Revealing Vision-Language Integration in the Brain with Multimodal Networks

Vighnesh Subramaniam !> Colin Conwell> Christopher Wang'2 Gabriel Kreiman* Boris Katz ! 2
Ignacio Cases !> Andrei Barbu ' 2

Abstract

We use multimodal deep neural networks to iden-
tify sites of multimodal integration in the hu-
man brain and investigate how well these net-
works model integration in the brain. Sites of
multimodal integration are regions where a multi-
modal language-vision model is better at predict-
ing neural recordings (stereoelectroencephalog-
raphy, SEEG) than either a unimodal language,
unimodal vision, or a linearly-integrated language-
vision model. We use a range of state-of-the-art
models spanning different architectures includ-
ing Transformers and CNNs with different multi-
modal integration approaches to model the SEEG
signal while subjects watched movies. As a key
enabling step, we first demonstrate that the ap-
proach has the resolution to distinguish trained
from randomly-initialized models for both lan-
guage and vision; the inability to do so would
fundamentally hinder further analysis. We show
that trained models systematically outperform ran-
domly initialized models in their ability to predict
the SEEG signal. We then compare unimodal and
multimodal models against one another. Since
models all have different architectures, number
of parameters, and training sets which can ob-
scure the results, we then carry out a test between
two controlled models: SLIP-Combo and SLIP-
SimCLR which keep all of these attributes the
same aside from multimodal input. Our first key
contribution identifies neural sites (on average 141
out of 1090 total sites or 12.94%) and brain re-
gions where multimodal integration is occurring.
Our second key contribution finds that CLIP-style
training is best suited for modeling multimodal
integration in the brain when analyzing different
methods of multimodal integration and how they
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model the brain.

1. Introduction

We expand the use of deep neural networks for understand-
ing the brain from unimodal models, which can be used to
investigate language and vision regions in isolation, to mul-
timodal models, which can be used to investigate language-
vision integration. Beginning with work in the primate
ventral visual stream (Yamins et al., 2014; Schrimpf et al.,
2020), this practice now includes the study of both the hu-
man vision and language cortex alike (Chang et al., 2019;
Allen et al., 2021; Bhattasali et al., 2020; Nastase et al.,
2021; Schrimpf et al., 2021; Goldstein et al., 2021; 2022;
Lindsay, 2021; Caucheteux & King, 2022; Conwell et al.,
2022). These studies, however, focus on a single modality
of input — vision alone or language alone. Yet, much of what
humans do fundamentally requires multimodal integration.

As a product of this unimodal focus, we have learned far less
about the correspondence between biological and artificial
neural systems tasked with processing visual and linguistic
input simultaneously. Here, we seek to address this gap by
using performant, pretrained multimodal deep neural net-
work (DNN) models (ALBEF, BLIP, Flava, SBERT, BEIT,
SimCSE, SIMCLR, CLIP, SLIP) (Li et al., 2021; 2022b;
Singh et al., 2022; Bao et al., 2021; Gao et al., 2021; Chen
et al., 2020; Radford et al., 2021; Mu et al., 2021) to predict
neural activity in a large-scale stereoelectroencephalography
(SEEG) dataset consisting of neural responses to the images
and dialog of popular movies (Yaari et al., 2022) collected
from intracranial electrodes. The goal is to use systematic
comparisons between the neural predictivity of unimodal
and multimodal models to identify sites of vision-language
integration in the brain .

We make the following contributions:

1. We introduce a statistically-rigorous methodology
to compare multimodal models against neural data,
against one another, and against unimodal models. We
release a code toolbox to perform this analysis and
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enable future work.

2. We demonstrate that this method is sufficiently fine-
grained to distinguish randomly initialized from trained
vision, language, and multimodal models. Previously
this had been questionable for language models and
never investigated for multimodal models. Without this
gap, we could not conclude that multimodal processing
is taking place, merely that multimodal architectures
are generically helpful.

3. Using a wide array of models, we employ this method
to identify areas associated with multimodal process-
ing, i.e. areas where multimodal models outperform
unimodal models as well as language-vision models
with linearly-integrated features e.g. concatenation of
vision and language features.

4. We then introduce an architecture-, parameter-, and
dataset-controlled experiment where two variants of
the same model, one unimodal and the other multi-
modal, are used to identify multimodal regions.

5. We catalogue a collection of areas which perform mul-
timodal integration and are candidates for future exper-
iments along with the time-course of that integration.
We also catalogue the best candidate multimodal mod-
els that best explain activity in the areas associated
with multimodal integration.

These experiments for the first time connect multimodal
networks and multimodal regions in the brain; they are
among the first to explore multimodal integration and iden-
tify which current neural networks of vision and language
are best suited for modeling multimodal integration in the
brain.We give an overview of our approach in Figure 1.

2. Related Work

Multimodal Processing. Multimodal vision and language
processing in the brain is presumed to show some degree of
localization based on neuroscience experiments where sub-
jects are presented with specially constructed multimodal
visio-linguistic stimuli and the response is measured using
functional Magnetic Resonance Imaging (fMRI) against
several control stimuli. For example, recent multivariate
fMRI studies have identified the superior temporal cortex to
be associated with specific forms of auditory and visual pro-
cessing (Jouen et al., 2015; Zhang et al., 2023; Van Auden-
haege et al., 2023; Friederici et al., 2009; Friederici, 2012).
Furthermore, deeper semantic integration of vision and lan-
guage has been seen in the middle temporal and inferior
parietal cortex (Petrides, 2023; Bzdok et al., 2016). Other
areas include the supramarginal gyrus, involved in emotion
processing (Stoeckel et al., 2009), the superior frontal lobe,
commonly associated with self-awareness (Schilling et al.,
2013), the caudal middle frontal cortex, commonly associ-
ated with eye movements and scene understanding (Badre

& Nee, 2018), and the pars orbitalis, which contains Broca’s
area and is associated with speech processing (Belyk et al.,
2017).

Neural Networks predict brain activity. There has been
considerable interest in investigating the effectiveness of
representations from neural networks in modeling brain ac-
tivity (Wehbe et al., 2014; Kuzovkin et al., 2018; Conwell
et al., 2021; Goldstein et al., 2021; 2022; Lindsay, 2021;
Caucheteux & King, 2022). These approaches have typi-
cally employed various forms of linear regressions to predict
brain activity from the internal states of candidate models,
with specific modifications to the prediction depending on
the type of neural recording used. The majority of these
works tend to focus on vision or language alone, in large
part because unimodal datasets (Chang et al., 2019; Allen
et al., 2021; Bhattasali et al., 2020; Nastase et al., 2021) and
unimodal models (e.g. PyTorch-Image-Models; Hugging-
face) are the most commonly available. Prior experiments
have shown that language-based unimodal networks and
vision-based unimodal networks effectively model activity
in the brain. Many prior experiments include comparisons
between trained and randomly initialized networks and have
shown that trained unimodal vision networks model activity
better than randomly initialized networks but have struggled
to reproduce the same result in language networks (Schrimpf
etal., 2021).

Multimodal Networks predict unimodal brain activity.
More recent papers have emerged demonstrating the abil-
ity for multimodal networks to predict fMRI activity in the
higher visual cortex in response to visual stimuli better than
unimodal vision models (Wang et al., 2022; Oota et al.,
2022), indicating that multimodal networks are integrating
deeper semantic information similar to the brain. Our work
differs from this and other prior work by considering gen-
eral vision-language integration. We employ multimodal
networks including ALBEF, CLIP, and SLIP and use repre-
sentations from these networks to predict brain activity up
to 2000ms before and after the occurrence of an event. Our
results unveil a number of distinct electrodes wherein the ac-
tivity from multimodal networks predicts activity better than
any unimodal network, in ways that control for differences
in architecture, training dataset, and integration style where
possible. In contrast to most previous work that mainly
leverages fMRI, here we focus on high-fidelity neurophysio-
logical signals similar to (Kuzovkin et al., 2018) We use this
analysis to identify sites of mutlimodal integration, many of
which align with and overlap with areas mentioned in prior
work. Our work is among the first to establish these sites of
integration and to determine which model of integration is
the best at predicting activity in these sites.
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Figure 1. Overview. (a) We parse the stimuli, movies, into image-text pairs (which we call event structures) and process these with either
a vision model, text model, or multimodal model. We extract feature vectors from these models and predict neural activity in 161 25ms
time bins per electrode, obtaining a Pearson correlation coefficient per time bin per electrode per model. We run this regression using both
trained and randomly initialized encoders and for two datasets, a vision-aligned dataset and language-aligned dataset, which differ in
the methods to sample these pairs. (b) We design a bootstrapping test over input image-text pairs to build 95% confidence intervals on
scores per time bin per electrode. We filter out time bins in electrodes where the validation lower confidence interval is less than zero. (c)
The first analysis of this data investigates if trained models outperform randomly initialized models. The second analysis investigates if
multimodal models outperform unimodal models. The third analysis repeats the second holding constant the architecture and dataset to
factor out these confounds. Two other analyses are described in the text. The fourth analysis investigates if multimodal models outperform

models that concatenate language and vision features.

3. Methods

Neural Data: Invasive intracranial field potential record-
ings were collected during 7 sessions from 7 subjects (4
male, 3 female; aged 4 — 19, i = 11.6, o = 4.6) with phar-
macologically intractable epilepsy. During each session,
subjects watched a feature-length movie from the Aligned
Multimodal Movie Treebank (AMMT) (Yaari et al., 2022)
in a quiet room while neural activity was recorded using
SEEG electrodes (Liu et al., 2009) at a rate of 2kHz.

We parse the neural activity and movie into language-
aligned events (word onset) and visually-aligned events
(scene cuts) where each event consists of an individual
image-text pair and create two stimulus alignment datasets
where we have coregistered visual and language inputs to the
given models. Each element of the dataset consists of a stim-
ulus and the corresponding brain activity. For the language-
aligned dataset, the stimulus data are word utterances with
their sentence context as well as the corresponding closest
movie frame to the word onset. And for the vision-aligned
dataset, the stimulus data are the frames from eachscene
cut and the closest sentence to occur after the cut. Word-
onset times are collected as part of the AMMT metadata
and visual scene cuts are extracted from each movie using
PySceneDetect (Castellano, 2022). For the corresponding
brain activity, following (Goldstein et al., 2021), we extract

a 4000ms window of activity (about 8000 samples), 2000ms
prior to the event occurrence and 2000ms after the event
occurrence, per electrode. We split the 4000ms window into
sub-windows of 200ms with a sliding window of 25ms and
the activity is averaged per sub-window to get a series of
mean activity values over time per electrode. Further details
of the neural data processing can be found in Appendix A.

Models: We examine 12 pretrained deep neural network
models, 7 multimodal and 5 unimodal, to explore the ef-
fect of multimodality on predictions of neural activity. To
identify areas associated with multimodal integration, we
choose multimodal models that directly integrate vision
and language. Mathematically, this means that we choose
models that apply non-linear transformations on vision and
language features directly in model computations either
through (i) cross-attention or (ii) contrastive training. The
models that serve as our main experimental contrast are
the SLIP models (Mu et al., 2021). The SLIP models are
a series of 3 models that use the same architecture (ViT-
[S,B,L]) and the same training dataset (YFCC15M), but are
trained with one of three objective functions: (1) pure uni-
modal SimCLR-style (Chen et al., 2020) visual contrastive
learning (henceforth SLIP-SimCLR), (2) pure multimodal
CLIP-style (Radford et al., 2021) vision-language align-
ment (henceforth SLIP-CLIP), and (3) combined visual
contrastive learning with multimodal CLIP-style vision-
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language alignment (henceforth SLIP-Combo). The full
set constitutes a set of 5 models (SLIP-SimCLR; the SLIP-
CLIP visual encoder; the SLIP-CLIP language encoder; the
SLIP-Combo visual encoder; the SLIP-Combo language
encoder). For more general (uncontrolled) multimodal-
unimodal contrasts, we first include architecturally mul-
timodal network ALBEF (Li et al., 2021), BLIP (Li et al.,
2022b), and Flava (Singh et al., 2022). These are net-
works that use non-linear cross-attention mechanisms to
integrate vision and language instead of using contrastive
training, and therefore, vision-language integration is di-
rectly incorporated into the design of the network computa-
tions. We also include unimodal models SBERT, (Reimers
& Gurevych, 2019b), SimCSE (Gao et al., 2021), BEIT
(Bao et al., 2021), and ConvNeXt (Liu et al., 2022b). Ad-
ditionally, we design linearly-integrated language-vision
networks of our own. Our first model, MultiConcat, con-
catenates representations from a pretrained SimCSE and
pretrained SLIP-SimCLR. Our second model, MultiLin, per-
forms the same concatenation and trains a linear projection
using the NLVR-2(Suhr et al., 2018) dataset. For each of
the 14 networks, we run experiments on both pretrained and
randomly-initialized weights to assess whether the multi-
modality we assume in the brain coincides with features
learned in training the multimodal models. Random initial-
ization of these networks has different effects on the multi-
modal status of particular networks. Since SLIP-Combo and
SLIP-CLIP are designed to be multimodal due to contrastive
training, randomly initialized SLIP-Combo or SLIP-CLIP
are considered unimodal in the analysis. The multimodal
signal used to guide model predictions is lost due to the ran-
dom initialization in this case. However, for ALBEF, BLIP,
and Flava, these are architecturally multimodal models that
directly take both modalities as input regardless of random
initialization. Random initialization for these three networks
has no effect on the multimodal status of output represen-
tations. Details on the reasoning behind these choices are
given in Appendix B.

Neural Regression: To identify multimodal electrodes and
regions in the brain, we first extract feature vectors from
every layer of the candidate networks using the image-text
pairs in a given dataset alignment. We then use these fea-
tures from each layer as predictors in a 5-fold ridge re-
gression predicting the averaged neural activity of a target
neural site in response to each event structure (defined here
as an image-text pair). Per fold, we split our dataset of
event structures contiguously based on occurrence in the
movie. We place 80% of the event structures in the train-
ing set, 10% of event structures in the validation set, and
10% in the testing set. We use contiguous splitting to con-
trol for the autoregressive nature of the movie stimuli. We
measure the strength of the regression using the Pearson cor-
relation coefficient between predicted average activity and

actual average activity for a specific time window in each
neural site for a held-out test set of event structures. Two
aspects of this process are worth emphasizing: First, the
final performance metric (the Pearson correlation between
actual and predicted neural activity for a held-out test set of
event-structures) is not a correlation over time-series (for
which the Pearson correlation is inappropriate), but a cor-
relation over a set of (nominally IID) event-structures that
we have extracted by design to minimize the autoregressive
confounds of time-series data. Second, the cross-validation
procedure and train-test splitting is specifically designed
to assess the generalization of the neural regression fits,
and as such contains no cross-contamination of selection
procedures (e.g. the maximally predictive layer from a can-
didate model, feature normalization, or the ridge regression
lambda parameter) and final model scoring. In this case,
we use the cross-validation procedure to select the scores
associated with the best performing layer and select the best
performing regression hyperparameters. Further details on
the regression method can be seen in Appendix C.

Bootstrapped Confidence Intervals across Time: In order
to make model comparisons on a sound statistical basis, we
use a bootstrapping procedure over image-text pairs in a
given dataset alignment to calculate 95% confidence inter-
vals on the correlation scores per time bin for the training,
validation, and test set alike.

Our bootstrapping procedure involves first resampling the
image-text pairs and corresponding neural activity with re-
placement and then re-running the regression with the resam-
pled event structures, predicting the associated neural activ-
ity per time bin per electrode. We run the resampling 1000
times and use the same resampled event structures across
all models to allow for model comparison. Directly mim-
icking the standard encoding procedure, this bootstrapping
leaves us with 95% confidence intervals on the predictive
accuracy of a given model per time bin per electrode across
all of the training, validation, and test splits. We obtain two
sets of confidence intervals per dataset alignment, either
language-aligned or vision-aligned. In subsequent model
comparisons, we use the 95% confidence interval over the
validation set to filter out time bins per electrode in which
either of the model’s scores was not significantly above 0.
Subsequent analysis uses the held-out test set scores for
analysis.

Model Comparisons: Taking inspiration from fMRI search-
light analyses (Kriegeskorte et al., 2006; Etzel et al., 2013),
we next perform a series of statistical tests on each electrode
to determine whether or not they are better predicted by
multimodal or unimodal representations and whether each
electrode is better predicted by representations from trained
models or randomly initialized models.

We first filter all time bins in electrodes for models where
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the lower 95% confidence interval of the validation score
overlapped with zero. This ensures that the analysis focuses
on time bins and electrodes where meaningful neural signal
is occurring. We remove models from further analysis on a
particular electrode if that model has a confidence interval
that overlaps with zero for all time bins, on the validation
set. If only one model has at least 10 time bins with this
requirement (a minimal threshold for bootstrapped compar-
isons), we consider this model the best model by default
and do no further processing on the electrode.

For electrodes without these “default winners”, we employ
an additional statistical test of model difference between the
first and second-highest ranking models for a given compari-
son. That is, we use a second-order bootstrapping procedure
(this time across time bins, rather than across event struc-
tures), calculating the difference in the average score across
resampled time bins between the 2 candidate models in a
given comparison. This procedure is designed to minimize
the possibility of one model producing a random peak of
predictivity that does not adequately reflect its predictivity
more generally, and may artificially give the impression of
being the superior model in a comparison. We run this for
model pairs on electrodes that have at least 10 time bins re-
maining after filtering based on the lower confidence interval
of the validation set for both models. For the bootstrapping
procedure of model difference, we identify electrodes where
the difference in performance is statistically significant and
use FDR (Benjamni-Hochberg) multiple comparisons cor-
rections to adjust the p-value associated with the electrode
on each test.

Multimodality Tests: The multimodality logic we apply
(in order of stringency) is as follows: (1) Weak test of multi-
modality: Is ANY multimodal model or linearly-integrated
vision-language model significantly more predictive than all
other unimodal models in either of our dataset alignments
(word onset, scene cuts)? (2) Weak SLIP test: Is the SLIP-
Combo vision transformer significantly more predictive than
the SLIP-SimCLR vision transformer in either of our dataset
alignments? (3) Strict test of multimodality: Is ANY multi-
modal model or linearly-integrated vision-language model
significantly more predictive than all other unimodal models
in BOTH of our dataset alignments? (4) Strict SLIP test: Is
the SLIP-Combo vision transformer more predictive than
SLIP-SimCLR vision transformer in BOTH of our align-
ments? (5) Non-linear Integration test: For electrodes that
pass test 3, is a multimodal model more predictive than both
linearly-integrated vision-language models i.e. MultiConcat
and MultiLin? (A more detailed description and reasoning
behind these choices is given in Appendix D). For these
tests, we use both the “default winner analysis” (i.e. an
electrode passing automatically if the only model left after
filtering is either multimodal or SLIP-Combo more specifi-
cally), and the bootstrapped model comparison test. Tests 2

and 4 control for architecture and dataset, which ensures that
models cannot be outperformed due to architecture, hyper-
parameters, or the training dataset. For all electrodes that
pass our multimodality test, we use our model comparisons
to identify the best multimodal architecture for explaining
activity in the electrode.

4. Results

While there is no single meaningful measure of overall mod-
eling performance, since we expect significant variance in
performance as a function of multiple controlled and uncon-
trolled sources, there are a few key metrics we can consider
to provide an overall gestalt of our model-to-brain encoding
pipeline and the specific measured effects. Unless other-
wise noted, we use the following convention in the reporting
of these metrics: arithmetic average over the bootstrapped
mean scores [lower 95% confidence interval; upper 95%
confidence interval].

As an initial heuristic, we consider the bootstrapped test set
score mean, as well as the bootstrapped test mean upper
and lower bounds on performance across all N = 28 models
(14 architectures, with both trained and randomly-initialized
weights), N = 2 dataset alignments (word onsets, scene cuts)
and all N = 1090 electrodes, after we’ve selected the max
accuracy across time. This constitutes a total of 24 * 2 *
1090 = 39,420 data points. The bootstrapped global aver-
age (i.e. an average across the bootstrapped means) across
these data points is 7peyrson = 0.142 [0.0797, 0.269]. The
bootstrapped maximum across the bootstrapped means is
TPearson = 0.539 [0.517, 0.561]. And the bootstrapped min-
imum across the bootstrapped means is 7Tpearson = -0.223
[-0.398, -0.034]. (Negatives here mean model predictions
were anticorrelated with ground truth.) This is of course
a coarse metric, meant only to give some sense of the en-
coding performance overall, and to demonstrate its notable
range across electrodes. For an overview of results, we refer
to Figure 7, shows our average model performance across
several regions of interest in the brain.

4.1. Trained versus Randomly Initialized Results

We first use the comparison methods to analyze the dif-
ference between neural predictivity of trained models and
neural predictivity of randomly initialized models. After
filtering out models and time bins in electrodes where the
lower validation confidence interval score is less than zero,
this leaves us with 498/1090 unique electrodes. We show
the average difference in performance for these electrodes
in Figure 2. In 120 of these electrodes, the default model
was a trained model after filtering according to the default
winners analysis. For the rest of the 278 electrodes, we
use a bootstrapping comparison on the remaining electrodes
assuming models have at least 10 time bins remaining. We
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Figure 2. Trained models beat randomly initialized models. A comparison between pretrained and randomly initialized model
performance showing the distribution of predictivity across electrodes. This averages significant time bins per electrode, i.e., the lower
validation confidence interval must be larger than zero, for both vision and language alignments for our 12 models. Every trained network
outperforms its randomly initialized counterpart. Trained networks overall outperform untrained networks. This is true both on average,

and for almost every single electrode.

Test Language-Aligned Electrodes Vision-Aligned Electrodes

Weak test of multimodality 213/1090 60/1090
Weak SLIP test 218/1090 73/1090
Strict test of multimodality 12/1090 12/1090
Strict SLIP test 28/1090 28/1090°

Non-linear integration test 28/1090 28/1090

Table 1. Multimodal Integration Tests. We design five multi-
modal integration tests of varying strictness to test each electrode
for multimodal integration. We report the number of electrodes
that pass for our language-aligned (left) and vision-aligned (right)
datasets.

find that trained models beat randomly initialized models
on all 278 electrodes according to the bootstrapping com-
parison. The average difference in scores across the dataset
alignments was r'peyson = 0.107[0.026, 0.238], showing the
significant improvement that trained models have over ran-
domly initialized models. These results demonstrate that
experience and structured representations are necessary to
predict neural activity in our case for any network, regard-
less of whether the network is a language network, visual
network, or multimodal network.

4.2. Multimodality Test Results

Using our multimodality tests to evaluate the predic-
tive power of multimodal models against unimodal mod-
els across the two dataset alignments, we obtain the re-
sults shown in Table 1: The weak test of multimodality

showed that 213/1090 (19.5%) and 60/1090 (5.50%) elec-
trodes were more predictive using language- and vision-
aligned event structures respectively, with average perfor-
mance differences of 7pegson = 0.082[0.011,0.21] and
0.081[0.016, 0.344]. The weak SLIP test yielded 218/1090
(20%) and 73/1090 (6.70%) electrodes for language-
and vision-aligned structures, respectively, with perfor-
mance differences of 7peyson = 0.046[0.01,0.140] and
0.024[0.01, 0.04] between SLIP-SimCLR and SLIP-Combo
vision transformers. The strict test of multimodality
found 12/1090 (1.1%) electrodes were more predictive in
both alignments, with average differences of 7pearson =
0.0766[0.013,0.163] and 0.0922[0.019, 0.304]. The strict
SLIP test showed 28/1090 (2.57%) electrodes favored
the SLIP-Combo over the SLIP-SimCLR in both align-
ments, with differences of rpeyson = 0.0522[0.011, 0.10]
and 0.026[0.0162, 0.044]. The non-linear integration test re-
iterated the 12/1090 electrodes from the third test, showing
a consistent preference for multimodal models over Mul-
tiConcat and MultiLin, with performance differences of
Tpearson = 0.0566[0.025,0.113] and 0.084[0.029,0.21] in
the language- and vision-aligned datasets, respectively.

In examining the DKT atlas in Figure 3, it’s evident that the
largest cluster of multimodal electrodes is around the tem-
poroparietal junction, aligning with previous studies. Key
regions include the superior and middle temporal cortex, the
inferior parietal lobe, and the supramarginal gyrus, which



Revealing Vision-Language Integration in the Brain with Multimodal Networks

Multimodal vs Unimodal

Language-Aligned

Language-Aligned

> @ ap

SLIP-Combo vs SLIP-SimCLR

& @

Vision-Aligned

Vision-Aligned

Percentage of multimodal electrodes

= region contains electrode that is multimodal with both language- and vision-aligned data

Figure 3. Multimodal integration sites. Multimodal sites aggregated into regions from the DKT atlas. For each site we compute the
percentage of multimodal electrodes using the first test and the (left) language or (right) vision alignment. The top defines a site to be
multimodal if the best model that explains that electrode is multimodal as opposed to unimodal. The bottom controls for architecture,
parameters, and datasets by comparing SLIP-Combo and SLIP-SimCLR. Red regions have no multimodal electrodes. Regions which
have at least one electrode that is multimodal both with the vision and language aligned stimuli are marked with a blue star. We notice that
many electrodes occur in the temporoparietal junction with a cluster in the superior temporal cortex, middle temporal cortex, inferior
parietal lobe, etc. Other areas we identify include the insula, supramarginal cortex, the superior frontal cortex, and the caudal middle

frontal cortex.

are close and theoretically linked to vision-language integra-
tion. These areas, which prior work has found to be crucial
for tasks like auditory-visual processing (Petrides, 2023; Bz-
dok et al., 2016), emotion processing, and social cognition
(Stoeckel et al., 2009), support our findings and previous
theories. The multimodal abstractions at this junction might
explain their better prediction by multimodal representa-
tions. Additionally, electrodes passing tests 3 and 4 in the
frontal and prefrontal cortex, specifically in the superior
frontal lobe (Schilling et al., 2013), caudal middle frontal
cortex, and pars orbitalis (Belyk et al., 2017), suggest com-
plex cognitive processing in vision-language integration.
This indicates a widespread brain network involved in this
integration, corroborating our results and existing literature
which focused on more specific forms of vision-language
integration.

Our multimodality tests demonstrate that multimodal mod-
els can greatly out-perform unimodal models at predicting
activity in the brain, sometimes by close to rpeyson = 0.1
at some electrodes. This potentially demonstrates that mul-
timodality could be an important factor in improving con-
nections between deep networks and the brain. Further-
more, the areas we identify have commonly been associated
with specific forms of vision-language integration identified
in prior analyses. These prior analyses were constrained
by smaller datasets with strong controls. We reduce these

Model Next-Word Perplexity (])
Average Unimodal 1334
Average Multimodal 210.3

Scene Class Accuracy (1)
Average Unimodal 74.2
Average Multimodal 543

Table 2. Multimodal vs Unimodal Task Performance. We re-
port average unimodal task performance for unimodal models and
multimodal models. We show next-word prediction perplexity and
scene-cut class accuracy for one movie. Our findings demonstrate
that unimodal models have better unimodal representations than
multimodal models as reflected by better performance.

controls and still meaningfully identify the same areas for
future study. More specifically, our analyses allow us to
study vision-language integration without committing to a
specific structural hypothesis. Despite this more general
search space, we find significant overlap with prior work.

4.3. Model Task Performance

While our study aims to explore vision-language integra-
tion, we must consider other explanations, such as whether
our multimodal networks outperform unimodal networks
in language or visual reasoning. This could imply that our
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findings are due to incremental improvements unimodal pro-
cessing than vision-language integration. To address this,
we evaluated our multimodal networks’ performance on
unimodal tasks. For language tasks, we assessed next-word
prediction performance on our movie dialogue in both mul-
timodal and unimodal language networks, using perplexity
as a metric. For vision tasks, we tested scene classification
abilities using the Places365-labeled dataset.

Our results are detailed in Table 2. We show that multimodal
networks perform worse on unimodal tasks compared to uni-
modal networks. This reduces the likelihood that our find-
ings are merely associated with improvements in unimodal
representations or unimodal processing by multimodal net-
works. This provides more evidence that our discoveries are
associated with some form of vision-language integration.

4.4. Which Multimodal Architecture is most
"Brain-like'?

In Figure 4, we use our model ranking techniques and show
the most predictive multimodal model for each of the elec-
trodes that pass our tests of multimodality (specifically, the
weak test of multimodality, the strict test of multimodality,
and the non-linear integration test). We see that consistently,
trained multimodal models such as SLIP-Combo and SLIP-
CLIP predict the brain better than architecturally multimodal
models such as ALBEF, BLIP, or Flava. We also find that
the SLIP-Combo and SLIP-CLIP language encoders are the
most predictive networks in the vision-aligned data. This
may indicate that there exists a notion of “concepts” that
describe stimuli at a higher level than simply the vision or
text modality, and that the SLIP-* models align well with
the brain’s representations of such concepts.

There are many possible reasons why models like SLIP-
Combo or SLIP-CLIP out-predict architecturally multi-
modal models such as dataset considerations or the need
for better cross-attention design. However, architecturally
multimodal models seem to do a generally better job of
predicting the language aligned activity. Among the archi-
tecturally multimodal models, BLIP is the most predictive
of the brain. These results could indicate that the cross-
attention mechanism used in models such as BLIP is better
at integrating vision and language in a manner similar to the
brain. There is room for future work in this direction where
we focus on specific motifs/network designs and how they
associate with vision-language integration in the brain.

In general, our findings show that network parameter size
does not correlate with predictivity. SLIP-Combo and SLIP-
CLIP have fewer parameters than our architecturally multi-
modal models and even our unimodal models. This indicates
a special feature in CLIP-style training that can be studied
more carefully in future work.

5. Conclusion

The methodology introduced here provides a fine-grained
analysis that overcomes a first hurdle: it distinguishes ran-
domly initialized and trained language networks in every
modality individually and then across modalities. Having
overcome this hurdle, we can now identify areas which
are better explained by multimodal networks compared to
unimodal networks and linearly-integrated language-vision
networks. The most-fine grained result we provide com-
pares SLIP-Combo vs SLIP-SimCLR, a multimodal and
unimodal network controlling for architecture, dataset, and
parameter count. To enable future research, we release a
toolbox for multimodal data analysis along with, upon re-
quest, the raw neural recordings under a permissive open
license such as Creative Commons.

We identified a cluster of sites which connect vision and
language? . This appears to be a network which spans the
temporoparietal junction, connecting the superior temporal
cortex, middle temporal cortex, inferior parietal lobe, and
supramarginal gyrus, to areas in the frontal lobe, containing
the pars orbitalis, superior frontal cortex, and the caudal
middle frontal cortex. These areas align with prior stud-
ies and analyses on particular aspects of vision-language
integration in the brain.

While our data has high fine-grained temporal resolution,
and our method is sensitive to the time course of the signal,
our final analysis aggregates across time bins. We have
not investigated how multimodal integration occurs as a
function of time. This could be used to derive a time course
of integration across the brain and to establish a network
structure.

Our method is agnostic to the modalities used, or to the
number of modalities. Neural networks exist which inte-
grate not just language and vision, but also audio and motor
control. These could also be used with our method (our data
even explicitly enables future modeling with audio). The
distinction and interaction between audio processing and
language processing could be revelatory about the structure
of regions which transition from one to the other, like the
superior temporal gyrus.

We plan to more deeply investigate which network compu-
tations, motifs, and hyper-parameters are most brain-like
when designing multimodal networks. In particular, we will
aim to identify the types of modules (e.g. cross-attention
with language attending vision or vision attending language)
that best fit the brain and the principles of designing multi-
modal datasets. Our approach could be used to determine
which of these approaches is most brain-like, helping to

This work was carried out under the supervision of an Institu-
tional Review Board (IRB). 28 modern GPUs on 7 machines were
used for four weeks, evenly distributed across experiments.
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Language-Aligned

slip-clip-language
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Figure 4. Best model of multimodal integration.We visualize the individual electrodes that pass our multimodality tests for the language-
aligned (top) and vision-aligned datasets (bottom), adding a bold outline to electrodes that pass across both datasets. We color the
electrodes by the top-ranked multimodal model that predicts activity in the electrode. We see that models such as SLIP-Combo and
SLIP-CLIP often predict activity the best across datasets. We also see that BLIP and Flava are the best architecturally multimodal models.

guide future research. One could even imagine this approach
enabling a variant of Brain-Score dedicated to multimodal
processing in order to systematically investigate this over
time as a community.

Limitations. We note some limitations of our investigation
as well. Most notably, while we point our areas that seem
to be associated with multimodal integration, we empha-
size that more studies should be conducted to add evidence
for these areas. We hope our work has provided additional
evidence for areas associated with vision-language integra-
tion in the brain beyond what has been established in prior
work and the networks that have the most similar design to
said areas. The contributions of this work will strengthened
with complementary studies into all identified regions of
multimodal integration in the future.

Impact Statement

This paper presents work that advances the connections
between deep learning networks and computations in the
brain. There are many potential societal consequences of our
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here.
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A. Neural Data Details

We provide details of our neural data recordings and preprocessing steps taken to form event structures.

A.1. Data Collection Overview

We provide an overview of our dataset in Figure 5. We provide a subject-by-subject breakdown in Table 3, providing
information on the age, number of electrodes, and the length of the recording.

b Data Collection Audio/Language Stimulus
_Now that's how ! like to start...

Vision Stimulus

A Electrode Placements

Eg u*wk;'vf‘\fﬁwvfliﬂﬁ;h’}'r{ﬁ"ﬁ""ﬁ MWWJFWMW

Time (s)
Voltage at one electrode

Voltage (V)

Figure 5. Data Overview. (a) The electrode placements over all subjects. Each yellow dot denotes an electrode collecting invasive field
potential recordings for further analysis in our experiments. (b) An overview of our data collection procedure. Subjects are presented
feature length films while neural data is collected from these electrodes in the brain.

Subj. Age (yrs.) # Elec- Movie Recording
trodes time (hrs)
1 19 154 Fantastic Mr. Fox 1.83
2 12 162 Venom 2.42
3 18 134 Cars 2 1.92
4 6 156 Fantastic Mr. Fox 1.5
5 16 162 Sesame Street Episode 1.28
6 4.5 106 Ant Man 2.28
7 12 216 Cars 2 1.58

Table 3. Subject statistics Age (second columns), number of electrodes (third column), movie shown (fourth column) and recording time
(fifth column) per subject. Electrode placements are done for clinical purposes and the distribution of electrode locations differ from
subject to subject. The average amount of recording data per subject is 1.83 (hrs).

A.2. Event Structures

We parse our neural activity into individual language and single movie-frame combinations (which we call interchangeably
event structures or text-image pairs) by discretizing the movie stimulus, allowing us to feed inputs to our deep neural
network models (which are not trained on movie data). We define event structures by the guiding feature used to select a
particular text-image pair in the movie for analysis. So as not to unfairly prioritize one modality over the other or impose
a hypothesis over vision-language integration, we design two different kinds of event structures: The first kind of event
structure consists of word onset times, a language-aligned event. Word onsets have been used in prior work (Goldstein et al.,
2021) and are commonly associated with language processing. For each word onset, we take the prior sentence context of
the given word to add contextual information for the language models. We also take the closest frame after the word onset
as the associated image input. The second kind of event structure consists of visual scene cuts (i.e. camera cuts). We extract
the frames associated with a scene cut as proxy for visual processing given a shift in the pixel distribution between frames.
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Language Aligned Dataset: Vision Aligned Dataset:
Context segments first Scene cuts first

Smeagol will show the way

Closest
Frame

Closest
Sentence

But they were all deceived

Smeagol will show the way for another ring was made

Figure 6. Event Structures. We construct two datasets for understanding vision-language integration in the brain. (Left) The language-
aligned dataset consists of choosing context segments and the closest frame. Context segments choose each word and the corresponding
sentence context. (Right) The vision-aligned dataset consists of choosing a scene cut and the closest sentence that occurs after a scene cut.

We then take the closest sentence that occurred after the scene cut. (Note that by language-alignment or vision-alignment,
here, we mean the anchoring of points in neural time-series to points in the movie).

We use these two kinds of event structures to create two datasets. Our language-aligned dataset consists of [context of a
given word, closest frame pairs] with the associated neural activity as processed in Section 3. Our vision-aligned dataset
consists of [scene cut frames, closest sentence to a scene cut frame] with similar processing on the neural activity. We
analyze all results over the datasets individually and then compare results across the datasets to identify electrodes for
multimodal integration.

We note that our two datasets cover many possible hypotheses of vision-language integration. The language-aligned dataset
likely covers short-term integration as each corresponding context segment has a nearby frame. However, our vision-aligned
dataset likely covers long-term integration since there is separation between the scene cut and corresponding sentence. This
design makes our experiments more difficult by considering many forms of possible visio-linguistic reasoning.

A.3. Notes on Stimulus Independence (Autoregression)

Converting neural activity measured in response to naturalistic movie-viewing to a dataset of nomimally IID event-structures
presents a particular challenge often explicitly avoided in experimental designs that leverage otherwise unrelated natural
images or language prompts: that is, nonindependence in the form of autoregression. Movies (driven as they are by common
visuolinguistic themes) contain inherently autoregressive structure that can lead to overfitting in parametrized predictive
models designed to predict neural response patterns evoked by that structure. The parsing of our final event-structures
into training, testing and validation splits was designed explicitly to assess for such overfitting. When creating the train-
validation-test splits, we assign contiguous chunks of the movie to each split. In practice, and especially for movies with
more linear narrative structure, we assumed this continguous splitting could provide at least a weak form of independence
between sampled event-structures. While this by no means fully accounts for the non-independence of the stimulus set writ
large, our results across the training, validation, and test splits suggest that it does help to minimize potential overfitting. In
future work, we hope to revisit our event-structure delineation and sampling, potentially leveraging movie-trained models
like Salesforce’s ALPRO (Li et al., 2022a) to select stimuli that are more distinct not just at the level of pixels or words, but
in latent feature space.

B. Candidate Deep Neural Network Models

We present a full set of networks in Table 4. Because they control for dataset and architecture (varying only the learning
objective), comparisons amongst the variants of the SLIP models are our most empirically rigorous test of multimodality.
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Model Modality Architecture Parameters Dataset

ALBEF Architecturally Multimodal ~— Transformer 209.8M Conceptual Captions/SBU Captions/COCO/Visual Genome/Conceptual-12M
BLIP Architecturally Multimodal ~ Transformer 223.5M Conceptual Captions/SBU Captions/COCO/Visual Genome/Conceptual-12M
Flava Architecturally Multimodal ~ Transformer 241.4M Public Multimodal Datasets

SLIP-Combo Vision Trained Multimodal Transformer 86M YFCCI5M

SLIP-Combo Language Trained Multimodal Transformer 63.6M YFCC15M

SLIP-CLIP Vision Trained Multimodal Transformer 86M YFCCI5M

SLIP-CLIP Language Trained Multimodal Transformer 63.6M YFCCI15M

SBERT Language Transformer 109.5M SNLI/Multi-Genre NLI

SimCSE Language Transformer 109.5M QQP*/Flickr30K/ParaNMT/SNLI

SLIP-SimCLR Vision Transformer 86M YFCCI5M

BEIT Vision Transformer 86.3M ImageNet-1K

ConvNeXt Vision Convolutional 109.9M ImageNet-1K

Table 4. Multimodal and Unimodal DNNs. A catalogue of the networks we include in this experiment. We compare architecturally
multimodal networks, trained multimodal networks, unimodal language and unimodal vision networks. We mostly study transformers but
also include ConvNeXt, a CNN model. We tabulate the number of parameters in the model.

However, given that the SLIP models contain only one kind of multimodal - unimodal contrast (SLIP-SimCLR versus
SLIP-Combo’s visual encoder), we added a number of uncontrolled model contrasts to assess the predictive power of
unimodal and multimodal representations more generally. These models include ALBEF (Li et al., 2021) (a two channel
multimodal encoder that uses a vision transformer and language transformer trained with a contrastive loss followed
by a multimodal transformer); BLIP (Li et al., 2022b) (a two channel multimodal enoder similar to ALBEF but trained
with an image-text matching loss and momentum model); Flava (Singh et al., 2022) (a two channel multimodal encoder
with a multimodal encoder that builds fused embeddings and trained reconstructively); SBERT (Reimers & Gurevych,
2019a) (a unimodal masked language transformer for sentence embeddings); BEIT (Bao et al., 2021) (a unimodal vision
transformer trained via masked image reconstruction); SIimCSE (Gao et al., 2021) (a unimodal language transformer trained
via contrastive learning); ConvNeXt (Liu et al., 2022b) (a unimodal vision convolution network built by modifying the
ResNet architecture). These models provide a broader sample of multimodal and unimodal networks, while still maintaining
some core similarities with the SLIP models (transformer backbones or contrastive learning.)

In Table 4, we also provide the training data used when pre-training these networks. In general, we find that all models
are trained on open datasets which contain more naturalistic dataset. For example, most vision models such as BEIT or
ConvNeXt train on ImageNet (Deng et al., 2009) which contains real-world images. Similarly, our multimodal models
train on YCCFM-15M or Conceptual Captions (Sharma et al., 2018) which contains images-text pairs of media objects
that are more realistic. This might impact performance of our networks in building representations of movie frames and
dialogue. However, our language networks, SBERT and SimCSE, train on SNLI (Bowman et al., 2015) and Multi-Genre
NLI (Williams et al., 2018), datasets that contain fictional references. This further supports our design. Our unimodal
networks have potentially better performance than our multimodal networks when comparing performance to the brain.

We also introduce two linearly integrated vision-language models, MultiConcat, and MultiLin. MultiConcat consists of
concatenating representations from SimCSE and SLIP-SimCLR, and MultiLin extends MultiConcat by introducing a trained
linear projection to project the concatenate representation to a dense vision-language vector trained using the NLVR-2
dataset (Suhr et al., 2018). By introducing these models, we aim to distinguish between areas that are simply responding to
the presence of vision and language features and areas that are integrating vision and language in a rich, non-linear fashion
using comparisons we describe more in detail.

We assess both trained and randomly-initialized versions of these models first and foremost because, in most cases, the
multimodality of these models is a function ONLY of their learning objective: This means, for example, that models like
the SLIP models — which consist of architecturally encapsulated vision and language encoders — cannot, in the absence of
training, be considered multimodal. Models like ALBEF, BLIP, or Flava, on the other hand, may be considered multimodal
even in the absence of training due to architectural inductive biases such as cross-modal attention-heads that integrate
linguistic and visual inputs from the outset of processing.

16



Revealing Vision-Language Integration in the Brain with Multimodal Networks

a Languoge Medel Arerage Pefomance b

l

J\r ‘u ,'

0.10 |‘ | 1lAu
g 7 | |
2 ow |um F“l M "*"

-2000-1500-1000 =500 0 500 1000 1500 2000
Time

Figure 7. Results Overview. (a) The top ten Desikan-Killiany-Tourville (DKT) regions, ranked based on average predictivity, Pearson r,
across electrodes in that region. Error bars represent the standard error associated with averaging the Pearson r over the electrodes and
time bins. All results shown here are from pretrained variants of the model. (top) A language model, SBERT. (mid) A vision model,
SLIP-SimCLR. (bottom) A multimodal model, BLIP. (b) The predictivity of these same three models for three typical electrodes. (top) An
arbitrary electrode which is not responsive to language or vision. (mid) An electrode which is responsive to vision, but not language, and
is not better explained by multimodal integration. (bottom) An electrode which is responsive to language and that is better explained by a
multimodal network. Confidence intervals are not shown for clarity.

C. Neural Regressions

In this section, we detail our neural regression pipeline, which proceeds in 4 phases: feature extraction, dimensionality
reduction (via sparse random projection), cross-validated ridge regression, and scoring.

C.1. Feature Extraction

This follows from approaches taken in Conwell et al. (2021). We consider feature extraction to mean the extraction of a
separate feature vector at every layer in a network — in other words, each distinct tensor operation module that progressively
transforms model inputs into outputs. This means, for example, that we consider not only the outputs of each transformer
attention head, but also of the individual key, query, value computations that produce them. If the layer has more than 1
dimension, then we flatten the tensor such that each layer represents any given input as a 1-dimensional feature vector. (Note:
This flattening makes no assumptions about the separation of a given feature space into spatial and semantic components,
and allows the subsequent regression to reweight all contributing components as relevant). The output tensor thus constitutes
a dataset of n inputs (either images, sentences, or image-sentence pairs) as an array F' € R"*? where D is the dimensions
of the feature vector.

C.2. Sparse Random Projection

For certain flattened feature vectors, the dimensionality D is very large, and as such performing ridge regression on F' is
prohibitively expensive, with at best linear complexity with D, specifically O(n?D) (Hastie & Tibshirani, 2004). We use the
Johnson-Lindenstrauss lemma (Johnson, 1984; Dasgupta & Gupta, 2003) to project F' to a low dimensional representation
P € R™*P that preserves pairwise distances in F' with errors bounded by a factor . If u and v are any two feature vectors
from F', and u, and v,, are the low-dimensional projected vectors, then

(1= )llu =[] < [Jup —vp[[* < (1 + ¢)Ju—v||? M
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Equation 1 holds provided that p > % (Achlioptas, 2001). To find the mapping from F' to P, we used sparse random

projections (SRPs) following Li et al. (2006). The authors show a P satisfying Equation 1 can be found by P = F'R where
R is a sparse n X P matrix with i.i.d. elements shown below:
vD

7 with prob. 5 W

Tij = with prob. 1 — ﬁ 2)

vD
with prob. 5 \/»

If F has dimensionality D that is less than the dimensionality of the Johnson-Lindenstrauss lemma, then no projection is
applied. In this case, P = F'.

C.3. k-fold Ridge Regression

To determine how well vision and language networks predict activity in the brain, we ran regressions from representations
extracted from a specific layer of either a multimodal or unimodal network to predict the average activity of the SEEG
signals over a window of time for all electrodes of our 7 subjects. We detail the steps we took to run regressions per subject
below.

We use ridge regression to predict the average activity, y, at a given electrode and time point as constructed in Section 3,
from their associated DNN features P. Given the sequential nature of our data, we used a 5-fold cross-validation procedure.
For each fold, we split our dataset of representations into a contiguous training set(80%), Piain and Y, a contiguous
validation set (10%), Pyaiiq and Yyaiiq, and contiguous testing set (10%), Py and Y. Each split takes a contiguous chunk of
event structures in order of their occurrence in the movie, and each fold changes the starting point of the training, validation,
and testing set such that different contiguous chunks are assigned to a different set. We standardize the columns of Py,
and P,,j;q to have mean 0 and a standard deviation of 1 and fit this standardization on P.g. We fit the coefficients Bz ofa
regression model on the train dataset such that Yyain = Plrain 37 + ¢ with minimal error ||¢||. Ridge regression penalizes large
||3|| proportional to a hyperparameter A, which is useful in preventing overfitting when regressors are high-dimensional and
highly correlated. Each B is calculated by the fixed ridge regression solution:

B = ((Rrain )TRrain =+ /\Id) -1 (Rrain)Tytrain 3)
The coefficients B are then used to predict the held out data where:

yvaAlld Pval]dﬁ (4)
Ytest = Restﬁ

We use the KFold function from Pedregosa et al. (2011) and implemented ridge regression in Pytorch (Paszke et al., 2019).
In this analysis we run the 5-fold regression per A value, where \ was varied using a logarithmic grid search over 10! to
108. On each fold, we calculated a score for the prediction yyyiq and Y by computing the Pearson correlation coefficient.
This score is averaged over the 5 folds to get final validation and test set scores. We choose the best A value using the
cross-validated scores and take the associated test scores with the A value. We run this regression for all electrodes and time
points simultaneously.

To analyze network performance over all layers, we select the best performing layer using the validation set. Specifically,
per electrode, we average the validation correlation scores over time and take the layer with the max average score. We then
take the associated test set correlation score as the overall score per model.

We provide initial results in Figure 7. We first show the top ten Desikan-Killiany-Tourville (DKT) regions based on the
average score over one model from the three model types: a unimodal language model, a unimodal vision model, and a
multimodal model. We notice several re-occurring regions across the three model types including the superior temporal
cortex, the rostral anterior cingulate, the transverse temporal cortex, the fusiform and the superior frontal cortex. These
are regions associated with the temporoparietal junction, indicating a potential network of vision-and-language processing
with connections to the frontal lobe. Many of these regions are associated with high level emotion processing and spatial
processing. Furthermore, we show the results of the three model types on three particular electrodes. The first electrode is in
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Figure 8. Boostrapping Procedure. We bootstrap our event structures and corresponding neural activity to derive 95% confidence
intervals per time bin per electrode on our training, validation, and testing set in our analysis.

the precentral gyrus and gives the average performance of the models with peak performance of 7pearson = 0.15. The second
electrode is in the inferior parietal lobe and gives an example of an electrode with strong performance from vision models.
Finally, the last electrode is in the superior temporal lobe and gives an example of an electrode processing language and
potentially integrating multimodal features. The analysis will use these scores over time per electrode and compare the score
distributions to quantify statistically whether a multimodal model is performing significantly better than a unimodal model.

D. Statistical Testing Details

D.1. Bootstrapping over Event Structures

As shown in Figure 8, we introduce a bootstrapping procedure over our event structures (image-text pairs) which allows us
to derive confidence intervals on our regression per time bin ¢ and electrode e in our analysis.

In our bootstrapping procedure, we first resample the image-text pairs and corresponding neural activity with replacement
per movie and subject 1000 times. We use the same 1000 resampled image-text pairs and corresponding neural activity
across all models (both trained and randomly initialized) to allow for model comparison in later analysis. We denote this
resampling with replacement as follows:

{(PO),yM), .. (PO9)), (09 (P(I000)) 4 1000))} _ 1p 4} )

Most importantly, for each (P(®), y()), we sort the resampled indices by their occurrence in the movie time to maintain the
autoregressive structure of data. We note that the scores are skewed upwards when we do not sort.

We then rerun the regression for each (P(i), y(i)) to derive the 95% confidence intervals by taking the 2.5th percentile
and 97.5th percentile on our score distribution per ¢ per e on the training, validation, and testing set. Upon inspection of
bootstrapping scores on a sample of time bins and electrodes, we note that the scores are normally distributed.

We use this information as a filter, identifying time-bins and electrodes that do not have meaningful response to our event
structures. We interpret the lower confidence interval of our validation set bootstrapping scores as the lower bound on our
score parameter >. For a time bin where this lower bound is below 0, we can say that no meaningful mapping to the brain
has been learned.

3We emphasize that this is done on our validation set to allow for unfiltered comparison on our test set scores.
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D.2. Model Comparisons

Each of our multimodality tests in the main analysis is predicated on a model comparison procedure. After our bootstrapping
procedure, we filter the time bins in electrodes for models where the lower 95% confidence interval of the validation score
overlapped with O (see above). Furthermore, we remove models from further analysis on a particular electrode if all time
bins of the model has a validation confidence interval that overlaps with O for all time bins.

Per electrode e, we identify models that have at least 10 time bins where the lower validation confidence interval is greater
than zero. If there are no other models with 10 such time bins, then only this model remains for further analysis and we
refer to such models as "default winners", meaning the model has the default best performance on the electrode and has
statistically significant performance on an electrode.

For electrodes that did not have a "default winner", we design a model ranking based on a comparison of the mean
bootstrapped validation score over time. We define a confidence interval on the bootstrapped validation scores over time per
model on each electrode and sort the mean bootstrapped validation scores over time to obtain a model ranking.

Using the first and second highest ranking models, we use a second-order bootstrapping procedure across time bins in e
rather than event structures. We only compare the top two models as these are the best predictors of the activity in e and we
assume that if the first ranking model is significantly better than then second ranking model, then this significant difference
will hold with all other models. We calculate the difference in the average score across the 10 or more resampled time bins
between the 2 candidate models in a given comparison. This procedure gives us a p-value per model comparison on each
electrode. We repeat this procedure for all electrodes for each of the model comparison tests we describe below. We then
use FDR (Benjamini-Hochberg) (Thissen et al., 2002) multiple comparisons corrections to adjust the p-value associated
with each test on each electrode.

Each of the 5 tests we conduct are suggestive of multimodality, but each successive test provides additional evidence.
For tests 1 and 2, we only consider results per dataset alignment. Test 1 considers all comparisons but test 2 controls for
architecture and training details with SLIP-Combo and SLIP-SimCLR. Since results in tests 1 and 2 could be explained
by unimodal task performance, we introduce tests 3 and 4 where we identify sites that are multimodal in both dataset
alignments. Such sites must be predictive by models that perform vision tasks and language tasks. In particular, we can
note that test 3 and 4 are identifying sites where multimodal models outperform all unimodal language and unimodal vision
models on all possible vision and language tasks associated with a particular neural site. We introduce test 5 as a test for
finding the comparing types of multimodal integration, i.e. comparing rich integration styles versus simple linear integration
styles where vision and language features are present but not integrated. After multiple comparison corrections, we tabulate
the total number of electrodes that significantly pass each test as a proportion of the total number of assayed electrodes
(N=1090). After aligning the location of the various electrodes to the regions provided by the Desikan-Killiany-Tourville
atlas (Klein & Tourville, 2012), we can further subdivide this proportion by the number of electrodes located in each region.

E. Model Task Performance

We give an overview of model task performance by reporting the accuracy of our 12 candidate models on several language-,
vision- and multimodal-related tasks. We only include results on tasks where the model was evaluated under the same
setting e.g. zero-shot task performance. Our multimodal model performance can be seen in Table 5. The SLIP model
performance and unimodal vision model performance, which is only evaluated on ImageNet can be seen in Table 6. Our
unimodal language model performance is reported in Table 7. We do not report the performance the SLIP model language
encoders since they have not been evaluated to our knowledge.

Model VQA-v2 NLVRZ Flickr30K (1K Test Set) Text Retrieval ~ Flickr30K Image Retrieval

R@5 R@5
BLIP 77.5 82.3 99.7 96.7
Flava 72.5 78.9 94.0 89.38
ALBEF 75.8 83.1 99.5 96.3

Table 5. External Multimodal Task Performance. Multimodal model zero-shot performance on 4 multimodal tasks. These include the
VQA-v2 dataset (Goyal et al., 2017), the NLVR?2, dataset (Suhr et al., 2018), and the Flickr30K dataset (Plummer et al., 2015).
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Model ImageNet Linear ImageNet Finetuned
SLIP-Combo 72.1 82.6
SLIP-CLIP 66.5 80.5
SLIP-SimCLR 64.0 82.5
ConvNeXt 83.8 86.8
BEIT 76.5 86.3

Table 6. External Unimodal Vision Task Performance. ImageNet-1K (Russakovsky et al., 2015) top-1 results across the SLIP models
and unimodal vision models. The left column shows performance using linear classification and the right column shows performance
from finetuning.

Model STS-16 STS-B SICK-R

SBERT 74.3 77.0 72.9
SimCSE 80.8 84.2 80.4

Table 7. External Unimodal Language Model Task Performance. Unimodal language model performance on the Semantic Task
Similarity datasets (Pontiki et al., 2016) and SICK dataset (Marelli et al., 2014)

Furthermore, we report statistics on the stimulus dataset, the Brain Treebank. We train a next-word prediction task using
all multimodal and language model and report the test-set perplexity in Table 8. We also measure the scene classification
performance over the scene-cuts dataset with our multimodal and vision models and report this in Table 9.

F. Medial Region Analysis

We repeat our analysis in Section 4.2 but visualize medial regions in Figure 9. We identify two main medial areas, the
isthmus cingulate (Liu et al., 2022a) and the superior frontal cortex (Willems et al., 2009). This aligns with prior findings
studying medial areas, identifying integration of vision, language, and action. Future work can include deeper study of
medial areas but we do not carry this in our paper because we do not have many electrodes in medial regions, making results
noisy.

G. Multimodal Electrode Visualization

We show our full set of multimodal electrodes as a scatter plot in Figure 10. This provides as a basis for comparison to our
condensed region-based visualization.

H. SLIP-CLIP vs SLIP-SimCLR

We re-run our architecture and dataset controlled multimodality tests with SLIP-CLIP and SLIP-SimCLR instead of with
SLIP-Combo. We show the results in Figure 11.
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Model Test Set Perplexity (One Movie)
BLIP 168.7
ALBEF 223.8
Flava 202.2
SLIP-Combo Language Encoder 197.6
SLIP-CLIP Language Encoder 259.3
SBERT 121.3
SimCSE 145.4

Table 8. Movie Language-based Task Performance. Test set perplexity measured on the dialogue of a single movie across all models
that have language inputs. We see that unimodal language encoders perform as well or better than multimodal encoders, which shows that
our sites of multimodal integration are not associated with better unimodal processing.

Model Scene Classification Accuracy
SLIP-Combo Vision Encoder 73.9
SLIP-CLIP Vision Encoder 71.2
SLIP-SimCLR Vision Encoder 71.0
BEIT 75.4
ConvNeXt 76.2
ALBEF 60.1
Flava 584
BLIP 62.4

Table 9. Movie Vision-based Task Performance. Scene-Cut classification accuracy for one movie. Scene-cuts are labeled with the
Places2 dataset labels and a linear classifier is trained to take image representations and decode the scene-cut label. We see that our
multimodal models perform worse than unimodal vision models.

Multimodal vs Unimodal
Language-Aligned Vision-Aligned

0

SLIP-Combo vs SLIP-SimCLR

Language-Aligned Vision-Aligned

s DG

= region contains electrode that is multimodal with both language- and vision-aligned data

Percentage of multimodal electrodes

Figure 9. Medial Region Analysis. Multimodal sites aggregated into regions from the DKT atlas, visualizing medial regions. For each
site we compute the percentage of multimodal electrodes using the first test and the (left) language or (right) vision alignment. The top
defines a site to be multimodal if the best model that explains that electrode is multimodal as opposed to unimodal. The bottom controls
for architecture, parameters, and datasets by comparing SLIP-Combo and SLIP-SimCLR. Red regions have no multimodal electrodes.
Regions which have at least one electrode that is multimodal both with the vision and language aligned stimuli are marked with a blue star.
We identify several medial regions including the superior frontal cortex and the isthmus cingulate.
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Multimodal versus Unimodal

Language-aligned Vision-aligned

B Unimodal Multimodal B Multimodal across vision and language

Figure 10. Raw Multimodal Electrodes. A raw version of Figure 3 and Figure 9 which visualizes the electrode locations instead of
aggregating over regions. We multimodal regions in a single modality in yellow and over both dataset modalities in purple.
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Language-Aligned

Figure 11. SLIP-CLIP vs SLIP-SimCLR. We compare the SLIP-CLIP vision transformer with SLIP-SimCLR instead of using SLIP-
Combo. Electrodes that are better predicted by SLIP-CLIP in one dataset alignment are colored yellow. Electrodes that are better predicted
by SLIP-CLIP in both dataset alignments are colored purple. We find similar electrodes are better predicted by SLIP-CLIP. A total of
9/1090 electrodes are better predicted by SLIP-CLIP than SLIP-SimCLR in both dataset alignments.
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