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Chapter

10
Artificial Intelligence in Neuroscience
Will Xiao, Mengmi Zhang, and Gabriel Kreiman

Neurosurgeons have the privilege of peeking inside the
most precious and the most mysterious device on earth:
the human brain (Crick et al., 2004). The human brain is
also the most expensive device on earth given that mental
health problems constitute the largest health care cost. By
deciphering the inner secrets of brain computations,
scientists and engineers have taken inspiration to develop
smart artificial intelligence (AI) algorithms. These AI
algorithms in turn provide much help to understanding
brain function and to multiple applications in brain dis-
orders, including neurosurgery.

10.1 From Neural Circuits to Artificial
Intelligence
Humanity has long imagined automated machines that
can do work for us. The ultimate frontier is to construct
machines that can emulate the human brain, or perhaps
even surpass human intelligence. The development of AI
commenced in the 1950s and has gained momentum in
the last decade. Throughout its short history, AI research
has been inspired by notions of neuroscience. Visual
processing constitutes a paradigmatic example of AI
and the links between AI and neuroscience.

Consider a hypothetical algorithm that is capable of
taking as input a magnetic resonance image of a subject’s
brain and detecting the presence of a tumor. At the heart of
AI algorithms are neural networks, that is, interconnected
neuron-like units that receive inputs and progressively
transform those inputs into forms that are more useful to
solve the task. The output of the algorithm indicates the
probability that the image contains a tumor and its loca-
tion. A unit in a neural network is a highly simplified
model of a neuron: it receives inputs from other units,
weighs and sums those inputs, applies a non-linear trans-
formation, and produces a scalar output (McCulloch and
Pitts, 1943). Neuronal firing rates are represented by scalar
activation values, the strengths of synapses between neu-
rons are replaced by weights, and the biophysics of action

potential generation is captured by a single non-linearity
that converts the weighted inputs into an output.

The power of neural networks derives from connecting
these simple units into large ensembles that have interest-
ing emergent properties. Here again, AI takes inspiration
from the brain. The visual cortex uses a divide-and-
conquer strategy by layering neurons in an approximately
hierarchical fashion from the retina, to the lateral genicu-
late nucleus, onto primary visual cortex (V1), onto visual
cortical area V2, and so on (Felleman and Van Essen, 1991;
Figure 10.1A). A particularly successful computational
architecture, known as deep neural networks, follows the
same principle by having multiple layers that sequentially
transfsorm information (Figure 10.1B).

In the visual cortex, the same image features are
extracted at different locations throughout the visual
field. For example, each V1 neuron selectively responds
to bars of a specific orientation at a specific part of the
visual field (Hubel and Wiesel, 1962). The population of
V1 neurons tile the entire visual field, with neurons specific
to each orientation at, say, the center of gaze and also in the
visual periphery. To create an artificial layer with similar
properties, computational models recur to a convolution
operation, such that units with the same weights are effec-
tively repeated in different locations. Meanwhile, units
with different weights account for different orientation
tuning. Similarly, features other than orientation are
extracted in different units and layers using the convolu-
tion operation. The resulting networks are known as deep
convolutional neural networks (CNNs). Many other neu-
robiologically inspired operations are included, such as
non-linear pooling of inputs (Riesenhuber and Poggio,
1999) and normalization (Carandini and Heeger, 2011).

Humans learn to recognize cars, chairs, or brain
tumors in images. It is generally thought that such learning
largely amounts to modifying synaptic strengths in visual
cortex. Equivalently, neural networks are trained by mod-
ifying the weights between units. Powerful learning algo-
rithms have been developed to modify synaptic weights,
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including back-propagation. Back-propagation is often
used in a supervised learning setting: the network produces
tentative (initially random) labels for the training exam-
ples, and if the output is wrong, the error signal is propa-
gated back throughout the network to modify the weights
in the direction that makes the output closer to the correct
answer. Trained withmany correctly labeled examples, the
network can gradually learn to separate, for example,
images with or without tumors.

10.2 Artificial Intelligence Contributions
to Visual Neuroscience
Just as neuroscientific knowledge inspired advances in
AI, so does AI feed back to neuroscience, providing new
tools, models, and ways of understanding the brain (see

Hassabis et al., 2017; Richards et al., 2019; Serre, 2019;
Zador, 2019 for reviews on the synergisms between neu-
roscience and AI). We highlight three active research
directions in vision that draw on AI as tools and models.

10.2.1 Goal-Driven Convolutional Neural
Networks Explain Neuronal Responses
Underlying Object Recognition
Object recognition is a well-defined visual process under-
lying our ability to make sense of the visual world. Clinical
case studies exemplify the profound consequences of fail-
ures in visual recognition (Sacks, 2002). Neurons along the
ventral visual cortex are especially important for visual
recognition, as demonstrated by studies in non-human

Figure 10.1 Biological and artificial visual networks. (A) Mesoscopic anatomical connections between different visual areas in the macaque cortex
(Felleman and Van Essen, 1991). Each colored box shows a brain area and lines represent anatomical connections. The bottom shows the retinal ganglion
cells (RGCs). Visual areas are arranged in an approximately hierarchical fashion. This architecture has inspired the idea that information flows in a semi-
sequential fashion from the bottom to the top of this diagram. See Felleman and Van Essen (1991) for the definition of each anatomical abbreviation. (B)
Example deep convolutional neural network (CNN) architecture known as AlexNet (Krizhevsky et al., 2012). Each solid box represents a layer in a neural
network (loosely equivalent to a brain area). The dashed box denotes a unit (neuron) in a layer. The converging dash lines bring information to the next
layer (representation of anatomical connections across layers). The input to the model is an image (bottom), the output is a series of numbers, 1000 in this
case, which represent the probabilities that the image contains one of 1000 possible object categories. The numbers indicate the dimensions of each layer,
“conv” stands for convolutional layer, and “fc” indicates a fully connected layer. See Krizhevsky et al. (2012) for further details. Author’s artwork
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primates (DiCarlo et al., 2012) and using invasive neuro-
physiological recordings from human neurosurgical
patients (Liu et al., 2009). Understanding how these neu-
rons process visual information is of both medical and
practical interest. Responses of early visual cortex have
been explained by hand-designed models, such as Gabor
wavelet filters (Hubel and Wiesel, 1959), or by models
based on first-principles such as efficient coding
(Olshausen and Field, 1996). However, similar approaches
have achieved limited success in describing the responses
of neurons in higher-order visual areas, likely because of
the complexity of high-level visual features.

In parallel, for a better characterization of visual cor-
tex, CNNs loosely based on neurobiological knowledge
were being developed (see previous section). CNNs are
image-computable models, meaning that we can show the
same images to the models as we show to a monkey or
a human. Thus, we can directly compare the responses of
artificial units and biological neurons to the same inputs.
As described in the previous section, the synaptic weights
of the CNNs are adjusted via supervised learning on
a computer vision data set created to assess object recog-
nition, notably without using any neural data. One
approach to comparing AI units to biological neurons is
to use a linear mapping to fit the responses of a biological
neuron’s response patterns (Yamins et al., 2014).
Validation of these models was only possible relatively
recently, as AI systems, fueled by several technological
advances, became powerful enough to do realistic visual
recognition tasks. Remarkably, CNNs as models to quan-
titatively explain neuronal responses have outperformed
all previous models in describing the responses of neurons
in the retina, in primary visual cortex, and in other
areas along the ventral visual stream, including the top
echelons of inferior temporal cortex. For example, the
famous AlexNet neural network (Krizhevsky et al.,
2012), at its time the best-performing algorithm by far
on a challenging image recognition task, has been shown
to be a good model of visual neuronal responses, as
have later CNNs with increasingly better performance
(Schrimpf et al., 2018). Furthermore, CNN models with
higher performance on computer vision object categori-
zation tasks tend to better explain neuronal responses in
ventral visual cortex. This result suggested that brain-like
computations may be specified by brain-related tasks,
rather than by neural data directly. Ongoing research
highlights the remaining gap in the quantitative descrip-
tion of neuronal responses (Schrimpf et al., 2018), and
aims to address deviations of CNNs from biological vision
in architecture (Kar et al., 2019; Kubilius et al., 2019; Tang

et al., 2018), learning rules (Lillicrap et al., 2020), and
behavior (Nguyen et al., 2015; Szegedy et al., 2020).

10.2.2 Convolutional Neural
Network-Learned Features Reveal Stimulus
Preferences and Organizing Principles in Visual
Cortex
As discussed above, visual features learned by neural
networks agree well with those used in the brain. In
addition, learned features – unlike hand-picked features
such as the orientation of a grating, surface texture, shape
curvature, or face appearance – apply generally through-
out visual areas and types of selectivity. Thus, such visual
features can serve as a general framework for defining
stimulus preferences and explaining the organizing prin-
ciples throughout the visual cortex.

A recent study (Ponce et al., 2019) showed that the
tuning properties of V1 and inferior temporal (IT) cortex
neurons can be discovered using a generative neural
network (Goodfellow et al., 2014), without resorting
to arbitrary investigator-chosen features like oriented
gratings or faces. In a typical CNN, the input is an
image and the output is a vector of image features or
labels. A generative neural network inverts the process,
taking features as inputs and producing images.
Combining the generative network with neuronal record-
ings in a closed loop (Figure 10.2), this method allowed
the investigators to discover image features that activated
the neurons as well as, and in some cases better than, the
best natural images. Notably, although the generative
network was trained on natural images, it was not limited
to images it has seen. Thus, this approach could discover
neuronal tuning in an unbiased fashion, without impos-
ing an investigator’s existing notions of what a neuron
might be tuned to. Similar approaches have been used to
reveal visual neuronal tuning in other areas in monkeys
(Abbasi-Asl et al., 2018; Bashivan et al., 2019), mice
(Walker et al., 2019), and artificial neural networks
(Olah et al., 2017; Zeiler and Fergus, 2014).

An interesting property of the cortex is its topograph-
ical organization whereby nearby neurons show similar
tuning properties. A recent study (Bao et al., 2020) used
CNN-encoded image features to confirm this topograph-
ical organization of macaque IT cortex and describe its
feature selectivity. The IT cortex contains continuous
patches selective for directions of image variation defined
by a CNN. Patches selective for different feature direc-
tions are arranged in a consistent order, repeated from
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posterior to anterior IT cortex. Hearkening to layers in
deep neural networks, this organization of the IT cortex is
also hierarchical: responses in more anterior patches are
more invariant to the same object viewed from different
angles. Moreover, previous accounts of IT tuning to
faces, size (big–small), and 3D shape can be explained in
a common framework based on the CNN-derived fea-
tures. In fact, although these features partially correlated
with semantic categories, CNN-derived features explain
neuronal responses better than do semantic categories.

In summary, artificial neural networks can be used
to meaningfully interpret the computations along visual
cortex and parsimoniously explain neuronal response
properties. Such an understanding may one day be used
to develop more specific and powerful visual prosthetics
(see the last section).

10.2.3 Artificial Intelligence-Based Models
Illuminate Complex Visual Behaviors
Artificial intelligence algorithms can now achieve human-
level performance on some specialized visual tasks, such as
the ImageNet challenge for object recognition (He et al.,
2015; Russakovsky et al., 2015) and clinical tasks like
detecting whether an image contains a tumor or not
(Lotter et al., 2021). Yet, the general visual behaviors of
humans are much richer, more complex, and more versa-
tile, and there is still a long way to go for AI systems to

emulate higher-order human vision. Nevertheless,
domain-specific AI systems provide useful building blocks
for modeling such behaviors. For example, humans can
perform efficient visual search. One example is searching
for a tumor in a magnetic resonance image. This search is
efficient, because humans do not have to exhaustively
sample all possible locations; and invariant, because
humans can search for objects regardless of their position,
scale, illumination, or rotation. In addition, humans can
perform a zero-shot search, namely searching for novel
objects. In comparison, object detection algorithms in
computer vision require extensive training for each object
class and extensive sampling of image locations during
detection. To start closing the gap, investigators developed
a biologically inspired computational model for visual
search (Zhang et al., 2018) composed of an object recog-
nition module and an attention module. The model pro-
duces a series of eye movements that are specific to the
sought target and the search image. Without training on
human data, this algorithm approximates human eye
movements and search performance. Like humans, this
model does not need to be retrained for new search targets
or conditions, working out-of-the-box to search for
objects in an array on a uniform background, in natural
photographs, and in Where’s Waldo images. Presumably,
this is possible because the underlying object recognition
model has learned generally useful visual features and
invariances. Similar methods of using simple models as
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Figure 10.2 Example of how AI has helped advance vision research. A generative neural network coupled to a genetic algorithm can be used in
a closed-loop system to uncover neuron selectivity in an automatic and unbiased manner. A generative neural network is an inverted CNN that takes
feature codes as inputs and creates images. The synthetic images are presented to a monkey while recording neuronal responses. These neuronal
responses are used as a “fitness” function to rank the images from best to worst. Finally, a genetic algorithmmutates and recombines the feature codes
to feed back to the image generator. The loop is iterated until the algorithm converges on images that effectively trigger high activation for the neurons
(Ponce et al., 2019). The two columns on the right show two example evolutions of preferred images for two face-selective neurons. Author’s artwork
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building blocks hold promise for explaining a large range
of complex visual behaviors.

The reach of AI algorithms now extends well beyond
pure sensory processes. Artificial intelligence-based sys-
tems have been used to model a large range of behaviors
including reinforcement learning (Dabney et al., 2020),
decision making, and game-play. In some cases, AI algo-
rithms have achieved superhuman performance in pro-
blems not long ago thought to be still out of reach for
machines – including Atari games (Mnih et al., 2015),
chess, the ancient Chinese game of Go (Silver et al., 2016,
2017, 2018), video games like StarCraft II (Vinyals et al.,
2019), and Texas hold ’em (Brown and Sandholm, 2019).

10.3 Prospects of Artificial
Intelligence-Based Tools in Neuroscience
and Neurosurgery
The ability of AI systems to perform accurate pattern
recognition holds the promise to radically transform
many aspects of clinical practice. One of the important
domains that has been revolutionized by advances in AI is
image-based diagnosis, but AI is also likely to impact
many other domains such as the development of better
brain–machine interfaces.

10.3.1 Discovering the Unexpected: Disease
Diagnosis from Retinal Fundus Photographs
with Artificial Intelligence Systems
An example application of CNNs in clinical diagnosis is
the analysis of retinal fundus photographs (see also work
in cancer detection; Lotter et al., 2021). Such images can
be used to diagnose conditions such as diabetic retinopa-
thy (Gulsham et al., 2016; Ting et al., 2017). In the same
fashion that a CNN can be trained to discriminate images
of chairs versus tables via supervised learning, these neu-
ral networks can be fed with multiple examples of fundus
photographs with or without diabetic retinopathy. These
expert-annotated images are used to train the network
(that is, change the synaptic weights between units). The
CNNs excel at this task, and their performance is similar
to that of expert ophthalmologists (Poplin et al., 2018).
Subsequent work extended CNNs to diagnosing glau-
coma and age-related macular degeneration (AMD)
using retinal images (Ting et al., 2017).

Surprisingly, CNNs can be trained to accurately pre-
dict other information from these images, including
a subject’s gender or age. Clinicians never knew that

there was such information in fundus photographs;
after all, gender and age are not particularly interesting
variables to decipher from clinical images given that such
information is always available to the doctor.

What is even more astounding, CNNs could use fun-
dus photographs to predict smoking status (71% of the
time) and systolic blood pressure (11.23 mmHg in mean
absolute error). Next, the investigators then asked
whether it is possible to predict the risk of cardiovascular
disease from the same images. Strikingly, CNNs could
estimate the risk of cardiovascular disease as well as the
Framingham score, without any information other than
the images themselves.

10.3.2 Detecting Spatiotemporal Patterns in
Data: Seizure Prediction Using Deep Learning
The success of CNNs in pattern classification from
images has encouraged the development of a plethora of
other types of deep-learning algorithms that extend
beyond image processing, for example, incorporating
analysis of temporal information in the classification of
video data and other time-varying signals. A noteworthy
domain of applications is seizure detection and seizure
prediction (Fergus et al., 2016). A recent review paper by
Siddiqui et al. (2020) shows that a wide range of machine-
learning methods are capable of classifying seizures given
a segment of time-series data.

The main challenges in seizure detection and seizure
prediction involve the selection of appropriate classifiers
and features. The type of CNN architectures discussed in
Sections 10.1 and 10.2 do not readily incorporate tempo-
ral information. Rather, signals go from one layer to the
next in a sequential fashion. In stark contrast, informa-
tion flow in the brain includes complex dynamics arising
from horizontal connections between neurons in a given
brain area as well as the interplay of bottom-up and top-
down signals (Felleman and Van Essen, 1991). Akin to
such biological connectivity, recurrent neural networks
(RNNs), which belong to a family of deep-learning mod-
els, have shown success in describing dynamic aspects of
neural firing in the visual system (Kar et al., 2019; Tang
et al., 2018) and in natural-language processing (Vaswani
et al., 2017).

Similarly, several studies have started exploring the
feasibility and efficiency of applying RNNs in extracting
temporal signatures of seizures from time-series data.
Cho and Jang (2020) surveyed and compared current
deep-learning techniques in seizure classification. These
techniques typically take inputs from either of three
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major classes: 5-s segments of raw time-series data from
electroencephalographic (EEG) data, 2D images of raw
EEG waveforms, and 2D images in frequency domain
using short-term Fourier transform of the waveforms.
Seizure classification using AI algorithms achieves high
accuracy (99.3% of the time). These results encourage the
exploration of the more challenging problem of seizure
prediction.

10.3.3 Restoring Vision for the Blind:
Artificial Intelligence-Assisted Brain–Machine
Interactions
In the famous “frog galvanoscope” experiment of
1781, Luigi Galvani injected electric currents to twitch
a frog’s legs. Since then, humans have never stopped
pursuing the dream of communicating between nerv-
ous systems and machines. Until now, courageous and
initial efforts have been taken in developing medical
implants to treat Parkinson’s disease via deep brain
stimulation (Cagnan et al., 2019) and neuronal signal
decoders to decipher movement intentions in quadri-
plegic patients (Tam et al., 2019). With the advent of
powerful AI tools, major revolutions could come for
brain–machine interfaces (BMIs) for a wide variety of
clinical applications.

A tantalizing prospect is the development of prosthet-
ics for visual restoration, which could be life-changing for
the large number of patients who are blind or have severe
visual impairment. Economical yet sophisticated digital
cameras that can rapidly capture and transmit visual
information are now prevalent in smartphones and wear-
able devices. Convolutional neural networks can extract
meaningful information from such images. The main
challenge and missing link is how to transmit this infor-
mation to a patient’s brain. A review paper by Niketeghad
and Pouratian (2019) outlines opportunities and chal-
lenges of the cortical visual prosthesis under investiga-
tion. Two main approaches are taken, based on electrical
stimulation of either the retina or V1. Both approaches
suffer from the limited number of electrodes and non-
uniform arrangement of their ensuing phosphenes in the
visual field.

An intriguing alternative would be to use the type of
computer vision approaches highlighted in the previous
section to preprocess the images and submit to the cortex
a digested version of neural codes compatible with brains
(Figure 10.3). This highly processed information could
then be fed into higher visual centers via electrical

stimulation. Instead of eliciting individual phosphenes,
this approach may be used to evoke a complete visual
precept, by triggering neuronal populations tuned to
more complex visual features or even aspects of visual
scene understanding. For example, depending on the
subject’s goals, the AI algorithm could either read text,
help avoid obstacles during navigation, identify faces, or
even provide a description of the visual scene.
A schematic illustration of a hypothetical high-level
BMI for the blind is presented in Figure 10.3. One could
imagine that AI tools, combined with an understanding of
the visual cortex, can enable the “inception” of specific
precepts by a neuro-visual prosthesis (Roe et al., 2020).

An even more intriguing alternative is to feed this
highly processed information into readily available
information channels, such as auditory and somatosen-
sory modalities. For example, the AI algorithms could
interpret the scene surrounding a blind subject’s
environment and then provide explicit directions and
instructions via a virtually generated avatar that pro-
vides directional verbal commands. Rather than a BMI
device, this approach merely requires portable and vir-
tual reality (VR)-compatible headphones that are readily
available through the gaming community (Liu et al.,
2018).

10.3.4 Artificial Intelligence-Specific
Concerns in Neuroscience and Neurosurgery
Artificial intelligence technologies come with risks; they
face criticisms including privacy threats, security pitfalls,
potential biases, issues of legal liability, as well as other
ethical andmoral concerns (Grote andBerens, 2020; Rigby,
2019; Vayena et al., 2018). For example, many AI models
need access to massive data sets for training. Transferring
gigabytes of data across multiple healthcare organizations
might lead to data breaches. Moreover, biases intrinsic to
the data sets (such as those pertaining to race, gender, or
other stereotypes) may become ingrained into the algo-
rithm during training. Even if all privacy and bias concerns
were adequately addressed, algorithms can fail to provide
the right answer. Of course, clinicians do not always make
the correct diagnosis, either. But, if an algorithm fails, who
is to blame?

With great power comes great responsibility. As
humanity continues to develop and benefit from intelli-
gent machines, researchers and practitioners alike should
heed potential ethical concerns, address them proactively,
and shape the future of AI.
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