants learn pairs of items and recalling one of the two 73 

items given the other or assessing whether a given association is correct or not.  74 

Although recognition memory and associative memory have been largely studied 75 

separately, they are not independent in real-world memory tasks. The successful implementation 76 

of associative memory is contingent on basic recognition processes. To understand the 77 

connections and dissociations between different components of memory formation during 78 

natural and complex behavior, here we recorded intracranial field potentials from 20 patients 79 

with pharmacologically intractable epilepsy while they played a classical card matching game, 80 



colloquially known as the "Memory" game (Figure 1, Movie S1). We focused on the neural activity 81 

in the gamma frequency band (30-150 Hz)31-35. Participants thrived in the task, demonstrating 82 

dependence on the task memory demands and temporal recency effects. Using generalized 83 

linear models, we characterized how neural responses are modulated by the different behavioral 84 

components involved in the task. Our results demonstrate that neural circuits can represent 85 

novelty and familiarity independently of the sensory content, along with the strength and 86 

outcome of associative recall on a trial-by-trial basis.  87 

To better understand the mechanisms underlying memory formation and retrieval, we 88 

turn to computational models36. Models rooted in persistent neuronal activity37-45 provide 89 

important insights into working memory's neural basis. Recent perspectives, including those 90 

involving attractor networks46-52, have also highlighted the significance of Hebbian synaptic 91 

plasticity and short-term depression and facilitation as means to enhance memory encoding53-57. 92 

As a proof-of-principle, we introduce a simple attractor-based neural network model that 93 

provides a first-order approximation to describe the behavioral and neurophysiological 94 

observations.  95 

   96 

Results  97 

 98 

 We recorded intracranial field potentials (IFPs) from 20 patients with pharmacologically 99 

intractable epilepsy implanted with depth electrodes (Table S1, one participant also had subdural 100 

surface electrodes). Participants played a memory-matching game (Figure 1, Movie S1, Methods). 101 

Each trial consisted of two self-paced clicks. Clicking on a tile revealed an image (Figure 1A). 102 

Image categories included person, animal, food, vehicle, and indoor scenes. If the two tiles in a 103 

trial contained the same image (match, Figure 1B), the two tiles turned green and could not be 104 

clicked again for the remainder of the block. If the two images were different (mismatch, Figure 105 

1A and 1C), the two tiles turned black and could be clicked again. Participants started in a 3×3 106 

tile board block like the one shown in Figure 1 and progressed to more difficult blocks (4×4, 5×5, 107 

6×6, or 7×7 tiles). All tiles had a corresponding match, except for one tile in the boards with an 108 

odd number of tiles (3×3, 5×5, and 7×7). 109 



 110 

Mismatch trials showed longer reaction times and were associated with less frequent and less 111 

recent exposure to matching pairs  112 

  113 

The average number of clicks per tile increased with difficulty (board size), as expected 114 

(Figure 2A). All participants performed much better than a memoryless model (random clicking, 115 

p<0.001, here and in subsequent tests unless stated otherwise: permutation test, 5,000 iterations, 116 

one-tailed) and performed worse than a model assuming perfect memory (p<0.001, Figure 2A). 117 

The reaction time (RT) was defined as the time interval between the first and second clicks within 118 

a trial (Figure 1A). The reaction time was longer for mismatch than match trials for all board sizes 119 

(p<0.007, Figure 2B).  120 

For a tile in a given trial, we defined n-since-last-click (nslc) as the number of clicks elapsed 121 

since the last time the same tile was clicked (Figure 1A-B). As expected, nslc increased with board 122 

size (p<0.001, linear regression, F-test, Figure 2C-D). For the 2nd tile, nslc was larger in mismatch 123 

compared to match trials for all board sizes except the 3×3 case (p<0.001, Figure 2D), a reflection 124 

of the decay in memory for tiles that were not seen recently. The larger nslc in mismatch trials 125 

also held for the 1st tile only for the 7×7 board size (p<0.001, Figure 2C). If the participants believe 126 

that they know the locations of both tiles in a matching pair, a reasonable strategy is to click first 127 

the tile they are less sure about, likely because they have seen this tile earlier rather than later in 128 

the block. This strategy accounts for the differences between the 1st tile (Figure 2C) and 2nd tile 129 

(Figure 2D). 130 

For a tile in a given trial, we defined n-since-pair (nsp) as the number of clicks since the 131 

last time when its matching pair was seen (Figure 1A, C). As expected, nsp increased with board 132 

size given the increased difficulty (p<0.001, linear regression, F-test, Figure 2E-2F). Additionally, 133 

the more recent the tile's matching pair was seen, the more likely the trial was a match. Thus, 134 

nsp was larger in mismatch compared to match trials in all cases except the 3x3 board size for 135 

the 1st tile (p<0.001, Figure 2E). For the 2nd tile, nsp for any match trial was always one because 136 

the matching pair would have been revealed in the previous click, by definition. Thus, there was 137 

a large difference between nsp between match and mismatch trials (p<0.001, Figure 2F).   138 



We performed infrared eye-tracking on ten healthy participants while they performed the 139 

same task. Participants fixated on the tile they clicked, both for the first and second tiles, and 140 

both for match and mismatch trials (Figure S1). For the first tile, there was no difference in the 141 

dynamics of saccades towards and away from the target tile between match and mismatch trials 142 

(Figure S1A) after equalizing the RT and the distances between the 1st and the 2nd tiles. For the 143 

second tile, there was no difference in the dynamics of saccades toward the target tile before the 144 

click. However, within the 1 second window after the 2nd click, the distance to the center of the 145 

tile was, on average, 1.76 dva (degrees of visual angle) larger for match than mismatch trials 146 

(Figure S1B). This small difference may be attributed to participants' lingering slightly longer 147 

during mismatch trials, arguably in an effort to remember the tile.   148 

 149 

Neural signals reflect novelty and familiarity  150 

 151 

We recorded intracranial field potentials from 1,750 electrodes (Table S2). We excluded 152 

582 electrodes due to bipolar referencing, locations in pathological sites, or signals containing 153 

artifacts (Methods). We included in the analyses 676 bipolarly referenced electrodes in the gray 154 

matter (Figure S2) and 492 in the white matter (Figure S3). Table S2 describes electrode locations 155 

separated by brain region and hemisphere. Although the white matter is presumed to contain 156 

mostly myelinated axons, previous studies have shown that intracranial field potential signals 157 

from the white matter can demonstrate biologically meaningful information58,59. Such signals 158 

could reflect small errors in electrode localization on the order of ~2 millimeters and also the 159 

spread of intracranial field potential signals over 1 to 5 millimeters32,33,60-62, implying that white 160 

matter electrodes may still capture activity from gray matter. Indeed, we show here that 161 

electrodes in the white matter reveal task-relevant properties and therefore included electrodes 162 

in the white matter in our analyses. To avoid confusion about the origin of the signals, we focused 163 

on the gray matter electrodes in the main text and reported results from electrodes in the white 164 

matter in the Supplementary Material. None of the conclusions in this study would change if we 165 

were to report the results from electrodes in the gray matter exclusively.  166 



We built two generalized linear models (GLM) to characterize how the neural responses 167 

depended on the cognitive demands of each trial. The first model focused on the neural 168 

responses to the 1st tile, and the second model on the 2nd tile. In both cases, we focused on 169 

predicting the area under the curve (AUC) of the gamma band power (30-150 Hz) in each trial 170 

(Methods). For the first GLM, the time window started when the 1st tile was clicked and ended 171 

at a time corresponding to the 90th percentile of the distribution of reaction times (time 172 

difference between the 1st and the 2nd clicks, Figure 1A). This criterion was a reasonable tradeoff 173 

between minimizing overlap with responses after the 2nd tile and maximally capturing 174 

information before the 2nd tile. For the second model, the time window started with the 2nd click 175 

and ended one second afterward.  176 

We considered 15 predictors for the GLM models, including whether a trial was a match 177 

or not, reaction time, n-since-last-click (nslc), and n-since-pair (nsp), the variables introduced in 178 

Figures 1-2. We also included additional predictors: first-click (whether a tile was clicked for the 179 

first time), n-times-seen (number of times an image had been seen), next-match (whether the 180 

subsequent trial was a match), board size, x and y position of the clicked tile within the board, 181 

distance between the first and the second tiles, and whether the image contained a person, 182 

animal, food, or vehicle. Table 1 lists all the predictors and their definitions. Since several 183 

predictors were correlated with each other (Figure S4A-B), we computed the variance inflation 184 

factor (VIF)63, a metric commonly used to account for correlations between predictors in 185 

generalized linear models. The VIF of each predictor was smaller than 3 for all participants (Figure 186 

S4C-D). Therefore, the correlations between predictors did not harm the performance of the 187 

models (Methods).  188 

When the first tile in a trial was clicked, its status in memory guided the following actions. 189 

If it was a new image, the participant needed to encode it in memory for future retrieval. Thus, 190 

the ability to detect novelty is the first step for successful encoding. The predictor first-click 191 

described novelty and had a value of 1 whenever a tile was seen for the first time and 0 otherwise. 192 

If a tile had been viewed before, it would appear familiar to the participant, and the degree of 193 

familiarity depended on how long ago that tile had been seen last. The predictor n-since-last-click 194 

(Figure 1A-B, Figure 2C-D) captures the notion of familiarity; the smaller the nslc value, the more 195 



familiar the tile is because that same tile was seen more recently and there were fewer 196 

competing stimuli encountered in between.  197 

Figure 3A-D shows the neural activity of an electrode located in the right lateral 198 

orbitofrontal cortex (arrow in Figure 3D), whose responses to the first tile correlated with novelty. 199 

The GLM analysis indicated that first-click was a significant predictor of the neural responses 200 

(Figure 3A). The neural responses to the first tile showed a decrease in activity for novel tiles 201 

compared to tiles that had been seen before (Figure 3B), which could also be readily seen in 202 

individual trials (Figure 3C). This decrease in activity is reflected by the negative sign in the GLM 203 

first-click predictor (Figure 3A). 204 

Novelty was a significant predictor of the neural responses after the first tile (p<0.01, GLM) 205 

for 50 electrodes in the gray matter (7.4% of the total, Table S3A, Figure 3D) and 33 electrodes 206 

in the white matter (6.7% of the total, Table S3B). The lateral orbitofrontal (LOF) cortex and pars 207 

opercularis contained significantly more electrodes than expected by chance (p<0.01, Methods).  208 

Figure 3E-H shows the neural activity of an electrode located in the left pars opercularis 209 

(arrow in Figure 3H), whose responses to the first tile correlated with familiarity. The GLM 210 

analysis indicated that both n-since-last-click (nslc) and first-click were significant predictors of 211 

the neural responses (p<0.001, GLM, Figure 3E). Novel tiles (completely unfamiliar tiles, Figure 212 

3F, blue) elicited strong responses, followed by less familiar tiles (higher nslc, Figure 3F, yellow). 213 

Familiar tiles (nslc=1, i.e., tiles that had just been seen in the preceding trial) elicited almost no 214 

response (Figure 3F, red). The strong correlation between the neural responses, novelty, and 215 

familiarity can also be readily appreciated in individual trials (Figure 3G).  216 

The reaction time was also a significant predictor for the neural responses recorded from 217 

this electrode (Figure 3E). However, the differences in neural responses signaling novelty and 218 

distinct degrees of familiarity cannot be explained by differences in reaction time. The differences 219 

in neural responses associated with novelty and familiarity persisted after reaction time 220 

equalization (see vertical dashed lines indicating equalized RT in Figure 3F).  221 

The nslc predictor was statistically significant (p<0.01, GLM) in 45 gray matter electrodes 222 

(6.7% of the total, Table S4A, Figure 3H) and 32 white matter electrodes (6.5%, Table S4B, Figure 223 

S5D). Figure S5 shows an example electrode located in the white matter whose responses 224 



correlated with novelty and familiarity. The majority of electrodes (82.2%) showed a positive 225 

correlation between the neural responses and nslc as illustrated in Figure 3E-G. The remaining 226 

electrodes (17.8%) showed a negative correlation, i.e., stronger neural responses for more 227 

familiar items. Figure S6 depicts an example electrode located in the right pars opercularis 228 

showing a negative correlation between familiarity and neural responses.  229 

Both the electrode in Figure 3E-H and the one in Figure S6 revealed first-click as a 230 

significant predictor in addition to nslc, meaning that their responses not only reflected the 231 

familiarity gradient but also represented novelty. The electrodes that showed both first-click and 232 

n-since-last-click as significant predictors (20 electrodes) are denoted by red circles in Figure 3D 233 

and Figure 3H. Among these 20 electrodes, the signs of the t-statistic for the first-click and n-234 

since-last-click predictors were consistent for 18 electrodes (16 positive and 2 negative). Only 235 

two electrodes exhibited opposite signs. These results indicate that novelty largely resembles 236 

extremely low familiarity in terms of the underlying neural responses.  237 

 238 

Neural signals show anticipation of the trial’s outcome 239 

 240 

After seeing the 1st tile, participants attempt to find the tile's pair. If the 1st tile's pair was 241 

never encountered before, this is a random choice among the unseen tiles. If the tile's pair is 242 

unfamiliar, recalling a match is error-prone and often leads to mismatches (Figure 2E). For highly 243 

familiar cases, participants can retrieve the correct location to find the match tile. Therefore, we 244 

asked whether the neural responses after exposure to the first tile and before seeing the 2nd tile 245 

could predict successful retrieval.   246 

Figure 4 shows the neural activity of an electrode located in the right lateral orbitofrontal 247 

cortex (arrow in Figure 4E), whose responses were predictive of successful retrieval. The GLM 248 

analysis indicated that match was a significant predictor of the neural responses (p<0.001, Figure 249 

4A). This electrode showed stronger responses during match trials (Figure 4B, green) than during 250 

mismatch trials (Figure 4B, black). These differences can even be appreciated in single trials 251 

(compare Figure 4C versus Figure 4D). Of note, these differences are evident shortly after 252 

visualization of the first tile, with a peak at 500 ms after clicking the first tile, well before clicking 253 



the second tile, when the participant did not know for certain yet whether the trial would be a 254 

match or not. Thus, the strong neural differences between match and mismatch trials reflect the 255 

participant's internal retrieval of the correct pairs' locations.  256 

Whether a trial was a match or not was a significant predictor of the neural responses for 257 

32 electrodes in the gray matter (4.7% of the total, Table S5A, Figure 4E) and 30 electrodes in 258 

the white matter (6% of the total, Table S5B, Figure S7). For an example electrode in the white 259 

matter see Figure S7. In most cases (91%), neural activity was higher during match trials than 260 

during mismatch trials, as illustrated in Figure 4. The locations of all these electrodes, shown in 261 

Figure 4E (gray matter) and Figure S7 (white matter), reveal that the majority were located in the 262 

lateral orbitofrontal (LOF) cortex, the medial temporal lobe, and the insula. The LOF cortex 263 

contained significantly more electrodes than expected by chance (p<0.01, Methods).  264 

The peak in neural activity occurred at approximately 500 ms after the 1st click (Figure 4B). 265 

As discussed in the previous section, the match predictor correlated with several other predictors 266 

(Figure S4). However, the GLM analysis shows that the match's presence, but not other 267 

predictors, accounts for the neural responses (Figure 4A). To further establish this point, Figure 268 

S8A shows the responses of this same electrode, in the same format as Figure 4B, after equalizing 269 

the n-since-last-click (nslc) distributions for match and mismatch trials by subsampling the data. 270 

The same conclusions hold in this case. Furthermore, Figure S8B shows each match trial's gamma 271 

power AUC versus the value of n-since-last-click and Figure S8C displays the same data from 272 

mismatch trials. The variable nslc did not account for the neural responses in either case (p>0.18, 273 

linear regression). Similar conclusions hold for the other predictors.  274 

Figure S9 shows another example electrode located in the left middle temporal gyrus 275 

where the match was a significant predictor for the gamma band activity between the 1st and 2nd 276 

tiles. Similar to the LOF electrode in Figure 4, the gamma power during match trials was higher 277 

than during mismatch trials. However, the pattern of modulation in this electrode was sustained 278 

rather than transient (compare Figure S9 versus Figure 4B-D). The change in gamma power was 279 

also evident in individual trials (Figure S9B-C). These observations suggest that the middle 280 

temporal and lateral orbitofrontal regions might be functionally distinct during memory retrieval.  281 



In sum, these results indicate that even before the actual realization of whether a trial was a 282 

match or mismatch (i.e., before the onset of the 2nd tile), there were distinct neural responses 283 

that were predictive of the trial's outcome.  284 

 285 

Neural signals reflect the strength of memory retrieval 286 

 287 

In addition to reflecting the outcome of a given trial (match versus mismatch), we 288 

considered the n-since-pair (nsp) predictor as a proxy for the degree of confidence or strength of 289 

memory retrieval. The smaller the nsp, the more recently the tile's pair had been seen (Figure 290 

2E-F). This predictor is different from n-since-last-click, which indicates how recently the same 291 

tile, rather than its pair, had been seen (Figure 1). We considered only match trials for this 292 

predictor (n-since-pair*match) because there was no successful retrieval of the tile's pair in 293 

mismatch trials.  294 

Figure 5 shows an example electrode in the left middle temporal gyrus (arrow in Figure 295 

5E). In contrast with the electrode in Figure 4, both the match predictor and the nsp predictor 296 

were significant in the GLM analysis (Figure 5A). The t-statistic for nsp was negative, indicating a 297 

decrease in gamma band power for matching pairs that were more distant in memory. Indeed, 298 

responses were strongest for those tiles whose pairs had been seen less than 2 clicks ago (Figure 299 

5B, red) and weakest when matching pairs had been seen more than 10 clicks ago (Figure 5B, 300 

purple). There was a negative correlation between the area under the curve (AUC) of the gamma 301 

band power and nsp (Figure 5C, p<0.001, linear regression). This correlation disappeared when 302 

considering mismatch trials (Figure 5D, p=0.66, linear regression), suggesting that the 303 

relationship between the neural signals and memory strength was contingent on successful 304 

retrieval.  305 

The nsp predictor was statistically significant (p<0.01, GLM) in 15 electrodes in the gray 306 

matter (2.2% of the total, Table S6A, Figure 5E) and 9 electrodes in the white matter (1.8% of the 307 

total, Table S6B, Figure S10E). For an example electrode located in the white matter, see Figure 308 

S10. Most of these electrodes showed a negative t-statistic, as in the example in Figure 5, and 309 

three electrodes (20%) showed the reverse effect (i.e., an increase in the neural signal for more 310 



distant associative memories). For most of these electrodes (73.3%), match was also a significant 311 

predictor, as illustrated by the example in Figure 5A, indicating that the neural signals encoded 312 

both successful retrieval and memory strength.  313 

 314 

Neural signals reflect feedback after the second tile 315 

 316 

 We have thus far focused on describing the responses elicited by the first tile in each trial. 317 

Next, we evaluated the neural responses triggered by the click of the second tile. We first asked 318 

whether novelty and familiarity were also encoded in the neural responses after the 2nd tile. We 319 

built a separate GLM using the same 15 predictors except for n-since-pair*match (Table 1) to 320 

describe the AUC of the gamma power during one second after clicking the 2nd tile. We excluded 321 

n-since-pair*match here because it would always be 1 during match trials (by definition, the first 322 

click was the pair of the second click). For the second tile, first-click was a significant predictor in 323 

24 electrodes in the gray matter (3.6% of the total, Table S7A, Figure S11E) and 12 in the white 324 

matter (2.4% of the total, Table S7B). Thus, less than half the number of electrodes reflected 325 

novelty during the 2nd tile compared to the first tile (cf. Table S7A versus Table S3A and Table 326 

S7B versus Table S3B). For the second tile, n-since-last-click was a significant predictor in 9 327 

electrodes in the gray matter (1.3% of the total, Table S8A, Figure S11D) and 24 in the white 328 

matter (4.9% of the total, Table S8B), again, less than half the number of electrodes reflecting 329 

familiarity during the first tile (cf. Table S8A versus Table S4A and Table S8B versus Table S4B).  330 

An example electrode in the LOF region whose responses correlated with familiarity after 331 

the 2nd tile is shown in Figure S11. The LOF cortex contained significantly more electrodes than 332 

expected by chance (p<0.01, Methods). Among all the 9 electrodes where n-since-last-click was 333 

a significant predictor during the 2nd tile, 7 electrodes also had first-click as a significant predictor 334 

(Figure S11D-E, red circles). In sum, novelty and familiarity of a tile were still encoded in the 335 

neural responses to the second tile, but to a lesser degree than during the responses to the first 336 

tile. This reduction may be due to the fact that two images were presented simultaneously, and 337 

the neural signals might reflect a weighted combination of the responses to each64. Moreover, 338 



for match trials, the information about the 2nd tile does not need to be encoded in memory 339 

anymore to thrive in the task.  340 

Among the 83 electrodes that had first-click as a significant predictor during the 1st tile 341 

and the 36 electrodes during the 2nd tile (including both gray and white matter), 15 electrodes 342 

(11 gray matter + 4 white matter) overlapped, i.e., first-click was a significant predictor during 343 

both the 1st and the 2nd tiles. Among the 77 electrodes that had n-since-last-click as a significant 344 

predictor during the 1st tile and the 33 electrodes during the 2nd tile (including both gray and 345 

white matter), 20 electrodes (5 gray matter + 15 white matter) overlapped, i.e., nslc was a 346 

significant predictor during both the 1st and the 2nd tiles. These electrodes may reflect general 347 

rather than specific novelty or familiarity mechanisms, irrespective of tile order, image content, 348 

or location.  349 

Next, we asked whether the differences between match and mismatch trials were also 350 

manifested after the 2nd tile was revealed, i.e., after the participant became explicitly aware of 351 

whether the trial was a match or not. Figure 6 shows an example electrode located in the left 352 

insula (see arrow in Figure 6E) where match was a significant predictor for the neural responses 353 

after the 2nd tile (p<0.001, GLM, Figure 6A). The neural signals during match trials were larger 354 

than during mismatch trials (Figure 6B) and could be readily observed even in single trials (Figure 355 

6C vs. 7D).  356 

After the 2nd tile, the match predictor was statistically significant (p<0.01, GLM) for 112 357 

electrodes in the gray matter (16.6% of the total, Table S9A, Figure 6E) and 66 electrodes in the 358 

white matter (13.4% of the total, Table S9B, Figure S12E). For an example electrode in the white 359 

matter, see Figure S12. The locations of all these electrodes, shown in Figure 6E (gray matter) 360 

and Figure S12E (white matter), reveal that the majority were circumscribed to the LOF and the 361 

insula. The proportions of significant electrodes in both regions were higher than expected by 362 

chance (p<0.01, Methods). 363 

There were 17 electrodes in the gray matter and 15 in the white matter where the match 364 

predictor was significant for both the 1st and the 2nd tiles. These electrodes represented 53.1% 365 

(gray matter) and 50% (white matter) of the electrodes that were significant according to the 1st 366 

tile, and 15.2% (gray matter) and 22.8% (white matter) of the electrodes that were significant 367 



according to the 2nd tile. These electrodes were located in the lateral orbitofrontal cortex, the 368 

medial temporal lobe, and the insula (Figure 4E, S6E, 7E, and S11E, red circles). The electrode in 369 

Figure S12 exemplifies such responses (compare the difference between match and mismatch 370 

before the onset of the 2nd tile in Figure S12B versus Figure 6A). The electrode in Figure S9 reveals 371 

a continuous enhancement for match trials after the 1st tile that was sustained and continued 372 

after the onset of the 2nd tile. 373 

 374 

A machine learning classifier could predict matches in single trials 375 

 376 

We evaluated whether the neural responses within a brain region could predict if a trial 377 

was a match or a mismatch (Methods). For this analysis, we considered only those brain regions 378 

with more than 12 electrodes combining all participants (Methods). Figure 7 shows the average 379 

decoding performance of an SVM classifier after 200 iterations of 5-fold cross-validation. At each 380 

iteration, the SVM consisted of a binary classifier (match versus mismatch). The predictors were 381 

the PCA features extracted from the concatenated neural responses of electrodes within a 382 

particular brain region. The superior parietal gyrus and insula exhibited decoding accuracy above 383 

chance (p<0.01, Methods) during the 1st tile (Figure 7A). The lateral orbitofrontal and middle 384 

temporal cortex also showed accuracy above chance (>60%, Figure 7A), albeit not statistically 385 

significant. As expected based on the responses of individual electrodes, the decoding accuracy 386 

was higher after the 2nd tile compared to the 1st tile. After the 2nd tile, multiple brain regions 387 

showed accuracy above chance (p<0.01, Figure 7B). The lateral orbitofrontal cortex, insula, 388 

middle temporal gyrus, and pars opercularis showed the highest accuracy (>75%). Similar results 389 

were obtained when subsampling 12 electrodes during each iteration (Figure S13).  390 

 391 

A computational model provides a first-order approximation to the behavioral and neural 392 

measurements 393 

To further understand the mechanisms at play during the task, we built a computational 394 

model that focused on the storage and retrieval of information (Figure 8, Methods). The 395 

computational model consists of a Hebbian attractor neural network with all-to-all connectivity. 396 



The units are divided into position units (the number equaling the number of tiles on the board) 397 

and label units (the number equaling the number of images on the board) (Figure 8A). The model 398 

has two main modes of operation: learning (Figure 8B), and inference (Figure 8C-D). After the 399 

first click, the model receives as input the label of the tile and its position. The activity of each 400 

unit evolves over time based on the external input and the weighted input from other units 401 

followed by a rectifying non-linearity and normalization (Methods, Equation 1). Concomitantly, 402 

the weights are updated in a Hebbian manner (Methods, Equation 2). During inference, the 403 

model selects the position unit with the maximum activation for the second click. The model 404 

proceeds in this manner until all matches have been found.  405 

We computed the same performance evaluators from Figure 2A,B,D,F for the model. We 406 

did not compute the metrics for Figure 2C,E because the model chooses the first tile randomly 407 

among the available tiles (Methods). We defined the reaction time as the number of steps 408 

needed for the selected unit to reach 0.9 of its maximum value (Methods). The number of clicks 409 

per tile increased with the board size, approximating the participants’ behavior (compare Figure 410 

9A versus Figure 2A). The reaction time for the model was longer for mismatch trials than for 411 

match trials for all board sizes (p<0.001, compare Figure 9B versus Figure 2B). The nslc value 412 

increased with board size and was much larger for mismatch trials compared to match trials, 413 

consistent with the participants’ behavior (p<0.001, compare Figure 9C versus Figure 2D). 414 

Similarly, the nsp value increased with board size and was also significantly larger in mismatch 415 

trials compared to match trials for all board sizes (p<0.001, compare Figure 9D versus Figure 2F). 416 

 To investigate the model’s inner workings, we defined two metrics based on the unit 417 

activations. First, to compare with the match related signals in Figure 3, we computed an overall 418 

maximum energy (Methods, Equation 3). This maximum energy was smaller for trials with nslc=1 419 

(p<0.001, Figure 9E), reflecting a strong correlate of memory for recently seen tiles (compare to 420 

Figure 3B and especially Figure 3F). Second, we defined a confidence metric by assessing the 421 

relative activation for the strongest unit with respect to the other units during the inference step 422 

(Methods). The confidence metric was significantly larger for match trials compared to non-423 

match trials (p<0.01, Figure 9F), which was qualitatively similar to the neural responses described 424 

in Figure 5. 425 



 426 

Discussion  427 

 428 

 In this study, we investigated the dynamics of neural signals during a natural memory task 429 

where participants engaged in a classical card-matching game. Participants performed the task 430 

well, slightly worse than expected by a perfect memory model (Figure 2A), showing increased 431 

reaction times during mismatch trials (Figure 2B) as well as decay of memory traces with time 432 

since encoding (Figure 2C-F).  433 

 Many studies have focused on studying memory for a list of sequentially presented stimuli 434 
1,7,12,19,24,65,66 or examined memory in naturalistic or real-world scenarios at the behavioral level 435 
67-71. The task introduced here strikes a balance between these two approaches, presenting a 436 

more realistic and complex setting that involves associative and non-associative memories within 437 

the same task and introducing task-dependent complexity compared to word lists. Yet, our task 438 

allows for a high level of control over stimulus timing and experimental parameters that are 439 

difficult to achieve when studying memory in real-world scenarios.  440 

Complex and natural tasks necessarily depend on the interplay of multiple intercorrelated 441 

variables. To tame the complexity of these different variables, we used generalized linear models 442 

(GLMs) to quantitatively assess the influence of distinct predictors on the neural responses. 443 

Through these GLM analyses, we could characterize neurophysiological responses that were 444 

largely governed by individual predictors after accounting for the correlations among predictors 445 

(Figure S4). While focusing on any one predictor, these results were corroborated by subsampling 446 

the data to equalize other predictor variables that could potentially affect the neural responses.  447 

The extensive sampling of brain regions, including neural activity from more than 1,000 448 

electrodes across 20 participants (Figure S2-S3), allowed us to track neural responses during each 449 

of the steps required in the task with broad brain coverage.  450 

The first step to encode tile information is to correctly determine whether a tile is novel 451 

or not. We refer to the ability to detect novelty and familiarity as non-associative recognition 452 

memory16,24. Assessment of novelty and familiarity orchestrate strategies of encoding and 453 

maintenance of information in memory1,72. We found strong neural responses that signal novelty 454 



and familiarity (Figure 3, Figure S5-6, S10-11, Table S3, S4, S7 and S8). Several electrodes 455 

responded both to novelty and familiarity, showing similar responses to novel and highly 456 

unfamiliar items (Figure 3F-G and Figure S5B-C). The lateral orbitofrontal cortex, the pars 457 

opercularis, and the medial temporal lobe contained a preponderance of electrodes signaling 458 

novelty and familiarity. These responses are reminiscent of novelty and familiarity signals that 459 

have typically been described in tasks involving a sequence of images presented with occasional 460 

repetitions6,16,18,66 but are not restricted to the medial temporal lobe. While some electrodes may 461 

also encode information about the image content (Figure 3E), most of the electrodes signaling 462 

novelty and familiarity were not content-specific, consistent with the observation that neurons 463 

involved in memory formation are rarely sharply tuned to particular sensory features28. 464 

After seeing the first tile in a trial, participants could estimate whether they remembered 465 

the location of its pair and, thus, whether they would get a match or not. Participants link the 466 

first tile with its pair to internally predict where to click next. Indeed, neural responses strongly 467 

reflected not only these predictions (Figure 4, Figures S7-9) but also the internal estimate of the 468 

memory strength or the confidence of these predictions (Figure 5). Even though participants 469 

could not know for sure yet whether the trial would be a match or not, the neural signals 470 

exhibited large differences between match and mismatch trials after the first tile and before the 471 

revelation of the second tile. These differences were either transient (Figure 4) or sustained 472 

(Figure S9). We speculate that transient increases in activity during match trials might signal the 473 

sudden realization and high confidence about the trial outcome (match or mismatch). In contrast, 474 

sustained responses may correspond to the active retrieval processes. It is possible that sustained 475 

activity could arise due to averaging across temporally shifted transient activities from individual 476 

neurons73; however, it has been reported that single neurons in the hippocampus can also show 477 

sustained firing rate increase for successful associative retrieval74. Extensive work has 478 

documented the importance of the hippocampus and surrounding structures in the MTL in 479 

associative memory (e.g.,16,26,74,75). In addition to the MTL, the current results show that other 480 

areas, such as the lateral orbitofrontal cortex, also play a critical role in associative recall.  481 

Several studies have highlighted the potential for attractor-based models to characterize 482 

working memory processes47,49,76,77. Here we show as a proof-of-principle that a simple 483 



instantiation of an attractor-based neural network model can qualitatively capture the properties 484 

of human participants both at the behavioral level (Figure 9A-D) and also at the neural level 485 

(Figure 9E-F). This basic neural network architecture can be readily linked to a visual neural 486 

network backbone to further examine the underlying representation of visual signals in working 487 

memory. Additionally, the model could be extended to examine even more complex tasks that 488 

involve multiple-way associations and dynamic changes in the structure of the environment over 489 

time. The high temporal resolution, extensive spatial sampling, and computational models 490 

provide an opportunity to characterize the dynamics of complex naturalistic tasks. These 491 

observations provide initial steps to further our understanding of how different components of 492 

encoding and retrieval interact during the formation of natural memory events. 493 

 494 

Methods  495 

 496 

Task paradigm  497 

 Participants performed our implementation of the classical memory matching game 498 

(Figure 1, Movie S1). The game involves remembering the location and content of a set of tiles 499 

to find all the matching pairs. A square board containing n × n tiles was shown throughout each 500 

block. In the beginning, all tiles were shown in black. In each trial, participants chose one tile, and 501 

then a second tile, by clicking on them in a self-paced fashion. Upon clicking, the tile revealed a 502 

common object like a cat or an indoor scene like a kitchen. At the end of each trial, either the 503 

two tiles revealed the same content (match) or not (mismatch). If the tiles matched, then the two 504 

tiles turned green 1,000 ms after the second click, and the two tiles could not be clicked again for 505 

the remainder of the block. If the tiles did not match, they turned black 1,000 ms after the second 506 

click and could be clicked again in subsequent trials. When all tiles turned green, i.e., all matches 507 

were found, the block ended, and another block began. During each block, the map between 508 

positions and objects was fixed. The game always started with a block of size 3×3 and progressed 509 

to more difficult blocks (4×4, 5×5, 6×6, and finally 7×7). Blocks with an odd number of tiles (3×3, 510 

5×5, and 7×7) contained one distractor object (a human face) with no corresponding pair. For 511 

each block except the 3×3 board, there was a limit for the total time elapsed (2 minutes for 4×4, 512 



3.3 min for 5×5, 4.8 min for 6×6, and 8.2 min for 7x7). If a participant did not complete a block 513 

within the time limit, the block ended, and a new, easier block started by reducing the board size 514 

n by 1, except when n=7, where it was reduced by 2. Conversely, when participants successfully 515 

completed a block with a board of size n within the allotted time limit, they moved on to a more 516 

difficult block by increasing n by 1. When participants completed an n=7 block, they performed 517 

further n=7 blocks. There was no image repetition across blocks.    518 

All the images were from the Microsoft COCO 2017 validation dataset 78 and were 519 

rendered in grayscale and square shape. We included a balanced number of pictures from 5 520 

categories: person, animal, food, vehicle, and indoor scenes. All the images were rendered on a 521 

13-inch Apple MacBook Pro laptop. The size of each tile was 0.75×0.75 inches (approximately 2x2 522 

degrees of visual angle, dva) and the separation between two adjacent tiles was 0.125 inch (0.33 523 

dva) for board size n=7 and 0.25 inch (0.67 dva) for the others. The game implementation was 524 

written and presented using the Psychtoolbox extension 79,80 in Matlab_2016b  (Mathworks, 525 

Natick, MA).  526 

 527 

Epilepsy participants and recording procedures  528 

 We recorded intracranial field potentials from 20 patients with pharmacologically 529 

intractable epilepsy (12-52 years old, 9 female, Table S1) undergoing monitoring at Boston 530 

Children's Hospital (Boston, US), Brigham and Women's Hospital (Boston, US), and Xuanwu 531 

Hospital (Beijing, China). All recording sessions were seizure-free. All patients had normal or 532 

corrected-to-normal vision. The study protocol was approved by each hospital's institutional 533 

review board. Experiments were run under patients' or their legal guardians' informed consent. 534 

One patient at Brigham and Women's Hospital (BWH) was implanted with both stereo 535 

encephalography (sEEG) and electrocorticography (ECoG) electrodes, while all other patients had 536 

only sEEG electrodes (Ad-tech, USA; ALCIS, France). Intracranial field potentials were recorded 537 

with Natus (Pleasanton, CA) and Micromed (Italy). The sampling rate was 2048 Hz at Boston 538 

Children's Hospital (BCH), 512 Hz or 1024 Hz at BWH, and 512 Hz at Xuanwu Hospital (XWH). 539 

Electrode trajectories were determined based on clinical purposes for precisely localizing 540 

suspected epileptogenic foci and surgically treating epilepsy81.  541 



 542 

Eye tracking procedures  543 

 Ten non-epilepsy healthy participants (23-35 years old, 9 female) performed the same 544 

task while their eye movements were tracked with the EyeLink 1000 plus system (SR Research, 545 

Canada) at a sampling rate of 500 Hz. The task paradigm was the same as the one for epilepsy 546 

participants except that, before each block began, participants fixated on a center cross to ensure 547 

that the EyeLink eye-tracking system was well-calibrated. Otherwise, a re-calibration session 548 

ensued. The task was presented on a 19-inch CRT monitor (Sony Multiscan G520), and 549 

participants sat about 21 inches away from the monitor screen. The tile size was 1x1 inches 550 

(approximately 2.7x2.7 degrees of visual angle) as appeared on the screen. The study protocol 551 

was approved by the institutional review board at Boston Children's Hospital, and each 552 

participant completed the task with informed consent. All participants had normal or corrected-553 

to-normal vision. All participants completed 16 blocks.  554 

 555 

Behavioral analyses  556 

 We created two computational models to simulate behavior assuming perfect memory 557 

or no memory (chance performance, Figure 2A). The perfect memory model remembered all 558 

revealed tiles without forgetting. The random model simulated random clicking. We calculated 559 

the reaction time (RT, time between two clicks in a trial), n-since-pair (number of clicks since the 560 

last time when a tile's matching pair was seen), n-since-last-click (the number of clicks since the 561 

same tile was clicked), and n-times-seen (number of times the same image had been seen). For 562 

n-since-pair and n-since-last-click, we excluded trials in which any tile was seen for the first time, 563 

i.e., when a tile's matching pair had never been revealed, or there was no previous click. We 564 

compared these variables for match and mismatch trials at each board size (Figure 2, 565 

permutation test, 5,000 iterations, a=0.01). We defined random matches as a match trial where 566 

the second tile had never been seen before; such trials were excluded from both the behavioral 567 

and neurophysiological analyses. We used the F-test for linear regression models to assess 568 

whether RT, n-since-pair, n-since-last-click, and n-times-seen significantly covary with board size. 569 

The linear regression models' predictors were these four behavioral parameters and the 570 



dependent variable the board size. We created separate models for match and mismatch trials 571 

and 1st and 2nd tiles.   572 

 573 

Electrode localization 574 

 Electrodes were localized using the iELVis82 toolbox. We used Freesurfer83 to segment the 575 

preimplant magnetic resonance (MR) images, upon which post-implant CT was rigidly registered. 576 

Electrodes were marked in the CT aligned to preimplant MRI using Bioimage Suite84. Each 577 

electrode was assigned to an anatomical location using the Desikan-Killiany85 atlas for subdural 578 

grids or strips or FreeSurfer's volumetric brain segmentation for depth electrodes. For white 579 

matter electrodes, we also reported their closest gray matter locations. Out of 1,750 electrodes 580 

in total, we included 676 bipolarly referenced electrodes in the gray matter (Figure S2, Table S2) 581 

and 492 bipolarly referenced electrodes in the white matter (Figure S3, Table S2). Five hundred 582 

and eighty-two electrodes were not considered for analyses due to bipolar referencing, locations 583 

in pathological sites, or electrodes containing large artifacts. Electrode locations were mapped 584 

onto the MNI305 average brain via affine transformation86 for display purposes (e.g., Figure S2-585 

S3).  586 

 587 

Preprocessing of intracranial field potential data  588 

 Bipolar subtraction was applied to each pair of neighboring electrodes on each shank of 589 

depth electrodes or subdural grids/strips87. A zero-phase digital notch filter (Matlab function 590 

"filtfilt") was applied to the bipolarly subtracted broadband signals to remove the line frequency 591 

at 60 Hz (BCH, BWH) or 50 Hz (Xuanwu) and their harmonics. For each electrode, trials whose 592 

amplitudes (Voltagemax-Voltagemin) were larger than 5 standard deviations from the mean 593 

amplitude across all trials were considered potential artifacts and discarded from further 594 

analyses 88. For the first tile, the time window for artifact rejection was from 400 ms before the 595 

click until 1 second after the average RT. For the second tile, the time window was [400 ms + 596 

average RT] before the second click until 1 second after the second click. Across all electrodes, 597 

we rejected 1.75% of all trials for the 1st tile and 1.73% for the second tile.  598 

 599 



Time-frequency decomposition  600 

 The gamma band (30-150 Hz) power was computed using the Chronux toolbox89. We used 601 

a time-bandwidth product of 5 and 7 leading tapers, a moving window size of 200 ms, and a step 602 

size of 10 ms90. For each trial, the power was normalized by subtracting the mean gamma band 603 

power during the baseline (400 ms before 1st tile) and dividing by the standard deviation of the 604 

gamma power during the baseline. For all the participants, there were more mismatch than 605 

match trials. In the raster plots, we subsampled the mismatch trials, keeping those trials whose 606 

reaction times were closest to the mean reaction time of match trials. All random matches were 607 

excluded from analyses.  608 

 609 

Generalized linear model 610 

We used generalized linear models (GLM)91,92 to analyze the relationship between the 611 

gamma band power and behavioral parameters. We used two different GLMs, one using neural 612 

responses between the 1st and the 2nd tiles and the other using neural responses after the 2nd tile. 613 

For the first GLM, the time window started when the 1st tile was clicked and ended at a time 614 

corresponding to the 90th percentile of the distribution of reaction times (time difference 615 

between the 1st and the 2nd click, Figure 1A) for each participant. This criterion was a reasonable 616 

tradeoff between minimum overlap with responses after the 2nd tile and the maximum amount 617 

of information captured. For the second GLM, we used 1 second after the 2nd tile click as the 618 

analysis window. The response variable to be fit by the GLM analyses was defined as the area 619 

under the curve (AUC) of the gamma band power over the specified time windows. Table 1 620 

describes the behavioral parameters that were considered as predictors in the models.  621 

We performed a multicollinearity analysis to assess the presence of highly correlated 622 

predictors that could impair the model's performance93,94.  We calculated the variance inflation 623 

factor (VIF) for each predictor to detect the presence of multicollinearities. A VIF of 1 indicates 624 

that there is no correlation with other predictors. The larger the VIF, the higher the correlation. 625 

A VIF greater than 5 indicates a very high correlation that could significantly harm the model's 626 

performance. For all participants in our analysis, the VIFs of all predictors were smaller than 3 627 

(Figure S4C-D). 628 



For n-since-pair, we included the interaction term between this predictor and match (n-629 

since-pair*match) to test the hypothesis that when a trial was a match, the strength of the neural 630 

response after the first tile was modulated by how recently the tile's matching pair was seen for 631 

the last time. The neurophysiological responses confirmed that this is a reasonable way to model 632 

the data (Figure 5B). We represented image categories as predictor variables in the GLM by 633 

including four out of the five categories (animal, food, vehicle, and person). We dropped the 634 

"indoor" category to avoid falling into the "dummy variable trap"95. For each predictor, we 635 

calculated the parameter estimate (beta coefficient) from the least mean squares fit of the model 636 

to the data, the t-statistic (beta divided by its standard error), and the p-value to test the effect 637 

of each predictor on the neural responses. A beta coefficient or t-statistic of zero indicated that 638 

the predictor did not affect the neural responses. A predictor was considered statistically 639 

significant if the GLM model differed from a constant model (p<0.01) and the p-value for that 640 

predictor was smaller than 0.01.  641 

To determine if any brain region contained significantly more electrodes than expected 642 

by chance considering any GLM predictor, we randomly sampled the same number (n) of 643 

electrodes as those where that predictor was significant, from the total electrode population 644 

(separately for gray and white matter electrodes) for 5,000 iterations. Taking the match predictor 645 

for gray matter electrodes as an example, from the total of 676 gray matter electrode locations, 646 

we randomly sampled 32 electrodes (the number of match-significant gray matter electrodes) 647 

5,000 times, and calculated the p-value of any location, say insula, as the number of times when 648 

n for insula and match-significant was less than n for insula sampled. If p<0.01, that brain region 649 

was considered to have significantly more electrodes than expected by chance.  650 

 651 

Decoding of match  652 

We used a machine learning decoding approach to evaluate whether the neural 653 

responses from a given brain region could predict whether the trial was a match or a mismatch. 654 

For this analysis, we selected only those brain regions in which we had at least 12 electrodes. We 655 

used two different decoders for each brain region, one using neural responses between the 1st 656 

tile and 800 ms after the 1st tile click, and the other using the neural responses between the 2nd 657 



tile and 800 ms after the 2nd tile click. We performed 200 iterations of 5-fold cross-validation for 658 

each brain region and tile to split the trials into independent train and test sets (1,000 splits in 659 

total). We concatenated the neural responses of electrodes within the same brain region, using 660 

two different approaches: (i) taking all electrodes in each brain region, and (ii) randomly 661 

subsampling 12 electrodes at each iteration. The number of match and mismatch trials was 662 

normalized by random subsampling. To reduce the dimensionality of the neural responses, we 663 

used principal component analysis (PCA). The PCA parameters were computed using only the 664 

training data, and we selected the number of components that could explain 70% of the training 665 

neural responses variance. We used support vector machines (SVM) with a linear kernel for the 666 

binary classification (match or mismatch), using as the model inputs the PCA features computed 667 

from the neural responses. We followed the same procedure to test whether the classification 668 

performance was above chance, but we randomized the response variable (match or mismatch) 669 

at every iteration. We calculated the p-value as the number of times when the accuracy using 670 

random labels was above the average accuracy using the actual labels. If p<0.01, neural 671 

responses of that brain region could predict match and mismatch above chance.  672 

 673 

Computational model 674 

 We developed an attractor network model consisting of a fully connected recurrent 675 

network with the number of units n equal to the number of tiles in the grid plus the number of 676 

different images. For example, the model for the 3x3 board shown in Fig 1A was an attractor 677 

network with n=3x3+5=14 units (Figure 8). 678 

The units in the network were designed to model “where” and “what”, i.e., position and 679 

image labels. Let 𝒙!	be a vector of length equal to the number of tiles in the grid, 𝒙"  be a vector 680 

of length equal to the number of different images in the grid, and 𝒙 denote the concatenation 681 

[𝒙!, 𝒙"] (Figure 8A). The input to the network is 𝒙. Each entry in 𝒙!	and 𝒙" 	can take the values -682 

1, 0, or 1. The state of the network at time t is denoted by the vector 𝒉# = [𝒑# , 𝒍#] of size 𝑛, where 683 

𝒑# and 𝒍#  are the vectors of activations of the position and label units, respectively. Each entry 684 

in 𝒉# is a scalar value. The units in the network are connected in an all-to-all fashion and the 685 

matrix 𝑴# indicates the weights at time 𝑡 (𝑴# ∈ ℝ$×$).  686 



 The network stores memories in both persistent activities (active representations) and 687 

weights (silent representations)49. In contrast to the approach in ref.49, which incorporates a 688 

bottleneck in the model to restrict its capacity, our model is devoid of any such bottleneck.  Given 689 

an input x at time t, the network state and weights were updated similarly to ref.96, according to: 690 

𝒉𝒕 = 𝑓0𝒩(𝒙 +𝑴#'(𝒉#)5       Equation 1 691 

𝑴# = 𝜆𝑴#'( + 𝜂𝒉#𝒉#) 	       Equation 2 692 

Here 𝑓(⋅) is the LeakyReLU activation function and 𝒩(⋅) is activation normalization. 𝜆  and 𝜂 693 

represent a decay rate for the previously stored memories and the learning rate for new 694 

memories, respectively. In line with ref.96, activation normalization is expected to make the 695 

network more robust to the choice of the decay and learning rates. We note that the Hebbian 696 

learning is computed on the state of the network 𝒉# rather than on the input 𝒙. This means that 697 

the update of the memory matrix 𝑴# is influenced by the interference between active and silent 698 

representations, thus limiting the network capacity. The hyperparameters were chosen by fitting 699 

the number of clicks per tile of the model to the participants’ number of clicks per tile (Figure 700 

2A). The results presented in this paper were obtained with 𝜆 = 0.6 and 𝜂 = 0.9. Before the start 701 

of each board, the network weights were initialized uniformly at random in [0,1], while the state 702 

of the network was initialized to 0. Changes in weights in neural networks are often interpreted 703 

as structural modifications to synaptic strengths. However, given the time scales involved in 704 

working memory tasks such as the one studied here, changes in 𝑴# are more likely to reflect 705 

transient biophysical mechanisms such as synaptic facilitation rather than permanent structural 706 

synaptic modifications.  707 

The model operates in two distinct regimes, which we refer to as learning (Figure 8B) and 708 

inference (Figure 8C-D). For each trial, the 1st tile was chosen at random among the available tiles. 709 

To simulate the task, for each trial the model performs learning→inference→learning. First, the 710 

model represents the position and label of the 1st tile. Second, the model performs inference on 711 

the label of the 1st tile. At the end of the inference regime, the most active neuron in 𝒑# 712 

determines which tile to click (Figure 8D). Last, the model learns the position and label of the 2nd 713 

tile. 714 



During learning (Figure 8B), the corresponding position entry of 𝒙!	is set to 1 and all other 715 

units are set to -1. Similarly, the corresponding label entry of xl is set to 1 and all other units are 716 

set to -1. The network dynamics goes through 10 steps according to the two equations above. 717 

During inference (Figure 8C-D), the corresponding label of 𝒙"  is set to 1 and all the other units 718 

are set to 0. All the units of 𝒙! corresponding to the available tiles are set to 0, while the ones 719 

corresponding to the unavailable tiles (those that have already been matched or already clicked 720 

in that trial) are set to -1. The network dynamics goes through 10 steps according to Equations 721 

1-2. After these 10 steps, we select the unit with the maximum activation within the units of 𝒙! 722 

corresponding to available tiles. If the second tile is a match, then those two tiles become 723 

unavailable in the next trials. The weight matrix 𝑴𝒕 , however, continues to include all the 724 

connections among all the units. The model proceeds until all tiles have been matched. 725 

 The number of clicks per tile, n-since-last-click and n-since-pair click for the 2nd tile were 726 

calculated for the model and compared to the participants’ behavior (Figure 9A-D). To compute 727 

a proxy for the reaction time in the model, we used the same approach as in ref.49, whereby the 728 

unit in 𝒙!  with the strongest activation during the inference time was selected and the reaction 729 

time was computed as the number of steps the unit takes to reach 0.9 of its maximum value. 730 

 To compare the inner workings of the model with the neural data, we defined two new 731 

metrics based on the unit activations. First, we defined the max-energy metric computed during 732 

the 1st learning phase of each trial, in analogy to the memory signals in Figure 3. The energy of 733 

the network was computed as: 734 

 𝐸# = −𝒉#𝑴#𝒉#)          Equation 3 735 

Min-max normalization was applied to the energy in each trial, and the maximum value in each 736 

trial was reported. The max-energy metric is shown in Figure 9E. Second, we defined a confidence 737 

metric that reflected the evidence for a match in a given trial, in analogy with the predictive 738 

signals shown in Figure 5. The confidence metric was defined by selecting the strongest activation 739 

in 𝒑# during inference, subtracting the mean value of 𝒑#, applying min-max normalization to the 740 

difference, and then taking the maximum over time t in each trial. The confidence metric is shown 741 

in Figure 9F. 742 

 743 



Data availability 744 
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Figures and Tables 1009 
 1010 

 1011 
Figure 1. Experimental paradigm  1012 

A-C. Three consecutive trials in a 3×3 board. In each trial, two tiles were flipped sequentially in a 1013 
self-paced manner (1st tile, then 2nd tile). If the two tiles contained different images (A, C, 1014 
mismatch), both tiles reset to their original active (black) state after 1 second. If both tiles 1015 
contained the same image (B, match), they turned green after 1 second and stayed green for the 1016 
remainder of the block. Three behavioral predictors used in the generalized linear models (GLM) 1017 
are defined here: reaction time (the time between the 1st and 2nd tile within a trial), n-since-last-1018 
click (the number of clicks elapsed since the same tile was clicked last), and n-since-pair (the 1019 
number of clicks elapsed since the last time a given tile’s matching pair was clicked). Each tile 1020 
spanned approximately 2 degrees of visual angle (dva) in size. See also Movie S1. 1021 

 1022 
  1023 

1st tile 2nd tile
n-trial = 1 (mismatch)

1st tile 2nd tile 1st tile 2nd tile
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 1024 

Figure 2. Behavioral measures 1025 
show that participants thrived in 1026 
the task and that finding 1027 
matching pairs displayed 1028 
classical memory effects  1029 

A. Number of clicks per tile (log 1030 
scale) as a function of board size 1031 
for random simulation model 1032 
(red, n=20), perfect memory 1033 
simulation model (blue, n=20), 1034 
and epilepsy patient participants 1035 
(purple, n=20) (Methods). 1036 
Perfect memory simulation 1037 
models may generate different 1038 
number of clicks per tile because 1039 
the click location for new tiles 1040 
was randomized. The 1041 
performance of epilepsy patients 1042 
was better than the random 1043 
model and worse than the 1044 
perfect model. The number of 1045 
clicks per tile increased as board 1046 
size incremented. B. Reaction 1047 
times for match (green) and 1048 
mismatch (gray) trials for 1049 
different board sizes. Asterisks 1050 
denote significant difference 1051 
between match and mismatch 1052 
trials (permutation test, 5,000 1053 
iterations, ⍺=0.01). Reaction 1054 
time of mismatch trials was 1055 
longer than match trials. C-F. 1056 
Average n-since-last-click (C, D) 1057 
and n-since-pair (E, F) for the 1st 1058 

tile (C, E) and the 2nd tile (D, F) for each board size. Asterisks denote significant difference 1059 
between match and mismatch trials (permutation test, 5,000 iterations, ⍺=0.01). For n-since-last-1060 
click, trials in which a tile was clicked for the 1st time were excluded in this figure. For n-since-1061 
pair, trials in which any tile’s matching pair had not been seen before were excluded in this figure. 1062 
All error bars indicate s.e.m. (n=20 participants).  1063 

 1064 
 1065 

1066 



Figure 3. Neural signals 1067 
reflect novelty and 1068 
familiarity  1069 
Panels show two example 1070 
electrodes, one in the right 1071 
lateral orbitofrontal cortex 1072 
(A-D), one in the left pars 1073 
opercularis (D-H), and 1074 
population locations in D, H.  1075 
A, E. T-statistic of each 1076 
predictor in the GLM 1077 
analyses (Methods). 1078 
Asterisks indicate 1079 
statistically significant 1080 
predictors for the neural 1081 
signals.  1082 
B, F. Z-scored gamma band 1083 
power aligned to the 1st tile 1084 
onset (solid vertical line) for 1085 
novel tiles (blue), unfamiliar 1086 
tiles (n-since-last-click>1, 1087 
yellow), and familiar tiles 1088 
(n-since-last-click=1, red). 1089 
The vertical dashed line 1090 
indicates the mean reaction 1091 
time. Multiple dashed lines 1092 
in F indicate reaction time 1093 
equalization (Methods). 1094 
The time axis extends from 1095 
400 ms before the click to 1096 
500 ms after the average 1097 
reaction time. F displays 1098 
only trials after RT 1099 
equalization (Methods). 1100 
Shaded error bars indicate 1101 
s.e.m.  1102 
C, G. Raster plots showing 1103 

the z-scored gamma power in individual trials ordered by first-click and then larger to smaller n-1104 
since-last-click; division indicated by white horizontal lines/spaces and colored vertical bars.  1105 
D. Locations of all electrodes where first-click was a significant predictor during the 1st tile. Blue: 1106 
first-click only; red: both first-click and n-since-last-click were significant predictors.  1107 
H. Locations of all electrodes where n-since-last-click was a significant predictor during the 1st 1108 
tile. Orange: n-since-last-click only; red: both n-since-last-click and first-click were significant 1109 
predictors. All electrodes were reflected on one hemisphere for display purposes.  1110 



 1111 

 1112 
 1113 

Figure 4. Neural signals predict correct retrieval 1114 

Panels show an example electrode in the right lateral orbitofrontal cortex (see arrow in part E) 1115 
and population locations in E. The format follows Figure 3. A. T-statistic of each predictor in the 1116 
GLM analysis. Asterisks indicate statistically significant predictors for the neural signals. B. Z-1117 
scored gamma band power aligned to the 1st tile onset (solid vertical line) for match trials (green) 1118 
and mismatch trials (black). The vertical dashed line indicates the mean reaction time. Shaded 1119 
error bars indicate s.e.m. C-D. Raster plots showing the gamma power in individual trials for 1120 
match (left) and mismatch (right) trials. E. Locations of all electrodes where match was a 1121 
significant predictor during the 1st tile only (green) and during both tiles (red). All electrodes 1122 
were reflected on one hemisphere for display purposes.  1123 
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  1125 
Figure 5. Neural signals reflect the strength of memory retrieval  1126 

Panels show an example electrode in the left middle temporal gyrus (see arrow in part E) and 1127 
population locations in E. A. T-statistic of each predictor in the GLM analyses. Asterisks indicate 1128 
significant predictors for the neural signals. B. Z-scored gamma band power aligned to the 1st file 1129 
onset (solid vertical line) for match trials with small n-since-pair (nsp) (red, stronger memories), 1130 
intermediate nsp (yellow), and large nsp (purple, weaker memories). The vertical dashed line 1131 
indicates the mean reaction time. Shaded error bars indicate s.e.m. C-D. Scatter plots of the area 1132 
under the curve (AUC) of the gamma band power as a function of nsp for match trials (C) and 1133 
mismatch trials (D). Each dot represents one trial. Red lines show linear fits to the data. E. 1134 
Locations of all electrodes where nsp was a significant predictor. All electrodes were reflected on 1135 
one hemisphere for display purpose.  1136 
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1138 
Figure 6. Neural signals after the second tile reflect correct retrieval 1139 
Panels show an example electrode located in the insula (see arrow in part E) and population 1140 
locations. A. T-statistic of each predictor in the GLM analyses for the responses after the 2nd tile. 1141 
Asterisks indicate significant predictors of neural signals. B. Z-scored gamma band power aligned 1142 
to the onset of the 2nd tile (solid vertical line) for match (green) and mismatch (black) trials. The 1143 
dashed line indicates the mean onset of the 1st tile. C-D. Raster plots showing the gamma band 1144 
power in individual trials for match (left) and mismatch (right) trials. E. Locations of all electrodes 1145 
where match was a significant predictor of neural responses after the 2nd tile only (green) or 1146 
during both tiles (red). All electrodes were reflected on one hemisphere for display purpose.  1147 
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1149 
Figure 7. Machine learning decoding of match versus mismatch for all channels within each 1150 
brain region 1151 

Average decoding accuracy for each brain region (Methods) using neural responses after the 1st 1152 
tile (A) or after the 2nd tile (B). Brain regions are ordered from higher to lower average decoding 1153 
accuracy. The dashed horizontal line indicates chance accuracy. Asterisks denote significant 1154 
decoding accuracy above chance (⍺=0.01). All error bars indicate SD (n=1,000 iterations).  1155 
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 1157 
Figure 8: Hebbian attractor model architecture and operating regimes 1158 

A. Schematic representation of the model architecture used for the 3x3 grid. The 9 blue units 1159 
encode position (𝒙!), while the 5 orange units represent the image label (𝒙"). The black lines 1160 
between units illustrate the Hebbian weights 𝑴# in the attractor network. B. Learning regime. In 1161 
this example, the model represents a cat (label=2) at position=5. C, D. Inference regime. In this 1162 
example, the model is tasked with matching the cat (label=2) observed at position=1. Only the 1163 
label information is provided to the model in the inference regime. The model's updates 1164 
(Methods) lead to the unit representing position=5 to exhibit the highest activity (D), thereby 1165 
determining the corresponding tile to be clicked. The darker color indicates stronger activation 1166 
of the corresponding units. The red color indicates the tile to match (which is unavailable for 1167 
clicking, Methods) and its corresponding positional unit. 1168 
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  1170 
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 1171 
Figure 9: Hebbian attractor model captures behavior and neural measures 1172 
A. Number of clicks per tile (log scale) as a function of board size for random simulation model 1173 
(red, n=20), perfect memory simulation model (blue, n=20), and Hebbian attractor (purple, n=20) 1174 
(Methods, compare to Figure 2A). B. Reaction times of the model (Methods) for match (green) 1175 
and mismatch (gray) trials for different board sizes (compare to Figure 2B). C, D. Average n-since-1176 
last-click (C) and n-since-pair (D) for the 2nd click for each board size (compare to Figure 2D, F. 1177 
E). Max-energy for novel tiles (blue), unfamiliar tiles (n-since-last-click>1, yellow) and familiar 1178 
tiles (n-since-last-click=1, red, compare to Figure 3). F. Model confidence for match (green) and 1179 
mismatch (gray) trials for different board sizes (Methods). The model confidence in match trials 1180 
was larger than in mismatch trials (compare to Figure 5). All asterisks denote significant 1181 
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difference between match and mismatch trials (permutation test, 5,000 iterations, α=0.01). All 1182 
error bars indicate s.e.m. (n=20). 1183 
  1184 



Tables 1185 

 1186 
Table 1. Predictors in the generalized linear models, their definitions, and applicable tiles.  1187 
 1188 
 1189 
  1190 

Predictor Description  Which tile 
match Whether the trial was a match or mismatch both 
n-since-pair*match how many clicks ago the tile's pair was clicked (matched trials only)  1st 
n-since-last-click how many clicks ago the same tile was clicked both 
first-click Whether a tile was clicked the very first time both 
n-times-seen number of times the same image had been previously clicked both 
next-match whether the next trial was a match or mismatch both 
reaction-time time between the 1st and 2nd tile both 
board-size Total number of tiles in the current block both 
x-position x position in pixel both 
y-position y position in pixel both 
distance distance between the 2nd tile of the current trial and the 1st tile of the next trial in pixel both 
animal image belonged to animal category both 
food image belonged to food category both 
person image belonged to person category both 
vehicle image belonged to vehicle category both 



Supplementary Materials 1191 
 1192 

The Supplementary Material (separate file) includes: 1193 
 1194 
1 supplementary movie 1195 
 1196 
9 supplementary tables 1197 
 1198 
13 supplementary figures 1199 
 1200 
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