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Different theories explain how subjective experience arises from brain activity1,2. 
These theories have independently accrued evidence, but have not been directly 
compared3. Here we present an open science adversarial collaboration directly 
juxtaposing integrated information theory (IIT)4,5 and global neuronal workspace 
theory (GNWT)6–10 via a theory-neutral consortium11–13. The theory proponents and 
the consortium developed and preregistered the experimental design, divergent 
predictions, expected outcomes and interpretation thereof12. Human participants 
(n = 256) viewed suprathreshold stimuli for variable durations while neural activity 
was measured with functional magnetic resonance imaging, magnetoencephalography 
and intracranial electroencephalography. We found information about conscious 
content in visual, ventrotemporal and inferior frontal cortex, with sustained responses 
in occipital and lateral temporal cortex reflecting stimulus duration, and content- 
specific synchronization between frontal and early visual areas. These results align 
with some predictions of IIT and GNWT, while substantially challenging key tenets of 
both theories. For IIT, a lack of sustained synchronization within the posterior cortex 
contradicts the claim that network connectivity specifies consciousness. GNWT  
is challenged by the general lack of ignition at stimulus offset and limited 
representation of certain conscious dimensions in the prefrontal cortex. These 
challenges extend to other theories of consciousness that share some of the 
predictions tested here14–17. Beyond challenging the theories, we present an 
alternative approach to advance cognitive neuroscience through principled, 
theory-driven, collaborative research and highlight the need for a quantitative 
framework for systematic theory testing and building.

Philosophers and scientists have sought to explain the subjective nature 
of consciousness (for example, the feeling of pain or of seeing a colour-
ful rainbow) and how it relates to physical processes in the brain18,19. 
This quest has led to various theories of consciousness evolving in 
parallel1–3 and often providing incompatible accounts of the neural 
basis of consciousness1,2. Furthermore, empirical support for a given 
theory is often highly dependent on methodological choices, point-
ing towards a confirmation bias in theory testing3. Convergence on a 
broadly accepted neuroscientific theory of consciousness will have 
profound medical, societal and ethical implications.

To advance this goal, we tested two theories of consciousness, 
through a large-scale, open-science adversarial collaboration11,12,20–22 
aimed at accelerating progress in consciousness research by build-
ing on constructive disagreement. We brought together proponents 
of IIT4,5 and GNWT6,23, in addition to theory-neutral researchers. The 
group identified differential existing and novel predictions of the two 
theories and developed an experimental design to test them (Fig. 1a). 
We preregistered these predictions, including pass or fail criteria, 
expected outcomes and their interpretation ex-ante11,12. We focus on 
IIT and GNWT, among other widely discussed theories (for example, 
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recurrent processing theory and higher-order theories1,2), because 
they feature prominently in consciousness science, as demonstrated 
by a recent systematic review of the literature3.

IIT and GNWT explain consciousness differently: IIT proposes that 
consciousness is the intrinsic ability of a neuronal network to influence 
itself, as determined by the amount of maximally irreducible integrated 
information (phi) supported by a network in a state. On the basis of 
theoretical and neuroanatomical considerations, IIT suggests that a 
complex of maximum phi probably resides primarily in the posterior 
cerebral cortex, in a temporo–parietal–occipital ‘hot zone’4,5,24,25. GNWT 
instead posits that consciousness arises from global broadcasting and 
late amplification (or ‘ignition’) of information across interconnected 
networks of higher-order sensory, parietal and especially prefrontal 
cortex (PFC)6,9,23.

Both theories have a mathematical or computational core (integrated 
information for IIT and global workspace for GNWT) and proposed bio-
logical implementations (posterior cortex versus PFC and associated 
areas, respectively). Although it is difficult to test the mathematical or 
computational core of either theory directly, their competing biological 
implementations are empirically testable with current methodologies. 
Thus, our study focuses on brain regions where the predictions diverge 
most notably—posterior cortex for IIT and PFC for GNWT, rather than 
the associated areas in higher-order sensory or parietal cortex—to 
facilitate maximally diagnostic experiments.

One consequence of this biological focus is that theorists could 
respond to challenging data by modifying the proposed biological 
implementation while retaining the mathematical or computational 
core of a theory. Another consequence is that some predictions (and 
their associated consequences) may overlap with other theories of 
consciousness that share similar biological bases, such as higher-order 
theories16,17 in the PFC and local recurrency theories14,26 in the visual 
cortex. Although these are inherent aspects of studying theoretical 
proposals about neural mechanisms of consciousness, the results 
are expected to help the community make more informed judge-
ments about the tested theories (for rationale, see the preregistration  
document27).

Preregistered predictions and analyses
We tested three preregistered, peer-reviewed predictions of IIT and 
GNWT12 for how the brain enables conscious experience (Fig. 1a). 
Prediction 1 addresses the cortical areas holding information about 
different aspects of conscious content. IIT predicts that conscious 
content is maximal in posterior brain areas, whereas GNWT predicts 
a necessary role for PFC. Prediction 2 pertains to the maintenance of 
conscious percepts over time28–30. IIT predicts that conscious content 
is actively maintained by neural activity in the posterior ‘hot zone’ 
throughout the duration of a conscious experience, whereas GNWT 
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Fig. 1 | Predictions and experimental design. a, Predictions of IIT and GNWT. 
For prediction 1 (decoding of conscious content), IIT predicts maximal decoding 
of conscious content in posterior brain areas, whereas GNWT emphasizes a 
necessary role for the PFC. For prediction 2 (maintenance of conscious content), 
IIT posits that conscious content is actively maintained in the posterior  
cortex, whereas GNWT predicts brief content-specific ignition (approximately 
0.3–0.5 s) in the PFC at stimulus onset and offset, with content stored in a non- 
conscious silent state between these events. Waveforms (left) and temporal 
generalization matrices (right) illustrate the predicted amplitude-based and 
information-based temporal profiles: coloured rectangles indicate the three 
stimulus durations for PFC (GNWT) and posterior cortex (IIT; left); the arrows 
mark stimulus onset (brown) and offset (red), whereas predicted temporal 
generalization is depicted in green (GNWT) and blue (IIT; right). For prediction 
3 (interareal connectivity supporting consciousness), the stars and arrows  
on the brain diagram illustrate predicted synchrony patterns, with green 
representing GNWT and blue representing IIT. Brain surface is from Freesurfer. 

b, Conscious experience is multifaceted. For instance, viewing the Mona Lisa 
involves experiencing it as occupying a specific spatial location, categorizing  
it as a face, recognizing an identity and noting its leftward orientation, with  
this complex experience maintained over time. c, To manipulate conscious 
content, stimuli varied across four dimensions: category (faces, objects,  
letters and false fonts), identity (different exemplars within each category), 
orientation (left, right and front views) and duration (0.5 s, 1.0 s and 1.5 s). 
Example stimuli are shown. d, Experimental paradigm. Participants detected 
predefined targets (for example, a specific face and object or a letter and 
false font) in sequences of single, high-contrast stimuli. Each trial contained 
three stimulus types: targets (red; coloured frames for illustration only), task- 
relevant stimuli (orange-red; same categories as targets) and task-irrelevant 
stimuli (purple; other categories). Blank intervals between stimuli are not 
depicted. Object stimulus images in panels c,d are courtesy of Michael J. Tarr, 
Carnegie Mellon University, http://www.tarrlab.org/; face stimuli were created 
using FaceGen Modeler 3.1.

http://www.tarrlab.org/
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predicts ignition events in PFC at stimulus onset and offset, updating 
the global workspace, with activity-silent information maintenance 
in between31. Prediction 3 examines interareal connectivity during 
conscious perception. IIT predicts sustained short-range connecti-
vity within the posterior cortex, linking low-level sensory (V1/V2) with 
high-level category-selective areas (for example, fusiform face area and 
lateral occipital cortex), whereas GNWT predicts long-range connec-
tivity between high-level category-selective areas and PFC. The com-
bination of predictions, tested through highly powered, multimodal 
studies, places a high bar for either theory to pass, rendering failures 
more informative. Predictions were differentially weighted on the basis 
of their centrality to the theory and methodological considerations 
(Extended Data Table 1; for an additional preregistered non-critical 
analysis, see section 8 in Supplementary Information).

To empirically test these predictions, we investigated the content 
and temporal extent of conscious visual experiences, focusing on their 
phenomenological richness and multifaceted nature, even for a sin-
gle stimulus. For instance, when viewing the Mona Lisa (Fig. 1b), one 
experiences it as having a specific identity, orientation and location in 
visual space for as long as one looks at the painting. To approximate 
such multifaceted experiences, we manipulated several attributes of 
conscious content by presenting suprathreshold visual stimuli across 
four different categories (faces, objects, letters and false fonts), each 
containing 20 unique identities shown in three orientations (front, left 
and right view) and for three durations (0.5, 1.0 and 1.5 s). In each block, 
participants were instructed to detect two infrequent target stimuli 
from either the pictorial (face–object) or symbolic (letter–false fonts) 
stimulus categories (for example, a specific face or object), making 
these categories task relevant for that block (Fig. 1c,d).

This paradigm offers several advantages. First, it provides robust 
conditions to test the predictions of the theories by focusing on clearly 
experienced conscious content, studied through a high signal-to-noise, 
suprathreshold, fully attended single stimulus at fixation. This ampli-
fies the significance of any challenges to the theories, as they cannot 
be explained by weak signals. Second, it minimizes task and report 
confounds, isolating neural activity specifically related to conscious-
ness. Third, it allows testing of novel predictions to address previously 
unexplored questions, that is, how experience is maintained over time, 
refining theories and yielding new insights.

All research was conducted by theory-neutral teams to minimize 
confirmatory bias. We evaluated the predictions of theories in 256 
participants performing the same behavioural task in three neuroimag-
ing modalities: functional magnetic resonance imaging (fMRI; n = 120), 
magnetoencephalography (MEG; n = 102) and intracranial electroen-
cephalography (iEEG; n = 34). To overcome the spatial and temporal 
limitations of each modality, we combined whole-brain, non-invasive 
fMRI and MEG with invasive iEEG, ensuring methodological rigour. 
Combined with large sample sizes, this minimizes the likelihood that 
negative results are due to methodological or sensitivity issues. Data 
collection occurred in two (or three) independent laboratories for each 
modality to guarantee generalization across groups of participants, 
instruments and experimenters. To foster informativeness, reproduc-
ibility and robustness, we (1) separated theory proponents from data 
acquisition and analysis to minimize bias and post-hoc interpreta-
tion, (2) used a multimodal approach that maximizes spatiotemporal 
resolution and coverage for a stringent and comprehensive tests of the 
theories in humans, (3) predefined large samples to increase statistical 
power, (4) followed standardized32 and preregistered protocols12 to 
reduce setup differences and confirmatory bias22 (see sections 1 and 2 in 
Supplementary Information), and (5) implemented an analysis optimi-
zation phase (one-third of the sample) followed by a final testing phase 
(two-thirds of the sample) on independent data for result validation33. 
Consequently, this large-scale international effort aimed at implement-
ing a rigorous adversarial collaboration framework, thereby establish-
ing a precedent for an alternative scientific approach.

Decoding of conscious content
According to IIT, PFC is not necessary for consciousness. Consequently, 
decoding conscious content should be most effective from the poste-
rior cortex, and adding PFC activity as additional information should 
not improve decoding accuracy. This prediction was considered 
non-critical for testing IIT, as the theory focuses on the intrinsic, causal 
perspective of information within a neural substrate rather than the 
amount of information decodable from the perspective of an extrinsic 
observer5. By contrast, GNWT posits that conscious content can be 
decoded from PFC activity. Both theories predict that conscious con-
tent should be evident in theory-relevant areas independently of other 
cognitive processes (for example, report and task); thus, conscious 
content should be present irrespective of task manipulations34,35. This 
prediction was tested by evaluating the decoding accuracy of stimulus 
category (faces–objects (pictorial) and letters–false fonts (symbolic)) 
and orientation (left, right and front facing) in all theory-relevant areas. 
All stimulus categories alternated between being task-relevant and 
task-irrelevant across blocks (Fig. 1d). Stimulus orientation, being 
orthogonal to the task, remained task-irrelevant in all blocks.

On the basis of our preregistered predictions and pre-approved 
interpretations27 (Extended Data Table 1), the theories would pass the 
test if decoding is possible for both category (in at least one category 
pairing) and orientation (in at least one category), but would fail oth-
erwise. Testing both category and orientation decoding constitutes a 
stringent test, as it requires two conditions to be satisfied, increasing 
the likelihood of failures36, while capturing the critical multidimension-
ality of conscious content, that is, phenomenological richness (Fig. 1b).

For decoding of category, we tested whether information is present 
in the relevant regions irrespective of the task, using a cross-task gen-
eralization approach (see Methods).

Here we report the most robust results for decoding of category 
(faces–objects) and orientation (left, right and front views of faces). 
Qualitatively similar results were observed for decoding of letters–false 
fonts (Extended Data Fig. 1a–d). Results for orientation decoding were 
consistent across stimulus categories and data modalities in posterior 
cortex, but mostly absent in PFC (see section 5.1.2 in Supplementary 
Information).

In the iEEG data, pattern classifiers were trained on high gamma 
frequency band (70–150 Hz), which correlates with spiking activity37,38, 
at each time point in the task-irrelevant condition, and tested in the 
task-relevant condition, for each stimulus duration and category, and 
across all electrodes within the theory-relevant region of interests 
(ROIs; see Fig. 2a for a visualization of ROIs and Methods for anatomical 
ROI definitions). In the posterior ROIs, face–object decoding showed 
significant cross-task generalization (more than 95% accuracy) for the 
approximate duration of the stimulus (Fig. 2b, top row). In the PFC ROIs, 
significant cross-task face–object decoding accuracy (approximately 
70%) was also evident, but the temporal generalization of this decod-
ing was restricted to approximately 0.2–0.4 s (Fig. 2b, bottom row). 
Training on task-relevant and testing on task-irrelevant trials showed 
similar results (Extended Data Fig. 1e; within-task decoding is presented 
in Extended Data Fig. 2).

Although electrode coverage across our sample of iEEG patients 
(n = 29 for decoding analyses) was exceptional in the relevant brain 
regions (Fig. 2a; PFC ROIs nelectrodes = 576, posterior ROIs nelectrodes = 583), 
we further analysed a larger population of healthy participants (n = 65) 
using MEG, focusing on theory-relevant ROIs (see Methods). Here too, 
cross-task generalization of face–object decoding was significant in 
both posterior and prefrontal ROIs (Fig. 2c) within the theory-predicted 
time windows. Cross-temporal generalization of decoding in MEG was 
sustained in posterior ROIs and brief in PFC ROIs for all three stimulus 
durations (see section 5.1.1.2 in Supplementary Information).

We leveraged the higher spatial resolution of fMRI (n = 73) to com-
plement the analysis. A searchlight approach (see Methods) revealed 
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distributed, robust cross-task generalization (approximately 75%) in 
the striate and extrastriate, ventral temporal and intraparietal cortex 
(Fig. 2d and Extended Data Table 2). Generalization in PFC had lower 

accuracy (approximately 60%) and was spatially restricted to mid-
dle and inferior frontal cortex regions (Fig. 2d). Theory-relevant ROIs 
defined in the Destrieux atlas yielded comparable results (see section 
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Fig. 2 | Prediction 1: decoding of conscious content. a, Spatial coverage of 
intracranial electrodes (npatients = 29) on a standard inflated cortical surface map 
(top), and within theory-defined ROIs (bottom): posterior (blue; nelectrodes = 583) 
and prefrontal (green; nelectrodes = 576). b, iEEG cross-task temporal generalization 
of decoding of high-gamma signal. Pattern classifiers were trained to 
discriminate stimulus category (faces–objects) in the task-irrelevant 
condition at each time point and tested in the task-relevant condition across 
all time-points. Columns denote stimulus durations (0.5 s (left), 1.0 s (centre) 
and 1.5 s (right)), and rows indicate theory ROIs (posterior (top) and prefrontal 
(bottom)). Contoured red-shaded regions depict significant above-chance 
(50%) decoding. Here and below, significance was evaluated through a non- 
parametric cluster-based permutation test (P < 0.05; two-sided). c, MEG average 
cross-task decoding of stimulus category (n = 65) from task-relevant to task- 
irrelevant stimuli (purple) and vice versa (orange), separately for the posterior 
(top) and prefrontal (bottom) ROIs, depicted on inflated cortical surfaces 
(posterior in blue and prefrontal in green), across durations, using pseudotrial 
aggregation. Underlying lines indicate significance. The shading depicts 95% CI 

across participants. d, fMRI searchlight cross-task decoding of stimulus 
category (n = 73), collapsed across durations, from task-relevant stimuli to 
task-irrelevant stimuli (left; purple) or vice versa (right; orange). The outlined 
coloured regions on the inflated cortical surfaces (left–right lateral views; 
right–left medial views (bottom)) indicate significant above-chance decoding. 
e, iEEG ROIs significant cross-task decoding of stimulus category, collapsed 
across durations. Conventions are as in panel d, displayed from a left lateral 
(top left), posterior (top right) and left medial (bottom) views. f, iEEG average 
decoding of stimulus orientation (left, right and front) within posterior (top) 
and prefrontal (bottom) ROIs, collapsed across durations. Underlying lines 
indicate above-chance (33%) decoding. The shading depicts 95% CI estimated 
across cross-validation folds. g, fMRI searchlight decoding of face orientation 
(left, right and front). Regions with significantly above-chance (33%) decoding 
accuracies are outlined in blue. h, iEEG ROIs decoding of face orientation (left, 
right and front). Conventions are as in panel g. i, MEG ROIs average decoding  
of face orientation (left, right and front). Conventions are as in panel f. Brain 
surfaces in panels a,c–e,g,h are from Freesurfer.
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5.1.1.3 in Supplementary Information). These results closely matched 
those from iEEG-restricted to theory-specified ROIs and time windows 
(Fig. 2e). Hence, across modalities, face–object decoding occurred 
in both posterior and prefrontal ROIs, consistent with IIT and GNWT 
predictions.

Given the rich and multidimensional nature of conscious content, 
we assessed the decoding of stimulus orientation, which was always 
task-irrelevant. We obtained divergent results for IIT and GNWT: decod-
ing of face orientation (left, right or front views) was achieved in poste-
rior but not in prefrontal ROIs, both with iEEG (Fig. 2f,h, approximately 
95% with pseudotrial aggregation; Extended Data Fig. 3a) and the fMRI 
searchlight approach (Fig. 2g, approximately 45%). Decoding of face 
orientation was robust from MEG cortical time series in posterior ROIs 
(approximately 75% with pseudotrial aggregation), but was weaker, yet 
above chance (35%), in prefrontal ROIs (Fig. 2i), with a possibility of 
signal leakage from posterior regions (Extended Data Fig. 3b). Bayesian 
testing further validated these findings. For iEEG, Bayes factor (BF)01 
values (5.11–8.65) supported the null hypothesis of no face orienta-
tion decoding in prefrontal regions. fMRI Bayesian analysis revealed 
substantial-to-very-strong support for the null hypothesis in 34–55% of 
prefrontal voxels (BF01: 3–71.5), with support for the alternative hypoth-
esis in only 1–9% of voxels, whereas the rest remained inconclusive. 
Across all modalities, orientation decoding was observed for letters 
and false fonts—but not objects—in posterior, but not prefrontal, ROIs 
(see section 5.1.2 in Supplementary Information).

Finally, we tested IIT’s prediction that prefrontal regions do not 
contribute further information beyond that specified by posterior 
areas (or may even degrade performance by introducing noise)39. If 
PFC activity increased decoding accuracy, IIT would be challenged, 
whereas no improvement in decoding accuracy would align with both 
IIT and GNWT, as GNWT posits that PFC workspace neurons broadcast 
but do not add information. We compared the performance of decoders 
trained exclusively on posterior ROIs with those trained on posterior and 
prefrontal ROIs together (Extended Data Fig. 3c; see Methods). Across 
critical time-resolved methods (iEEG and MEG) and various PFC ROI 
definitions, adding prefrontal ROIs did not improve—and in some cases 
reduced—category and orientation decoding (Extended Data Fig. 3d,e 
and see section 5.1.3 in Supplementary Information for non-critical 
fMRI results). Bayesian testing confirmed these findings: we found 
strong evidence against increased decoding accuracy when including 
PFC ROIs for category decoding (face–object: iEEG BF01 = 1.94 × 104 
and MEG BF01 = 3.05; letter–false font: iEEG BF01 = 1.91 × 105 and MEG 
BF01 = 4.70) and face orientation (iEEG BF01 = 1,205 and MEG BF01 = 3.26).

Maintenance of conscious content
According to IIT, the network that specifies the content of conscious-
ness in posterior cortex is actively maintained over the duration of 
the conscious experience (manipulated here via different stimulus 
durations). By contrast, GNWT predicts brief, content-specific igni-
tion in PFC within 0.3–0.5 s after stimulus onset, as the workspace 
is updated12. Activity then decays back to baseline, with information 
maintained in a latent state, until another ignition marks the offset of 
the current percept and the onset of a new percept (for example, the 
fixation screen following stimulus offset). Thus, although the underly-
ing brain responses (the workspace update) are temporally discrete 
(that is, an onset and an offset response), the conscious experience 
can be temporally continuous, spanning from one update to the next.

Following the preregistration27 (Extended Data Table 1), IIT would be 
challenged if sustained content-specific information and activation 
tracking stimulus duration were absent in the posterior cortex. GNWT 
would be challenged if transient prefrontal activation (at stimulus 
onset and offset) was not observed. These patterns were expected for 
at least one conscious feature (category, identity or orientation). We 
assessed activation strength as a function of stimulus duration and the 

informational content of this activation within theory-relevant ROIs. 
For IIT, both activation and information content were critical predic-
tions, jointly determining result interpretation. For GNWT, activation 
was the primary measure owing to the difficulty of reliably detecting 
content-specific reinstatement at stimulus offset. The temporal predic-
tions were tested in time-resolved iEEG and MEG data. We focused on 
the task-irrelevant condition as it best isolates neural activity related to 
consciousness while minimizing confounds (see sections 6.1 and 6.2.9 
in Supplementary Information for task-relevant results).

First, we tested the predictions of the theories by investigating iEEG 
neural activation as a function of stimulus duration using linear mixed 
models (LMMs; see Methods) to model the time course of neural activity 
in the high gamma. Among the 31 patients included, 29.5% (194 of 657) 
of posterior ROI electrodes and 18.7% (123 of 655) of PFC ROI electrodes 
exhibited high gamma responses to stimuli (see section 6.1.2 in Sup-
plementary Information).

In posterior cortex ROIs, 25 electrodes (out of 657) measured sus-
tained activity tracking stimulus duration (Extended Data Table 3 for 
electrode localization and section 6.1.1 in Supplementary Information 
for results of the full model), consistent with IIT’s (Fig. 3a). Of these,  
12 electrodes tracked duration independent of stimulus category, 
primarily in early visual areas (for example, occipital pole; Fig. 3b), 
whereas 13 showed category-specific duration tracking (mostly for 
faces) in the ventral temporal cortex (for example, lateral fusiform 
gyrus; Fig. 3b). Overall, only a small proportion of electrodes exhib-
ited both category selectivity and duration tracking—for example, 
just 15% (8 of 53) of face-selective electrodes showed sustained activ-
ity as predicted by IIT, suggesting a sparse neural substrate. These 
responses were mostly localized to the lateral fusiform gyrus, whereas 
the majority of face-selective electrodes displayed transient activations 
at stimulus onset across the striate, extrastriate and ventral areas (see 
section 6.1.2 in Supplementary Information).

In PFC ROIs, 99 and 24 electrodes showed non-selective and category- 
selective onset responses, respectively (Fig. 3c). However, none of the 
655 electrodes measured the temporal profile predicted by GNWT 
(that is, onset and offset). Bayesian analysis confirmed this result 
(BF01 > 3 for all electrodes in PFC ROIs), providing stronger evidence 
for either an intercept-only or a time-varying amplitude model over 
the GNWT model, with or without category interaction. This null 
result was not due to analysis limitations, as the LMM successfully 
detected the GNWT-predicted pattern in 10 electrodes in other ROIs 
(in the striate or extrastriate cortex; Fig. 3b). An exploratory decod-
ing analysis of stimulus duration with unrestricted temporal profiles 
identified only one electrode, in the inferior frontal sulcus, showing 
the GNWT-predicted pattern, although with transient responses occur-
ring earlier than expected (0.15 s post-onset and post-offset; Fig. 3c). 
Additional control analyses confirmed the IIT-predicted pattern in 
posterior ROIs and the absence of the GNWT-predicted pattern in PFC 
ROIs (see sections 6.2.1–6.2.3 in Supplementary Information).

We used LMMs to track gamma frequency band (60–90 Hz) power 
changes from the MEG source time series across posterior (15 parcels) 
and PFC (11 parcels) ROIs. Although signals were strong in posterior 
areas, none of the theory-based models adequately fit the data (BF01 > 3 
for all parcels; see section 6.1.3.1 in Supplementary Information). We 
also examined alpha band activity (8–13 Hz), which negatively corre-
lates with neural spiking activity40,41. Validation of theoretical predic-
tions from iEEG and MEG data was inconclusive: no prefrontal iEEG 
electrodes showed the GNWT-predicted combination of an onset and 
offset response (BF01 > 3 for all prefrontal electrodes); instead, this 
pattern appeared in posterior sites and in MEG data, including the 
anterior cingulate cortex. However, the MEG results were sensitive to 
parameter choices, and signal leakage from posterior sites could not be 
ruled out (see sections 6.1.1 and 6.1.3.2 in Supplementary Information).

Next, we used cross-temporal representational similarity analysis 
(RSA) on both iEEG and MEG source data, within each theory-relevant 
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ROI, to test the predictions of IIT and GNWT about the temporal pro-
file of the maintenance of conscious content (Fig. 1a, middle panel): 
sustained versus phasic (onset and offset) representation for IIT and 
GNWT, respectively. This test was critical for IIT only. Results for faces 

and objects are presented below (see Extended Data Fig. 4 for similar 
results for letters–false fonts).

In iEEG, we calculated the correlation distance between high gamma 
activity patterns across 583 electrodes in posterior (npatients = 28) and 
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Fig. 3 | Prediction 2: maintenance of conscious content. a, Intracranial 
electrode localization on the MNI template, for posterior (left; blue; npatients = 31 
and nelectrodes = 657) and prefrontal (right; green; npatients = 31 and nelectrodes = 655) 
ROIs. Electrodes are colour coded by response type based on model comparison 
(see Methods): sustained non-category-selective activation (light blue; n = 12), 
sustained category-selective activation (dark blue; n = 5), sustained face- 
selective activation (purple; n = 8), biphasic onset–offset activation in 
posterior areas (green; n = 11) and in PFC (black; n = 1), and onset-responsive 
activation in PFC (grey; n = 99). Brain surfaces are from Freesurfer. b, Posterior 
ROI activation. Time-series plots depict average high gamma (HG), separated by 
stimulus duration (0.5 s (dark), 1 s (medium) and 1.5 s (light)) for non-selective 
(left) and face-selective (middle) electrodes. The shading here and in panel c 
depicts standard error of the mean across electrodes and trials. The barplots 
(right) depict the average HG signal across sustained face-selective electrodes 
(n = 8) in 1.5-s trials, separated by category (faces in dark blue, objects in orange, 
letters in turquoise and false fonts in dark red) and theory-defined time windows 
(x axis). Raster plots show single-trial (n = 320) HG of individual electrodes 

during task-irrelevant trials: a sustained non-selective (left), sustained face- 
selective (middle) and onset–offset (right) electrode. The rows depict single 
trials, sorted per duration (from top: 0.5, 1.0 and 1.5 s), and then category  
(from top: false fonts, letters, objects and faces). c, Prefrontal ROI activation. 
Time-series plots (top left) depict the average HG response per stimulus 
duration (shades of grey) for onset-responsive electrodes (n = 99) in task- 
irrelevant trials (n = 320). Average HG response per stimulus duration for a 
single electrode exhibiting onset–offset responses, with an earlier-than- 
predicted offset (top right). Raster plots for example onset (bottom left) and 
onset–offset (bottom right) responses are also shown. Conventions are as  
in panel b. d, Cross-temporal RSA matrices in posterior (npatients = 28 and 
nelectrodes = 583) and prefrontal (npatients = 28 and nelectrodes = 576) ROIs. Titles 
indicate the compared contrasts, and subtitles denote the ROIs. Matrix values 
represent z-scored, within-class-corrected correlation distances derived from 
a label shuffle null distribution. Contours denote significance (cluster-based 
permutation tests, P < 0.05, upper tail).
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576 electrodes in PFC (npatients = 28) ROIs separately (see Methods). We 
analysed the 1.5-s duration trials because this condition provided the 
strongest contrast between the temporal profiles predicted by the 
theories.

In posterior cortex ROIs, cross-temporal RSA revealed sustained 
face–object categorical representation, with larger correlation dis-
tances between categories (face–objects) than within category (face, 
object; compare Fig. 3d, left, with Fig. 1a). The RSA matrix matched the 
IIT model better than the GNWT model (see section 6.3 in Supplemen-
tary Information for results of all contrasts).

In PFC ROIs, cross-temporal RSA revealed transient face–object cat-
egorical representation at stimulus onset, but not at stimulus offset. 
Consequently, no significant correlation was found with the GNWT 
onset and offset model (compare Fig. 3d, right, with the predicted pat-
tern in Fig. 1a). This pattern held even for the task-relevant condition, 
in which face–object information was stronger, more stable and longer 
lasting. Additional evidence for the absence of GNWT-predicted pat-
terns in PFC ROIs emerged from three control analyses using (1) feature 
selection, which improved RSA in PFC; (2) modified time-windows 
to account for a potential earlier ignition at stimulus offset; and (3) a 
decoding analysis time-locked to stimulus offset to enhance sensitivity 
(see section 6.4 in Supplementary Information). These results align with 
two independent studies using comparable methods42,43.

It has been argued that because conscious experiences are specific, 
the representation of identity and orientation are more stringent tests 
of the neural substrate of conscious experience44 than of category. We 
thus also evaluated the predictions of the theories on these dimensions.

In posterior ROIs, iEEG revealed sustained object identity informa-
tion, with smaller distances for same-identity objects than for different 
identities (Fig. 3d). The IIT model significantly correlated with the 
observed RSA matrix, providing a better fit than the GNWT model. 
Similar results were found for letter and false-font identity, but not 
for faces (Extended Data Fig. 4). In PFC ROIs, identity information was 
absent for all categories across analysed time windows (Fig. 3d, objects). 
Face orientation information appeared weakly in posterior ROIs at 
stimulus onset but was not sustained, decaying after 0.5 s, contrary to 
the predictions of IIT. No face orientation information was detected 
in PFC ROIs (Fig. 3d). Finally, the predictions of neither theory were 
supported for category, identity or orientation by the MEG data (see 
section 6.5 for Supplementary Information).

Interareal connectivity
IIT predicts sustained gamma-band connectivity within the posterior 
cortex, that is, between high-level and low-level sensory areas (V1/V2),  
throughout any conscious visual experience. By contrast, GNWT pre-
dicts brief, late-phase metastable connectivity (more than 0.25 s) with 
information sharing between the PFC and category-specific areas, 
manifested in long-range gamma-band or beta-band synchronization45.

On the basis of our preregistration (see Extended Data Table 1), IIT 
would be challenged in the absence of sustained content-specific syn-
chronization between face–object selective areas and V1/V2; whereas a 
challenge for GNWT would be a lack of phasic connectivity (0.3–0.5 s) 
between category-selective areas and PFC. Given the dynamical nature 
of these predictions, iEEG and MEG provided the most informative 
empirical test. These predictions were tested by computing pairwise 
phase consistency (PPC)46 between each category-selective time series 
(face-selective and object-selective nodes) and either the V1/V2 or the 
PFC time series in the intermediate (1.0 s) and long-stimulus-duration 
(1.5 s), task-irrelevant trials (see section 7.1.2 in Supplementary Informa-
tion for task-relevant trials). Gamma activity was analysed because of 
its close link to neuronal spiking47, which IIT considers a constituent 
property of the physical substrate of consciousness5.

For iEEG, we analysed connectivity between electrodes showing 
face and object selectivity, using a different subset of electrodes to 

test connectivity with V1/V2 and PFC (see Methods; Extended Data 
Fig. 5a for ROIs and examples of face-selective and object-selective elec-
trodes). Given the sparse electrode coverage, the requirement to focus 
on ‘activated’ electrodes (see Methods) was relaxed, although restrict-
ing it to only activated electrodes yielded similar results. We found 
increased category-selective synchrony between category-selective 
and V1/V2 electrodes (Extended Data Fig. 5b). These effects were 
early and brief (for example, less than 0.75 s), and restricted to low 
frequencies (2–25 Hz). This synchrony was mostly explained by the 
stimulus-evoked response (Extended Data Fig. 6a). These results fail 
to align with IIT’s predictions: the activity was neither sustained nor 
observed in the gamma frequency band. Bayesian analysis further sup-
ported the null hypothesis (BF01 = 1.15–4.9). No content-selective PPC 
was found between face-selective and object-selective electrodes and 
PFC electrodes in the relevant time window, contradicting the predic-
tion of GNWT (Extended Data Fig. 6a; BF01 = 2.62–5.32).

For MEG, we found selective synchronization between face-selective 
areas and both V1/V2 and PFC. These effects were again early, restricted 
to low frequencies (2–25 Hz), and mostly explained by stimulus-evoked 
responses (Extended Data Figs. 5d and 6b). Bayesian analysis of the 
gamma-band synchronization further supported the null hypothesis 
(all BF01 > 3).

The results of the preregistered PPC metric for prediction 3, critical 
for both IIT and the GNWT, supported neither theory. PPC was chosen 
based on the mechanistic considerations of the theories because it 
assesses oscillatory phase. However, phase estimation from macro-
scopic recordings is susceptible to noise.

We thus used dynamic functional connectivity (DFC; see Methods), 
a metric sensitive to co-modulations of signal amplitude, after remov-
ing stimulus-evoked responses (Extended Data Fig. 6c,d includes the 
evoked response).

In iEEG, we observed significant connectivity between object- 
selective electrodes and V1/V2 (Fig. 4a), spanning multiple frequency 
bands, with the gamma band being the most predominant. In contrast 
to the predictions of IIT, the observed connectivity was brief. Connec-
tivity between face-selective electrodes and V1/V2 was scarce, further 
supported by Bayesian analysis (BF01 = 1.3 in favour of the null hypoth-
esis). Significant connectivity was observed between PFC and both the 
face-selective and the object-selective areas in the gamma frequency 
band within the GNWT-predicted time window. For MEG, brief DFC in 
the alpha–beta frequency bands was found between face-selective 
nodes and both PFC and V1/V2 (Fig. 4b).

The exploratory DFC results in iEEG were consistent with the predic-
tions of GNWT while challenging the predictions of IIT, as connectivity 
with V1/V2 was not sustained. However, V1/V2 were sparsely sampled 
in our population, with only 12 electrodes localized to V1/V2 compared 
with 472 in PFC.

Using fMRI, we evaluated connectivity across the entire cortex with 
homogeneous sampling. We computed the generalized psychophysi-
ological interaction, defining the fusiform face area (FFA) and lateral 
occipital complex as seed regions (see Methods). Task-relevant and 
task-irrelevant trials were pooled to increase statistical power (see 
sections 7.1.1 and 12 in Supplementary Information for separate prereg-
istered analyses). FFA showed content selective (face > object stimuli) 
connectivity with V1/V2, inferior frontal gyrus and intraparietal sulcus, 
consistent with predictions from both theories (Fig. 4c). No selective 
increase in interareal connectivity between object-selective nodes 
and PFC or V1/V2 was found in fMRI, even when separating task condi-
tions (Extended Data Fig. 6f). Bayesian testing across prefrontal ROIs 
confirmed our findings with 62–94% of voxels across ROIs showing sub-
stantial evidence for the null hypothesis of no interareal connectivity 
(BF01 = 3–7.75). Support for the alternative hypothesis was observed only 
in 0–4% of voxels. The remaining voxels showed inconclusive evidence.

To determine whether connectivity to PFC and V1/V2 was task driven 
in the generalized psychophysiological interaction, we explored the 
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iEEG data, separating task-relevant and irrelevant trials. We found 
task-independent, selective DFC connectivity (face > objects) for face- 
selective electrodes in both inferior frontal gyrus and V1/V2 (Fig. 4d).

Discussion
This adversarial collaboration aimed to address confirmation biases 
by researchers, breaking theoretical echo chambers3 and identify-
ing the strengths and weaknesses of theories2,48 by forcing them to be 
explicit and committal about their empirical predictions, rigorously 
testing them on common methodological grounds22,49, and providing 
the means for theorists to change their minds given conflicting results49. 
Doing so catalyses our ability to evaluate and arbitrate between theories 
of consciousness. Embracing this spirit, and adhering to guidelines for 
structuring adversarial collaborations21, we opted for a three-voice 
discussion format, acknowledging that despite stringent testing of 
incompatible theoretical views, different interpretations of the same 
evidence may persist. Below, the theory-neutral consortium presents 
the main challenges our findings pose to the theories, based on the 
preregistered predictions, methods and analysis agreed on in advance 
with the adversaries. Then, adversaries offer their own interpretation 

of the findings and future directions (see sections 12 and 13 in Sup-
plementary Information).

Extended Data Fig. 7 summarizes the key results, including the crite-
ria used to assess whether findings support or contradict the theories. 
This summary covers both central and peripheral findings related to 
theory evaluation. The consortium adopted Lakatos’ sophisticated 
falsificationist approach to philosophy of science13,50, emphasizing that 
challenged predictions provide more valuable insights than those con-
firmed by the data (see section 11 in Supplementary Information). Out-
comes are weighted differentially across predictions and with respect 
to the different brain imaging modalities (Extended Data Table 1). This 
approach ensures a nuanced evaluation of the theories, highlighting 
areas of strength and those requiring further refinement.

For IIT, the lack of sustained synchronization within posterior cortex 
represents the most direct challenge, based on our preregistration. 
This is incompatible with IIT’s claim that the state of the neural net-
work, including its activity and connectivity, specifies the degree and 
content of consciousness5. Although this null result could stem from 
methodological limitations (for example, limited iEEG sampling of  
V1/V2 areas), our multimodal and highly powered study provided 
the best conditions so far for evaluating the prediction. We urge IIT 
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Fig. 4 | Prediction 3: interareal connectivity. a, iEEG DFC analysis of task- 
irrelevant trials revealed significant content-selective synchrony only for 
object-selective electrodes in V1/V2 (for example, top row; face-selective: 
npatients = 4 and nelectrodes = 30; object-selective: npatients= 4 and nelectrodes= 21), while 
showing significant content-selective synchrony for both categories in the PFC 
ROI (bottom row; face selective: npatients = 19 and nelectrodes = 81; object selective: 
npatients = 14 and nelectrodes = 57). Here and in panel b, significance was assessed 
using a cluster-based permutation analysis (P < 0.05, two-sided) and the colour 
bars represent the average change in the DFC between conditions. b, MEG DFC 
analysis of task-irrelevant trials (n = 65) revealed significant content-selective 
synchrony below 25 Hz for the face-selective GED filter in both V1/V2 (top left) 
and PFC (bottom left), but not for the object-selective GED filter (right panels). 
c, fMRI generalized psychophysiological interaction (gPPI; n = 70) on 

task-relevant and task-irrelevant trials combined revealed significant content- 
selective connectivity when FFA is used as the analysis seed. Various significant 
regions showing task-related connectivity with the FFA seed were observed 
including V1/V2, right intraparietal sulcus (IPS) and right inferior frontal  
gyrus (IFG). LH, left hemisphere; RH, right hemisphere. d, Analysis of iEEG 
face-selective DFC synchrony across tasks is shown at the single-electrode  
level in PFC (top) and V1/V2 (bottom) ROIs. Electrodes showing significant 
synchrony (tested using a permutation test, FDR-corrected, P < 0.05) in 
relevant (orange-red), irrelevant (purple) or combined relevant and irrelevant 
(black) trials are shown (averaged over 70–120 Hz and 0–0.5-s time window). 
DFC synchrony was observed in both tasks, but restricted to IFG for the GNWT 
analysis and V2 regions for the IIT analysis, consistent with the fMRI gPPI 
analysis shown in panel c. Brain surfaces in panels c,d are from Freesurfer.
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proponents to direct future efforts to evaluate this prediction and 
determine the implications of this failure.

More broadly, although IIT passed the predefined criteria for the 
duration prediction (number 2), there was no evidence for a sustained 
representation of orientation, despite being a property of the con-
sciously perceived stimuli25. This is an informative challenge for IIT, 
as orientation decoding was robust across all three data modalities, 
leaving open the question of whether and how information about ori-
entation is maintained over time.

For GNWT, the most substantial challenge based on our preregistered 
criteria pertains to its account for the maintenance of a conscious per-
cept over time and, in particular, the lack of ignition at stimulus offset. 
This result is unlikely to stem from sensitivity limitations, as offset 
responses were robustly found elsewhere (for example, visual areas); 
and in PFC, strong onset responses were found to the very same stimuli. 
The lack of ignition at stimulus offset is especially surprising given the 
change in conscious experience at the onset of the blank fixation screen. 
This clear update to the content of consciousness should have been 
represented somehow by the global workspace12. Thus, that aspect 
of consciousness remains unexplained within the GNWT framework.

Another key challenge for GNWT pertains to representing the con-
tents of experience: although we found representation of category in 
PFC irrespective of the task, thereby demonstrating the sensiti vity 
of our methods, no representation of identity was found, and rep-
resentation of orientation was evident only in MEG (signal leakage 
notwithstanding); although these dimensions were clearly a part of 
the conscious experience of participants of the stimuli. This raises 
the question of whether PFC is involved in broadcasting all conscious 
content, as predicted by GNWT23, or only a subset (for example, abstract 
concepts and categories, rather than low-level details), in which case 
the role of PFC in consciousness might need to be redefined.

Before this study, predictions from IIT and GNWT were typically 
tested with one data modality at a time23,24, leaving room for negative 
results to be easily attributed to the limitations of the chosen modality51. 
We combined multiple techniques (iEEG, MEG and fMRI) to mitigate 
these limitations, cross-compensating for their weaknesses. This meth-
odological approach was mutually agreed upon by the theory leaders 
before data collection and results disclosure as the most powerful 
and conclusive approach, making both positive and negative findings 
more meaningful.

Although this study was designed around IIT and GNWT, the results 
may have implications for other theories of consciousness. For exam-
ple, the prediction of GNWT about PFC is shared by those higher-order 
theories of consciousness that hypothesize that PFC actually supplies 
the content of visual consciousness (for example, ref. 17), rather than 
those that take it to merely enable the consciousness of content that is 
located in posterior visual areas (for example, refs. 52,53). As a result, 
the failures to confirm this prediction challenge not only GNWT but 
also those higher-order theories54. Predictions 2 and 3, about timing and 
connectivity, are more distinctive to GNWT but could also be shared by 
other theories. Likewise, the non-core prediction 1 about the posterior 
cortex by IIT is also shared by many theories (for example, recurrent 
processing theory14), and its prediction 2 about timing may be shared 
by some posterior theories of consciousness, such as the local recur-
rency theory15. Its prediction 3 about interareal connectivity is more 
distinctive to IIT (for example, it is not shared by synchrony theory55), 
so the challenge here is more specific as well.

Our study focused on the contents of consciousness (for example, 
category, identity, orientation and duration), linking brain activity to 
subjective phenomenology. This departs from the traditional con-
trastive method, which compares the presence and absence of con-
sciousness but conflates it with other cognitive processes (for example, 
decision-making or memory formation)56–58. Some might argue that 
our approach tracks stimulus processing rather than consciousness. 
Yet, our aim is to challenge and potentially falsify50,59 IIT and GNWT, by 

examining where their predictions differ, rather than to discover the 
neural correlates of consciousness. In this context, what might seem 
like a weakness—focusing on the presence of fully attended, consciously 
experienced stimuli—is actually beneficial for testing the primary posi-
tive predictions of the theories and their failures. This is because such 
failures are harder to dismiss owing to weak signals. Thus, our approach 
assesses whether the proposed neural mechanisms are truly necessary 
for consciousness.

Our study, although comprehensive, is not without limitations. First, 
we cannot entirely rule out residual task engagement with respect to 
category, although our design ensured that orientation and duration 
remained task-irrelevant, so the results on these dimensions cannot 
be explained by task-related effects. Second, although we aimed to 
capture multiple aspects of consciousness, our approach still falls short 
of encompassing its full phenomenal richness. Third, despite the high 
spatial and temporal resolution of our data, it lacks single-unit record-
ings, which are typically restricted to patients with epilepsy and selected 
brain regions. Ongoing studies in animal models, as part of a separate 
adversarial collaboration, can accordingly complement our findings.

Beyond directly challenging the theories, our study raises broader 
questions about theory testing and development across disciplines. 
A key challenge is how to weigh predictions and integrate evidence 
across different analyses and measurement techniques (for example, 
fMRI, MEG and iEEG). We adopted a lenient falsificationist approach, 
in which evidence for any tested feature (for example, decoding of 
category or orientation) was sufficient to rule out failure, rather than 
requiring consistency across all features. However, a formal framework 
is urgently needed to quantitatively integrate evidence, accounting for 
prediction centrality, measurement error and cross-sample consist-
ency. Such a framework would enhance systematic theory building in 
an era of accumulating results60.

After reviewing the results and the discussions by adversaries,  
readers might expect a definitive verdict on the two theories under eva-
luation. Instead, we invite readers to weigh the evidence themselves— 
considering the support for each preregistered prediction, the breadth 
of the data, the sophistication of the methods and analyses, and the 
cognitive biases that shape interpretation. Scientific progress is rarely a 
matter of simple verdicts; evidence is filtered through previous beliefs 
and motivations61, making theory evaluation a dynamic process. By 
presenting results and adversarial responses transparently, we embrace 
the openness needed for science to converge on robust explanations 
of complex phenomena such as consciousness.
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Methods

Ethics statement
The experiment was approved by the institutional ethics committees 
of each participating data-collecting laboratory, including the Science, 
Technology, Engineering and Mathematics Ethical Review Committee 
at the Centre for Human Brain Research, University of Birmingham 
(ERN_18-0226AP20); the Committee for Protecting Human and Animal 
Subjects at the School of Psychological and Cognitive Sciences, Peking 
University (2020-05-07e); the Commissie Mensgebonden Onderzoek 
Regio Arnhem-Nijmegen at the Centre for Cognitive Neuroimaging 
at Donders Institute (NL45659.091.14); the Human Research Protec-
tion Program Institutional Review Board at Yale School of Medicine 
(2000027591); the Office of Science and Research Institutional Review 
Board at New York University Langone Health (i14-02101_CR6); the 
Boston Children’s Hospital Institutional Review Board at Children’s 
Hospital Corporation d/b/a Boston Children’s Hospital (04-05-065R); 
the Institutional Review Board at the University of Wisconsin-Madison 
(ID: 2017-1299); and the Ethics Council of the Max Planck Society at Max 
Planck Institute for Empirical Aesthetics (Nr. 2017_12). All participants 
and patients provided oral and written informed consent before par-
ticipating in the study. All study procedures were carried out in accord-
ance with the Declaration of Helsinki. Patients were also informed that 
clinical care was not affected by participation in the study.

Participants
Healthy participants and patients with pharmaco-resistant focal epi-
lepsy participated in this study. The datasets reported here consist of: 
(1) behaviour, eye tracking and iEEG data collected at the Comprehen-
sive Epilepsy Center at New York University (NYU) Langone Health, 
the Brigham and Women’s Hospital, the Boston Children’s Hospital 
(Harvard), and the University of Wisconsin School of Medicine and 
Public Health (WU). (2) Behaviour, eye tracking, MEG and EEG data 
collected at the Centre for Human Brain Health (CHBH) of the Univer-
sity of Birmingham (UB), and at the Center for MRI Research of Peking 
University (PKU). (3) Behaviour, eye tracking and fMRI data collected 
at the Yale Magnetic Resonance Research Center (MRRC) and at the 
Donders Centre for Cognitive Neuroimaging (DCCN), of Radboud 
University Nijmegen. For both the MEG and fMRI datasets, one-third 
of the data that passed quality tests (henceforth, the optimization 
dataset; see the section ‘Preregistration’ for details about quality test 
criteria27) were used to optimize the analysis methods, which were 
subsequently added to the preregistration as an additional amendment. 
These preregistered analyses were then run on the remaining two-thirds 
of the data (henceforth, the replication dataset) and constitute the data 
reported in the main study. This procedure was not used for the iEEG 
data due to the serendipitous nature of the recording and electrode 
placement, the rarity of this type of data and the increased difficulty 
of data collection due to the COVID-19 pandemic.

A total of 97 healthy participants were included in the MEG sample 
(mean age of 22.79 ± 3.59 years, 54 females, all right handed), 32 of 
those datasets were included in the optimization phase (mean age of 
22.50 ± 3.43 years, 19 females, all right handed), and 65 in the replica-
tion sample (mean age of 22.93 ± 3.66, 35 females, all right handed). 
Five additional participants were excluded from the MEG dataset: 
two because of failure to meet predefined behavioural criteria (that 
is, Hits of less than 80% and/or False Alarms > 20%), two because of 
excessive noise from sensors, and one because of incorrect sensor 
reconstruction. A total of 108 healthy participants were included in 
the fMRI sample (mean age of 23.28 ± 3.46 years, 70 females, 105 right 
handed); 35 of those datasets were included in the optimization sample 
(mean age of 23.26  ±  3.64 years, 21 females, 34 right handed) and 73 in 
the replication sample (mean age of 23.29 ± 3.37, 49 females, 71 right 
handed). Twelve additional participants were excluded from the fMRI 
dataset: eight because of motion artefacts, two because of insufficient 

coverage and two because of incomplete data (with respect to these 
last two participants, see section 14 of the Supplementary Information 
for deviations from the preregistration document). For the iEEG arm 
of the project, a total of 34 patients were recruited. Two patients were 
excluded owing to incomplete data. Demographic, medical and neu-
ropsychological scores for each patient, when available, are reported 
in Supplementary Table 25. Three iEEG patients whose behaviour fell 
slightly short of the predefined behavioural criteria (that is Hits of less 
than 70%, FA > 30%) were nonetheless included given the difficulty 
of obtaining additional iEEG data (see section 14 in Supplementary 
Information for deviation from the preregistration).

Experimental procedure
Experimental design. To test critical predictions of the theories,  
five experimental manipulations were included in the experimental 
design: (1) four stimulus categories (faces, objects, letters and false 
fonts), (2) 20 stimulus identities (20 different exemplars per stimulus 
category), (3) three stimulus orientations (front, left and right view), 
(4) three stimulus durations (0.5 s, 1.0 s and 1.5 s), and (5) task relevance 
(relevant targets, relevant non-targets and irrelevant).

Stimulus category, stimulus identity and stimulus orientation served 
to test predictions about the representation of the content of con-
sciousness in different brain areas by the theories. In addition, stimulus 
duration served to test predictions about the temporal dynamics of 
sustained conscious percepts and interareal synchronization between 
areas. Task relevance served to rule out the effect of task demands, as 
opposed to conscious perception per se, on the observed effects62. This 
aspect of the experimental design was inspired by ref. 63.

Stimuli. Four stimulus categories were used: faces, objects, letters and 
false fonts. These stimuli naturally fell into two clearly distinct groups: 
pictures (faces and objects) and symbols (letters and false fonts). These 
natural couplings were aimed at creating a clear difference between 
task-relevant and task-irrelevant stimuli in each trial block (see the sec-
tion ‘Procedure’). All stimuli covered a squared aperture at an average 
visual angle of 6° by 6°. Face stimuli were created with FaceGen Modeler 
3.1; letter and false font stimuli were generated with MAXON CINEMA 
4D Studio (RC - R20) 20.059; object stimuli were taken from the Object 
Databank64. Stimuli were grey scaled and equated for luminance and 
size. To facilitate face individuation, faces had different hairstyles and 
belonged to different ethnicities and genders. Equal proportions of 
male and female faces were presented. The orientation of the stimuli 
was manipulated, such that half of the stimuli from each category had 
a side view (30° and −30° horizontal viewing angle, left and right ori-
entation) and the other half had a front view (0°).

Procedure. Participants performed a non-speeded target detection 
task (see Supplementary Video 1). The experiment was divided into 
runs, with four blocks in each run (see the section ‘Trial counts’). On a 
given block, participants viewed a sequence of single, supra-threshold, 
foveally presented stimuli belonging to one of four stimulus catego-
ries and presented for one of three stimulus durations onto a fixation 
cross that was present throughout the experiment. Within each block, 
half of the stimuli were task-relevant and half were task-irrelevant. To 
manipulate task relevance, at the beginning of each block participants 
were instructed to detect the rare occurrences of two target stimulus 
identities, one from each relevant category (for pictures, face–ob-
ject; for symbols, letter–false font), irrespective of their orientation. 
This was specified by presenting the instruction ‘detect face A and 
object B’ or ‘detect letter C and false font D’, accompanied by images 
for each target (see Fig. 1d). Targets did not repeat across blocks. Each 
run contained two blocks of the face–object task and two blocks of the 
letter–false font task, with block order counterbalanced across runs.

Accordingly, each block contained three different trial types: (1) 
targets: the two stimuli being detected (for example, the specific face 
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and object identities); (2) task-relevant stimuli: all other stimuli from the 
task-relevant categories (for example, the non-target faces–objects); 
and (3) task-irrelevant stimuli: all stimuli from the two other categories 
(for example, letters–false fonts). An advantage of this design is that the 
three trial types enabled a differentiation of neural responses related 
to task goal, task relevance and simply consciously seeing a stimulus. 
We confirmed that participants were conscious of the stimuli in both 
the task-relevant and task-irrelevant trials in a separate experiment, 
which included a surprise memory test (see section 3 in Supplementary 
Information).

Stimuli were presented for one of three durations (0.5 s, 1.0 s or 1.5 s), 
followed by a blank period of a variable duration to complete an over-
all trial length fixed at 2.0 s. For the MEG and iEEG version, random 
jitter was added at the end of each trial (mean inter-trial interval of 
0.4 s, jittered 0.2–2.0 s, truncated exponential distribution) to avoid 
periodic presentation of the stimuli. The mean trial length was 2.4 s. 
For the fMRI protocol, timing was adjusted as follows: the random 
jitter between trials was increased (mean inter-trial interval of 3 s, jit-
tered 2.5–10 s, with truncated exponential distribution), with each trial 
lasting approximately 5.5 s. This modification helped with avoiding 
non-linearities in BOLD signal, which may affect fMRI decoding65. Sec-
ond, to increase detection efficacy for amplitude-based analyses, three 
additional baseline periods (blank screen) of 12 s each were included 
per run (total of 24). The identity of the stimuli was randomized with 
the constraint that they appeared equally across durations and tasks 
conditions. Participants were further instructed to maintain central 
fixation on a black circle with a white cross and another black circle in 
the middle throughout each trial (see Supplementary Fig. 1d and Sup-
plementary Video 1 for a demonstration of the experimental paradigm).

Trial counts. The MEG study consisted of 10 runs containing 4 blocks 
each with 34–38 trials per block, 32 non-targets (8 per category) and 
2–6 targets, for a total of 1,440 trials. The same design was used for 
iEEG, but with half the runs (5 runs total), resulting in a total of 720 
trials. For fMRI, there were 8 runs containing 4 blocks each with 17–19 
trials per block, 16 non-targets (4 per category) and 1–3 targets, for a 
total of 576 trials. Rest breaks between runs and blocks were included.

Data acquisition
Behavioural data acquisition. The task was run on Matlab (PKU: 
R2018b; DCCN, UB and Yale: R2019b; Harvard: R2020b; NYU: R2020a, 
and WU: 2021a) using Psychtoolbox (v3)66. The iEEG version of the task 
was run on a Dell Precision 5540 laptop, with a 15.6′′ Ultrasharp screen 
at NYU and Harvard and on a Dell D29M PC with an Acer 19.1′′ screen 
in WU. Participants responded using an eight-button response box 
(Millikey LH-8; response hand (or hands) varied based on the setting 
in the patient’s room). The MEG version was run on a custom PC at UB 
and a Dell XPS desktop PC on PKU. Stimuli were displayed on a screen 
placed in front of the participants with a PROPixx DLP LED projector 
(VPixx Technologies). Participants responded with both hands using 
two 5-button response boxes (NAtA or SINORAD). The fMRI version was 
run on an MSI laptop at Yale and a Dell Desktop PC at DCCN. In DCCN, 
stimuli were presented on an MRI compatible Cambridge Research Sys-
tems BOLD screen 32′′ IPS LCD monitor, and in Yale they were presented 
on a Psychology Software Tools Hyperion projection system to project 
stimuli on the mirror fixed to the head coil. Participants responded with 
their right hand using a 2 × 2 current designs response box at Yale and 
a 1 × 4 current designs response box at DCCN.

Eye tracking data acquisition. For the iEEG setup, eye tracking and 
pupillometry data were collected using a EyeLink 1000 Plus in remote 
mode, sampled monocularly at 500 Hz (from the left eye at WU, and de-
pending on the setup at Harvard), or on a Tobii-4C eye tracker, sampled 
binocularly at 90 Hz (NYU). The MEG and fMRI laboratories used the 
MEG-compatible and fMRI-compatible EyeLink 1000 Plus Eye-tracker 

system (SR Research) to collect data at 1,000 Hz. For MEG, eye tracking 
data were acquired binocularly. For fMRI, data were acquired monocu-
larly from either the left or the right eye, in DCCN and Yale, respectively. 
For all recordings, a 9-point calibration was performed (besides Har-
vard, where a 13-point calibration was used) at the beginning of the 
experiment, and recalibration was carried out as needed at the begin-
ning of each block or run.

iEEG data acquisition. Brain activity was recorded with a combination 
of intracranial subdural platinum-iridium electrodes embedded in SI-
LASTIC sheets (2.3-mm diameter contacts, Ad-Tech Medical Instrument 
and PMT Corporation) and/or depth stereo-electroencephalographic 
platinum-iridium electrodes (PMT Corporation; 0.8 mm in diameter, 
2.0-mm length cylinders; separated from adjacent contacts by 1.5–
2.43 mm), or depth stereo-electroencephalographic platinum-iridium 
electrodes (BF08R-SP21X-0C2, Ad-Tech Medical; 1.28 mm in diameter, 
1.57 mm in length, 3–5.5-mm spacing). Electrodes were arranged as 
grid arrays (either 8 × 8 with 10-mm centre-to-centre spacing, 8 × 16 
contacts with 3-mm spacing, or hybrid macro–micro 8 × 8 contacts with 
10-mm spacing and 64 integrated microcontacts with 5-mm spacing), 
linear strips (1 × 8/12 contacts), depth electrodes (1 × 8/12 contacts) or a 
combination thereof. Recordings from grid, strip and depth electrode 
arrays were done using a Natus Quantum amplifier or a Neuralynx 
Atlas amplifier. A total of 4,057 electrodes (892 grids, 346 strips and 
2,819 depths) were implanted across 32 patients with drug-resistant 
focal epilepsy undergoing clinically motivated invasive monitoring. 
A total of 3,512 electrodes (780 grids, 307 strips and 2,425 depths) that 
were unaffected by epileptic activity, artefacts or electrical noise were 
used in subsequent analyses. To determine the electrode localization 
for each patient, a post-operative computed tomography scan and a 
pre-operative T1 MRI were acquired and co-registered.

MEG data acquisition. MEG was acquired using a 306-sensor TRIUX 
MEGIN system, comprising 204 planar gradiometres and 102 mag-
netometres in a helmet-shaped array. The MEG gantry was positioned at 
68° for optimal coverage of frontal and posterior brain areas. Simultane-
ous EEG was recorded using an integrated EEG system and a 64-channel 
electrode cap (EEG data are not reported here, but are included in the 
shared dataset). During acquisition, MEG and EEG data were bandpass 
filtered (0.01 and 330 Hz) and sampled at 1,000 Hz. The location of 
the head fiducials, the shape of the head, the positions of the 64 EEG 
electrodes and the head position indicator (HPI) coil locations relative 
to anatomical landmarks were collected with a 3D digitizer system 
(Polhemus Isotrack). ECG was recorded with a set of bipolar electrodes 
placed on the chest of the participant. Two sets of bipolar electrodes 
were placed around the eyes (two at the outer canthi of the right and left 
eyes and two above and below the centre of the right eye) to record eye 
movements and blinks (EOG). Ground and reference electrodes were 
placed on the back of the neck and on the right cheek, respectively. The 
head position of participants on the MEG system was measured at the 
beginning and end of each run, and also before and after each resting 
period, using four HPI coils placed on the EEG cap, next to the left and 
right mastoids and over left and right frontal areas.

Anatomical MRI data acquisition. For source localization of 
the MEG data with individual realistic head modelling, a high- 
resolution T1-weighted MRI volume (3 T Siemens MRI Prisma scan-
ner) was acquired per participant. Anatomical scans were acquired 
either with a 32-channel coil (repetition time (TR)/echo time (TE) =  
2,000/2.03 ms; inversion time (TI) = 880 ms; 8° flip angle; field of 
view = 256 × 256 × 208 mm; 208 slices; 1-mm isotropic voxels, UB) or 
a 64-channel coil (TR/TE = 2,530/2.98 ms; TI = 1,100 ms; 7° flip angle; 
field of view = 224 × 256 × 192 mm, 192 slice, 0.5 × 0.5 × 1 mm voxels, 
PKU). The FreeSurfer standard template was used (fsaverage) for  
participants lacking an anatomical scan (n = 5).



fMRI data acquisition. MRI data were acquired using a 32-channel 
head coil on a 3 T Prisma scanner. A session included high-resolution 
anatomical T1-weighted MPRAGE images (GRAPPA acceleration 
factor = 2, TR/TE = 2,300/3.03 ms, 8° flip angle, 192 slices, 1-mm iso-
tropic voxels), and a whole-brain T2*-weighted multiband-4 sequence  
(TR/TE = 1,500/39.6 ms, 75° flip angle, 68 slices, voxel size of 2 mm 
isotropic, anterior/posterior (A/P) phase-encoding direction, field of 
view = 210 mm, bandwith (BW) = 2,090 Hz px−1). A single-band reference 
image was acquired before each run. To correct for susceptibility distor-
tions, additional scans using the same T2*-weighted sequence, but with 
inverted phase-encoding direction (inverted readout/phase-encoding 
(RO/PE) polarity), were collected while the participant was resting at 
multiple points throughout the experiment.

Preprocessing and analysis details
For readability, we first detail the preprocessing protocols for each 
of the modalities (iEEG, MEG and fMRI) separately. Then, we describe 
the different analyses, combining information across the modalities, 
while noting any differences between them.

Analysis strategy
As part of our testing framework, after excluding a limited number of 
participants due to data quality checks, we conducted an initial optimi-
zation phase on one-third of the MEG (n = 32) and fMRI (n = 35) datasets 
to evaluate data quality across sites and to optimize analysis pipelines. 
Following the optimization phase, pipelines were preregistered27 and 
applied to the novel datasets containing twice as much data (MEG n = 65 
and fMRI n = 73).

In the main paper, we report results obtained on the novel, previously 
unexamined datasets. For iEEG, given the smaller sample, a different 
analysis strategy was implemented. We refer the reader to the iEEG 
methods section and text in the main paper for numbers of participants 
that were entered in each analysis. Results from the optimization phase 
are reported in section 4 of Supplementary Information. The results of 
the optimization phase and the preregistered replication phase were 
compared and deemed to be largely compatible, with some minor 
exceptions (section 4 of Supplementary Information).

iEEG preprocessing. Data were converted to BIDS67 and preprocessed 
using MNE-Python (v0.24)68, and custom-written functions in Python 
and Matlab. Preprocessing steps included downsampling to 512 Hz, de-
trending, bad channel rejection, line noise and harmonic removal, and 
re-referencing. Electrodes were re-referenced to a Laplacian scheme69, 
whereas bipolar referencing was used for electrodes at the edge of a 
strip, grid or stereo EEG, and the signal was localized at the midpoint 
(Euclidean distance) between the two electrodes. Electrodes with no 
direct neighbours were discarded. Seizure-onset zone electrodes, 
those localized outside the brain and/or containing no signal or high 
amplitude noise level were discarded. Line noise and harmonics were 
removed using a one-pass, zero-phase non-causal band-stop FIR filter.

The high-gamma power (70–150 Hz) was obtained by bandpass fil-
tering the raw signal in eight successive 10-Hz-wide frequency bands, 
computing the envelope using a standard Hilbert transform, and nor-
malizing it (dividing) by the mean power per frequency band across 
the entire recording. To produce a single high-gamma envelope time 
series, all frequency bands were averaged together70. Most analyses 
focused on the high-gamma power as it closely correlated with neural 
spiking activity71 and with the BOLD signal37. To obtain the event-related 
potentials (ERPs), the raw signal was low-pass-filtered at 30 Hz with a 
one-pass, zero-phase, non-causal low-pass FIR filter. Epochs were seg-
mented between 1-s pre-stimulus until 2.5-s post-stimulus of interest.

Surface reconstruction and electrode localization. Electrode posi-
tions were determined based on a computed tomography scan coreg-
istered with a pre-implant T1-weighted MRI. A 3D reconstruction of the 

brain of each patient was computed using FreeSurfer (http://surfer.
nmr.mgh.harvard.edu). For visualization, the electrode positions for 
individual participants were converted to the Montreal Neurological 
Institute (MNI)152 space. As each theory specified a set of anatomical 
ROIs, after electrode localization, electrodes were labelled according 
to the Freesurfer-based Destrieux atlas segmentation72,73 and/or Wang 
atlas segmentation74.

Identification of task-responsive channels. To identify task-respon-
sive electrodes, we computed the area under the curve (AUC) for the 
baseline (−0.3 to 0 s) and the stimulus-evoked period (0.05–0.35 s) 
separately for the task-relevant and task-irrelevant conditions, and 
compared them per electrode using a Wilcoxon sign-rank test, cor-
rected for false discovery rate (FDR)75. A Bayesian t-test76 was used to 
quantify evidence for non-responsiveness.

Identification of category-selective channels. To determine cat-
egory selectivity for faces, objects, letters and false fonts in the high 
gamma, we followed the method of Kadipasaoglu and colleagues77. 
Per category, we computed a d′ (AUC of 0.05–0.4 s) comparing the 
activation between the category of interest (uj) and each of the other 
categories (ui), normalized by the standard deviation of each category:
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A permutation test (10,000 permutations) was used to evaluate sig-
nificance. d′ was computed for the task-relevant and task-irrelevant con-
ditions separately. An electrode was considered selective if it showed 
selectivity on both tasks.

Multivariate analysis electrodes combination. Owing to the sparse 
and highly variable coverage of iEEG data, all collected electrodes were 
combined into a ‘super participant’ multivariate analyses (RSA and 
decoding). To create a single-trial matrix for the super participant, we 
equated the trial matrices of all our participants by subsampling to the 
lowest number of trials in the relevant conditions. Participants that 
did not complete the full experiment were discarded (n = 3), resulting 
in a total of 29 participants with 583 electrodes in posterior ROIs and 
576 electrodes in prefrontal ROIs. For analyses on stimuli identities, 
stimuli that were presented less than three times to any of the par-
ticipants across intermediate and long trials in the task-relevant and 
task-irrelevant trials were discarded. We then subsampled the trials for 
each identity to three trials per participant. The subsampling proce-
dure was repeated 100 times to avoid random fluctuations induced by 
the subsampling. The analysis was computed for each repetition and 
average across repetitions.

MEG preprocessing. The MEG data were converted to BIDS78 us-
ing MNE-BIDS79, and preprocessed following the FLUX Pipeline80 in 
MNE-Python (v0.24.0)68. Preprocessing steps included MEG sensor 
reconstruction using a semi-automatic detection algorithm and 
signal-space separation81 to reduce environmental artefacts. FastICA82 
was used to detect and remove cardiac and ocular components from 
the data for each participant (mean = 2.90 components, s.d. = 0.92). 
Before ICA, data were segmented, and segments containing muscle 
artefacts were removed. After preprocessing, data were epoched into 
3.5-s segments (1-s pre-stimulus to 2.5-s post-stimulus onset). Trials in 
which gradiometre values exceeded 5,000 fT cm−1, magnetometres 
exceeded 5,000 fT and/or the trial contained muscle artefacts were 
rejected from the MEG dataset. Finally, to be included in the analyses, 
participants should have a minimum of 30 clean trials per condition. 
No participants were excluded because of not meeting this criterion.

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
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Source modelling. MEG source modelling was performed using 
the dynamic statistical parametric mapping method83, based on 
depth-weighted minimum-norm estimates (MNEs)84,85, on epoched 
and baseline (−0.5 s to 0 s before stimulus onset) corrected data. To 
build a forward model, the MRI images were manually aligned to the 
digitized head shape. A single shell boundary elements model was 
constructed in MNE-Python based on the inner skull surface derived 
from FreeSurfer72,73, to create a volumetric forwards model (5-mm grid) 
covering the full-brain volume. The lead field matrix was then calculated 
according to the head position with respect to the MEG sensor array. 
A noise covariance matrix for the baseline and a covariance matrix 
for the active time window were calculated and the combined (that is, 
sum) covariance matrix was used with the forwards model to create 
a common spatial filter. Data were spatially pre-whitened using the 
covariance matrix from the baseline interval to combine gradiometre 
and magnetometre data86.

fMRI preprocessing. Source DICOM data were converted to BIDS  
using BIDScoin (v3.6.3)87. This includes converting DICOM data to  
NIfTI using dcm2niix88 and creating event files using custom Python 
codes. BIDS compliance of the resulting dataset was controlled using 
BIDS-Validator. Subsequently, MRI data quality control was performed 
using MRIQC (0.16.1)89 and custom scripts for data rejection. All (f)MRI 
data were preprocessed using fMRIPrep (20.2.3)90, based on Nipype 
(1.6.1)91. For further details on the fMRIprep pipeline, see preregistra-
tion. Custom scripts used NumPy (1.19.2)92 and Pandas (1.1.3)93.

Analysis-specific functional preprocessing. Additional, analysis- 
specific, fMRI data preprocessing was performed using FSL 6.0.2  
(FMRIB Software Library)94, Statistical Parametric Mapping (SPM 12) 
software95, and custom Python scripts (using NiBabel (3.2.2)96 and  
SciPy (1.8.0)97 after the above-outlined general preprocessing. Func-
tional data for univariate data analyses were spatially smoothed (Gauss-
ian kernel with full-width at half-maximum of 5 mm), grand mean scaled 
and temporal high-pass filtered (128 s). No spatial smoothing was  
applied for multivariate analyses.

Contrast of parameter estimates. We modelled BOLD signal responses 
to the experimental variables by fitting voxel-wise general linear model 
(GLM) to the data of each run using FSL FEAT. The following regressors 
were modelled in an event-related approach, with event duration cor-
responding to the stimulus duration (that is, 0.5 s, 1.0 s and 1.5 s), and 
convolved with a double gamma haemodynamic response function: 12 
regressors of interest (targets, task-relevant and task-irrelevant stimuli 
per stimulus category, that is, faces, objects, letters and false fonts; and 
a regressors of no interest, that is, target screen display). We included 
the first-order temporal derivatives of the regressors of interest, and 
a set of nuisance regressors: 24 motion regressors (FMRIB Software 
Library (FSL)’s standard + extended set of motion parameters) plus a 
cerebrospinal fluid (CSF) and a white matter (WM) tissue regressor. Each 
of the 12 regressors of interest was contrasted against an implicit base-
line (used in the putative Neural Correlates of Consciousness analysis; 
see below). In addition, we obtained contrast of parameter estimates for 
‘relevant faces versus relevant objects’, ‘relevant letters versus relevant 
false fonts’, ‘irrelevant faces versus irrelevant objects’, ‘irrelevant letters 
versus irrelevant false fonts’ (used for the definition of decoding ROIs), 
‘relevant and irrelevant faces versus relevant and irrelevant objects’ 
and ‘all stimuli versus baseline’ (used for the definition of seeds for the 
generalized psychophysiological interaction (gPPI) analysis). Data were 
averaged across runs per participant using FSL’s fixed-effects analysis 
and subsequently averaged across participants using FSL’s FLAME1 
mixed-effect analysis. Gaussian random-field cluster thresholding was 
used to correct for multiple comparisons, using the default settings of 
FSL, with a cluster formation threshold of one-sided P < 0.001 (z ≥ 3.1) 
and a cluster significance threshold of P < 0.05.

Anatomical ROIs. ROIs were defined a priori in consultation with the 
adversarial theories. They were determined per participant based on 
the Destrieux atlas73 including both hemispheres, and then resampled 
to standard MNI space (see Supplementary Table 26). For the connectiv-
ity analysis, areas V1/V2 (combining dorsal and ventral) were defined 
based on the Wang cortical parcellation74. For details on the process 
of selecting the ROIs and the justification of the ROI selection in the 
context of this study, see section 10 in Supplementary Information.  
All anatomical segmentations were performed using Freesurfer 
(6.0.1)72.

Behavioural analyses. Log-linear-corrected d′ (ref. 98), false alarms 
and reaction times were computed per category and stimulus duration, 
separately (false alarms were also calculated per task relevance, without 
duration) and per modality (iEEG, MEG and fMRI). These measures were 
compared with linear–logistic mixed models, where appropriate. For 
the former, we report analysis of variance omnibus F-tests, and for 
the latter, omnibus χ2 test from an analysis of deviance. We approxi-
mated degrees of freedom using the Satterthwaite method99. Pairwise 
t-tests following significant interactions were Bonferroni corrected. 
To estimate Bayesian information criterion (BIC) differences between 
the original and null logistic models, we used the P values and sample 
size100 (p_to_bf package in R).

Eye-tracking analyses. For Eyelink, gaze and pupil data were segment-
ed, and trials with missing data were excluded. Blinks were detected 
using the Hershman algorithm101, and removed with 200-ms padding102. 
The Eyelink standard parser algorithm was used for saccade and fixa-
tion detection. Saccades were further corroborated using the Engbert 
and Kliegl103 algorithm. Fixations were baseline corrected (−0.25 s to 
0 s). Mean fixation distance, mean blink rate, mean saccade amplitude 
and mean pupil size were compared in a LMM with category and task 
relevance as fixed effects, and participant and item as random effects. 
Separate analyses were carried out on the first 0.5 s after stimulus onset 
including all trials; and on the 1.5-s trials including time window (0–0.5 s, 
0.5–1.0 s and 1.0–1.5 s) as fixed effects. BIC was used to test the models 
against the null hypothesis models. For Tobii, gaze coordinate data 
were segmented, missing data were excluded and coordinates were 
baseline corrected to depict heatmaps of patients’ gaze. Of note, the 
coordinate data were not added to the LMMs due to its poorer quality 
with respect to the EyeLink data.

Decoding analysis. All decoding analyses were performed using a 
linear support vector machine (SVM; scikit learn (0.23.2), https://scikit-
learn.org/) classifier. Below, we explain how this was done for each one 
of the predictions.

iEEG decoding was done on the high-gamma signal, averaged over 
non-overlapping windows of 0.02 s separately for electrodes located 
in the GNWT and IIT ROIs. The top 200 electrodes (selectKbest104), as 
determined by a F-test within a given set of electrodes from the theory 
ROIs, were used as features for the classifier. Two-hundred features 
were selected to provide a balance between model optimization (for 
example, feature selection) and participant representation (for exam-
ple, electrodes or features coming from multiple participants). Statis-
tical significance of decoding performance was assessed via 
permutation test, randomly permuting the sample labels and repeat-
ing the decoding analysis 1,000 times, corrected for multiple com-
parisons using a cluster-based correction (cluster mass inference with 
cluster forming threshold at P < 0.05)105,106. Also, to assess the decoding 
accuracy within unique ROIs (for example, S_temporal_sup of the 
Destrieux atlas), separate classifiers were trained using all electrodes 
in a given parcel. Each classifier was fitted using all electrodes in a par-
cel and time window (GNWT: 0.3–0.5 s, IIT: 0.3–1.5 s) as features, result-
ing in a single accuracy value per parcel. SelectKbest (200 features for 
iEEG) feature selection and fivefold cross-validation with three 
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repetitions was used. To assess the statistical significance of the decod-
ing accuracy within unique ROIs (so only one accuracy score is obtained 
per ROI), P values obtained via permutation tests were corrected for 
multiple comparisons across all ROIs using FDR correction (q ≤ 0.0575). 
To compute Bayes factors on the decoding accuracy values, we used a 
β-binomial approach that compares the marginal likelihood under a 
point-null hypothesis against a flat B α β( = 1, = 1)  alternative prior, 
yielding an analytic Bayes factor. We then derived the null hypothesis 
parameters from the empirical null distribution by updating a tight 
prior centred at chance level (B α β( = 1, 000, = 1, 000) ) with the 
shuffle-based accuracies, thereby incorporating any bias present in 
the null distribution.

MEG decoding was done on bandpass-filtered (1–40 Hz) and  
downsampled (100 Hz) data. The reconstructed source-level MEG 
data within a subset of the predefined anatomical ROIs (GNWT: ‘G_
and_S_cingul-Ant’, ‘G_and_S_cingul-Mid-Ant’, ‘G_and_S_cingul-Mid-Post’, 
‘G_front_middle’, ‘S_front_inf’, ‘S_front_sup’; IIT: ‘G_cuneus’, ‘G_oc-temp_
lat-fusifor’, ‘G_oc-temp_med-Lingual’, ‘Pole_occipital’, ‘S_calcarine’, ‘S_
oc_sup_and_transversal’, as they showed high response to the stimulus 
on the optimization dataset) were extracted for further analysis (500 
vertices and 800 vertices per hemisphere for each of the anatomical 
ROI defined by the theories). We applied temporal smoothing (0.05-s 
window, 0.01-s sliding window), computed pseudotrials107, normalized 
the data and selected the top 30 features within a given ROI as features 
for the different classifiers. A group-level one-sample t-test per time 
point was performed on the decoding accuracy results, corrected for 
multiple comparisons using a cluster-based correction106.

The overall decoding strategy for fMRI was similar to that used on the 
iEEG and MEG data, yet with some differences. A multivariate pattern 
analysis approach was used on the pattern of BOLD activity over voxels. 
A non-spatially smoothed parameter estimate map was obtained by 
fitting a GLM per event with that event as the regressor of interest and 
all the other remaining events as one regressor of no interest108 as imple-
mented in NiBetaSeries (0.6.0) package. The model also included the 
24 nuisance regressors described in the ‘fMRI preprocessing’ section.

Decoding was performed using whole-brain and ROI-based 
approaches. The whole-brain analysis was performed using a search-
light approach with 4-mm radius. For ROI-based decoding, decoding 
ROIs were defined based on functional fMRI contrasts (see the ‘fMRI 
preprocessing’ section) and constrained with pre-defined anatomical 
ROIs (see Extended Data Table 2 on anatomical ROIs). A one-sample 
permutation test was used to determine whether decoding signifi-
cantly exceeded chance level within each ROI. FDR was used to correct 
for multiple comparisons across ROIs. For whole-brain decoding, a 
cluster-based permutation test was used to evaluate the decoding 
statistical significance across participants (P < 0.05), complemented 
by Bayesian analysis. In addition, stimulus versus baseline searchlight 
decoding was performed using leave-one-run out cross-validation, 
and the resultant decoding accuracy maps were used as input for the 
multivariate putative NCC analysis (see below). To perform stimulus 
versus baseline decoding, we subsampled the stimuli trials to a 2:1 
ratio with respect to baseline. The SVM cost function was weighted 
by the number of trials from each class. Plots were generated using 
Matplotlib (3.3.2)109.

Decoding schemes for the different predictions. To test GNWT and 
IIT decoding predictions, stimulus category (faces versus objects and  
letters versus false fonts) was decoded separately for the task-relevant 
and task-irrelevant conditions (within-task category decoding), whereas  
orientation (front view versus left view versus right view) was deco-
ded on the combined data from the two task conditions. In addition, 
cross-task category decoding from the task-relevant to task-irrelevant 
condition and vice versa was performed to test generalization by train-
ing classifiers on one condition and testing on the other condition. Both 
within-task category and orientation decoding were performed in a 

leave-one-run-out cross-validation scheme for fMRI and in an k-fold 
cross-validation scheme for MEG and iEEG.

For category decoding, trials from each task condition (that is, task 
relevant or task irrelevant) were extracted for each category compari-
son of interest: 160 face/160 objects classification, 160 letters/160 
false-fonts classification within each task-relevant condition for MEG, 
and half the trials for iEEG. For fMRI, there were 64 trials for each 
category in each task-relevant condition. For orientation decoding, 
task-relevant and task-irrelevant trials were collapsed within category 
to increase the signal-to-noise ratio, resulting in 160 front, 80 left and 
80 right trials per category for MEG, and half these numbers for iEEG. 
For fMRI, there were 64 front and 32 left and right trials per category. 
Decoding was evaluated using accuracy measures, tested against 50% 
chance level for category decoding (binary classification) and against 
33% chance level for orientation decoding (three-class classification). 
For orientation decoding, balanced accuracy was used due to the unbal-
anced number of trials for the different orientations. The SVM cost 
function was weighted by the number of trials per class to reduce bias 
to the class with the highest number.

Balanced accuracy =
1
3

(Sensitivity + Sensitivity + Sensitivity )front right left

For within-task decoding (for example, classification of categories 
across time), a classifier at each time point was trained and tested sepa-
rately using a fivefold cross-validation (with three separate repeats of 
cross-validation). For cross-task decoding (task relevant → irrelevant 
and task irrelevant → relevant), each SVM model was trained on one task 
(for example, faces–objects in the task-relevant condition) and tested 
on the second task (for example, faces–objects in the task-irrelevant 
condition). As cross-decoding in iEEG data is performed across all 
pooled electrodes, an additional cross-validation step was performed 
on this modality data to provide a confidence metric (for example, 
confidence intervals) using a fivefold cross-validation with three rep-
etitions (for example, train on 80% of task 1, and test on held-out 20% 
of task 2).

Within-task temporal generalization was performed by training a clas-
sifier at each time point (using selectKbest feature selection) and test-
ing its performance across all time points using the same set of selected 
features and three repetitions of fivefold cross-validation. To generalize 
from one task to another across all time points, cross-temporal gener-
alization was used: a classifier was trained at each time point in task 1 
(for example, task relevant) using selectKbest feature selection, and 
tested across all time points in task 2 (for example, task irrelevant) using 
the same set of selected features. Cross-validation was performed in 
the same manner as in cross-decoding.

Additional decoding analyses were performed on all trials aligned to 
the stimulus onset (for example, −0.2 to 2 s relative to stimulus onset) 
and stimulus offset (−0.5 to 0.5 s around stimulus offset). For the latter 
analysis, all trials from different durations were aligned to the stimulus 
offset.

To assess the prediction of IIT that included prefrontal regions 
along with posterior regions to the decoding of categories will not 
significantly affect decoding accuracy, we performed an additional 
decoding analysis in which the decoding performance of electrodes 
from the IIT region were compared with the decoding performance 
when electrodes from both the posterior + PFC ROIs are included. The 
PFC ROIs included all PFC ROIs except for inferior frontal sulcus, as it 
belongs to the IIT extended ROIs. Posterior ROI included all IIT ROIs 
shown in Supplementary Table 26. The analysis compared the decoding 
accuracy for a model including all electrodes from posterior regions to 
a separate model in which electrodes (features) from posterior and PFC 
regions were combined (for example, feature combination). Training 
and testing of the individual models followed all previously described 
cross-validation procedures, and model comparison was performed 
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using a variance-corrected paired t-test110 and complemented with 
Bayesian analysis.

We also tested this prediction on the fMRI data. To select features 
to be used for both analyses, the face versus object contrast for each 
participant was masked by a predefined anatomical posterior ROIs as 
well as PFC anatomical ROIs, defined the same way as described above. 
Within each of the two ROIs, the 150 voxels that are most selective to 
each of the to-be-decoded stimuli were defined as the decoding ROIs 
(300 voxels total) for each participant. The first analysis compared the 
decoding accuracies for a model that included 300 voxels from the pos-
terior ROIs as features to another model that included 600 voxels (300 
features from each ROI). In the second analysis, two separate models 
were constructed, calibrated and combined as described above. For the 
two analyses, model comparison was performed using a group-level 
one-sample permutation test to determine if accuracies obtained by 
combining posterior and PFC ROIs were significantly higher than the 
accuracies obtained based on posterior ROIs only. FDR was used to 
correct for multiple comparisons. Bayesian analysis was performed to 
quantify evidence for the null hypothesis that adding prefrontal ROIs 
will not improve decoding accuracy.

Duration analysis. Neural responses were extracted from three win-
dows of interest (0.8–1.0 s, 1.3–1.5 s and 1.8–2.0 s) and compared using 
LMMs. Four theory agnostic models were fitted: a null model, a duration 
model (three durations), a windows of interest model, and a duration 
and windows of interest model. Two theory models were fitted: the 
GNWT model predicts activation (ignition) following stimulus offset 
(0.3–0.5 s) independent of duration, with virtually no response in be-
tween. The IIT model predicts sustained activation for the duration of 
the stimulus returning to baseline after stimulus offset. Both theoretical 
models were complemented with an interaction term between category 
(faces, objects, letters and false fonts) and the theories’ predictors, to 
account for regions showing selective responses to categories. BIC was 
used to define the winning model and we computed Bayes factors based 
on the difference in BIC values, comparing the GNWT model (with or 
without interaction) against either the null model (intercept only) or 
the time-window model (capturing amplitude changes over time)111.

Models for iEEG were fitted per electrode on the predefined ROIs, 
using the high-gamma (AUC), alpha (8–13 Hz, obtained through Morlet 
wavelets, f = 8–13 Hz, in 1-Hz steps; f/2 cycles, AUC),and ERPs (peak to 
peak) as signal, separately for task-relevant and task-irrelevant condi-
tion.

MEG models were fitted to source data on the predefined ROIs, using 
the gamma (60–90 Hz) and alpha (8–13 Hz) bands as signal, separately 
for task-relevant and task-irrelevant conditions. Time-frequency analy-
ses were performed on source-data using Morlet wavelets (f = 8–13 Hz, 
in 1-Hz steps; f/2 cycles; f = 60–90 Hz, in 2-Hz steps, f/4 cycles) and were 
baseline corrected. Spectral activity was computed for each vertex, 
baseline corrected and then averaged across trials within each parcel 
included in the ROIs, yielding a unique time course per ROI parcel. In 
addition, a single-source time course capturing the entire prefrontal 
ROI and the posterior ROI was computed by averaging the spectral 
activity within an ROI. Models were fitted on each parcel and ROI, as 
defined by the theories.

Representational similarity analysis. To examine how the neural 
representations evolved over time in response to the different stimulus 
properties (that is, category, orientation and identity representation), 
we performed cross-temporal RSA on source-level MEG data and iEEG 
high-gamma power within each of the theory-defined ROIs, using all 
trials. Specifically, at each set of data points, we computed a representa-
tional dissimilarity matrix (RDM) by calculating the correlation distance 
(1 − Pearson’s r, Fisher corrected) between all pairs of stimuli (the pre-
registration document described a different method that was however 
updated to optimize trial numbers; see section 14 in Supplementary 

Information for justification). Next, to quantify the representational 
space occupied by one class versus another, we computed the average 
within-class distances versus the average between-class distances. This 
analysis was performed in a cross-temporal manner, in which RDMs 
were computed between all stimuli at time point t1 and the correspond-
ing set of stimuli at time points t1, t2,…tn.

Long trials (1.5 s) were used to investigate category and orientation 
representation. As specific identities were repeated a limited number 
of times per duration, both intermediate (1.0 s) and long (1.5 s) trials 
were combined and equated in duration by cropping the 1–1.5-s time 
interval for long trials. This was done to allow for the analysis of at least 
three (3) presentations of the same identity.

To evaluate the theoretical predictions about when significant con-
tent representation should occur, we subsampled the observed 
cross-temporal representational matrices in four time windows (0.3–
0.5 s, 0.8–1.0 s, 1.3–1.5 s and 1.8–2.0 s). The subsampled matrices were 
correlated to the model matrices predicted by GNWT and IIT (see Fig. 1a, 
right panel) using Kendall’s tau correlation. If the correlation was sig-
nificant (see below) for at least one of the predicted matrices, we com-
puted the difference between the transformed correlation ( r( + 1)/2) 
to each theory, and compared this difference against a random distri-
bution to obtain a P value. If the correlation with the theory-predicted 
pattern in the theory ROI was significantly higher than the other model, 
we considered the theory prediction to be fulfilled.

To generate a null distribution of cross-temporal RSA surrogate 
matrices, we repeated the procedure outlined above 1,024 times, ran-
domly shuffling the labels. Next, the observed RSA matrix was z-scored 
using the null distribution as:
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Where obsi j,  is the observed within-versus-between class difference at 
time points i and j, and μsurri j,
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deviation of the surrogate representational similarity matrix at time 
points i and j, respectively. Cluster-based permutation tests112, z-score 
threshold of z = 1.5 for clustering, were used to evaluate significance. 
RSA surrogates were also used to assess the significance of the correla-
tion between the observed matrices and the predicted matrices of the 
theories. First, a null distribution of possible correlations was generated 
for each of the theories by correlating each of the surrogate matrices 
to each of the theory-predicted matrices. Next, a P value was obtained 
for each theory-predicted matrix, by locating its observed correlation 
within the null correlation distribution. The same procedure was used 
to assess the significance of the difference in correlation to IIT and GNWT 
matrices (for example, each of the surrogate matrices was correlated 
to each of the theory-predicted matrices and the difference between 
the two was computed). P values were FDR corrected (q ≤ 0.05)75.

For iEEG, the high-gamma power per electrode within the predefined 
anatomical ROI was averaged in 0.02-s non-overlapping windows. Elec-
trodes were used as features for the RDM. The data were vectorized 
across all electrodes within a ROI (for example, samples × significant 
electrodes) to compute the RDMs. A total of 576 and 583 electrodes 
entered this analysis for the prefrontal and posterior ROI, respectively. 
The resultant RDM was subjected to a PCA, and the first two dimensions 
were plotted against each other to produce a 2D projection of dissimi-
larity scores across all pairs for each of the 100 subsampling repetitions. 
The PCA components were aligned across repetitions using Procrustes 
alignment and averaged together for visualization purposes113,114.

For MEG, the same analysis was run on the source reconstructed 
data within the predefined anatomical ROIs used for the decoding 
analysis, bandpass filtered (1–40 Hz) and downsampled (100 Hz). 
For the category and orientation analysis, pseudotrials and temporal 
moving-average methods were used to optimize the RSA analysis and 
improve the signal-to-noise ratio. For identity, single trials were used. 



Vertices within the ROIs were used as features. The statistical testing 
differed from that conducted on the iEEG data, as it was performed 
at the participant level. Similarly to the iEEG analysis, we first tested 
whether the correlation between the data and the model predicted by 
each theory was greater than zero using the Kendall’s tau measure, and 
then compared between the theories using the Mann–Whitney U rank 
test on two independent samples.

Functional connectivity analysis. For both iEEG and MEG, PPC46 was 
computed between each category-selective time series (face selective 
and object selective) and either the V1/V2 or the PFC time series.

For iEEG, the PPC analysis included electrodes in V1/V2 visual areas, 
in PFC ROIs (see Supplementary Table 26), and face-selective and 
object-selective electrodes (see ‘Identification of task-responsive chan-
nels’), as long as they were ‘active’ during the task. As both theories 
predict different types of activation (for example, ignition versus sus-
tained activation), channels were categorized as active if they showed 
an increase in high-gamma power relative to baseline (−0.5 to −0.3 s, 
P < 0.05, signed-rank test) evaluated across all trials (task relevant + 
irrelevant, intermediate + long trials, combined across both categories), 
for the 0.3–0.5-s window (GNWT), or in all time windows: 0.3–0.5 s, 
0.5–0.8 s and 1.3–1.5 s (IIT).

For MEG, the category-selective single-trial time courses used to 
define the ROIs for PPC analysis were extracted using the generalized 
eigenvalue decomposition (GED) method115. Two GED spatial filters 
were built by contrasting either faces or objects against all other cat-
egories during the first 0.5 s after stimulus onset. Single-trial covariance 
matrices were computed separately for signal and reference for all ver-
tices within the fusiform ROI identified from the FreeSurfer parcellation 
using the Desikan atlas116, and the Euclidean distance between them 
was z-scored. Trials exceeding 3 z-scores were excluded. The reference 
covariance matrix was regularized to reduce overfitting and increase 
numerical stability. The GED was then performed on the two covariance 
matrices, resulting in n (=rank of the data) pairs of eigenvectors and 
eigenvalues. The eigenvector associated with the highest eigenvalue 
was selected as a GED spatial filter, which in turn was applied to the 
data to compute the single-trial GED component time series. A GED 
spatial filter was extracted also for the PFC ROI, on parcels from the 
Destrieux atlas73, to identify the distributed pattern of sources that 
are responsive to visually presented stimuli. Specifically, a spatial filter 
was built by contrasting source-level frontal slow-frequency activity 
(30-Hz low-pass filter) after stimulus onset (0–0.5 s) against baseline 
(−0.5 to 0 s). V1/V2 areas were identified using the Wang Atlas74 and a 
singular values-decomposition approach. For the GED, the 1.0-s and 
1.5-s duration trials were used to minimize overlap with the transient 
evoked at stimulus onset.

PPC was computed for each MEG time series–iEEG electrode pair-
ing, for all face trials and object trials separately. Analyses were per-
formed on 1.0-s and 1.5-s duration trials, separately on task-relevant and 
task-irrelevant trials and also combined to maximize statistical power. 
To compute synchrony, time-frequency analysis of the broadband MEG 
and LFP signal was performed using Morlet wavelets (f = 2–30 Hz, in 
1-Hz steps; 4 cycles; f = 30–180 Hz for iEEG or f = 30–100 Hz for MEG, 
in 2-Hz steps, f/4 cycles), and PPC was then computed by taking the 
difference in phase angle between MEG time series–iEEG electrode 
at each time t and frequency f for a specific trial and computing PPC 
across all trials in a category (for example, faces) as:
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For iEEG, PPC for each category-selective site was then averaged 
across all its pairings (for example, all PFC electrodes pairings or all  

V1/V2 pairings within that patient). The variability in electrode cover-
age across patients precluded a within-participants analysis. There-
fore, to achieve sufficient statistical power, we pooled all derived PPC  
values from one electrode pairing (for example, face selective to 
the PFC) across all patients into one ROI-specific analysis. A similar 
approach was used on the MEG parcels.

To quantify content-specific synchrony enhancement, the difference 
in PPC was computed between within-category and across-category 
trials (for example, for face-selective sites, the change in PPC was 
computed between faces versus objects trials) using a cluster-based 
permutation test106. This was done for both modalities.

As an exploratory analysis, we also investigated dynamic functional 
connectivity using the Gaussian copula mutual information117 approach 
to evaluate the dependencies between time series. This power-based 
measure of connectivity was implemented using the conn_dfc method 
from the Frites Python package118. We used the same parameters as 
for the PPC analysis, with the following exceptions: for both MEG 
and iEEG, power was estimated through a multitaper-based method 
(using a frequency-dependent dynamic sliding window: 2–30 Hz, T = 4 
cycles; 30–100 Hz, T4/f using a 0.25-s sliding window). For iEEG, the 
high-frequency range was extended from 30 to 180 Hz, T = 4/f cycles). 
DFC was performed per frequency band, 0.1-s sliding window and 0.02-s 
steps.

For fMRI, connectivity was assessed through gPPI implemented in 
SPM119. The FFA and lateral occipital cortex were defined as seed regions 
per participant based on an anatomically constrained functional con-
trast. Anatomically, FFA seeds were constrained to the ‘inferior occipital 
gyrus (O3) and sulcus’ and ‘lateral occipito-temporal gyrus (fusiform 
gyrus; O4–T4)’. LOC seeds were constrained to the ‘middle occipital 
gyrus (O2; lateral occipital gyrus)’ and the ‘middle occipital sulcus and 
lunatus sulcus’ (Destrieux ROIs 2 and 21 for FFA, and ROIs 19 and 57 for 
LOC; see ‘Anatomical ROIs’).

Candidate seed voxels within the above-mentioned anatomical 
ROIs were defined as those with z > 1 in the contrast of parameter esti-
mates of all stimuli versus baseline. Three participants with less than 
300 candidate seed voxels were excluded from the analysis. This was 
done to ensure that the seed voxels were visually driven. Next, using an 
unthresholded contrast of parameter estimates between ‘relevant and 
irrelevant faces’ and ‘relevant and irrelevant objects’, the 300 voxels 
most responsive to faces within the FFA anatomical ROIs were selected 
for the FFA seed, and the 300 voxels most responsive to objects within 
the LOC anatomical ROIs were selected for the LOC seed.

gPPI analysis was performed per participant and seed region sepa-
rately, including an interaction term between the seed time-series 
regressor (physiological term) and the task regressor (psychological 
term) at the participant-level GLM119, separately for task-relevant and 
irrelevant conditions, and also combining across tasks to increase statis-
tical power. For combined conditions, the model design matrix for each 
participant included regressors for task-relevant and task-irrelevant 
faces, objects, letters and false fonts collapsed across conditions (four 
regressors) as well as a regressor for targets (irrespective of their cat-
egory), yielding five regressors in total. As for separated conditions, 
the model design matrix included regressors for task-relevant and 
task-irrelevant faces, objects, letters and false fonts (eight regressors) 
as well as a regressor for targets (irrespective of their category), yield-
ing nine regressors in total. For each seed, group-level analysis was 
performed using a cluster-based permutation test (preferred over the 
preregistered FDR correction), complemented by Bayesian analysis. 
See section 14 in Supplementary Information for a justification of this 
change to evaluate the statistical significance of face > object contrast 
parameter estimates across participants (P < 0.05).

Putative NCC analyses. A series of conjunction analyses were per-
formed on the fMRI data to identify (1) areas responsive to task goal, 
(2) areas responsive to task relevance, and (3) areas putatively involved 
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in the neural correlates of consciousness. We note that the contrasts 
proposed below might overestimate the neural correlates of conscious-
ness and that the fast-event-related design adopted here might be 
suboptimal to detect activity changes in the salience network120, that 
is, potentially underestimating some regions that might be involved 
in conscious processing. We therefore have adopted a conservative 
approach that distinguishes between areas that might participate in 
consciousness versus those that definitely do not.

The conjunction defining areas responsive to task goals was defined 
as [TaskRelTar > bsl] and [(TaskRelNonTar = bsl) and (TaskIrrel = bsl)]. 
This contrast captures areas that show an increase of BOLD signal for 
targets but not for other stimuli. The following conjunction identified 
areas responsive to task relevance: [(TaskRelTar > bsl) and (TaskRelNon-
Tar ≠ bsl)] and [TaskIrrel = bsl]. This contrast identifies areas displaying 
differential activity for all task-relevant stimuli, but are insensitive to 
non-task-relevant stimuli. Finally, the following conjunction was used 
to identify the putative NCC areas: [(TaskRelNonTar (stim id) > bsl) 
and (TaskIrrel (stim id) > bsl)] or [(TaskRelNonTar (stim id) < bsl) and 
(TaskIrrel (stim id) < bsl)], critically detecting areas that are responsive 
to any stimulus category irrespective of task, with consistent activa-
tion or deactivation. Thus, this analysis casts a wide net to identify 
areas that can potentially be the neural correlates of consciousness, 
whereas excluding areas that do not respond to task-relevant or irrel-
evant stimuli (meaning that areas that respond both to the task and to 
the content of perception are still included).

To compute conjunctions, we first ran a GLM (see above) corrected 
for multiple comparisons (Gaussian random-field cluster-based infer-
ence). Equivalence to baseline was established using a JZS Bayes factor 
test, with a Cauchy prior (r scale value of 0.707, as implemented in 
Pingouin (0.5.1)121. Evidence maps were thresholded at BF01 > 3. The 
thresholded z maps and the Bayesian evidence maps on the group level 
were used for the conjunction analysis. For conjunctions including an 
‘unequal to’, a ‘logical and’ operation was used between the directional 
z maps, after thresholded maps were binarized. For the putative NCC 
contrast, conjunctions were performed separately for activations and 
deactivations, using a ‘logical and’ operator for the task-relevant and 
irrelevant z maps. The resulting maps were combined using a ‘logical 
or’ operation to discard areas showing effects of opposite direction for 
task-relevant and task-irrelevant stimuli. This analysis was also done 
at the participant level, masked using the anatomical ROIs, to account 
for inter-participant variability. For each ROI, the proportion of partici-
pants with voxels included in the conjunction is reported. The multivari-
ate version of the putative NCC analysis was done using the thresholded 
statistical maps obtained from the whole-brain searchlight decod-
ing based on a participant-level stimulus versus baseline-decoding 
accuracy maps (for details regarding the decoding approach used, 
see ‘Decoding analysis’).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The full study protocol is available in the preregistration on the OSF 
webpage (https://osf.io/92tbg/)27, including a detailed description of 
the experimental design, the predictions of the theories and agreed-on 
interpretations of the results, as well as iEEG, MEG and fMRI data acqui-
sition details, preprocessing pipelines and data analysis procedures. 
Deviations from the preregistration are documented throughout the 
article and summarized in section 14 of the Supplementary Infor-
mation. All data generated in this study are available under a CC BY 4.0 
license. The M-EEG, fMRI and iEEG datasets are distributed through two  
methods: as downloadable data bundles and via an XNAT instance, 
which enables search functionality and single-participant downloads. 

Data bundles can be accessed (https://www.arc-cogitate.com/
data-bundles) in raw format (M-EEG raw122, fMRI raw123 and iEEG raw124) 
and BIDS format (M-EEG BIDS125, fMRI BIDS126 and iEEG BIDS127). Alter-
natively, the datasets are accessible via the Cogitate XNAT instance128 
(https://cogitate-data.ae.mpg.de). All distribution formats include 
robust metadata, and detailed documentation of experimental proce-
dures and dataset structure is available (https://cogitate-consortium.
github.io/cogitate-data/). For further inquiries, please contact the 
corresponding author.

Code availability
Task and analysis codes have been shared under an MIT license. 
The task code129 has been shared on GitHub (https://github.com/
Cogitate-consortium/cogitate-experiment-code). The analy-
sis code130 has also been shared on GitHub (https://github.com/
Cogitate-consortium/cogitate-msp1).
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Prediction1 Complementary results for decoding of 
conscious content. a, fMRI searchlight decoding accuracies (letters-falsefonts), 
collapsed across durations. Pattern classifiers trained on relevant stimuli and 
tested on irrelevant stimuli (left, purple) or vice versa (right, orange): Outlined 
colored regions on the inflated cortical surfaces (top: lateral views; bottom: 
medial views) indicate significant above-chance (50%) decoding. Here and 
below, significance was evaluated through a cluster-based permutation test 
(p < 0.05; two-sided). Sample sizes as reported in Fig. 2. b, iEEG ROIs decoding 
accuracies (letters-falsefonts) collapsed across durations. Conventions as in a. 
The results are displayed on inflated surface maps from a left lateral (top left), 
posterior (top right) and left medial (bottom) views. c, MEG cross-task decoding 
of category (letters-falsefonts) when classifiers were trained on relevant stimuli 
and tested on irrelevant stimuli (purple); or vice versa (orange), separately for 
the whole posterior (left) and prefrontal (right) ROIs. Underlying lines indicate 

significantly above-chance (50%) decoding. Error bars depict 95% CI across 
participants. d, iEEG cross-task temporal generalization of category decoding 
(letters-falsefonts) classifiers trained on task-relevant stimuli and tested on 
task-irrelevant stimuli. Columns: stimulus durations (left: 0.5 s; center: 1.0 s; 
right: 1.5 s). Rows: theory ROIs (top: posterior; bottom: prefrontal). Contoured 
red-shaded regions depict significant above-chance (50%) decoding. e, iEEG 
cross-task temporal generalization of category decoding (faces-objects), 
classifiers were trained on task-relevant stimuli and tested on task-irrelevant 
ones. Conventions as in d. f, iEEG cross-task temporal generalization of category 
decoding (faces-objects) from task-irrelevant to task-relevant stimuli, yet using 
pseudotrial aggregation to boost decoding accuracy. Conventions as in d.  
g, iEEG ROI decoding accuracies (faces-objects) using pseudotrials. Conventions 
as in b. Brain surfaces in panels a, b, g are from Freesurfer.
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Extended Data Fig. 2 | Within-task temporal generalization of decoding  
of stimulus category. a, iEEG within-task temporal generalization decoding  
of category (faces-objects) for pattern classifiers trained and tested on 
task-relevant stimuli. As in Fig. 2b, columns represent stimulus durations (left: 
0.5 s; center: 1.0 s; right: 1.5 s) and rows represent theory ROIs (top: posterior; 
bottom: prefrontal). Contoured red-shaded regions depict significant 
above-chance (50%) decoding. Here and below, significance was evaluated 
through a cluster-based permutation test (p < 0.05; two-sided). Sample size  
as in Fig. 2. b, iEEG within-task temporal generalization decoding of category 
for task-irrelevant stimuli. Conventions as in a. c, MEG within-task average 
decoding of category (faces-objects), for the task-relevant (orange) and the 
task-irrelevant (purple) conditions, in posterior (left) and prefrontal (right) 

ROIs. Underlying lines depict significantly above-chance (50%) decoding 
assessed by cluster-based permutation test (p < 0.05). Error bars depict 95% CI 
estimated across participants. d, MEG within-task decoding of category 
(letters-falsefonts). Conventions as in c. e, fMRI searchlight decoding of 
category (faces-objects), collapsed across durations, for the task-relevant (left, 
orange) and task-irrelevant (right, purple) conditions. Outlined colors indicate 
regions on the inflated cortical surfaces showing significantly above-chance 
(50%) decoding (top: left/right lateral views; bottom: right/left medial views).  
f, iEEG ROIs decoding accuracies, collapsed across durations, within the task- 
relevant (left, orange) and the task-irrelevant (right, purple) stimuli. Same 
conventions as in e, with maps from a left lateral (top left), posterior (top right) 
and left medial (bottom) views. Brain surfaces in panels e,f are from Freesurfer.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Control analyses for the decoding prediction. a, Left: 
iEEG ROIs decoding results of orientation (left/right/front view) over time as  
in Fig. 2, but using pseudotrials akin to the MEG analysis. Right: Regions with 
electrodes showing significant above-chance (33%) accuracies are indicated in 
outlined blue on the inflated surfaces (left: left lateral view; middle: posterior 
view; right: left medial view). Here and below, error bars depict 95% CI. 
Significance assessed using a cluster-based permutation test (p < 0.05, two-
sided). Sample size as in Fig. 2. b, Two analyses were performed to evaluate 
potential leakage in MEG decoding, using independent data from the 
optimization phase (N = 32). Top: averaged stimulus-evoked response in face 
task-relevant trials, combined across durations, at different latencies, 
projected on the inflated surfaces. Activity in posterior areas (blue ellipse) 
showed the highest peak ~0.1-0.2 s, while prefrontal areas showed a later 
highest peak ~0.2-0.3 s. This challenges the leakage interpretation. Bottom: 
Analysis of face-object decoding in task-relevant trials across durations, 
separately within parcels in parietal and PFC. Left: Average decoding accuracy 

in an early time window (0.25-0.5 s) projected on two differently inflated surfaces 
to better depict gyri and sulci. Right: Time-resolved decoding of these parcels. 
Decoding is highest in posterior areas and lowest in anterior areas, with fairly 
similar time courses, suggesting a posterior-to-anterior gradient consistent 
with leakage. c, ROIs used in the decoding analysis including (blue) and 
excluding (red) PFC areas. d, iEEG decoding of faces-objects (left), letters-
falsefonts (middle) and face orientation (right), with and without PFC 
(blue and red). Underlying lines indicate significantly worse decoding when 
including PFC. e, MEG decoding results, same conventions as in d. f, fMRI 
decoding of faces-objects. Histogram shows the differences in classification 
including and excluding frontal areas. fMRI accuracies including PFC show  
1.2% increase compared to excluding PFC, observed in 56% of the participants. 
Notably, this slight increase was observed only in the combined features 
analysis and not the combined models’ analysis (see Methods). Brain surfaces 
in panels a-c are from Freesurfer.



Extended Data Fig. 4 | Maintenance of conscious content over time  
for stimulus categories, identity and orientation. a, Cross-temporal 
representational similarity matrices in Posterior ROI (Npatients=28, Nelectrodes = 583). 
The leftmost column shows similarity for letters vs. false fonts, separately for 
task-relevant (left) and task-irrelevant (right) trials. Principal Component 
Analysis (PCA) plots at 0.3 s illustrate the separability between letters and 
false fonts. The top rightward column display similarity for identity, while 
bottom rows show similarity for orientation. Contours indicate statistical 
significance based on cluster-based permutation tests (upper tail test, α = 0.05). 
PCA illustrates clear separability between letters and false fonts in the posterior 
cortex at 0.3 s, regardless of task relevance (top – task-relevant, bottom - 

task-irrelevant). This separability was largely sustained in the task-relevant 
condition but diminished between ~0.95 and 1.4 s. In the task-irrelevant condition, 
separability was significant only for a brief period at the beginning. Identity 
information was significant for letters and false-fonts but not for faces. While 
identity information was not sustained throughout the entire stimulus 
duration, elevated z-scores up to 1 s suggest a potential limitation in statistical 
power. No statistically significant orientation information was observed for 
any category. Conventions as in Fig. 3. b, Cross-temporal representational 
similarity matrices in Prefrontal ROI (Npatients=28, Nelectrodes = 576) for the same 
contrasts as and following the same conventions as in a. No contrast yielded 
statistically significant results in the PFC ROI.
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Extended Data Fig. 5 | Prediction #3: Interareal connectivity preregistered 
analysis. a, iEEG electrode coverage used to assess content-selective 
synchrony for IIT ROIs (top, Npatients = 4) & GNWT ROIs (bottom, Npatients = 21). 
Electrode coverage varied between ROIs as interareal connectivity was 
assessed between electrodes on a per-participant basis. In addition, two 
example category-selective electrodes are shown (right): one face-selective, 
and one object-selective. Error bars depict standard error of the mean. b, iEEG 
Pairwise phase consistency (PPC) analysis of task-irrelevant trials reveals 
significant content-selective synchrony (e.g. faces > objects for face-selective 
electrodes; left; objects > faces for object-selective electrodes; right) in V1/V2 
ROIs (top row), but not in PFC ROIs (bottom row). Color bars represent the 
average change in PPC (face and object trials) for each node (face-selective, 
object-selective). Positive values reflect stronger connectivity for faces, while 
negative values reflect stronger connectivity for objects. c, MEG (N = 65) 

cortical time-series were extracted per participant from cortical parcels in  
V1/V2 (blue), PFC (green) and in a fusiform (red) ROIs. Category-selective signals 
were obtained by creating a category-selective GED filter (i.e., contrasting face- 
object trials against any other stimulus category trials) on the activity extracted 
from the fusiform ROI. Face- (bottom left) and object-selective (bottom right) 
responses averaged across participants are shown at the bottom. Error bars 
depict 95% CI. Here and below, significance was assessed using cluster-based 
permutation tests, p < 0.05, two-sided. d, MEG PPC analysis of task-irrelevant 
trials (N = 65) reveals significant category-selective synchrony below 25 Hz for 
the face-selective GED filter (i.e., faces > objects for face-selective electrodes) 
in both V1/V2 (top row) and PFC ROIs (bottom row) and for the object-selective 
synchrony (objects > faces for object-selective electrodes) in the PFC ROI only. 
Brain surfaces in panels a,c are from Freesurfer.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Control analysis for the interareal connectivity 
prediction. a, iEEG PPC analysis of task-irrelevant trials did not reveal any 
significant category-selective synchrony cluster in posterior (top) or PFC 
(bottom) ROIs after removing the evoked response. Same conventions, sample 
size and statistical tests as in Extended Data Fig. 5 are used here and below.  
b, MEG PPC analysis of task-irrelevant trials also did not reveal any synchrony 
cluster in any ROI after removing the evoked response. c, iEEG DFC analysis of 
task-irrelevant trials without removing the evoked response reveals significant 
content-selective connectivity between object-selective electrodes and V1/V2 
electrodes (top-right), reflected as broadband (25–125 Hz) decrease in the 
change in DFC (e.g., faces < objects). Similar broadband changes in DFC (faces > 
objects) were observed for face-selective electrodes in PFC (bottom-left). 
Smaller significant effects were detected between face-selective and V1/V2 
electrodes (top-left) and for object-selective and PFC electrodes (bottom-
right). d, MEG DFC analysis of task-irrelevant trials without removing the 
evoked response reveal significant content-selective synchrony between the 

face-selective GED filter node and both V1/V2 (top-left) and PFC (bottom-left). 
This is reflected in an increase in low-frequency connectivity (< 25 Hz) 
combined with a decrease in high-frequency connectivity (25–100 Hz). Smaller 
yet significant effects were detected for the object-selective GED filter (right). 
e, Generalized psychophysiological interactions (gPPI) task-related 
connectivity analysis of task-irrelevant (left) and task-relevant (right) trials 
revealed weak clusters of content-selective connectivity with FFA as the 
analysis seed (p < 0.01, uncorrected). Common significant regions showing 
task-related connectivity in task-irrelevant, task-relevant, and combined 
conditions include V1/V2, right intraparietal sulcus (IPS), and right inferior 
frontal gyrus (IFG). f, gPPI task-related connectivity analysis of task-irrelevant 
(left), task-relevant (middle), and combined conditions revealed weak clusters 
of content-selective connectivity with lateral occipital complex (LOC) as the 
analysis seed (p < 0.01, uncorrected). Overall, no common significant regions 
showed task-related connectivity. Brain surfaces in panel e, f are from 
Freesurfer.



Extended Data Fig. 7 | An overview of theoretical predictions, experimental 
outcomes and interpretations. Left: Preregistered predictions of IIT (top) 
and GNWT (bottom) (see also ref. 12; Fig. 1). Key hypotheses (second column, 
Key hypotheses) are described alongside the three analyses used to test them 
(third column, Test): decoding (prediction #1; Fig. 2), activation & RSA 
(prediction #2; Fig. 3), and synchrony (prediction #3; Fig. 4). Potential 
outcomes and their interpretations are detailed in the fourth column (Possible 
outcome and interpretation), with outcomes aligning with predictions framed 
in green (pass) and contradictory outcomes framed in red (fail). Solid frames 
denote critical predictions, while dotted gray frames indicate non-critical 
predictions. This section reflects the theoretical expectations before the 
experiment. Right: summary of the actual findings, integrating results across 
modalities and analyses. Key findings for each prediction are described (fifth 

column; ‘Result’) with white denoting alignment with predictions, red 
indicating contradiction, white/red mixtures showing partial support or 
failure, and yellow indicating inconclusive results. Final conclusions synthesize 
these findings, using the same color coding. For IIT, the results mix a passed 
prediction (content-specific complex of neural units in posterior cortex, 
throughout the persistence of a percept, independent of the task) with a failure 
(maximum integrated information). For GNWT, the results consisted of a 
mixture of a partly challenged prediction (of an all-or-none threshold and 
amplification of information updating the content of consciousness in PFC) 
and a partly supported one, given the inconclusive result for orientation (of 
global broadcasting of information in the PFC). These results are discussed in 
the main text, including their implications for other consciousness theories.
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Extended Data Table 1 | Key Predictions and Integration of Evidence Across Planned Analyses

Key predictions of each theory and plan for integrating outcomes across the different brain recording modalities and analyses. Each prediction (Bolded titles, light gray cells) is broken down  
to sub-predictions, which are then integrated together to provide the final conclusion per prediction (dark gray rows, appearing at the bottom for each prediction). Bolded predictions are  
the ones appearing on Extended Data Fig. 7 on the Preregistration, and are defined as the critical predictions for evaluating the theories. Numbered sub-predictions are the ones considered  
when integrating across sub-predictions to reach the final conclusion of each prediction (black rows). Finally, light red row denotes vertical integration across all predictions, to form the final 
conclusion for each theory based on its critical predictions.



Extended Data Table 2 | Decoding of faces vs. objects in the theory-defined ROIs

The table presents the number of voxels in each theory-defined ROI that were detected in the searchlight decoding of category (faces vs. objects; N = 73), using a cluster-based permutation test 
(p < 0.05). The results are presented separately for cross-task decoding (i.e., when classifiers are trained on the task-irrelevant trials and tested on task-relevant ones, or vice versa), as well as for 
within task decoding (irrelevant and relevant conditions).
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Extended Data Table 3 | Electrode locations found to be significant in the LMM analysis

Electrodes location in MNI coordinates, as well as in the corresponding parcellations of the Destrieux Atlas, Wang Atlas and Desikan Atlas.
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