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Adversarial testing of global neuronal 
workspace and integrated information 
theories of consciousness

Cogitate Consortium* 

Di!erent theories explain how subjective experience arises from brain activity1,2. 
These theories have independently accrued evidence, but have not been directly 
compared3. Here we present an open science adversarial collaboration directly 
juxtaposing the integrated information theory (IIT)4,5 and the global neuronal 
workspace theory (GNWT)6–10, via a theory-neutral consortium11–13. The theory 
proponents and the consortium developed and preregistered the experimental 
design, divergent predictions, expected outcomes and interpretation thereof12. 
Human participants (n = 256) viewed suprathreshold stimuli for variable durations 
while neural activity was measured with functional magnetic resonance imaging, 
magnetoencephalography and intracranial electroencephalography. We found 
information about conscious content in visual, ventrotemporal and inferior frontal 
cortex, with sustained responses in occipital and lateral temporal cortex re#ecting 
stimulus duration, and content-speci$c synchronization between frontal and early 
visual areas. These results align with some predictions of IIT and GNWT, while 
substantially challenging key tenets of both theories. For the IIT, a lack of sustained 
synchronization within the posterior cortex contradicts the claim that network 
connectivity speci$es consciousness. The GNWT is challenged by the general  
lack of ignition at stimulus o!set and limited representation of certain conscious 
dimensions in the prefrontal cortex. These challenges extend to other theories  
of consciousness that share some of the predictions tested here14–17. Beyond 
challenging the theories, we present an alternative approach to advance cognitive 
neuroscience through principled, theory-driven, collaborative research and 
highlight the need for a quantitative framework for systematic theory testing  
and building.

Philosophers and scientists have sought to explain the subjective nature 
of consciousness (for example, the feeling of pain or of seeing a colour-
ful rainbow) and how it relates to physical processes in the brain18,19. 
This quest has led to various theories of consciousness evolving in 
parallel1–3 and often providing incompatible accounts of the neural 
basis of consciousness1,2. Furthermore, empirical support for a given 
theory is often highly dependent on methodological choices, point-
ing towards a confirmation bias in theory testing3. Convergence on a 
broadly accepted neuroscientific theory of consciousness will have 
profound medical, societal and ethical implications.

To advance this goal, we tested two theories of consciousness, 
through a large-scale, open-science adversarial collaboration11,12,20–22 
aimed at accelerating progress in consciousness research by building 
on constructive disagreement. We brought together proponents of 
the IIT4,5 and GNWT6,23, in addition to theory-neutral researchers. The 
group identified differential existing and novel predictions of the two 
theories and developed an experimental design to test them (Fig. 1a).  

We preregistered these predictions, including pass or fail criteria, 
expected outcomes and their interpretation ex-ante11,12. We focus on 
the GNWT and IIT, among other widely discussed theories (for example, 
recurrent processing theory and higher-order theories1,2), because they 
feature prominently in consciousness science, as demonstrated by a 
recent systematic review of the literature3.

The IIT and GNWT explain consciousness differently: the IIT proposes  
that consciousness is the intrinsic ability of a neuronal network to influ-
ence itself, as determined by the amount of maximally irreducible 
integrated information (phi) supported by a network. On the basis of 
theoretical and neuroanatomical considerations, the IIT suggests that 
a complex of maximum phi probably resides primarily in the posterior 
cerebral cortex, in a temporo–parietal–occipital ‘hot zone’4,5,24,25. The 
GNWT instead posits that consciousness arises from global broadcast-
ing and late amplification (or ‘ignition’) of information across inter-
connected networks of higher-order sensory, parietal and especially 
prefrontal cortex (PFC)6,9,23.
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Both theories have a mathematical or computational core (inte-
grated information for the IIT, and global workspace for the GNWT) 
and proposed biological implementations (the posterior cortex versus 
the PFC and associated areas, respectively). Although it is difficult to 
test the mathematical or computational core of either theory directly, 
their competing biological implementations are empirically testable 
with current methodologies. Thus, our study focuses on brain regions 
where the predictions diverge most significantly — the posterior cortex 
for the IIT and the PFC for the GNWT, rather than the associated areas 
in higher-order sensory or parietal cortex — facilitating maximally 
diagnostic experiments.

One consequence of this biological focus is that theorists could 
respond to challenging data by modifying the proposed biological 
implementation while retaining the mathematical or computational 
core of a theory. Another consequence is that some predictions (and 
their associated consequences) may overlap with other theories of 
consciousness sharing similar biological bases, such as higher-order 
theories16,17 in the PFC, and local recurrency theories14,26 in the visual 
cortex. Although these are inherent aspects of studying theoretical 
proposals about neural mechanisms of consciousness, the results are 
expected to help the community make more informed judgements 
about the tested theories (for rationale, see the preregistration docu-
ment (https://osf.io/92tbg/)).

Preregistered predictions and analyses
We tested three preregistered, peer-reviewed predictions of the IIT 
and GNWT12 for how the brain enables conscious experience (Fig. 1a): 
prediction 1 addresses the cortical areas holding information about 
different aspects of conscious content. The IIT predicts that conscious 
content is maximal in posterior brain areas, whereas the GNWT predicts 
a necessary role for the PFC. Prediction 2 pertains to the maintenance of 
conscious percepts over time27–29. The IIT predicts that conscious con-
tent is actively maintained by neural activity in the posterior ‘hot zone’ 
throughout the duration of a conscious experience, whereas the GNWT 
predicts ignition events in the PFC at stimulus onset and offset, updat-
ing the global workspace, with activity-silent information maintenance 
in between30. Prediction 3 examines interareal connectivity during 
conscious perception. The IIT predicts sustained short-range con-
nectivity within the posterior cortex, linking low-level sensory (V1/V2)  
with high-level category-selective areas (for example, the fusiform 
face area and the lateral occipital cortex), whereas the GNWT predicts 
long-range connectivity between high-level category-selective areas 
and the PFC. The combination of predictions, tested through highly 
powered, multimodal studies, places a high bar for either theory to pass, 
rendering failures more informative. Predictions were differentially 
weighted based on their centrality to the theory and methodological 
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Fig. 1 | Predictions and experimental design. a, Predictions of the IIT and 
GNWT. For prediction 1 (decoding of conscious content), the IIT predicts 
maximal decoding of conscious content in posterior brain areas, whereas the 
GNWT emphasizes a necessary role for the PFC. For prediction 2 (maintenance 
of conscious content), the IIT posits that conscious content is actively 
maintained in the posterior cortex, whereas the GNWT predicts brief 
content-specific ignition (approximately 0.3–0.5 s) in the PFC at stimulus 
onset and offset, with content stored in a non-conscious silent state between 
these events. Waveforms (left) and temporal generalization matrices (right) 
illustrate the predicted amplitude-based and information-based temporal 
profiles: coloured rectangles indicate the three stimulus durations for the PFC 
(GNWT) and the posterior cortex (IIT; left); the arrows mark stimulus onset 
(brown) and offset (red), whereas predicted temporal generalization is depicted 
in green (GNWT) and blue (IIT; right). For prediction 3 (interareal connectivity 
supporting consciousness), the stars and arrows on the brain diagram illustrate 
predicted synchrony patterns, with green representing the GNWT and blue 

representing the IIT. Images are from Freesurfer. b, Conscious experience is 
multifaceted. For instance, viewing the Mona Lisa involves experiencing it as 
occupying a specific spatial location, categorizing it as a face, recognizing an 
identity and noting its leftward orientation, with this complex experience 
maintained over time. c, To manipulate conscious content, stimuli varied 
across four dimensions: category (faces, objects, letters and false fonts), 
identity (different exemplars within each category), orientation (left, right 
and front views) and duration (0.5 s, 1.0 s and 1.5 s). Example stimuli are  
shown. d, Experimental paradigm. Participants detected predefined targets 
(for example, a specific face and object or a letter and false-font) in sequences 
of high-contrast stimuli. Each trial contained three stimulus types: targets 
(red; coloured frames for illustration only), task-relevant stimuli (orange- 
red; same categories as targets) and task-irrelevant stimuli (purple; other 
categories). Blank intervals between stimuli are not depicted. Stimulus  
images in panels c,d are courtesy of Michael J. Tarr, Carnegie Mellon University, 
http://www.tarrlab.org/.

Q17

Q18

Q19

https://osf.io/92tbg/
http://www.tarrlab.org/


Nature | www.nature.com | 3

considerations (Extended Data Table 1; for an additional preregistered 
non-critical analysis, see section 8 in Supplementary Information).

To empirically test these predictions, we investigated the content 
and temporal extent of conscious visual experiences, focusing on 
their phenomenological richness and multifaceted nature, even for 
a single stimulus. For instance, when viewing the Mona Lisa (Fig. 1b), 
one experiences it as having a specific identity, orientation, location in 
visual space and for as long as one looks at the painting. To approximate 
such multifaceted experiences, we manipulated several attributes of 
conscious content by presenting suprathreshold visual stimuli across 
four different categories (faces, objects, letters and false fonts), each 
containing 20 unique identities shown in three orientations (front, left 
and right view) and for three durations (0.5, 1.0 and 1.5 s). In each block, 
participants were instructed to detect two infrequent target stimuli 
from either the pictorial (face–object) or symbolic (letter–false fonts) 
stimulus categories (for example, a specific face or object), making 
these categories task relevant for that block (Fig. 1c,d).

This paradigm offers several advantages. First, it provides robust 
conditions to test the predictions of the theories by focusing on clearly 
experienced conscious content, studied through high signal-to-noise, 
suprathreshold, fully attended single stimulus at fixation. This ampli-
fies the significance of any challenges to the theories, as they cannot 
be explained by weak signals. Second, it minimizes task and report 
confounds, isolating neural activity specifically related to conscious-
ness. Third, it allowed testing novel predictions, addressing previously 
unexplored questions, that is, how experience is maintained over time, 
refining theories and yielding new insights.

All research was conducted by theory-neutral teams to minimize 
confirmatory bias. We evaluated the predictions of theories in 256 par-
ticipants performing the same behavioural task in three neuro imaging 
modalities: functional magnetic resonance imaging (fMRI; n = 120), 
magnetoencephalography (MEG; n = 102) and intracranial electroen-
cephalography (iEEG; n = 34). To overcome the spatial and temporal 
limitations of each modality, we combined whole-brain, non-invasive 
fMRI and MEG with invasive iEEG, ensuring methodological rigour. 
Combined with large sample sizes, this minimizes the likelihood that 
negative results are due to methodological or sensitivity issues. Data 
collection occurred in two (or three) independent laboratories for 
each modality to guarantee generalization across groups of partici-
pants, instruments and experimenters. To foster informativeness, 
reproducibility and robustness, we (1) separated theory proponents 
from data acquisition and analysis to minimize bias and post-hoc 
interpretation, (2) used a multimodal approach maximizing spati-
otemporal resolution and coverage for a stringent and comprehen-
sive tests of the theories in humans, (3) predefined large samples to 
increase statistical power, (4) followed standardized31 and preregistered 
protocols12 to reduce setup differences and confirmatory bias22 (see  
sections 1 and 2 in Supple mentary Information), and (5) implemented 
an analysis optimization phase (one-third of the sample) followed by 
a final testing phase (two-thirds of the sample) on independent data 
for result validation32. Consequently, this large-scale international 
effort aimed at implementing a rigorous adversarial collaboration 
framework, establishing a precedent for an alternative scientific  
approach.

Decoding of conscious content
According to the IIT, the PFC is not necessary for consciousness. 
Consequently, decoding conscious content should be most effec-
tive from the posterior cortex, and adding PFC activity as additional 
information should not improve decoding accuracy. This prediction 
was considered non-critical for testing the IIT as the theory focuses 
on the intrinsic, causal perspective of information within a neural 
substrate rather than the amount of information decodable from the  
perspective of an extrinsic observer5. By contrast, the GNWT posits that 

conscious content can be decoded from PFC activity. Both theories 
predict that conscious content should be evident in theory-relevant 
areas independently of other cognitive processes (for example, report 
and task); thus, conscious content should be present irrespective of 
task manipulations33,34. This prediction was tested by evaluating the 
decoding accuracy of stimulus category (faces–objects (pictorial) and 
letters–false fonts (symbolic)) and orientation (left, right and front 
facing) in all theory-relevant areas. All stimulus categories alternated 
between being task relevant and task irrelevant across blocks (Fig. 1d). 
Stimulus orientation, being orthogonal to the task, remained task 
irrelevant in all blocks.

On the basis of our preregistered predictions and pre-approved inter-
pretations (Extended Data Table 1; https://osf.io/92tbg/), the theories 
would pass the test if decoding is possible for both category (in at least 
one category pairing) and orientation (in at least one category), but 
would fail otherwise. Testing both category and orientation decoding 
constitutes a stringent test, as it requires two conditions to be satis-
fied, increasing the likelihood of failures35, while capturing the critical 
multidimensionality of conscious content, that is, phenomenological 
richness (Fig. 1b).

For decoding of category, we tested whether information is present 
in the relevant regions irrespective of the task, using a cross-task gen-
eralization approach (see Methods).

Here we report the most robust results for decoding of category 
(faces–objects) and orientation (left, right and front views of faces). 
Qualitatively similar results were observed for decoding of letters–
false fonts (Extended Data Fig. 1a–d). Results for orientation decoding  
were consistent across stimulus categories and data modalities in 
the posterior cortex, but mostly absent in the PFC (see section 5.1.2 in  
Supplementary Information).

In the iEEG data, pattern classifiers were trained on high gamma 
frequency band activity (70–150 Hz), which correlates with spiking 
activity36,37, at each time point in the task-irrelevant condition, and 
tested in the task-relevant condition, for each stimulus duration and 
category, and across all electrodes within the theory-relevant region 
of interests (ROIs; see Fig. 2a for a visualization of ROIs and the Meth-
ods section for anatomical ROI definitions). In the posterior ROIs, 
face–object decoding showed significant cross-task generalization 
(more than 95% accuracy) for the approximate duration of the stimulus 
(Fig. 2b, top row). In the PFC ROIs, significant cross-task face–object 
decoding accuracy (approximately 70%) was also evident, but the tem-
poral generalization of this decoding was restricted to approximately 
0.2–0.4 s (Fig. 2b, bottom row). Training on task-relevant and testing 
on task-irrelevant trials showed similar results (Extended Data Fig. 1e; 
within-task decoding is presented in Extended Data Fig. 2).

Although electrode coverage across our sample of iEEG patients 
(n = 29 for decoding analyses) was exceptional in the relevant brain 
regions (Fig. 2a; PFC ROIs nelectrodes = 576, posterior ROIs nelectrodes = 583), 
we further analysed a larger population of healthy participants (n = 65) 
using MEG, focusing on theory-relevant ROIs (see Methods). Here too, 
cross-task generalization of face–object decoding was significant in 
both posterior and prefrontal ROIs (Fig. 2c) within the theory-predicted 
time windows. Cross-temporal generalization of decoding in MEG was 
sustained in posterior ROIs and brief in PFC ROIs for all three stimulus 
durations (see section 5.1.1.2 in Supplementary Information).

We leveraged the higher spatial resolution of fMRI (n = 73) to com-
plement the analysis. A searchlight approach (see Methods) revealed 
distributed, robust cross-task generalization (approximately 75%) in 
the striatal and extrastriatal, ventral temporal and intraparietal cortex 
(Fig. 2d and Extended Data Table 2). Generalization in the PFC had 
lower accuracy (approximately 60%) and was spatially restricted to the 
middle and inferior frontal cortex regions (Fig. 2d). Theory-relevant 
ROIs defined in the Destrieux atlas yielded comparable results (see 
section 5.1.1.3 in Supplementary Information). These results closely 
matched those from iEEG-restricted to theory-specified ROIs and time 
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windows (Fig. 2e). Hence, across modalities, face–object decoding 
occurred in both posterior and prefrontal ROIs, consistent with IIT 
and GNWT predictions.

Given the rich and multidimensional nature of conscious content, 
we assessed the decoding of stimulus orientation, which was always 
task irrelevant. We obtained divergent results for the IIT and GNWT: 
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Fig. 2 | Prediction 1: decoding of conscious content. a, Spatial coverage of 
intracranial electrodes (npatients = 29) on a standard inflated cortical surface map 
(top), and within theory-defined ROIs (bottom): posterior (blue; nelectrodes = 583) 
and prefrontal (green; nelectrodes = 576). b, iEEG cross-task temporal generalization 
of decoding of high-gamma signal. Pattern classifiers were trained to 
discriminate stimulus category (faces–objects) in the task-irrelevant condition 
at each time point and tested in the task-relevant condition across all time- 
points. Columns denote stimulus durations (0.5 s (left), 1.0 s (centre) and  
1.5 s (right)), and rows indicate theory ROIs (posterior (top) and prefrontal 
(bottom)). Contoured red-shaded regions depict significant above-chance 
(50%) decoding. Here and below, significance was evaluated through a non- 
parametric cluster-based permutation test (P < 0.05; two-sided). c, MEG 
average cross-task decoding of stimulus category (n = 65) from task-relevant  
to task-irrelevant stimuli (purple) and vice versa (orange), separately for the 
posterior (top) and prefrontal (bottom) ROIs, depicted on inflated cortical 
surfaces (posterior in blue and prefrontal in green), across durations, using 
pseudotrial aggregation. Underlying lines indicate significance. The shading 

depicts 95% CI across participants. d, fMRI searchlight cross-task decoding  
of stimulus category (n = 73), collapsed across durations, from task-relevant 
stimuli to task-irrelevant stimuli (left; purple) or vice versa (right; orange). The 
outlined coloured regions on the inflated cortical surfaces (left–right lateral 
views; right–left medial views (bottom)) indicate significant above-chance 
decoding. e, iEEG ROIs significant cross-task decoding of stimulus category, 
collapsed across durations. Conventions are as in panel d, displayed from a left 
lateral (top left), posterior (top right) and left medial (bottom) views. f, iEEG 
average decoding of stimulus orientation (left, right and front) within posterior 
(top) and prefrontal (bottom) ROIs, collapsed across durations. Underlying 
lines indicate above-chance (33%) decoding. The shading depicts 95% CI 
estimated across cross-validation folds. g, fMRI searchlight decoding of face 
orientation (left, right and front). Regions with significantly above-chance 
(33%) decoding accuracies are outlined in blue. h, iEEG ROIs decoding of face 
orientation (left, right and front). Conventions are as in panel g. i, MEG ROIs 
average decoding of face orientation (left, right and front). Conventions are as 
in panel f. Images in panels a,c–e,g are from Freesurfer.
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decoding of face orientation (left, right or front views) was achieved in 
posterior but not in prefrontal ROIs, both with iEEG (Fig. 2f,h, approxi-
mately 95% with pseudotrial aggregation; Extended Data Fig. 3a) and 
the fMRI searchlight approach (Fig. 2g, approximately 45%). Decod-
ing of face orientation was robust from MEG cortical time series in 
posterior ROIs (approximately 75% with pseudotrial aggregation), but 
was weaker, yet above chance (35%), in prefrontal ROIs (Fig. 2i), with 
a possibility of signal leakage from posterior regions (Extended Data 
Fig. 3b). Bayesian testing further validated these findings. For iEEG, 
Bayes factor (BF)01 values (5.11–8.65) supported the null hypothesis 
of no face orientation decoding in prefrontal regions. fMRI Bayes-
ian analysis revealed substantial-to-very strong support for the null 
hypothesis in 34–55% of prefrontal voxels (BF01: 3–71.5), with support 
for the alternative hypothesis in only 1–9% of voxels, whereas the rest 
remained inconclusive. Across all modalities, orientation decoding was 
observed for letters and false fonts — but not objects — in posterior, but 
not prefrontal, ROIs (see section 5.1.2 in Supplementary Information).

Finally, we tested the prediction from the IIT that prefrontal regions 
do not contribute further information beyond that specified by poste-
rior areas (or may even degrade performance by introducing noise)38. If 
PFC activity increased decoding accuracy, the IIT would be challenged, 
whereas no improvement in decoding accuracy would align with both 
the IIT and GNWT, as the GNWT posits that PFC workspace neurons 
broadcast but do not add information. We compared the performance 
of decoders trained exclusively on posterior ROIs with those trained 
on posterior and prefrontal ROIs together (Extended Data Fig. 3c; 
see Methods). Across critical time-resolved methods (iEEG and MEG) 
and various PFC ROI definitions, adding prefrontal ROIs did not improve 
— and in some cases reduced — category and orientation decoding 
(Extended Data Fig. 3d,e and section 5.1.3 in Supplementary Infor-
mation). Bayesian testing confirmed these findings: we found strong 
evidence against increased decoding accuracy when including PFC ROIs 
for category decoding (face versus object: iEEG BF01 = 1.94 × 104 and 
MEG BF01 = 3.05; letter versus false font: iEEG BF01 = 1.91 × 105 and MEG 
BF01 = 4.70) and face orientation (iEEG BF01 = 1,205 and MEG BF01 = 3.26).

Maintenance of conscious content
According to the IIT, the network that specifies the content of con-
sciousness in the posterior cortex is actively maintained over the 
duration of the conscious experience (manipulated here via dif-
ferent stimulus durations). By contrast, the GNWT predicts brief, 
content-specific ignition in the PFC within 0.3–0.5 s after stimulus 
onset, as the workspace is updated12. Activity then decays back to 
baseline, with information maintained in a latent state, until another 
ignition marks the offset of the current percept and the onset of a new 
percept (for example, the fixation screen following stimulus offset). 
Thus, although the underlying brain responses (the workspace update) 
are temporally discrete (that is, an onset and an offset response), the 
conscious experience can be temporally continuous, spanning from 
one update to the next.

Following the preregistration (Extended Data Table 1; https://osf.
io/92tbg/), the IIT would be challenged if sustained content-specific 
information and activation tracking stimulus duration were absent in 
the posterior cortex. The GNWT would be challenged if transient pre-
frontal activation (at stimulus onset and offset) was not observed. These 
patterns were expected for at least one conscious feature (category, 
identity or orientation). We assessed activation strength as a function 
of stimulus duration and the informational content of this activation 
within theory-relevant ROIs. For the IIT, both activation and informa-
tion content were critical predictions, jointly determining result inter-
pretation. For the GNWT, activation was the primary measure due to 
the difficulty of reliably detecting content-specific reinstatement at 
stimulus offset. The temporal predictions were tested in time-resolved 
iEEG and MEG data. We focused on the task-irrelevant condition as it 

best isolates neural activity related to consciousness while minimizing 
confounds (see sections 6.1 and 6.2.9 in Supplementary Information 
for task-relevant results).

First, we tested the predictions of theories investigating iEEG neural 
activation as a function of stimulus duration using linear mixed models 
(LMMs; see Methods) to model the time course of neural activity in the 
high gamma frequency. Among the 31 patients included, 29.5% (194 
of 657) of posterior ROI electrodes and 18.7% (123 of 655) of PFC ROI 
electrodes exhibited high gamma responses to stimuli (see section 
6.1.2 in Supplementary Information).

In the posterior cortex ROIs, 25 electrodes (out of 657) measured 
sustained activity tracking stimulus duration (Extended Data Table 3 
for electrode localization and section 6.1.1 in Supplementary Informa-
tion for results of the full model), consistent with the prediction by the 
IIT (Fig. 3a). Of these, 12 electrodes tracked duration independent of 
stimulus category, primarily in early visual areas (for example, the 
occipital pole; Fig. 3b), whereas 13 showed category-specific duration 
tracking (mostly for faces) in the ventral temporal cortex (for example, 
the lateral fusiform gyrus; Fig. 3b). Overall, only a small proportion of 
electrodes exhibited both category selectivity and duration tracking 
— for example, just 15% (8 of 53) of face-selective electrodes showed 
sustained activity as predicted by the IIT, suggesting a sparse neural 
substrate. These responses were mostly localized to the lateral fusiform 
gyrus, whereas the majority of face-selective electrodes displayed 
transient activations at stimulus onset across the striatial, extrastriatial 
and ventral areas (see section 6.1.2 in Supplementary Information).

In PFC ROIs, 99 and 24 electrodes showed non-selective and 
category-selective onset responses, respectively (Fig. 3c). However, 
none of the 655 electrodes measured the temporal profile predicted 
by the GNWT (that is, onset and offset). Bayesian analysis confirmed 
this result (BF01 > 3 for all electrodes in PFC ROIs), providing stronger 
evidence for either an intercept-only or a time-varying amplitude model 
over the GNWT model, with or without category interaction. This null 
result was not due to analysis limitations, as the LMM successfully 
detected the GNWT-predicted pattern in 10 electrodes in other ROIs 
(in the striatial or extrastriatial cortex; Fig. 3b). An exploratory decod-
ing analysis of stimulus duration with unrestricted temporal profiles 
identified only one electrode, in the inferior frontal sulcus, showing the 
GNWT-predicted pattern, although with transient responses occurring 
earlier than expected (0.15 s post-onset and post-offset; Fig. 3c). Addi-
tional control analyses confirmed the IIT-predicted pattern in posterior 
ROIs, and the absence of the GNWT-predicted pattern in PFC ROIs (see 
sections 6.2.1–6.2.3 in Supplementary Information).

We used LMMs to track gamma frequency band (60–90 Hz) power 
changes from the MEG source time series across posterior (15 parcels) 
and PFC (11 parcels) ROIs. Although signals were strong in posterior 
areas, none of the theory-based models adequately fit the data (BF01 > 3 
for all parcels; see section 6.1.3.1 in Supplementary Information).  
We also examined alpha band activity (8–13 Hz), which negatively 
correlates with neural spiking activity39,40. Validation of theoretical 
predictions from iEEG and MEG data was inconclusive: no prefrontal 
iEEG electrodes showed the GNWT-predicted combination of an onset 
and offset response (BF01 > 3 for all prefrontal electrodes); instead, 
this pattern appeared in posterior sites and in MEG data, including the 
anterior cingulate cortex. However, the MEG results were sensitive to 
parameter choices, and signal leakage from posterior sites could not be 
ruled out (see sections 6.1.1 and 6.1.3.2 in Supplementary Information).

Next, we used cross-temporal representational similarity analysis 
(RSA) on both iEEG and MEG source data, within each theory-relevant 
ROI, to test for IIT and GNWT predictions about the temporal profile 
of the maintenance of conscious content (Fig. 1a, middle panel): sus-
tained versus phasic (onset and offset) representation for the IIT and 
GNWT, respectively. This test was critical for the IIT only. Results for 
faces and objects are presented below (see Extended Data Fig. 4 for 
similar results for letters–false fonts).

https://osf.io/92tbg/
https://osf.io/92tbg/
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In iEEG, we calculated the correlation distance between high gamma 
activity patterns across 583 electrodes in posterior (npatients = 28) and 
576 electrodes in PFC (npatients = 28) ROIs separately (see Methods). We 
analysed the 1.5-s duration trials because this condition provided the 

strongest contrast between the temporal profiles predicted by the 
theories.

In posterior cortex ROIs, cross-temporal RSA revealed sustained 
face–object categorical representation, with larger correlation 
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Fig. 3 | Prediction 2: maintenance of conscious content. a, Intracranial 
electrode localization on the MNI template, for posterior (left; blue; npatients = 31 
and nelectrodes = 657) and prefrontal (right; green; npatients = 31 and nelectrodes = 655) 
ROIs. Electrodes are colour coded by response type based on model comparison 
(see Methods): sustained non-category-selective activation (light blue; n = 12), 
sustained category-selective activation (dark blue; n = 5), sustained face- 
selective activation (purple; n = 8), biphasic onset–offset activation in 
posterior areas (green; n = 11) and in the PFC (black; n = 1), and onset-responsive 
activation in the PFC (grey; n = 99). Images are from Freesurfer. b, Posterior ROI 
activation. Time-series plots depict average HGP, separated by stimulus 
duration (0.5 s (dark),1 s (medium) and 1.5 s (light)) for non-selective (left) and 
face-selective (middle) electrodes. The shading here and in panel c depicts 
standard error of the mean across electrodes and trials. The barplots (right) 
depict the average HGP signal across sustained face-selective electrodes (n = 8) 
in 1.5-s trials, separated by category (faces in dark blue, objects in orange, letters 
in turquoise and false fonts in dark red) and theory-defined time windows  
(x axis). Raster plots show single-trial (n = 320) HGP of individual electrodes 

during task-irrelevant trials: a sustained non-selective (left), sustained face- 
selective (middle) and onset–offset (right) electrode. The rows depict single 
trials, sorted per duration (from top: 0.5, 1.0 and 1.5 s), and then category (from 
top: false fonts, letters, objects and faces). c, Prefrontal ROI activation. Time- 
series plots (top left) depict the average HGP response per stimulus duration 
(shades of grey) for onset-responsive electrodes (n = 99) in task-irrelevant trials 
(n = 320). Average HGP response per stimulus duration for a single electrode 
exhibiting onset–offset responses, with an earlier-than-predicted offset (top 
right). Raster plots for example onset (bottom left) and onset–offset (bottom 
right) responses are also shown. Conventions are as in panel b. d, Cross-temporal 
RSA matrices in posterior (npatients = 28 and nelectrodes = 583) and prefrontal 
(npatients = 28 and nelectrodes = 576) ROIs. The titles indicate the compared contrasts, 
and the subtitles denote the ROIs. Matrix values represent z-scored, within- 
class-corrected correlation distances derived from a label shuffle null 
distribution. Contours denote significance (cluster-based permutation tests, 
P < 0.05, upper tail).
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distances between categories (face–objects) than within category (face, 
object; compare Fig. 3d, left, with Fig. 1a). The RSA matrix matched the 
IIT model better than the GNWT model (see section 6.3 in Supplemen-
tary Information for results of all contrasts).

In PFC ROIs, cross-temporal RSA revealed transient face–object cat-
egorical representation at stimulus onset, but not at stimulus offset. 
Consequently, no significant correlation was found with the GNWT 
onset and offset model (compare Fig. 3f, left, with the predicted pat-
tern in Fig. 1a). This pattern held even for the task-relevant condition, 
in which face–object information was stronger, more stable and longer 
lasting. Additional evidence for the absence of GNWT-predicted pat-
terns in PFC ROIs emerged from three control analyses using (1) feature 
selection, which improved RSA in the PFC; (2) modified time windows 
to account for a potential earlier ignition at stimulus offset; and (3) a 
decoding analysis time locked to stimulus offset to enhance sensitivity 
(see section 6.4 in Supplementary Information). These results align with 
two independent studies using comparable methods41,42.

It has been argued that because conscious experiences are specific, 
the representation of identity and orientation are more stringent tests 
of the neural substrate of conscious experience43 than of category. We 
thus also evaluated the predictions of the theories on these dimensions.

In posterior ROIs, EEG revealed sustained object identity informa-
tion, with smaller distances for same-identity objects than for different 
identities (Fig. 3d). The IIT model significantly correlated with the 
observed RSA matrix, providing a better fit than the GNWT model. 
Similar results were found for letter and false-font identity, but not 
for faces (Extended Data Fig. 4). In PFC ROIs, identity information was 
absent for all categories across analysed time windows (Fig. 3d, objects). 
Face orientation information appeared weakly in posterior ROIs at 
stimulus onset but was not sustained, decaying after 0.5 s, contrary to 
the predictions by the IIT. No face orientation information was detected 
in PFC ROIs (Fig. 3d). Finally, the predictions of neither theory were 
supported for category, identity or orientation by the MEG data (see 
section 6.5 for Supplementary Information).

Interareal connectivity
The IIT predicts sustained gamma-band connectivity within the 
posterior cortex, that is, between high-level and low-level sensory 
areas (V1/V2), throughout any conscious visual experience. By con-
trast, the GNWT predicts brief, late-phase metastable connectivity 
(more than 0.25 s) with information sharing between the PFC and 
category-specific areas, manifested in long-range gamma-band or 
beta-band synchronization44.

On the basis of our preregistration (see Extended Data Table 1), the 
IIT would be challenged in the absence of sustained content-specific 
synchronization between face–object selective areas and V1/V2; 
whereas a challenge for the GNWT would be a lack of phasic con-
nectivity (0.3–0.5 s) between category-selective areas and the PFC. 
Given the dynamical nature of these predictions, iEEG and MEG pro-
vided the most informative empirical test. These predictions were 
tested computing pairwise phase consistency (PPC)45 between each 
category-selective time series (face-selective and object-selective 
nodes) and either the V1/V2 or the PFC time series in the intermediate 
(1.0 s) and long-stimulus-duration (1.5 s), task-irrelevant trials (see 
section 7.1.2 in Supplementary Information for task-relevant trials). 
Gamma activity was analysed due to its close link to neuronal spik-
ing46, which the IIT considers a constituent property of the physical 
substrate of consciousness5.

For iEEG, we analysed connectivity between electrodes showing face 
and object selectivity, using a different subset of electrodes to test con-
nectivity with V1/V2 and the PFC (see Methods; Extended Data Fig. 5a for 
ROIs and examples of face-selective and object-selective electrodes). 
Given the sparse electrode coverage, the requirement to focus on ‘acti-
vated’ electrodes (see Methods) was relaxed, although restricting it to 

only activated electrodes yielded similar results. We found increased 
category-selective synchrony between category-selective and V1/V2 
electrodes (Extended Data Fig. 5b). These effects were early and brief 
(for example, less than 0.75 s), and restricted to low frequencies, that is, 
2–25 Hz. This synchrony was mostly explained by the stimulus-evoked 
response (Extended Data Fig. 6a). These results fail to align with IIT pre-
dictions: the activity was neither sustained nor observed in the gamma 
frequency band. Bayesian analysis further supported the null hypoth-
esis (BF01 = 1.15–4.9). No content-selective PPC was found between 
face-selective and object-selective electrodes and PFC electrodes in 
the relevant time window, contradicting the prediction by the GNWT 
(Extended Data Fig. 6a; BF01 = 2.62–5.32).

For MEG, we found selective synchronization between face-selective 
areas and both V1/V2 and the PFC. These effects were again early, 
restricted to low frequencies (2–25 Hz), and mostly explained by 
stimulus-evoked responses (Extended Data Figs. 5b and 6b). Bayes-
ian analysis of the gamma-band synchronization further supported 
the null hypothesis (all BF01 > 3).

The results of the preregistered PPC metric for prediction 3, critical 
for both the IIT and the GNWT, supported neither theory. PPC was cho-
sen based on the mechanistic considerations of the theories because 
it assesses oscillatory phase. However, phase estimation from macro-
scopic recordings is susceptible to noise.

We thus used dynamic functional connectivity (DFC; see Methods), 
a metric sensitive to co-modulations of signal amplitude, after remov-
ing stimulus-evoked responses (Extended Data Fig. 6c,d includes the 
evoked response).

In iEEG, we observed significant connectivity between object- 
selective electrodes and V1/V2 (Fig. 4a), spanning multiple frequency 
bands, with the gamma band being the most predominant. In con-
trast to the predictions of the IIT, the observed connectivity was brief. 
Connectivity between face-selective electrodes and V1/V2 was scarce, 
further supported by Bayesian analysis (BF01 = 1.3 in favour of the null 
hypothesis). Significant connectivity was observed between the PFC 
and both the face-selective and the object-selective areas in the gamma 
frequency band within the GNWT-predicted time window. For MEG, 
brief DFC in the alpha–beta frequency bands was found between 
face-selective nodes and both the PFC and V1/V2 (Fig. 4b).

The exploratory DFC results in iEEG were consistent with the predic-
tions of the GNWT while challenging the predictions of the IIT, as con-
nectivity with V1/V2 was not sustained. However, V1/V2 were sparsely 
sampled in our population, with only 12 electrodes localized to V1/V2 
compared with 472 in the PFC.

Using fMRI, we evaluated connectivity across the entire cortex with 
homogeneous sampling. We computed the generalized psychophysi-
ological interaction, defining the fusiform face area (FFA) and lateral 
occipital complex as seed regions (see Methods). Task-relevant and 
irrelevant trials were pooled to increase statistical power (see sections 
7.1.1 and 12 in Supplementary Information for separate preregistered 
analyses). FFA showed content selective (face > object stimuli) con-
nectivity with V1/V2, the inferior frontal gyrus and the intraparietal 
sulcus, consistent with predictions from both theories (Fig. 4c).  
No selective increase in interareal connectivity between object- 
selective nodes and the PFC or V1/V2 was found in fMRI, even when 
separating task conditions (Extended Data Fig. 6f). Bayesian testing 
across prefrontal ROIs confirmed our findings with 62–94% of voxels 
across ROIs showing substantial evidence for the null hypothesis of 
no interareal connectivity (BF01 = 3–7.75). Support for the alternative 
hypothesis was observed only in 0–4% of voxels. The remaining voxels 
showed inconclusive evidence.

To determine whether connectivity to the PFC and V1/V2 was task driven 
in the generalized psychophysiological interaction, we explored the 
iEEG data, separating task-relevant and irrelevant trials. We found task- 
independent, selective DFC connectivity (face > objects) for face- 
selective electrodes in both the inferior frontal gyrus and V1/V2 (Fig. 4d).
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Discussion
This adversarial collaboration aimed to address confirmation biases 
by researchers, breaking theoretical echo chambers3 and identify-
ing the strengths and weaknesses of theories2,47 by forcing them to be 
explicit and committal about their empirical predictions, rigorously 
testing them on common methodological grounds22,48, and providing 
the means for theorists to change their minds given conflicting results48. 
Doing so catalyses our ability to evaluate and arbitrate between theories 
of consciousness. Embracing this spirit, and adhering to guidelines for 
structuring adversarial collaborations21, we opted for a three-voice 
discussion format, acknowledging that despite stringent testing of 
incompatible theoretical views, different interpretations of the same 
evidence may persist. Below, the theory-neutral consortium presents 
the main challenges our findings pose to the theories, based on the 
preregistered predictions, methods and analysis agreed on in advance 
with the adversaries. Then, adversaries offer their own interpreta-
tion of the findings and future directions (see sections 12 and 13 in  
Supplementary Information).

Extended Data Fig. 7 summarizes the key results, including the crite-
ria used to assess whether findings support or contradict the theories. 
This summary covers both central and peripheral findings related to 
theory evaluation. The consortium adopted Lakatos’ sophisticated 
falsificationist approach to philosophy of science13,49, emphasizing that 
challenged predictions provide more valuable insights than those con-
firmed by the data (see section 11 in Supplementary Information). Out-
comes are weighted differentially across predictions and with respect 
to the different brain imaging modalities (Extended Data Table 1). This 
approach ensures a nuanced evaluation of the theories, highlighting 
areas of strength and those requiring further refinement.

For the IIT, the lack of sustained synchronization within the posterior 
cortex represents the most direct challenge, based on our preregistra-
tion. This is incompatible with IIT’s claim that the state of the neural 
network, including its activity and connectivity, specifies the degree 
and content of consciousness5. Although this null result could stem 
from methodological limitations (for example, limited iEEG sampling 
of V1/V2 areas), our multimodal and highly powered study provided 
the best conditions so far for evaluating the prediction. We urge IIT 
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Fig. 4 | Prediction 3: interareal connectivity. a, iEEG DFC analysis of task- 
irrelevant trials reveals significant content-selective synchrony only for object- 
selective electrodes in V1/V2 (for example, top-right; npatients = 4 and nelectrodes = 21), 
whereas showed significant content-selective synchrony for both categories in 
the PFC ROI (bottom row; face selective: npatients = 19 and nelectrodes = 81, object 
selective: npatients = 14 and nelectrodes = 57). Here and in panel b, significance was 
assessed using a cluster-based permutation analysis (P < 0.05, two-sided) and 
the colour bars represent the average change in the DFC between conditions.  
b, MEG DFC analysis of task-irrelevant trials (n = 65) reveals significant content- 
selective synchrony below 25 Hz for the face-selective GED filter in both V1/V2 
(top left) and PFC (bottom left), but not for the object-selective GED filter (right 
panels). c, fMRI generalized psychophysiological interaction (gPPI; n = 70)  
on task-relevant and task-irrelevant trials combined reveals significant 

content-selective connectivity when FFA is used as the analysis seed. Various 
significant regions showing task-related connectivity with the FFA seed were 
observed including V1/V2, the right intraparietal sulcus (IPS) and the right 
inferior frontal gyrus (IFG). LH, left hemisphere; RH, right hemisphere. d, Analysis 
of iEEG face-selective DFC synchrony across tasks is shown at the single-electrode 
level in PFC (top) and V1/V2 (bottom) ROIs. Electrodes showing significant 
synchrony (tested using a permutation test, FDR-corrected, P < 0.05) in relevant 
(orange-red), irrelevant (purple) or combined relevant and irrelevant (black) 
trials are shown (averaged over 70–120 Hz and 0–0.5-s time window). DFC 
synchrony was observed in both tasks, but restricted to IFG for the GNWT 
analysis and V2 regions for the IIT analysis, consistent with the fMRI gPPI 
analysis shown in panel c. Images in panels c,d are from Freesurfer.
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proponents to direct future efforts to evaluate this prediction and 
determine the significance of this failure.

More broadly, although the IIT passed the predefined criteria for 
the duration prediction (number 2), there was no evidence for a sus-
tained representation of orientation, despite being a property of the 
consciously perceived stimuli25. This is an informative challenge for 
the IIT, as orientation decoding was robust across all three data modali-
ties, leaving open the question of whether and how information about 
orientation is maintained over time.

For the GNWT, the most significant challenge based on our preregis-
tered criteria pertains to its account for the maintenance of a conscious 
percept over time and, in particular, the lack of ignition at stimulus off-
set. This result is unlikely to stem from sensitivity limitations, as offset 
responses were robustly found elsewhere (for example, visual areas); 
in the PFC, strong onset responses were found to the very same stimuli. 
The lack of ignition at stimulus offset is especially surprising given 
the change of conscious experience at the onset of the blank fixation 
screen. This clear update to the content of consciousness should have 
been represented somehow by the global workspace12. Thus, that aspect 
of consciousness remains unexplained within the GNWT framework.

Another key challenge for the GNWT pertains to representing the 
contents of experience: although we found representation of category 
in the PFC irrespective of the task, hereby demonstrating the sensi-
tivity of our methods, no representation of identity was found, and 
representation of orientation was only evident in MEG (signal leakage 
notwithstanding); however, these dimensions were clearly a part of the 
conscious experience of participants of the stimuli. This raises the ques-
tion of whether the PFC is involved in broadcasting all conscious con-
tent as predicted by the GNWT23 or only a subset (for example, abstract 
concepts and categories, rather than low-level details), in which case 
the role of the PFC in consciousness might need to be redefined.

Before this study, predictions from the IIT and GNWT were typically 
tested with one data modality at a time23,24, leaving room for negative 
results to be easily attributed to the limitations of the chosen modal-
ity50. We combined multiple techniques (iEEG, MEG and fMRI) to miti-
gate these limitations, cross-compensating for their weaknesses. This 
methodological approach was mutually agreed on by the theory leaders 
before data collection and results disclosure as the most powerful 
and conclusive approach, making both positive and negative findings 
more meaningful.

Although this study was designed around the IIT and GNWT, the 
results may have implications for other theories of consciousness. For 
example, the prediction by the GNWT about the PFC is shared by those 
higher-order theories of consciousness that hypothesize the PFC to 
actually supply the content of visual consciousness (for example, ref. 17),  
rather than those that take it to merely enable the consciousness of 
content that is located in posterior visual areas (for example, refs. 51,52). 
As a result, the failures to confirm this prediction challenge not only the 
GNWT but also those higher-order theories53. Predictions 2 and 3 about 
timing and connectivity are more distinctive to the GNWT but could 
also be shared by other theories. Likewise, the non-core prediction 1 
about the posterior cortex by the IIT is also shared by many theories 
(for example, recurrent processing theory14), and its prediction 2 about 
timing may be shared by some posterior theories of consciousness, 
such as the local recurrency theory15. Its prediction 3 about interareal 
connectivity is more distinctive to the IIT (for example, it is not shared 
by synchrony theory54), so the challenge here is more specific as well.

Our study focused on the contents of consciousness (for example, 
category, identity, orientation and duration), linking brain activity to 
subjective phenomenology. This departs from the traditional con-
trastive method, which compares the presence and absence of con-
sciousness but conflates it with other cognitive processes (for example, 
decision-making or memory formation)55–57. Some might argue that 
our approach tracks stimulus processing rather than consciousness. 
Yet, our aim is to challenge and potentially falsify49,58 the IIT and GNWT, 

by examining where their predictions differ, rather than to discover 
the neural correlates of consciousness. In this context, what might 
seem like a weakness — focusing on the presence of fully attended, 
consciously experienced stimuli — is actually beneficial for testing the 
primary positive predictions of the theories and their failures. This is 
because such failures are harder to dismiss due to weak signals. Thus, 
our approach assesses whether the proposed neural mechanisms are 
truly necessary for consciousness.

Our study, although comprehensive, is not without limitations. First, 
we cannot entirely rule out residual task engagement with respect to 
category, although our design ensured that orientation and duration 
remained task irrelevant, so the results on these dimensions cannot 
be explained by task-related effects. Second, although we aimed to 
capture multiple aspects of consciousness, our approach still falls short 
of encompassing its full phenomenal richness. Third, despite the high 
spatial and temporal resolution of our data, it lacks single-unit record-
ings, which are typically restricted to patients with epilepsy and selected 
brain regions. Ongoing studies in animal models, as part of a separate 
adversarial collaboration, can accordingly complement our findings.

Beyond directly challenging the theories, our study raises broader 
questions about theory testing and development across disciplines. 
A key challenge is how to weigh predictions and integrate evidence 
across different analyses and measurement techniques (for example, 
fMRI, MEG and iEEG). We adopted a lenient falsificationist approach, 
in which evidence for any tested feature (for example, decoding of 
category or orientation) was sufficient to rule out failure, rather than 
requiring consistency across all features. However, a formal framework 
is urgently needed to quantitatively integrate evidence, accounting for 
prediction centrality, measurement error and cross-sample consist-
ency. Such a framework would enhance systematic theory building in 
an era of accumulating results59.

After reviewing the results and the discussions by adversaries, 
readers might expect a definitive verdict on the two theories under 
evaluation. Instead, we invite readers to weigh the evidence themselves —  
considering the support for each preregistered prediction, the breadth 
of the data, the sophistication of the methods and analyses, and the 
cognitive biases that shape interpretation. Scientific progress is rarely a 
matter of simple verdicts; evidence is filtered through previous beliefs 
and motivations60, making theory evaluation a dynamic process. By 
presenting results and adversarial responses transparently, we embrace 
the openness needed for science to converge on robust explanations 
of complex phenomena such as consciousness.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-025-08888-1.
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Methods
Ethics statement
The experiment was approved by the institutional ethics committees 
of each participating data-collecting laboratory, including the Science, 
Technology, Engineering and Mathematics Ethical Review Committee 
at the Centre for Human Brain Research, University of Birmingham 
(ERN_18-0226AP20); the Committee for Protecting Human and Animal 
Subjects at the School of Psychological and Cognitive Sciences, Peking 
University (2020-05-07e); the Commissie Mensgebonden Onderzoek 
Regio Arnhem-Nijmegen at the Centre for Cognitive Neuroimaging 
at Donders Institute (NL45659.091.14); the Human Research Protec-
tion Program Institutional Review Board at Yale School of Medicine 
(2000027591); the Office of Science and Research Institutional Review 
Board at New York University Langone Health (i14-02101_CR6); the 
Boston Children’s Hospital Institutional Review Board at Children’s 
Hospital Corporation d/b/a Boston Children’s Hospital (04-05-065R); 
the Institutional Review Board at the University of Wisconsin-Madison 
(ID: 2017-1299); and the Ethics Council of the Max Planck Society at Max 
Planck Institute for Empirical Aesthetics (Nr. 2017_12). All participants 
and patients provided oral and written informed consent before par-
ticipating in the study. All study procedures were carried out in accord-
ance with the Declaration of Helsinki. Patients were also informed that 
clinical care was not affected by participation in the study.

Participants
Healthy participants and patients with pharmaco-resistant focal epi-
lepsy participated in this study. The datasets reported here consist of: 
(1) behaviour, eye tracking and iEEG data collected at the Comprehen-
sive Epilepsy Center at New York University (NYU) Langone Health, 
the Brigham and Women’s Hospital, the Boston Children’s Hospital 
(Harvard), and the University of Wisconsin School of Medicine and 
Public Health (WU). (2) Behaviour, eye tracking, MEG and EEG data col-
lected at the Centre for Human Brain Health (CHBH) of the University 
of Birmingham (UB), and at the Center for MRI Research of Peking Uni-
versity (PKU). (3) Behaviour, eye tracking and fMRI data collected at the 
Yale Magnetic Resonance Research Center (MRRC) and at the Donders 
Centre for Cognitive Neuroimaging (DCCN), of Radboud University 
Nijmegen. For both the MEG and fMRI datasets, one-third of the data 
that passed quality tests (henceforth, the optimization dataset; see the 
section ‘Preregistration’ (https://osf.io/92tbg/) for details about quality 
test criteria) were used to optimize the analysis methods, which were 
subsequently added to the preregistration as an additional amendment. 
These preregistered analyses were then run on the remaining two-thirds 
of the data (henceforth, the replication dataset) and constitute the data 
reported in the main study. This procedure was not used for the iEEG 
data due to the serendipitous nature of the recording and electrode 
placement, the rarity of this type of data and the increased difficulty 
of data collection due to the COVID-19 pandemic.

A total of 97 healthy participants were included in the MEG sample 
(mean age of 22.79 ± 3.59 years, 54 females, all right handed), 32 of 
those datasets were included in the optimization phase (mean age of 
22.50 ± 3.43 years, 19 females, all right handed), and 65 in the replica-
tion sample (mean age of 22.93 ± 3.66, 35 females, all right handed). 
Five additional participants were excluded from the MEG dataset: two 
due to failure to meet predefined behavioural criteria (that is, hits of 
less than 80%, and/or FA > 20%), two due to excessive noise from sen-
sors, and one due to incorrect sensor reconstruction. A total of 108 
healthy participants were included in the fMRI sample (mean age of 
23.28 ± 3.46 years, 70 females, 105 right handed), 35 of those datasets 
were included in the optimization sample (mean age of 23.26  ±  3.64 
years, 21 females, 34 right handed) and 73 in the replication sample 
(mean age of 23.29 ± 3.37, 49 females, 71 right handed). Twelve additional 
participants were excluded from the fMRI dataset: eight due to motion 
artefacts, two due to insufficient coverage and two due to incomplete 
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data (with respect to these last two participants, see section 14 of the 
Supplementary Information for deviations from the preregistration 
document). For the iEEG arm of the project, a total of 34 patients were 
recruited. Two patients were excluded due to incomplete data. Demo-
graphic, medical and neuropsychological scores for each patient, when 
available, are reported in Supplementary Table 25. Three iEEG patients 
whose behaviour fell slightly short of the predefined behavioural cri-
teria (that is hits of less than 70%, FA > 30%) were nonetheless included 
given the difficulty to obtain additional iEEG data (see section 14 in 
Supplementary Information for deviation from the preregistration).

Experimental procedure
Experimental design. To test critical predictions of the theories, 
five experimental manipulations were included in the experimental  
design: (1) four stimulus category (faces, objects, letters and false fonts),  
(2) 20 stimulus identity (20 different exemplars per stimulus category), 
(3) three stimulus orientation (front, left and right view), (4) three 
stimulus duration (0.5 s, 1.0 s and 1.5 s), and (5) task relevance (relevant 
targets, relevant non-targets and irrelevant).

Stimulus category, stimulus identity and stimulus orientation served 
to test predictions about the representation of the content of con-
sciousness in different brain areas by the theories. In addition, stimulus 
duration served to test predictions about the temporal dynamics of 
sustained conscious percepts and interareal synchronization between 
areas. Task relevance served to rule out the effect of task demands, as 
opposed to conscious perception per se, on the observed effects61. This 
aspect of the experimental design was inspired by ref. 62.

Stimuli. Four stimulus categories were used: faces, objects, letters and 
false fonts. These stimuli naturally fell into two clearly distinct groups: 
pictures (faces and objects) and symbols (letters and false fonts). These 
natural couplings were aimed at creating a clear difference between 
task-relevant and task-irrelevant stimuli in each trial block (see the sec-
tion ‘Procedure’). All stimuli covered a squared aperture at an average 
visual angle of 6° by 6°. Face stimuli were created with FaceGen Modeler 
3.1; letter and false-font stimuli were generated with MAXON CINEMA 
4D Studio (RC - R20) 20.059; object stimuli were taken from the Object 
Databank63. Stimuli were grey scaled and equated for luminance and 
size. To facilitate face individuation, faces had different hairstyles and 
belonged to different ethnicities and genders. Equal proportion of male 
and female faces was presented. The orientation of the stimuli was 
manipulated, such that half of the stimuli from each category had a side 
view (30° and −30° horizontal viewing angle, left and right orientation) 
and the other half had a front view (0°).

Procedure. Participants performed a non-speeded target detection 
task (see Supplementary Video 1). The experiment was divided into 
runs, with four blocks in each run (see the section ‘Trial counts’). On a 
given block, participants viewed a sequence of single, supra-threshold, 
foveally presented stimuli belonging to one of four stimulus catego-
ries and presented for one of three stimulus durations onto a fixation 
cross that was present throughout the experiment. Within each block, 
half of the stimuli were task-relevant and half were task-irrelevant. 
To manipulate task relevance, at the beginning of each block partici-
pants were instructed to detect the rare occurrences of two target 
stimulus identities, one from each relevant category (for pictures, face– 
object; for symbols, letter–false font), irrespective of their orientation. 
This was specified by presenting the instruction ‘detect face A and 
object B’ or ‘detect letter C and false-font D’, accompanied by images 
for each target (see Fig. 1d). Targets did not repeat across blocks. Each 
run contained two blocks of the face–object task and two blocks of the 
letter–false-font task, with block order counterbalanced across runs.

Accordingly, each block contained three different trial types:  
(1) targets: the two stimuli being detected (for example, the specific 
face and object identities); (2) task-relevant stimuli: all other stimuli 
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from the task-relevant categories (for example, the non-target faces–
objects); and (3) task-irrelevant stimuli: all stimuli from the two other 
categories (for example, letters–false fonts). An advantage of this 
design is that the three trial types enabled a differentiation of neural 
responses related to task goal, task relevance and simply consciously 
seeing a stimulus. We confirmed that participants were conscious of the 
stimuli in both the task-relevant and task-irrelevant trials in a separate 
experiment, which included a surprise memory test (see section 3 in 
Supplementary Information).

Stimuli were presented for one of three durations (0.5 s, 1.0 s or 1.5 s), 
followed by a blank period of a variable duration to complete an overall 
trial length fixed at 2.0 s. For the MEG and iEEG version, random jitter 
was added at the end of each trial (mean inter-trial interval of 0.4 s, jit-
tered 0.2–2.0 s, truncated exponential distribution) to avoid periodic 
presentation of the stimuli. The mean trial length was 2.4 s. For the fMRI 
protocol, timing was adjusted as follows: the random jitter between tri-
als was increased (mean inter-trial interval of 3 s, jittered 2.5–10 s, with 
truncated exponential distribution), with each trial lasting approxi-
mately 5.5 s. This modification helped to avoid non-linearities in BOLD 
signal, which may affect fMRI decoding64. Second, to increase detec-
tion efficacy for amplitude-based analyses, three additional baseline 
periods (blank screen) of 12 s each were included per run (total of 24). 
The identity of the stimuli was randomized with the constraint that they 
appeared equally across durations and tasks conditions. Participants 
were further instructed to maintain central fixation on a black circle 
with a white cross and another black circle in the middle throughout 
each trial (see Supplementary Fig. 1d and Supplementary Video 1 for 
a demonstration of the experimental paradigm).

Trial counts. The MEG study consisted of 10 runs containing 4 blocks 
each with 34–38 trials per block, 32 non-targets (8 per category) and 
2–6 targets, for a total of 1,440 trials. The same design was used for 
iEEG, but with half the runs (5 runs total), resulting in a total of 720 
trials. For fMRI, there were 8 runs containing 4 blocks each with 17–19 
trials per block, 16 non-targets (4 per category) and 1–3 targets, for a 
total of 576 trials. Rest breaks between runs and blocks were included.

Data acquisition
Behavioural data acquisition. The task was run on Matlab (PKU: 
R2018b; DCCN, UB and Yale: R2019b; Harvard: R2020b; NYU: R2020a, 
and WU: 2021a) using Psychtoolbox (v3)65. The iEEG version of the task 
was run on a Dell Precision 5540 laptop, with a 15.6′′ Ultrasharp screen 
at NYU and Harvard and on a Dell D29M PC with an Acer 19.1′′ screen 
in WU. Participants responded using an eight-button response box 
(Millikey LH-8; response hand (or hands) varied based on the setting 
in the patient’s room). The MEG version was run on a custom PC at UB 
and a Dell XPS desktop PC on PKU. Stimuli were displayed on a screen 
placed in front of the participants with a PROPixx DLP LED projector 
(VPixx Technologies). Participants responded with both hands using 
two 5-button response boxes (NAtA or SINORAD). The fMRI version was 
run on an MSI laptop at Yale and a Dell Desktop PC at DCCN. In DCCN, 
stimuli were presented on an MRI compatible Cambridge Research Sys-
tems BOLD screen 32′′ IPS LCD monitor, and in Yale they were presented 
on a Psychology Software Tools Hyperion projection system to project 
stimuli on the mirror fixed to the head coil. Participants responded with 
their right hand using a 2 × 2 current designs response box at Yale and 
a 1 × 4 current designs response box at DCCN.

Eye tracking data acquisition. For the iEEG setup, eye tracking and 
pupillometry data were collected using a EyeLink 1000 Plus in remote 
mode, sampled monocularly at 500 Hz (from the left eye at WU, and  
depending on the setup at Harvard), or on a Tobii-4C eye tracker, 
sampled binocularly at 90 Hz (NYU). The MEG and fMRI laboratories 
used the MEG-compatible and fMRI-compatible EyeLink 1000 Plus 
Eye-tracker system (SR Research) to collect data at 1,000 Hz. For MEG,  

eye tracking data were acquired binocularly. For fMRI, data were  
acquired monocularly from either the left or the right eye, in DCCN 
and Yale, respectively. For all recordings, a 9-point calibration was 
performed (besides Harvard, where a 13-point calibration was used) 
at the beginning of the experiment, and recalibrated as needed at the 
beginning of each block or run.

iEEG data acquisition. Brain activity was recorded with a combination 
of intracranially subdural platinum-iridium electrodes embedded in  
SILASTIC sheets (2.3-mm diameter contacts, Ad-Tech Medical Instrument 
and PMT Corporation) and/or depth stereo-electroencephalographic 
platinum-iridium electrodes (PMT Corporation; 0.8 mm in diam-
eter, 2.0-mm length cylinders; separated from adjacent contacts by  
1.5–2.43 mm), or Behnke–Fried depth stereo-electroencephalographic 
platinum-iridium electrodes (BF08R-SP21X-0C2, Ad-Tech Medical; 
1.28 mm in diameter, 1.57 mm in length, 3–5.5-mm spacing). Electrodes 
were arranged as grid arrays (either 8 × 8 with 10-mm centre-to-centre 
spacing, 8 × 16 contacts with 3-mm spacing, or hybrid macro–micro 
8 × 8 contacts with 10-mm spacing and 64 integrated microcontacts 
with 5-mm spacing), linear strips (1 × 8/12 contacts), depth electrodes 
(1 × 8/12 contacts) or a combination thereof. Recordings from grid, strip 
and depth electrode arrays were done using a Natus Quantum amplifier 
or a Neuralynx Atlas amplifier. A total of 4,057 electrodes (892 grids, 
346 strips and 2,819 depths) were implanted across 32 patients with 
drug-resistant focal epilepsy undergoing clinically motivated invasive 
monitoring. A total of 3,512 electrodes (780 grids, 307 strips and 2,425 
depths) that were unaffected by epileptic activity, artefacts or electrical 
noise were used in subsequent analyses. To determine the electrode 
localization for each patient, a post-operative computed tomography 
scan and a pre-operative T1 MRI were acquired and co-registered.

MEG data acquisition. MEG was acquired using a 306-sensor TRIUX 
MEGIN system, comprising 204 planar gradiometres and 102 mag-
netometres in a helmet-shaped array. The MEG gantry was positioned at 
68° for optimal coverage of frontal and posterior brain areas. Simultane-
ous EEG was recorded using an integrated EEG system and a 64-channel 
electrode cap (EEG data are not reported here, but are included in the 
shared dataset). During acquisition, MEG and EEG data were bandpass 
filtered (0.01 and 330 Hz) and sampled at 1,000 Hz. The location of 
the head fiducials, the shape of the head, the positions of the 64 EEG 
electrodes and the head position indicator (HPI) coil locations relative 
to anatomical landmarks were collected with a 3D digitizer system 
(Polhemus Isotrack). ECG was recorded with a set of bipolar electrodes 
placed on the chest of the participant. Two sets of bipolar electrodes 
were placed around the eyes (two at the outer canthi of the right and 
left eyes and two above and below the centre of the right eye) to record  
eye movements and blinks (EOG). Ground and reference electrodes 
were placed on the back of the neck and on the right cheek, respectively. 
The head position of participants on the MEG system was measured at 
the beginning and end of each run, and also before and after each rest-
ing period, using four HPI coils placed on the EEG cap, next to the left 
and right mastoids and over left and right frontal areas.
Anatomical MRI data acquisition. For source localization of the 
MEG data with individual realistic head modelling, a high-resolution 
T1-weighted MRI volume (3 T Siemens MRI Prisma scanner) was 
acquired per participant. Anatomical scans were acquired either with 
a 32-channel coil (TR/TE = 2,000/2.03 ms; TI = 880 ms; 8° flip angle; 
field of view = 256 × 256 × 208 mm; 208 slices; 1-mm isotropic voxels, 
UB) or a 64-channel coil (TR/TE = 2,530/2.98 ms; TI = 1,100 ms; 7° flip 
angle; field of view = 224 × 256 × 192 mm, 192 slice, 0.5 × 0.5 × 1 mm 
voxels, PKU). The FreeSurfer standard template was used (fsaverage) 
for participants lacking an anatomical scan (n = 5).

fMRI data acquisition. MRI data were acquired using a 32-channel 
head coil on a 3 T Prisma scanner. A session included high-resolution 
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anatomical T1-weighted MPRAGE images (GRAPPA acceleration 
factor = 2, TR/TE = 2,300/3.03 ms, 8° flip angle, 192 slices, 1-mm iso-
tropic voxels), and a whole-brain T2*-weighted multiband-4 sequence 
(TR/TE = 1,500/39.6 ms, 75° flip angle, 68 slices, voxel size of 2 mm 
isotropic, A/P phase-encoding direction, field of view = 210 mm, 
BW = 2,090 Hz px−1). A single-band reference image was acquired be-
fore each run. To correct for susceptibility distortions, additional scans  
using the same T2*-weighted sequence, but with inverted phase-encoding 
direction (inverted RO/PE polarity), were collected while the participant 
was resting at multiple points throughout the experiment.

Preprocessing and analysis details
For readability, we first detail the preprocessing protocols for each 
of the modalities (iEEG, MEG and fMRI) separately. Then, we describe 
the different analyses, combining information across the modalities, 
while noting any differences between them.

Analysis strategy
As part of our testing framework, after excluding a limited number of 
participants due to data quality checks, we conducted an initial optimi-
zation phase on one-third of the MEG (n = 32) and fMRI (n = 35) datasets 
to evaluate data quality across sites and to optimize analysis pipelines. 
Following the optimization phase, pipelines were preregistered (https://
osf.io/92tbg/) and applied to the novel datasets containing twice as 
much data (MEG n = 65 and fMRI n = 73).

In the main paper, we report results obtained on the novel, previously 
unexamined datasets. For iEEG, given the smaller sample, a different 
analysis strategy was implemented. We refer the reader to the iEEG 
methods section and text in the main paper for numbers of participants 
that were entered in each analysis. Results from the optimization phase 
are reported in section 4 of Supplementary Information. The results of 
the optimization phase and the preregistered replication phase were 
compared and deemed to be largely compatible, with some minor 
exceptions (section 4 of Supplementary Information).

iEEG preprocessing. Data were converted to BIDS66 and preprocessed 
using MNE-Python (v0.24)67, and custom-written functions in Python 
and Matlab. Preprocessing steps included downsampling to 512 Hz, 
detrending, bad channel rejection, line noise and harmonic remov-
al, and re-referencing. Electrodes were re-referenced to a Laplacian 
scheme68, whereas bipolar referencing was used for electrodes at the 
edge of a strip, grid or sEEG, and the signal was localized at the midpoint 
(Euclidean distance) between the two electrodes. Electrodes with no 
direct neighbours were discarded. Seizure-onset zone electrodes, 
those localized outside the brain and/or containing no signal or high 
amplitude noise level were discarded. Line noise and harmonics were 
removed using a one-pass, zero-phase non-causal band-stop FIR filter.

The high-gamma power (70–150 Hz) was obtained by bandpass filter-
ing the raw signal in 8 successive 10-Hz-wide frequency bands, comput-
ing the envelope using a standard Hilbert transform, and normalizing 
it (dividing) by the mean power per frequency band across the entire 
recording. To produce a single high-gamma envelope time series, all 
frequency bands were averaged together69. Most analyses focused on 
the high-gamma power as it closely correlated with neural spiking activ-
ity70 and with the BOLD signal36. To obtain the event-related potentials 
(ERPs), the raw signal was low-pass-filtered at 30 Hz with a one-pass, 
zero-phase, non-causal low-pass FIR filter. Epochs were segmented 
between 1-s pre-stimulus until 2.5-s post-stimulus of interest.
Surface reconstruction and electrode localization. Electrode posi-
tions were determined based on a computed tomography scan coreg-
istered with a pre-implant T1-weighted MRI. A 3D reconstruction of the 
brain of each patient was computed using FreeSurfer (http://surfer.
nmr.mgh.harvard.edu). For visualization, the electrode positions for 
individual participants were converted to the Montreal Neurological 
Institute (MNI)152 space. As each theory specified a set of anatomical 
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ROIs, after electrode localization, electrodes were labelled according 
to the Freesurfer-based Destrieux atlas segmentation71,72 and/or Wang 
atlas segmentation73.
Identification of task-responsive channels. To identify task- 
responsive electrodes, we computed the area under the curve (AUC) for 
the baseline (−0.3 to 0 s) and the stimulus-evoked period (0.05–0.35 s) 
separately for the task-relevant and task-irrelevant conditions, and 
compared them per electrode using a Wilcoxon sign-rank test, cor-
rected for false discovery rate (FDR)74. A Bayesian t-test75 was used to 
quantify evidence for non-responsiveness.
Identification of category-selective channels. To determine cat-
egory selectivity for faces, objects, letters and false fonts on the high 
gamma, we followed the method of Kadipasaoglu and colleagues76. 
Per category, we computer a d′ (AUC of 0.05–0.4 s) comparing the 
activation between the category of interest (uj) and each of the other 
categories (ui), normalized by the standard deviation of each category:
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A permutation test (10,000 permutations) was used to evaluate sig-
nificance. d′ was computed for the task-relevant and task-irrelevant con-
ditions separately. An electrode was considered selective if it showed 
selectivity on both tasks.
Multivariate analysis electrodes combination. Owing to the sparse 
and highly variable coverage of iEEG data, all collected electrodes were 
combined into a ‘super participant’ multivariate analyses (RSA and 
decoding). To create a single-trial matrix for the super participant, we 
equated the trial matrices of all our participants by subsampling to the 
lowest number of trials in the relevant conditions. Participants that 
did not complete the full experiment were discarded (n = 3), resulting 
in a total of 29 participants with 583 electrodes in posterior ROIs and 
576 electrodes in prefrontal ROIs. For analyses on stimuli identities, 
stimuli that were presented less than three times to any of the par-
ticipants across intermediate and long trials in the task-relevant and 
task-irrelevant trials were discarded. We then subsampled the trials for 
each identity to three trials per participant. The subsampling proce-
dure was repeated 100 times to avoid random fluctuation induced by 
the subsampling. The analysis was computed for each repetition and 
average across repetitions.

MEG preprocessing. The MEG data were converted to BIDS77 using 
MNE-BIDS78, and preprocessed following the FLUX Pipeline79 in MNE- 
Python (v0.24.0)67. Preprocessing steps included MEG sensor recon-
struction using a semi-automatic detection algorithm and signal-space 
separation80 to reduce environmental artefacts. FastICA81 was used 
to detect and remove cardiac and ocular components from the data 
for each participant (mean = 2.90 components, s.d. = 0.92). Before 
ICA, data were segmented, and segments containing muscle artefacts 
were removed. After preprocessing, data were epoched into a 3.5-s 
segment (1-s pre-stimulus to 2.5-s post-stimulus onset). Trials in which 
gradiometre values exceeded 5,000 fT cm−1, magnetometres exceeded 
5,000 fT and/or contained muscle artefacts were rejected from the 
MEG dataset. Finally, to be included in the analyses, participants should 
have a minimum of 30 clean trials per condition. No participants were 
excluded because of not meeting this criterion.
Source modelling. MEG source modelling was performed using 
the dynamic statistical parametric mapping method82, based on 
depth-weighted minimum-norm estimates (MNEs)83,84, on epoched 
and baseline (−0.5 s to 0 s before stimulus onset) corrected data. To 
build a forwards model, the MRI images were manually aligned to the 
digitized head shape. A single shell boundary elements model was 
constructed in MNE-Python based on the inner skull surface derived 
from FreeSurfer71,72, to create a volumetric forwards model (5-mm grid) 
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covering the full-brain volume. The lead field matrix was then calculated 
according to the head position with respect to the MEG sensor array. 
A noise covariance matrix for the baseline and a covariance matrix 
for the active time window were calculated and the combined (that is, 
sum) covariance matrix was used with the forwards model to create 
a common spatial filter. Data were spatially pre-whitened using the 
covariance matrix from the baseline interval to combine gradiometre 
and magnetometre data85.

fMRI preprocessing. Source DICOM data were converted to BIDS 
using BIDScoin (v3.6.3)86. This includes converting DICOM data to 
NIfTI using dcm2niix87 and creating event files using custom Python 
codes. BIDS compliance of the resulting dataset was controlled using 
BIDS-Validator. Subsequently, MRI data quality control was performed 
using MRIQC (0.16.1)88 and custom scripts for data rejection. All (f)MRI 
data were preprocessed using fMRIPrep (20.2.3)89, based on Nipype 
(1.6.1)90. For further details on the fMRIprep pipeline, see preregistra-
tion. Custom scripts used NumPy (1.19.2)91 and Pandas (1.1.3)92.
Analysis-specific functional preprocessing. Additional, analysis- 
specific, fMRI data preprocessing was performed using FSL 6.0.2 
(FMRIB Software Library)93, Statistical Parametric Mapping (SPM 12) 
software94, and custom Python scripts (using NiBabel (3.2.2)95 and SciPy 
(1.8.0)96 after the above-outlined general preprocessing. Functional 
data for univariate data analyses were spatially smoothed (Gaussian ker-
nel with full-width at half-maximum of 5 mm), grand mean scaled and 
temporal high-pass filtered (128 s). No spatial smoothing was applied 
for multivariate analyses.
Contrast of parameter estimates. We modelled BOLD signal responses 
to the experimental variables by fitting voxel-wise general linear model 
(GLM) to the data of each run using FSL FEAT. The following regressors 
were modelled in an event-related approach, with event duration cor-
responding to the stimulus duration (that is, 0.5 s, 1.0 s and 1.5 s), and 
convolved with a double gamma haemodynamic response function: 
12 regressors of interest (targets, task-relevant and task-irrelevant 
stimuli per stimulus category, that is, faces, objects, letters and false 
fonts; and a regressors of no interest, that is, target screen display). 
We included the first-order temporal derivatives of the regressors of 
interest, and a set of nuisance regressors: 24 motion regressors (FSL’s 
standard + extended set of motion parameters) plus a CSF and a WM 
tissue regressor. Each of the 12 regressors of interest was contrasted 
against an implicit baseline (used in the putative NCC analysis; see 
below). In addition, we obtained contrast of parameter estimates for 
‘relevant faces versus relevant objects’, ‘relevant letters versus relevant 
false fonts’, ‘irrelevant faces versus irrelevant objects’, ‘irrelevant letters 
versus irrelevant false fonts’ (used for the definition of decoding ROIs), 
‘relevant and irrelevant faces versus relevant and irrelevant objects’ 
and ‘all stimuli versus baseline’ (used for the definition of seeds for the 
generalized psychophysiological interaction (gPPI) analysis). Data were 
averaged across runs per participant using FSL’s fixed-effects analysis 
and subsequently averaged across participants using FSL’s FLAME1 
mixed-effect analysis. Gaussian random-field cluster thresholding was 
used to correct for multiple comparisons, using the default settings of 
FSL, with a cluster formation threshold of one-sided P < 0.001 (z ≥ 3.1) 
and a cluster significance threshold of P < 0.05.

Anatomical ROIs. ROIs were defined a priori in consultation with the 
adversarial theories. They were determined per participant based 
on the Destrieux atlas72 including both hemispheres, and then resa-
mpled to standard MNI space (see Supplementary Table 26). For the 
connectivity analysis, areas V1/V2 (combining dorsal and ventral) 
were defined based on the Wang cortical parcellation73. For details 
on the process of selecting the ROIs and the justification of the ROI 
selection in the context of this study, see section 10 in Supplementary 
Information. All anatomical segmentations were performed using 
Freesurfer (6.0.1)71.
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Behavioural analyses. Log-linear-corrected d′97, false alarms and 
reaction times were computed per category and stimulus duration, 
separately (false alarms were also calculated per task relevance, without 
duration) and per modality (iEEG, MEG and fMRI). These measures were 
compared with linear–logistic mixed models, where appropriate. For 
the former, we report analysis of variance omnibus F-tests, and for the 
latter, omnibus χ2 test from an analysis of deviance. We approximated 
degrees of freedom using the Satterthwaite method98. Pairwise t-tests 
following significant interactions were Bonferroni corrected. To esti-
mate Bayesian information criterion (BIC) differences between the 
original and null logistic models, we used the P values and sample size99 
(p_to_bf package in R).
Eye-tracking analyses. For Eyelink, gaze and pupil data were seg-
mented, and trials with missing data were excluded. Blinks were 
detected using the Hershman algorithm100, and removed with 200-ms 
padding101. The Eyelink standard parser algorithm was used for saccade 
and fixation detection. Saccades were further corroborated using the 
Engbert and Kliegl102 algorithm. Fixations were baseline corrected 
(−0.25 s to 0 s). Mean fixation distance, mean blink rate, mean sac-
cade amplitude and mean pupil size were compared in a LMM with 
category and task relevance as fixed effects, and participant and item 
as random effects. Separate analyses were carried out on the first 0.5 s 
after stimulus onset including all trials; and on the 1.5-s trials including 
time window (0–0.5 s, 0.5–1.0 s and 1.0–1.5 s) as fixed effects. BIC was 
used to test the models against the null hypothesis models. For Tobii, 
gaze coordinate data were segmented, missing data were excluded and 
coordinates were baseline corrected to depict heatmaps of patients’ 
gaze. Of note, the coordinate data were not added to the LMMs due to 
its poorer quality with respect to the EyeLink data.
Decoding analysis. All decoding analyses were performed using a 
linear support vector machine (SVM; scikit learn (0.23.2), https://
scikit-learn.org/) classifier. Below, we explain how this was done for 
each one of the predictions.

iEEG decoding was done on the high-gamma response, averaged over 
non-overlapping windows of 0.02 s separately for electrodes located 
in the GNWT and IIT ROIs. The top 200 electrodes (selectKbest103), as 
determined by a F-test within a given set of electrodes from the theory 
ROIs, were used as features for the classifier. Two-hundred features 
were selected to provide a balance between model optimization (for 
example, feature selection) and participant representation (for exam-
ple, electrodes or features coming from multiple participants). Statis-
tical significance of decoding performance was assessed via 
permutation test, randomly permuting the sample labels and repeating 
the decoding analysis 1,000 times, corrected for multiple comparisons 
using a cluster-based correction (cluster mass inference with cluster 
forming threshold at P < 0.05)104,105. Also, to assess the decoding accu-
racy within unique ROIs (for example, S_temporal_sup of the Destrieux 
atlas), separate classifiers were trained using all electrodes in a given 
parcel. Each classifier was fitted using all electrodes in a parcel and time 
window (GNWT: 0.3–0.5 s, IIT: 0.3–1.5 s) as features, resulting in a single 
accuracy value per parcel. SelectKbest (200 features for iEEG) feature 
selection and fivefold cross-validation with three repetitions was used. 
To assess the statistical significance of the decoding accuracy within 
unique ROIs (so only one accuracy score is obtained per ROI), P values 
obtained via permutation tests were corrected for multiple compari-
sons across all ROIs using FDR correction (q ≤ 0.0574). To compute Bayes 
factors on the decoding accuracy values, we used a β-binomial approach 
that compares the marginal likelihood under a point-null hypothesis 
against a flat B α β( = 1, = 1) alternative prior, yielding an analytic Bayes 
factor. We then derived the null hypothesis parameters from the empir-
ical null distribution by updating a tight prior centred at chance level 
(B α β( = 1, 000, = 1, 000)) with the shuffle-based accuracies, thereby 
incorporating any bias present in the null distribution.

MEG decoding was done on bandpass-filtered (1–40 Hz) and 
downsampled (100 Hz) data. The reconstructed source-level MEG 
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data within a subset of the predefined anatomical ROIs (GNWT: ‘G_
and_S_cingul-Ant’,‘G_and_S_cingul-Mid-Ant’, ‘G_and_S_cingul-Mid-Post’, 
‘G_front_middle’,‘S_front_inf’, ‘S_front_sup’; IIT: ‘G_cuneus’, ‘G_oc-temp_
lat-fusifor’, ‘G_oc-temp_med-Lingual’,‘Pole_occipital’, ‘S_calcarine’,‘S_
oc_sup_and_transversal’, as they show high response to the stimulus 
on the optimization dataset) were extracted for further analysis (500 
vertices and 800 vertices per hemisphere for each of the anatomical 
ROI defined by the theories). We applied temporal smoothing (0.05-s 
window, 0.01-s sliding window), computed pseudotrials106, normalized 
the data and selected the top 30 features within a given ROI as features 
for the different classifiers. A group-level one-sample t-test per time 
point was performed on the decoding accuracy results, corrected for 
multiple comparisons using a cluster-based correction105.

The overall decoding strategy for fMRI was similar to that used on the 
iEEG and MEG data, yet with some differences. A multivariate pattern 
analysis approach was used on the pattern of BOLD activity over voxels. 
A non-spatially smoothed parameter estimate map was obtained by 
fitting a GLM per event with that event as the regressor of interest and 
all the other remaining events as one regressor of no interest107 as imple-
mented in NiBetaSeries (0.6.0) package. The model also included the 
24 nuisance regressors described in the ‘fMRI preprocessing’ section.

Decoding was performed using whole-brain and ROI-based app-
roaches. The whole-brain analysis was performed using a searchlight 
approach with 4-mm radius. For ROI-based decoding, decoding ROIs 
were defined based on functional fMRI contrasts (see the ‘fMRI pre-
processing’ section) and constrained with pre-defined anatomical 
ROIs (see Extended Data Table 2 on anatomical ROIs). A one-sample 
permutation test was used to determine whether decoding signifi-
cantly exceeded chance level within each ROI. FDR was used to correct 
for multiple comparisons across ROIs. For whole-brain decoding, a 
cluster-based permutation test was used to evaluate the decoding 
statistical significance across participants (P < 0.05), complemented 
by Bayesian analysis. In addition, stimulus versus baseline searchlight 
decoding was performed using leave-one-run out cross-validation, 
and the resultant decoding accuracy maps were used as input for the 
multivariate putative NCC analysis (see below). To perform stimulus 
versus baseline decoding, we subsampled the stimuli trials to a 2:1 
ratio with respect to baseline. The SVM cost function was weighted 
by the number of trials from each class. Plots were generated using 
Matplotlib (3.3.2)108.
Decoding schemes for the different predictions. To test GNWT and IIT 
decoding predictions, stimulus category (faces versus objects and let-
ters versus false fonts) was decoded separately for the task-relevant and 
task-irrelevant conditions (within-task category decoding), whereas ori-
entation (front view versus left view versus right view) was decoded on 
the combined data from the two task conditions. In addition, cross-task 
category decoding from the task-relevant to task-irrelevant condi-
tion and vice versa was performed to test generalization by training 
classifiers on one condition and testing on the other condition. Both 
within-task category and orientation decoding were performed in a 
leave-one-run-out cross-validation scheme for fMRI and in an k-fold 
cross-validation scheme for MEG and iEEG.

For category decoding, trials from each task condition (that is, task 
relevant or task irrelevant) were extracted for each category compari-
son of interest: 160 face/160 objects classification, 160 letters/160 
false-fonts classification within each task-relevant condition for MEG, 
and half the trials for iEEG. For fMRI, there were 64 trials for each 
category in each task-relevant condition. For orientation decoding, 
task-relevant and task-irrelevant trials were collapsed within category 
to increase the signal-to-noise ratio, resulting in 160 front, 80 left and 
80 right trials per category for MEG, and half these numbers for iEEG. 
For fMRI, there were 64 front and 32 left and right trials per category. 
Decoding was evaluated using accuracy measures, tested against 50% 
chance level for category decoding (binary classification) and against 
33% chance level for orientation decoding (three-class classification). 
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For orientation decoding, balanced accuracy was used due to the unbal-
anced number of trials for the different orientations. The SVM cost 
function was weighted by the number of trials per class to reduce bias 
to the class with the highest number.

Sensitivity Sensitivity Sensitivity

Balanced accuracy
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( + + )front right left

For within-task decoding (for example, classification of categories 
across time), a classifier at each time point was trained and tested sepa-
rately using a fivefold cross-validation (with three separate repeats of 
cross-validation). For cross-task decoding (task relevant → irrelevant 
and task irrelevant → relevant), each SVM model was trained on one task 
(for example, faces–objects in the task-relevant condition) and tested 
on the second task (for example, faces–objects in the task-irrelevant 
condition). As cross-decoding in iEEG data is performed across all 
pooled electrodes, an additional cross-validation step was performed 
on this modality data to provide a confidence metric (for example, 
confidence intervals) using a fivefold cross-validation with three rep-
etitions (for example, train on 80% of task 1, and test on held-out 20% 
of task 2).

Within-task temporal generalization was performed by training a clas-
sifier at each time point (using selectKbest feature selection) and test-
ing its performance across all time points using the same set of selected 
features and three repetitions of fivefold cross-validation. To generalize 
from one task to another across all time points, cross-temporal gener-
alization was used: a classifier was trained at each time point in task 1 
(for example, task relevant) using selectKbest feature selection, and 
tested across all time points in task 2 (for example, task irrelevant) using 
the same set of selected features. Cross-validation was performed in 
the same manner as in cross-decoding.

Additional decoding analyses were performed on all trials aligned to 
the stimulus onset (for example, −0.2 to 2 s relative to stimulus onset) 
and stimulus offset (−0.5 to 0.5 s around stimulus offset). For the latter 
analysis, all trials from different durations were aligned to the stimulus 
offset.

To assess the prediction of IIT that included prefrontal regions along 
with posterior regions to the decoding of categories will not signifi-
cantly affect decoding accuracy, we performed an additional decoding 
analysis in which the decoding performance of electrodes from the 
IIT region were compared with the decoding performance when elec-
trodes from both the posterior + PFC ROIs are included. The PFC ROI 
included all PFC ROIs, except for inferior frontal sulcus, as it belongs 
to the IIT extended ROIs. Posterior ROI included all IIT ROIs shown in 
Supplementary Table 26. The analysis compared the decoding accu-
racy for a model including all electrodes from posterior regions to a 
separate model in which electrodes (features) from posterior and PFC 
regions were combined (for example, feature combination). Training 
and testing of the individual models followed all previously described 
cross-validation procedures, and model comparison was performed 
using a variance-corrected paired t-test109 and complemented with 
Bayesian analysis.

We also tested this prediction on the fMRI data. To select features 
to be used for both analyses, the face versus object contrast for each 
participant was masked by a predefined anatomical posterior ROIs as 
well as PFC anatomical ROIs, defined the same way as described above. 
Within each of the two ROIs, the 150 voxels that are most selective to 
each of the to-be-decoded stimuli were defined as the decoding ROIs 
(300 voxels total) for each participant. The first analysis compared the 
decoding accuracies for a model that included 300 voxels from the pos-
terior ROIs as features to another model that included 600 voxels (300 
features from each ROI). In the second analysis, two separate models 
were constructed, calibrated and combined as described above. For the 
two analyses, model comparison was performed using a group-level 
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one-sample permutation test to determine if accuracies obtained by 
combining posterior and PFC ROIs were significantly higher than the 
accuracies obtained based on posterior ROIs only. FDR was used to 
correct for multiple comparisons. Bayesian analysis was performed to 
quantify evidence for the null hypothesis that adding prefrontal ROIs 
will not improve decoding accuracy.
Duration analysis. Neural responses were extracted from three win-
dows of interest (0.8–1.0 s, 1.3–1.5 s and 1.8–2.0 s) and compared using 
LMMs. Four theory agnostic models were fitted: a null model, a duration 
model (three durations), a windows of interest model, and a duration 
and windows of interest model. Two theory model were fitted: the 
GNWT model predicts activation (ignition) following stimulus off-
set (0.3–0.5 s) independent of duration, with virtually no response in 
between. The IIT model predicts sustained activation for the duration of 
the stimulus returning to baseline after stimulus offset. Both theoretical 
models were complemented with an interaction term between category 
(faces, objects, letters and false fonts) and the theories’ predictors, to 
account for regions showing selective responses to categories. BIC was 
used to define the winning model and we computed Bayes factors based 
on the difference in BIC values, comparing the GNWT model (with or 
without interaction) against either the null model (intercept only) or 
the time-window model (capturing amplitude changes over time)110.

Models for iEEG were fitted per electrode on the predefined ROIs, 
using the high-gamma (AUC), alpha (8–13 Hz, obtained through Morlet 
wavelets, f = 8–13 Hz, in 1-Hz steps; f/2 cycles, AUC),and ERPs (peak to 
peak) as signal, separately for task-relevant and task-irrelevant condi-
tion.

MEG models were fitted to source data on the predefined ROIs, using 
the gamma (60–90 Hz) and alpha (8–13 Hz) band as signal, separately 
for task-relevant and task-irrelevant conditions. Time-frequency analy-
ses were performed on source-data using Morlet wavelets (f = 8–13 Hz, 
in 1-Hz steps; f/2 cycles; f = 60–90 Hz, in 2-Hz steps, f/4 cycles) and were 
baseline corrected. Spectral activity was computed for each vertex, 
baseline corrected and then averaged across trials within each parcel 
included in the ROIs, yielding a unique time course per ROI parcel. In 
addition, a single-source time course capturing the entire prefrontal 
ROI and the posterior ROI was computed by averaging the spectral 
activity within an ROI. Models were fitted on each parcel and ROI, as 
defined by the theories.
Representational similarity analysis. To examine how the neural 
representations evolved over time in response to the different stimulus 
properties (that is, category, orientation and identity representation), 
we performed cross-temporal RSA on source-level MEG data and iEEG 
high-gamma power within each of the theory-defined ROIs, using all 
trials. Specifically, at each set of data points, we computed a repre-
sentational dissimilarity matrix (RDM) by calculating the correlation 
distance (1 − Pearson’s r, Fisher corrected) between all pairs of stimuli 
(the preregistration document described a different method that was 
however updated to optimize trial numbers; see section 14 in Supple-
mentary Information for justification). Next, to quantify the repre-
sentational space occupied by one class versus another, we computed 
the average within-class distances versus the average between-class 
distances. This analysis was performed in a cross-temporal manner, 
in which RDMs were computed between all stimuli at time point t1 and 
the corresponding set of stimuli at time points t1, t2,…tn.

Long trials (1.5 s) were used to investigate category and orientation 
representation. As specific identities were repeated a limited number 
of times per duration, both intermediate (1.0 s) and long (1.5 s) trials 
were combined and equated in duration by cropping the 1–1.5-s time 
interval for long trials. This was done to allow for the analysis of at least 
three (3) presentations of the same identity.

To evaluate the theoretical predictions about when significant con-
tent representation should occur, we subsampled the observed 
cross-temporal representational matrices in four time windows  
(0.3–0.5 s, 0.8–1.0 s, 1.3–1.5 s and 1.8–2.0 s). The subsampled matrices 

were correlated to the model matrices predicted by GNWT and IIT  
(see Fig. 1a, right panel) using Kendall’s tau correlation. If the correlation 
was significant (see below) for at least one of the predicted matrices, 
we computed the difference between the transformed correlation 
( r( + 1)/2) to each theory, and compared this difference against a random 
distribution to obtain a P value. If the correlation with the theory- 
predicted pattern in the theory ROI was significantly higher than the 
other model, we considered the theory prediction to be fulfilled.

To generate a null distribution of cross-temporal RSA surrogate 
matrices, we repeated the procedure outlined above 1,024 times, ran-
domly shuffling the labels. Next, the observed RSA matrix was z-scored 
using the null distribution as:
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Where obsi j,  is the observed within-versus-between class difference at 
time points i and j, and µsurri j,

 and σsurri j,  are the mean and standard 
deviation of the surrogate representational similarity matrix at time 
points i and j, respectively. Cluster-based permutation tests111, z-score 
threshold of z = 1.5 for clustering, were used to evaluate significance. 
RSA surrogates were also used to assess the significance of the correla-
tion between the observed matrices and the predicted matrices of the 
theories. First, a null distribution of possible correlations was generated 
for each of the theories by correlating each of the surrogate matrices 
to each of the theory-predicted matrices. Next, a P value was obtained 
for each theory-predicted matrix, by locating its observed correlation 
within the null correlation distribution. The same procedure was used 
to assess the significance of the difference in correlation to IIT and 
GNWT matrices (for example, each of the surrogate matrices was cor-
related to each of the theory-predicted matrices and the difference 
between the two was computed). P values were FDR corrected 
(q ≤ 0.05)74.

For iEEG, the high-gamma power per electrode within the predefined 
anatomical ROI was averaged in 0.02-s non-overlapping windows. Elec-
trodes were used as features for the RDM. The data were vectorized 
across all electrodes within a ROI (for example, samples × significant 
electrodes) to compute the RDMs. A total of 576 and 583 electrodes 
entered this analysis for the prefrontal and posterior ROI, respectively. 
The resultant RDM was subjected to a PCA, and the first two dimensions 
were plotted against each other to produce a 2D projection of dissimi-
larity scores across all pairs for each of the 100 subsampling repetitions. 
The PCA components were aligned across repetitions using Procrustes 
alignment and averaged together for visualization purposes112,113.

For MEG, the same analysis was run on the source reconstructed 
data within the predefined anatomical ROIs used for the decoding 
analysis, bandpass filtered (1–40 Hz) and downsampled (100 Hz). 
For the category and orientation analysis, pseudotrials and temporal 
moving-average methods were used to optimize the RSA analysis and 
improve the signal-to-noise ratio. For identity, single trials were used. 
Vertices within the ROIs were used as features. The statistical testing 
differed from that conducted on the iEEG data, as it was performed 
at the participant level. Similarly to the iEEG analysis, we first tested 
whether the correlation between the data and the model predicted by 
each theory was greater than zero using the Kendall’s tau measure, and 
then compared between the theories using the Mann–Whitney U rank 
test on two independent samples.
Functional connectivity analysis. For both iEEG and MEG, PPC45 was 
computed between each category-selective time series (face selective 
and object selective) and either the V1/V2 or the PFC time series.

For iEEG, the PPC analysis included electrodes in V1/V2 visual areas, 
in PFC ROIs (see Supplementary Table 26), and face-selective and 
object-selective electrodes (see ‘Identification of task-responsive 
channels’), as long as they were ‘active’ during the task. As both theo-
ries predict different types of activation (for example, ignition versus 



sustained activation), channels were categorized as active if they 
showed an increase in high-gamma power relative to baseline (−0.5 
to −0.3 s, P < 0.05, signed-rank test) evaluated across all trials (task 
relevant + irrelevant, intermediate + long trials, combined across both 
categories), for the 0.3–0.5-s window (GNWT), or in all time windows: 
0.3–0.5 s, 0.5–0.8 s and 1.3–1.5 s (IIT).

For MEG, the category-selective single-trial time courses used to 
define the ROIs for PPC analysis were extracted using the generalized 
eigenvalue decomposition (GED) method114. Two GED spatial filters 
were built by contrasting either faces or objects against all other cat-
egories during the first 0.5 s after stimulus onset. Single-trial covariance 
matrices were computed separately for signal and reference for all ver-
tices within the fusiform ROI identified from the FreeSurfer parcellation 
using the Desikan atlas115, and the Euclidean distance between them 
was z-scored. Trials exceeding 3 z-scores were excluded. The reference 
covariance matrix was regularized to reduce overfitting and increase 
numerical stability. The GED was then performed on the two covariance 
matrices, resulting in n (=rank of the data) pairs of eigenvectors and 
eigenvalues. The eigenvector associated with the highest eigenvalue 
was selected as a GED spatial filter, which in turn was applied to the 
data to compute the single-trial GED component time series. A GED 
spatial filter was extracted also for the PFC ROI, on parcels from the 
Destrieux atlas72, to identify the distributed pattern of sources that 
are responsive to visually presented stimuli. Specifically, a spatial filter 
was built by contrasting source-level frontal slow-frequency activity 
(30-Hz low-pass filter) after stimulus onset (0–0.5 s) against baseline 
(−0.5 to 0 s). V1/V2 areas were identified using the Wang Atlas73 and a 
singular values-decomposition approach. For the GED, the 1.0-s and 
1.5-s duration trials were used to minimize overlap with the transient 
evoked at stimulus onset.

PPC was computed for each MEG time series–iEEG electrode pair-
ing, for all face trials and object trials separately. Analyses were per-
formed on 1.0-s and 1.5-s duration trials, separately on task-relevant and 
task-irrelevant trials and also combined to maximize statistical power. 
To compute synchrony, time-frequency analysis of the broadband MEG 
and LFP signal was performed using Morlet wavelets (f = 2–30 Hz, in 
1-Hz steps; 4 cycles; f = 30–180 Hz for iEEG or f = 30–100 Hz for MEG, 
in 2-Hz steps, f/4 cycles), and PPC was then computed by taking the 
difference in phase angle between MEG time series–iEEG electrode 
at each time t and frequency f for a specific trial and computing PPC 
across all trials in a category (for example, faces) as:
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For iEEG, PPC for each category-selective site was then averaged 
across all its pairings (for example, all PFC electrodes pairings or all V1/
V2 pairings within that patient). The variability in electrode coverage 
across patients precluded a within-participants analysis. Therefore, to 
achieve sufficient statistical power, we pooled all derived PPC values 
from one electrode pairing (for example, face selective to the PFC) 
across all patients into one ROI-specific analysis. A similar approach 
was used on the MEG parcels.

To quantify content-specific synchrony enhancement, the difference 
in PPC was computed between within-category and across-category 
trials (for example, for face-selective sites, the change in PPC was 
computed between faces versus objects trials) using a cluster-based 
permutation test105. This was done for both modalities.

As an exploratory analysis, we also investigated dynamic functional 
connectivity using the Gaussian copula mutual information116 approach 
to evaluate the dependencies between time series. This power-based 
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measure of connectivity was implemented using the conn_dfc method 
from the Frites Python package117. We used the same parameters as 
for the PPC analysis, with the following exceptions: for both MEG 
and iEEG, power was estimated through a multitaper-based method 
(using a frequency-dependent dynamic sliding window: 2–30 Hz, T = 4 
cycles; 30–100 Hz, T4/f using a 0.25-s sliding window). For iEEG, the 
high-frequency range was extended from 30 to 180 Hz, T = 4/f cycles). 
DFC was performed per frequency band, 0.1-s sliding window and 0.02-s 
steps.

For fMRI, connectivity was assessed through gPPI implemented in 
SPM118. The FFA and lateral occipital cortex were defined as seed regions 
per participant based on an anatomically constrained functional  
contrast. Anatomically, FFA seeds were constrained to the ‘inferior 
occipital gyrus (O3) and sulcus’ and ‘lateral occipito-temporal gyrus 
(fusiform gyrus; O4–T4)’. LOC seeds were constrained to the ‘middle 
occipital gyrus (O2; lateral occipital gyrus)’ and the ‘middle occipital 
sulcus and lunatus sulcus’ (Destrieux ROIs 2 and 21 for FFA, and ROIs 
19 and 57 for LOC; see ‘Anatomical ROIs’).

Candidate seed voxels within the above-mentioned anatomical 
ROIs were defined as those with z > 1 in the contrast of parameter esti-
mates of all stimuli versus baseline. Three participants with less than 
300 candidate seed voxels were excluded from the analysis. This was 
done to ensure that the seed voxels were visually driven. Next, using an 
unthresholded contrast of parameter estimates between ‘relevant and 
irrelevant faces’ and ‘relevant and irrelevant objects’, the 300 voxels 
most responsive to faces within the FFA anatomical ROIs were selected 
for the FFA seed, and the 300 voxels most responsive to objects within 
the LOC anatomical ROIs were selected for the LOC seed.

gPPI analysis was performed per participant and seed region sepa-
rately, including an interaction term between the seed time-series 
regressor (physiological term) and the task regressor (psychological 
term) at the participant-level GLM118, separately for task-relevant and 
irrelevant conditions, and also combining across tasks to increase statis-
tical power. For combined conditions, the model design matrix for each 
participant included regressors for task-relevant and task-irrelevant 
faces, objects, letters and false fonts collapsed across conditions (four 
regressors) as well as a regressor for targets (irrespective of their cat-
egory), yielding five regressors in total. As for separated conditions, 
the model design matrix included regressors for task-relevant and 
task-irrelevant faces, objects, letters and false fonts (eight regressors) 
as well as a regressor for targets (irrespective of their category), yield-
ing nine regressors in total. For each seed, group-level analysis was 
performed using a cluster-based permutation test (preferred over the 
preregistered FDR correction), complemented by Bayesian analysis. 
See section 14 in Supplementary Information for a justification of this 
change to evaluate the statistical significance of face > object contrast 
parameter estimates across participants (P < 0.05).
Putative NCC analyses. A series of conjunction analyses were per-
formed on the fMRI data to identify (1) areas responsive to task goal, 
(2) areas responsive to task relevance, and (3) areas putatively involved 
in the neural correlate of consciousness. We note that the contrasts 
proposed below might overestimate the neural correlates of conscious-
ness and that the fast-event-related design adopted here might be 
suboptimal to detect activity changes in the salience network119, that 
is, potentially underestimating some regions that might be involved 
in conscious processing. We therefore have adopted a conservative 
approach that distinguishes between areas that might participate in 
consciousness versus those that definitely do not.

The conjunction defining areas responsive to task goals was defined 
as [TaskRelTar > bsl] and [(TaskRelNonTar = bsl) and (TaskIrrel = bsl)]. 
This contrast captures areas that show an increase of BOLD signal for 
targets but not for other stimuli. The following conjunction identified 
areas responsive to task relevance: [(TaskRelTar > bsl) and (TaskRelNon-
Tar ≠ bsl)] and [TaskIrrel = bsl]. This contrast identifies areas displaying 
differential activity for all task-relevant stimuli, but are insensitive to 
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non-task-relevant stimuli. Finally, the following conjunction was used 
to identify the putative NCC areas: [(TaskRelNonTar (stim id) > bsl) 
and (TaskIrrel (stim id) > bsl)] or [(TaskRelNonTar (stim id) < bsl) and 
(TaskIrrel (stim id) < bsl)], critically detecting areas that are responsive 
to any stimulus category irrespective of task, with consistent activa-
tion or deactivation. Thus, this analysis casts a wide net to identify 
areas that can potentially be the neural correlates of consciousness, 
whereas excluding areas that do not respond to task-relevant or irrel-
evant stimuli (meaning that areas that respond both to the task and to 
the content of perception are still included).

To compute conjunctions, we first ran a GLM (see above) corrected 
for multiple comparisons (Gaussian random-field cluster-based infer-
ence). Equivalence to baseline was established using a JZS Bayes factor 
test, with a Cauchy prior (r scale value of 0.707, as implemented in 
Pingouin (0.5.1)120. Evidence maps were thresholded at BF01 > 3. The 
thresholded z maps and the Bayesian evidence maps on the group level 
were used for the conjunction analysis. For conjunctions including an 
‘unequal to’, a ‘logical and’ operation was used between the directional 
z maps, after thresholded maps were binarized. For the putative NCC 
contrast, conjunctions were performed separately for activations and 
deactivations, using a ‘logical and’ operator for the task-relevant and 
irrelevant z maps. The resulting maps were combined using a ‘logical 
or’ operation to discard areas showing effects of opposite direction for 
task-relevant and task-irrelevant stimuli. This analysis was also done 
at the participant level, masked using the anatomical ROIs, to account 
for inter-participant variability. For each ROI, the proportion of partici-
pants with voxels included in the conjunction is reported. The multivari-
ate version of the putative NCC analysis was done using the thresholded 
statistical maps obtained from the whole-brain searchlight decod-
ing based on a participant-level stimulus versus baseline-decoding 
accuracy maps (for details regarding the decoding approach used, 
see ‘Decoding analysis’).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The full study protocol is available in the preregistration on the OSF 
webpage (https://osf.io/92tbg/), including a detailed description of 
the experimental design, the predictions of the theories and agreed-on 
interpretations of the results, as well as iEEG, MEG and fMRI data acqui-
sition details, preprocessing pipelines and data analysis procedures. 
Deviations from the preregistration are documented throughout the 
article and summarized in section 14 of the Supplementary Information. 
All data generated in this study are available under a CC BY 4.0 license. 
The M-EEG, fMRI and iEEG datasets are distributed through two meth-
ods: as downloadable data bundles and via an XNAT instance, which 
enables search functionality and single-participant downloads. Data 
bundles can be accessed (https://www.arc-cogitate.com/data-bundles) 
in raw format (M-EEG raw121, fMRI raw122 and iEEG raw123) and BIDS 
format (M-EEG BIDS124, fMRI BIDS125 and iEEG BIDS126). Alternatively, 
the datasets are accessible via the Cogitate XNAT instance127 (https://
cogitate-data.ae.mpg.de). All distribution formats include robust meta-
data, and detailed documentation of experimental procedures and 
dataset structure is available (https://cogitate-consortium.github.io/
cogitate-data/). For further inquiries, please contact the correspond-
ing authors.

Code availability
Task and analysis codes have been shared under an MIT license. The 
task code128 has been shared on GitHub (https://github.com/Cogitate- 
consortium/cogitate-experiment-code). The analysis code129 has also 

been shared on GitHub (https://github.com/Cogitate-consortium/
cogitate-msp1).
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Prediction#1 Complementary results for decoding  
of conscious content. a. fMRI searchlight decoding accuracies (letters/false-
fonts), collapsed across durations. Pattern classifiers trained on relevant 
stimuli and tested on irrelevant stimuli (left, purple) or vice versa (right, 
orange): Outlined colored regions on the inflated cortical surfaces (top: lateral 
views; bottom: medial views) indicate significant above-chance (50%) decoding. 
Here and below, significance was evaluated through a cluster-based permutation 
test (p < 0.05; two-sided). Sample sizes as reported in Fig. 2. b. iEEG ROIs 
decoding accuracies (letters/false-fonts) collapsed across durations. 
Conventions as in a. The results are displayed on inflated surface maps from  
a left lateral (top left), posterior (top right) and left medial (bottom) views.  
c. MEG cross-task decoding of category (letters/false-fonts) when classifiers 
were trained on relevant stimuli and tested on irrelevant stimuli (purple); or 
vice versa (orange), separately for the whole posterior (left) and prefrontal 

(right) ROIs. Underlying lines indicate significantly above-chance (50%) 
decoding. Error bars depict 95% CI across participants. d. iEEG cross-task 
temporal generalization of category decoding (letters/false-fonts) classifiers 
trained on task-relevant stimuli and tested on task-irrelevant stimuli. Columns: 
stimulus durations (left: 0.5 s; center: 1.0 s; right: 1.5 s). Rows: theory ROIs  
(top: posterior; bottom: prefrontal). Contoured red-shaded regions depict 
significant above-chance (50%) decoding. e. iEEG cross-task temporal 
generalization of category decoding (faces/objects), classifiers were trained 
on task-relevant stimuli and tested on task-irrelevant ones. Conventions as in  
d. f. iEEG cross-task temporal generalization of category decoding (faces/
objects) from task-irrelevant to task-relevant stimuli, yet using pseudotrial 
aggregation to boost decoding accuracy. Conventions as in d. g. iEEG ROI 
decoding accuracies (faces/objects) using pseudotrials. Conventions as in b.
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Extended Data Fig. 2 | Within-task temporal generalization of decoding  
of stimulus category (faces vs. objects). a. iEEG within-task temporal 
generalization decoding of category (faces/objects) for pattern classifiers 
trained and tested on task-relevant stimuli. As in Fig. 2b, columns represent 
stimulus durations (left: 0.5 s; center: 1.0 s; right: 1.5 s) and rows represent 
theory ROIs (top: posterior; bottom: prefrontal). Contoured red-shaded 
regions depict significant above-chance (50%) decoding. Here and below, 
significance was evaluated through a cluster-based permutation test (p < 0.05; 
two-sided). Sample size as in Fig. 2. b. iEEG within-task temporal generalization 
decoding of category for task-irrelevant stimuli. Conventions as in a. c. MEG 
within-task average decoding of category (faces/objects), for the task-relevant 
(orange) and the task-irrelevant (purple) conditions, in posterior (left) and 
prefrontal (right) ROIs. Underlying lines depict significantly above-chance 

(50%) decoding assessed by cluster-based permutation test (p < 0.05). Error 
bars depict 95% CI estimated across participants. d. MEG within-task decoding 
of category (letters/false-fonts). Conventions as in c. e. fMRI searchlight 
decoding of category (faces/objects), collapsed across durations, for the 
task-relevant (left, orange) and task-irrelevant (right, purple) conditions. 
Outlined colors indicate regions on the inflated cortical surfaces showing 
significantly above-chance (50%) decoding (top: left/right lateral views; 
bottom: right/left medial views). f. iEEG ROIs decoding accuracies, collapsed 
across durations, within the task-relevant (left, orange) and the task-irrelevant 
(right, purple) stimuli. Same conventions as in e, with maps from a left lateral 
(top left), posterior (top right) and left medial (bottom) views. Images in panels 
a,b are from Freesurfer. Q35



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Control analyses for the decoding prediction. a. Left: 
iEEG ROIs decoding results of orientation (left/right/front view) over time as  
in Fig. 2, but using pseudotrials akin to the MEG analysis. Right: Regions with 
electrodes showing significant above-chance (33%) accuracies are indicated  
in outlined blue on the inflated surfaces (left: left lateral view; middle: 
posterior view; right: left medial view). Here and below, error bars depict 95% 
CI. Significance assessed using a cluster-based permutation test (p < 0.05, two-
sided). b. Two analyses were performed to evaluate potential leakage in MEG 
decoding, using independent data from the optimization phase (N = 32). Top: 
averaged stimulus-evoked response in face task-relevant trials, combined 
across durations, at different latencies, projected on the inflated surfaces. 
Activity in posterior areas (blue ellipse) showed the highest peak ~0.1-0.2 s, 
while prefrontal areas showed a later highest peak ~0.2-0.3 s. This challenges 
the leakage interpretation. Bottom: Analysis of face/object decoding in task-
relevant trials across durations, separately within parcels in parietal and PFC. 

Left: Average decoding accuracy in an early time window (0.25-0.5 s) projected 
on two differently inflated surfaces to better depict gyri and sulci. Right: Time-
resolved decoding these parcels. Decoding is highest in posterior areas and 
lowest in anterior areas, with fairly similar time courses, suggesting a posterior-
to-anterior gradient consistent with leakage. c. ROIs used in the decoding 
analysis including (blue) and excluding (red) PFC areas. d. iEEG decoding of 
faces/objects (left), letters/false-fonts (middle) and face orientation (right), 
with and without PFC (blue/red). Underlying lines indicate significantly worse 
decoding when including PFC. e. MEG decoding results, same conventions  
as in d. f. fMRI decoding of faces/objects. Histogram shows the differences in 
classification including and excluding frontal areas. fMRI accuracies including 
PFC show 1.2% increase compared to excluding PFC, observed in 56% of the 
participants. Notably, this slight increase was observed only in the combined 
features analysis and not the combined models’ analysis (see Methods). Images 
in panels e,f are from Freesurfer.



Extended Data Fig. 4 | Maintenance of conscious content over time  
for stimulus categories, identity and orientation. a. Cross-temporal 
representational similarity matrices in Posterior ROI (Npatients=28, Nelectrodes = 583). 
The leftmost column shows similarity for letters vs. false-fonts, separately for 
task-relevant (left) and task-irrelevant (right) trials. Principal Component 
Analysis (PCA) plots at 0.3 s illustrate the separability between letters and 
false-fonts. The top rightward column display similarity for identity, while 
bottom rows show similarity for orientation. Contours indicate statistical 
significance based on cluster-based permutation tests (upper tail test, α = 0.05). 
PCA illustrates clear separability between letters and false-fonts in the 
posterior cortex at 0.3 s, regardless of task relevance (top – task-relevant, 

bottom - task-irrelevant). This separability was largely sustained in the task- 
relevant condition but diminished between ~0.95 and 1.4 s. In the task-irrelevant 
condition, separability was significant only for a brief period at the beginning. 
Identity information was significant for letters and false-fonts but not for faces. 
While identity information was not sustained throughout the entire stimulus 
duration, elevated z-scores up to 1 s suggest a potential limitation in statistical 
power. No statistically significant orientation information was observed for 
any category. Conventions as in Fig. 3. b. Cross-temporal representational 
similarity matrices in Prefrontal ROI (Npatients=28, Nelectrodes = 576) for the same 
contrasts as and following the same conventions as in a. No contrast yielded 
statistically significant results in the PFC ROI.
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Extended Data Fig. 5 | Prediction #3: Interareal connectivity preregistered 
analysis. a. iEEG electrode coverage used to assess content-selective 
synchrony for IIT ROIs (top, Npatients = 4) & GNWT ROIs (bottom, Npatients = 21). 
Electrode coverage varied between ROIs as interareal connectivity was 
assessed between electrodes on a per-participant basis. In addition, two 
example category-selective electrodes are shown (right): one face-selective, 
and one object-selective. Error bars depict standard error of the mean. b. MEG 
(N = 65) cortical time-series were extracted per participant from cortical 
parcels in V1/V2 (blue), PFC (green) and in a fusiform (red) ROIs. Category- 
selective signals were obtained by creating a category-selective GED filter (i.e., 
contrasting face/object trials against any other stimulus category trials) on the 
activity extracted from the fusiform ROI. Face- (bottom left) and object-selective 
(bottom right) responses averaged across participants are shown at the 
bottom. Error bars depict 95% CI. Here and below, significance was assessed 

using cluster-based permutation tests, p < 0.05, two-sided. c. iEEG Pairwise 
phase consistency (PPC) analysis of task-irrelevant trials reveals significant 
content-selective synchrony (e.g. faces > objects for face-selective electrodes; 
left; objects > faces for object-selective electrodes; right) in V1/V2 ROIs (top 
row), but not in PFC ROIs (bottom row). Color bars represent the average 
change in PPC (face-object trials) for each node (face-selective, object-selective). 
Positive values reflect stronger connectivity for faces, while negative values 
reflect stronger connectivity for objects. d. MEG PPC analysis of task-irrelevant- 
trials (N = 65) reveals significant category-selective synchrony below 25 Hz for 
the face-selective GED filter (i.e., faces > objects for face-selective electrodes) 
in both V1/V2 (top row) and PFC ROIs (bottom row) and for the object-selective 
synchrony (objects > faces for object-selective electrodes) in the PFC ROI only. 
Images in panels a–c are from Freesurfer.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Control analysis for the interareal connectivity 
prediction. a. iEEG PPC analysis of task-irrelevant trials did not reveal any 
significant category-selective synchrony cluster in posterior (top) or PFC 
(bottom) ROIs after removing the evoked response. Same conventions and 
statistical tests as in Extended Data Fig. 8 are used here and below. b. MEG PPC 
analysis of task-irrelevant trials also did not reveal any synchrony cluster in any 
ROI after removing the evoked response. c. iEEG DFC analysis of task-irrelevant 
trials without removing the evoked response reveals significant content-
selective connectivity between object-selective electrodes and V1/V2 
electrodes (top-right), reflected as broadband (25–125 Hz) decrease in the 
change in DFC (e.g., faces <objects). Similar broadband changes in DFC (faces > 
objects) were observed for face-selective electrodes in PFC (bottom-left). 
Smaller significant effects were detected between face-selective and V1/V2 
electrodes (top-left) and for object-selective and PFC electrodes (bottom-
right). d. MEG DFC analysis of task-irrelevant trials without removing the 
evoked response reveal significant content-selective synchrony between the 

face-selective GED filter node and both V1/V2 (top-left) and PFC (bottom-left). 
This is reflected in an increase in low-frequency connectivity ( < 25 Hz) combined 
with a decrease in high-frequency connectivity (25–100 Hz). Smaller yet 
significant effects were detected for the object-selective GED filter (right).  
e. Generalized psychophysiological interactions (gPPI) task-related connectivity 
analysis of task-irrelevant (left) and task-relevant (right) trials revealed weak 
clusters of content-selective connectivity with FFA as the analysis seed (p < 0.01, 
uncorrected). Common significant regions showing task-related connectivity in 
task-irrelevant, task-relevant, and combined conditions include V1/V2, right 
intraparietal sulcus (IPS), and right inferior frontal gyrus (IFG). f. gPPI task-
related connectivity analysis of task-irrelevant (left), task-relevant (middle), 
and combined conditions revealed weak clusters of content-selective 
connectivity with lateral occipital complex (LOC) as the analysis seed (p < 0.01, 
uncorrected). Overall, no common significant regions showed task-related 
connectivity.
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Extended Data Fig. 7 | An overview of theoretical predictions, experimental 
outcomes and interpretations. Left: Preregistered predictions of IIT (top) 
and GNWT (bottom) (see also Melloni, 2023; Fig. 1). Key hypotheses (second 
column, Key hypotheses) are described alongside the three analyses used to 
test them (third column, Test): decoding (prediction #1; Fig. 2), activation & 
RSA (prediction #2; Fig. 3), and synchrony (prediction #3; Fig. 4). Potential 
outcomes and their interpretations are detailed in the fourth column (Possible 
outcome and interpretation), with outcomes aligning with predictions framed 
in green (pass) and contradictory outcomes framed in red (fail). Solid frames 
denote critical predictions, while dotted gray frames indicate non-critical 
predictions. This section reflects the theoretical expectations before the 
experiment. Right: summary of the actual findings, integrating results across 
modalities and analyses. Key findings for each prediction are described  

(fifth column; ‘Result’) with white denoting alignment with predictions, red 
indicating contradiction, white/red mixtures showing partial support or failure, 
and yellow indicating inconclusive results. Final conclusions synthesize these 
findings, using the same color coding. For IIT, the results mix a passed prediction 
(content-specific complex of neural units in posterior cortex, throughout the 
persistence of a percept, independent of the task) with a failure (maximum 
integrated information). For GNWT, a mixture of a partly challenged prediction 
(of an all-or-none threshold and amplification of information updating  
the content of consciousness in PFC) and a partly supported one, given the 
inconclusive result for orientation (of global broadcasting of information in the 
PFC). These results are discussed in the main text, including their implications 
for other consciousness theories. Stimulus images are courtesy of Michael J. Tarr, 
Carnegie Mellon University, http://www.tarrlab.org/.

http://www.tarrlab.org/
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Extended Data Table 1 | Key Predictions and Integration of Evidence Across Planned Analyses

Key predictions of each theory and plan for integrating outcomes across the different brain recording modalities and analyses. Each prediction (Bolded titles, light gray cells) is broken down  
to sub-predictions, which are then integrated together to provide the final conclusion per prediction (dark gray rows, appearing at the bottom for each prediction). Bolded predictions are  
the ones appearing on Extended Data Fig. 7 on the Preregistration, and are defined as the critical predictions for evaluating the theories. Numbered sub-predictions are the ones considered 
when integrating across sub-predictions to reach the final conclusion of each prediction (black rows). Finally, light red row denotes vertical integration across all predictions, to form the final 
conclusion for each theory based on its critical predictions.



Extended Data Table 2 | Decoding of faces vs. objects in the theory-defined ROIs

The table presents the number of voxels in each theory-defined ROI that were detected in the searchlight decoding of category (faces vs. objects; N = 73), using a cluster-based permutation test 
(p < 0.05). The results are presented separately for cross-task decoding (i.e., when classifiers are trained on the task-irrelevant trials and tested on task-relevant ones, or vice versa), as well as for 
within task decoding (irrelevant and relevant conditions).
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Extended Data Table 3 | Electrode locations found to be significant in the LMM analysis

Electrodes location in MNI coordinates, as well as in the corresponding parcellations of the Destrieux Atlas, Wang Atlas and Desikan Atlas.
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