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Bridging Artificial and Primate Vision:
The Impact of Visual Angle, Scene Context and IT-Alignment

Abstract

The ventral visual stream is a biological neural network that plays a critical role in object recog-
nition and scene understanding. Convolutional neural networks (CNNs) developed to mir-
ror its capabilities, achieve impressive performance in these tasks. Yet, easily fooled by sim-
ple image distortions, these artificial models are not perfect replicas of the primate ventral
stream. Assessing the similarity between these two systems of vision is an important step to-
ward building more brain-like artificial models. Current methods use the neural predictivity
metric, or the ability to predict neural responses given the internal activations in an artifi-
cial neural network, when both are presented with the same stimulus. However, rigorously
controlled predictivity analyses are rare. The models are often evaluated with neurobehav-
ioral datasets where the exact visual angle of stimuli presentation and the image-context varies
widely across studies. In this work we systematically compare the late neural representations
of the macaque ventral visual stream, recorded by chronically implanted multi-electrodes in
the inferior temporal (IT) cortex, and deep CNNs while varying the image-context and field
of view (FOV), to quantify their respective effects. We show that artificial models have a pre-
ferred visual angle range of 7-11 degrees that best aligns themwith the neural data. We explore
the similarities and differences in how artificial and biological neural networks process visual
information, particularly in handling natural scenes in varying context during behavior and
physiology. We show that the neural alignment of the late representations of the twomodels is
optimal when removing the context from an image, and impaired when placing the object in
incongruent context. Moreover, we reveal a substantial explanatory gap for these models for
image-level primate behavioral consistency across contextual manipulations. We show that
the neural population activity in IT from a context-naive macaque, is able to accurately pre-
dict these behavioral patterns, suggesting that IT-aligned models would better approximate
primate behavior. Finally, we introduce a data-driven approach, leveraging large-scale multi-
electrode recordings to align the artificial model’s late feature space to that of the macaque IT
population. Our resultingmodel, validated on new sessions and held-out animals across large
image sets, showed an increased IT-likeness, generalization to new subjects, and remarkably,
increased robustness to different image perturbations and adversarial attacks. Overall, our re-
sults suggest that with appropriate adjustments and careful comparisons, modern computer
vision models can come closer to replicating the intricacies of the primate visual system, and
in turn deepen our understanding of visual processing in the brain.
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1
Introduction

The fields of artificial intelligence and neuroscience have a rich and deeply connected his-
tory,43,44,124,90, with each field informing and advancing the other. The deepening of our
knowledge of biological neural networks (BNNs) has influenced the development of artifi-
cial models, while advances in deep learning have contributed to a better understanding of
how the brain processes information. Historically, intelligence has been defined by looking at
the capabilities of complex biological beings, primarily humans. As a consequence, research
on artificial intelligence has focused on systems that can emulate human intelligence, build-
ing Artificial General Intelligence40 (AGI) or “strong AI”. It comes naturally that the devel-
opment of AI has taken inspiration from the brain’s complex neural mechanisms. Artificial
neural networks (ANNs) however, are an extreme abstraction of BNNs. The first generation
of ANNs developed in the 1950s used perceptrons108, abstract mathematical models of bio-
logical neurons. Then, in the 1980s, the backpropagation algorithm70 was developed, which
allowed neural networks to learn from data and improve their performance over time. This
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led to the emergence of a new wave of AI capable of intelligent skills such as speech9 and im-
age recognition82. More recently, the development of attention networks125 was motivated
by the observation that human brains “attend to” certain parts of inputs when processing
large amounts of information. Similarly, the emergence of spiking neural networks100 can be
attributed to the concept of approximating stochastic potential-based communications that
occur between neurons.
Conversely, the development of artificial intelligence has facilitated advancements in the realm
of neuroscience, with AI rapidly emerging as an essential tool in neuroscience research. The
core strength of artificial intelligence lies in its capability to analyze vast amounts of complex
data and extract meaningful patterns from within it. Artificial models have been widely used
in neuroscience to analyze large-scale neuroimaging data, thereby facilitating the timely pre-
diction and detection of psychiatric disorders117. The advent of Brain Computer Interfaces
(BCIs) has enabled the possibility to link artificial systems with the brain, showing the ca-
pability of these systems to decode neurological signals and issue directives to devices such
as robotic arms that enable movement for disabled patients133. AI has also revolutionized the
field of connectomics - the study of neural connections in the brain. By automating and refin-
ing the process ofmapping intricate neural networks, deep learning algorithms have expedited
the identification and analysis of neural pathways63. Additionally, artificial neural networks
help examine neuroscience hypotheses by simulating complex neural circuits39. In particular,
deep learning has found application in the modeling of the primate cortex’s convolutional
layers and recurrent connections, responsible for important functions such as visual process-
ing129, memory2, andmotor control93. Moreover, these deepmodels have been used to assess
the structural features of the visual system of the brain and precisely predict neural activity
patterns130,122,42,114,30. Nevertheless, thorough and rigorously controlled comparisons of arti-
ficial and primate vision remain scarce.
Here, we will build on this interdisciplinary history by further investigating the concept of
neural and behavioral predictivity of deep ANNs, measuring their similarity to the primate
ventral visual stream. In particular, we probe the effects of scene context, visual angle, and
neural data tuning on the alignment between the primate and artificial models of vision.
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1.1 The structure of this thesis

The research presented in this thesis was done in the field of computational neuroscience, at
the intersection of neuroscience and computer science.
Following the introduction presented above, chapter 2 is a review of the literature regarding
this thesis’ main pillars:

1. the ventral visual stream - the critical circuitry for primate core object recognition,

2. convolutional neural networks - artificial models for object recognition, and

3. neural predictivity - similarity metric for these visual hierarchies.

The subsequent three chapters present the core research work in this thesis.
In chapter 3we systematically investigate the impact of visual angle of the alignmenton the late
representations of the primate ventral visual stream and deep convolutional neural networks.
Chapter 4 contains our work on probing the role of image-context on the neural, 4.2.1 and
behavioral 4.2.2 predictivity of artificial models. In chapter 5, we introduce a data-driven
neural alignment approach, using an extensive set of neural data to fine-tune a model that
more closely mirrors neural representations and explore its benefits.
For each of the three chapters, in the first section we present a detailed description of the data
andmethods implemented, followed by a section that outlines the key results and a discussion
on their limitations and broader implications.
The thesis endswith chapter 6wherewe put it all together :) and summarize the crucial results
and explore future directions.
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2
Foundational Concepts

2.1 The ventral visual stream

The complex details of primate vision provide an insight into a refined mechanism that has
been perfected overmillions of years of evolutionary development. The primate visual system
begins with the retina, which detects light and converts it into electrical signals. These signals
travel through the optic nerve to the Lateral Geniculate Nucleus (LGN) into the thalamus
for initial processing. From there, they move to the primary visual area (V1) in the occipital
cortex, where specialized neurons discern light’s orientation and direction56,58,59.
Beyond V1, the system splits into the dorsal and ventral streams. The dorsal stream, known
as theWhere pathway, processes motion and spatial awareness, while the ventral stream, the
What pathway, with its hierarchical and feed-forward organization drives core object recog-
nition26. The latter pathway is often divided in the following areas: V1, V2, V4 and IT (infe-
rior temporal cortex), further split into posterior, central and anterior IT cortices (pIT, cIT,
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aIT)27, represented inFigure 2.1.A.These regionsprogressivelyprocess visual signals, evolving
from basic feature detection in earlier stages (like V1) to more intricate object representations
in areas like IT. This progression is also evident in the increasing size of neuron receptive fields
(RFs) as one moves from V1 to IT34.

A B

Figure 2.1: The primate ventral visual stream and CNNs A Left: The primate ventral visual stream processes informa-
tion from the retina through the LGN, V1, V2, V4, to IT. Center: Receptive fields expand from lower to higher
visual areas, aggregating more of the visual field. Right: V1 codes basic features like edges, while higher-level
neurons integrate these, representing more intricate features. (Taken from Herzog et al. 50) B The relationship
between components of the visual system (left) and thebase operations of a convolutional neural network (right).
Simple cells (left, blue) respond to specific image orientations within preferred locations (dashed ovals). Com-
plex cells (green) integrate inputs frommultiple simple cells, achieving spatial invariance. In a CNN (right), the
first convolutional layer (blue) is formed by convolving the imagewith filters (gray box), generating featuremaps.
Max-pooling, which takes the highest activationwithin a featuremap section (gray box), downsamples the image
and mimics complex cell responses (green), forming a pooling layer. (Taken from Lindsay et al. 86)

While V1 plays a role in basic feature extraction like detecting orientations and edges55, V2
dives deeper, processing complex attributes like contours and textures99. V4, though still
involved in orientation processing98, is predominantly linked with color processing111and
plays an essential part in maintaining color constancy, allowing consistent color perception
regardless of illumination variations94. The final recognition of core object attributes pre-
dominantly happens in the IT cortex. While earlier stages in the visual pathway recognize
simple features like edges and basic shapes, the IT cortex can detect and represent more intri-
cate patterns, such as complex object parts and even entire objects123,26. Here, neuron groups
are often tailored to be selective towards specific categories, including fruits, faces, bodies, and
locations72,26. One of the remarkable properties of IT neurons is their invariance. A neuron
that responds to a specific object will typically continue to do so regardless of changes in the
object’s size, position, or rotation in the visual field127. This invariance allows primates to rec-
ognize objects under various conditions60,83.
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2.2 Convolutional Neural Networks in computer vision

ConvolutionalNeuralNetworks (CNNs)havebecome foundational in computer vision. Orig-
inating from ideas inspiredby the visual cortex’s hierarchical organization inmammals,CNNs
have achieved groundbreaking results in various visual recognition tasks. Structurally, a CNN
clearly reflects the coreworkofHubel andWiesel55 (Figure 2.1.B). It consists ofmultiple layers
specifically designed to automatically and adaptively learn spatial hierarchies of features from
input images. These layers include convolutional layers that apply a series of filters (feature
detectors) to input data, producing “feature maps”. This is followed by pooling layers that re-
duce spatial dimensions. After repeating these steps multiple times, non-convolutional, fully
connected layers are integrated eventually categorizing the image into respective classes (Fig-
ure 2.2.C).
In 1989, the capabilities ofCNNswere first highlightedwhen a relatively simpleCNNmodel,
using supervised learning via backpropagation, managed to classify handwritten numbers ef-
fectively82. But the real turning point forCNNswas in 2012, when an 8-layeredmodel named
AlexNet77 set new performance standards in the ImageNet competition. This dataset24, with
over amillion of diverse images, challengesmodels to categorize each image into one of a thou-
sand distinct classes. AlexNet’s achievement showed that the essential components of the
visual system had the potential for broad vision applications when combined with the right
training strategies and ample data. Following that, numerous CNN designs emerged, experi-
menting with depth, pooling layer positions, feature map counts, training methods, and the
use of residual connections106. Themain aim of this body of work was to improve image clas-
sification benchmark performance, with a growing emphasis on efficiency and training data
reduction. Aligning with biological systems was no longer a driving factor.

2.2.1 CNNs as models of the primate ventral visual stream

CNNs as described above, by design, reflect the architecture of the mammalian ventral visual
stream. Similar to the processing in the retina, CNNs normalize and segment images into
RGB channels. Their layers, from convolution to pooling, mirror the progression from vi-
sual areas V1 to IT, as represented by Yamins et al.130 in Figure 2.2. Each convolutional layer
in a CNN can be thought of as a feature detector, with earlier layers often capturing simple
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patterns like edges and textures, while deeper layers capture complex structures and objects.
Their hierarchical feature extractionmimics the way the ventral visual system processes visual
information, with simple cells in the visual cortex detecting local features and complex cells
capturingmore intricate patterns (Figure 2.1.B). Though these parallels were intentionally en-
gineered, CNNs also exhibit unexpected non-engineered similarities with the visual system,
especially in their alignment with neural data130, underscoring their potential as representa-
tive models at a neural and behavioral level.

2.3 Neural predictivity

A significant reason for the renewed attention to artificial neural networks among neurosci-
entists stems from discoveries that they can capture the visual information representation in
the ventral visual stream. Specifically, when both CNNs and animals view an identical image,
the behavior of artificial units aligns with and can predict the activity of actual neurons—
achieving an accuracy surpassing prior techniques. In 2014, Yamins et al.130 first demon-
strated this connection by recording neural activity in macaques as they looked at images of
objects. By comparing the activity of actual V4 or IT neurons to the behavior of artificial
units in hierarchical CNNs and verifying the predictive capability on a separate test set, they
showed that networks excelling in object recognition were also better at predicting neural ac-
tivity. This observation was consistent even with video classification122. Notably, the neural
activity in IT was most accurately predicted by the network’s final layer, while V4 activity
aligned with the network’s penultimate layer (Figure 2.2). This correlation, where later net-
work layers more accurately represent the upper parts of the ventral stream, has been con-
firmed in other research including human fMRI42, MEG114, and dynamic videos over static
images30.

2.3.1 Metrics

Regression

In a classic neural predictivity analysis, amodel layer’s responses are linearlymapped tomacaque
ITneural responses involving techniques such asPartial Least Squares46 orRidge regression51.
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Figure 2.2: Hierarchical CNNs as models of the sensory system. a Sensory cortex studies focus on encoding (how
stimuli turn into neural activity) and decoding (how neural activity drives behavior). Hierarchical CNNs (HC-
NNs) model the encoding phase, depicting how stimuli relate to observed brain responses. b The ventral visual
pathway, represented most extensively, as a chain of interconnected cortical regions in the macaque brain. This
includes areas like PIT (posterior inferior temporal cortex), CIT (central), AIT (anterior), RGC (retinal gan-
glion cell), and LGN (lateral geniculate nucleus). Symbols like DoG denote the difference of Gaussians model,
and T(•) represents a transformation. c A representation of an HCNN. Each layer combines operations like
filtering and pooling in a linear-nonlinear (LN) manner. Operations in a layer focus on specific input sections,
simulating small receptive fields (red boxes). Layer stacking results in a complex transformation of input. As
layers progress, retinopy decreases while receptive field size grows. (Taken from Yamins et al.129)

Some recent non-linear approaches have also been developed3, however the linear method re-
mains the benchmark in the field, especially given its prominence in widely recognized met-
rics like Brainscore112,113. This goal-driven approach uses models pre-trained on a specific
task, such as object classification, and regresses their resulting intermediate feature represen-
tations to model the neural responses. Themapping’s performance is defined to be the noise-
corrected Pearson’s correlation between the model predictions and the observed neural re-
sponses. This is done in a cross-validated way by first obtaining the goodness of fit R2 for
each neural site, which is then corrected, by dividing it with the square root of the Spearman-
Brown corrected self-consistency of that neural site over the image presentation repetitions.
For noisy models we also correct by the internal consistency of the model.
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For a neural site i, the normalized explained variance is given by EVi =
R2√
ρm×ρn

, where ρn and
ρm are the neural and model corrected split-half correlation, andR is the correlation between
the predicted and actual neural response. This average explained variance computed across all
neural sites is the metric for neural predictivity that will henceforth be used in this thesis.
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3
Visual angle

For any analysis predicting animal physiology or behavior, it is essential that both the animal
and the model - typically an Artificial Neural Network (ANN), view the same stimuli. A
significant aspect here is the visual angle θ—the angle under which the animal sees the image.
This angle is influenced by the screen size and its distance from the viewer, their relation is
described in equation 3.1.

θ = 2× arctan
(

size of the object
2× distance from the object

)
(3.1)

An extensive review of studies in vision over the past decade predicting animal empirical data
reveals considerable variation in the visual angles used. This variability is not only inter-species
but also intra-species, as illustrated by Figure3.1. Across various animals including mice, rats,
marmoset andmacaques, this angle ranges between 1 and 120 degrees, while in human studies
it varies from 2.9 to 20 degrees.
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Animal studies

Figure 3.1: Survey of studies evaluating the alignment between ANNs and empirical data. A review of studies done over
the past decade predicting animal neural or behavioural responses to a visual stimuli. For each study we show
the visual angle reported during stimulus presentation. The left panel shows non-human animal studies and the
right panel shows studies that usedhuman subjects. The field of view (FOV) variability is present across species as
well aswithin. We show results formice13, rats126, marmoset69,68macaques67,66,79,105,7,12,61,71,73,74,81,95,101,134and
human studies 18,16,17,19,23,31,128,38,35,37,36,42,52,57,103,62,65,68,71,88,114,116.

In contrast, the ANNs being compared with the animal data invariably receive the full image,
with the strong assumption that the neural population’s FOV spans the entire image. This
raises the question of whether there is a match between what the models and the neurons are
“seeing”. When the visual angle is too large, the neurons recorded may primarily respond to
the center of the image rather than processing the larger periphery. Conversely, if the stimulus
is too far or relatively small, neuronsmay respond to something happening in the background
that is not part of the image. Such disparities challenge the fairness of comparisons, as ANNs
are not exposed to the same stimuli as the neural population they aim to explain. If these
models are built as a hypothesis of a visual system, they should commit to a visual input size
which should remain unchanged during all animal experiments.
To investigate this effect, we conducted an experiment in which we presented a large stimulus
of 20 degrees of visual angle to a macaque chronically implanted with two Utah electrode
arrays (Figure 3.2.A). We recorded its neural responses while the animal was performing a
passive viewing task (details in 3.1) and fed the same images to deepCNNs for a typical neural
predictivity analysis. In order to model the visual angle change, we performed center crops of
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smaller sizes on the same images and repeated the analysis to assess the effects on the models’
ability to explain the neural data.

3.1 Data and methods

3.1.1 Visual Stimuli

We used 75 gray-scale natural images of 5 object categories - car, airplane, bird, bear, and ele-
phant with equal distribution. The images were taken fromMicrosoft Common Objects in
Context (COCO)85 and modified, such that their context was removed and swapped with
noise, to avoid any context modulated effects. To simulate the visual angle change from the
model side, the imageswere center cropped in a range from2 to 20degrees (the full image size).
After cropping they were resized to the original 512x512 pixels dimension. As a control, we
also kept the original, full context 75 images and did the same transformations on them.

3.1.2 Macaque neural data collection and processing

The neural activity was recorded using two micro-electrode arrays (Utah arrays) implanted
in the IT cortex. A total of 96 electrodes were connected per array (grid arrangement, 400
um spacing, 4mm x 4mm span of each array). The array placements allowed us to sample
neural sites from different parts of IT, along the posterior to anterior axis. However, for all
the analyses, we did not consider the specific spatial location of the sites, and treated each site
as a random sample from a pooled IT population. During the passive viewing task, the animal
fixated on a white dot (0.2° of visual angle) for 300 ms to initiate a trial. We then presented
a sequence of 5 to 10 images, each ON for 100 ms followed by a 100 ms gray (background)
blank screen. This was followed by fluid (water) reward and an inter trial interval of 500 ms,
followed by the next sequence. During each daily recording session, band-pass filtered (0.1
Hz to 10 kHz) neural activity was recorded continuously at a sampling rate of 20 kHz using
Intan Recording Controllers (Intan Technologies, LLC). The majority of the data presented
here were based on multiunit activity. All surgical and animal procedures were performed in
accordance with National Institutes of Health guidelines and the Massachusetts Institute of
Technology Committee on Animal Care.
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The neural data analyzed for this study was collected when the macaque was performing the
passive fixation task, on the dataset of 75 images, presented for 59 repetitions, at a large visual
angle of 20°. Each neural site’s response to an image was taken as the mean rate during a
time window of 100-170ms following image onset, a window that has been chosen based on
the neuronal population’s self-consistency (Figure 3.2.B) and aligns with the visually-driven
latency of IT neurons92. We selected the most reliable (self-consistency over 0.6) neural sites
from both pooled arrays, resulting with an IT population of 88 neural sites.
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Figure 3.2: Conceptual schematic of the experiment. AWe recorded activity from one adult macaque in cortical area
IT while monkeys passively viewed large 20 degree images. We fed the same images to a series of DCNNs and
extracted their features from the most IT-like layer. We did central crops for each image ranging from 2 degrees
to 19 degrees of visual angle and repeated the feature extraction for each crop size. BChoosing the most reliable
time-bin from the neural data. The self-consistency, measured by the trial split-half correlation for all images, is
shown on the y axis. The x axis depicts the time elapsed since the image onset. The optimal time-frame chosen
for the neural prediction was 100 to 170 ms. C Neural predictivity with a Ridge regression in a cross validated
way. The regressionweights predicting the neural responses were estimated from the split train-set of images and
evaluated on the test set. This was repeated for 10 random iterations.

3.1.3 Models

We evaluated nine different state-of-the-art DCNN models, on the exact images shown to
the macaque. Each of these models had been trained using the extensive ImageNet 1000-
way object categorization task. We focused on publicly available PyTorch DCNNmodel ar-
chitectures that have demonstrated significant success in this computer vision benchmark:
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AlexNet77,GoogleNet118, VGG-19115, MobileNet53, Resnet-18, ResNet-50, ResNet-10145,
DenseNet-20154 and Inception-v3120.
We extracted the most IT-like features from each model for every stimulus, from the layers
chosen based on BrainScore112,113, the field’s predominant benchmark. To ensure consis-
tency in results across the models, given the varying layer sizes for each, we standardized the
dimension for everymodel down to 1,000 features. This was done by usingGaussian random
projection with 1000 components to project the full extracted features space on a randomly
generated linear subspace in such away that distances between the points are nearly preserved.
These features were then regressed onto the neural responses in a cross validated way, using
a 20 fold cross validation (hyperparameter tuned in the range 2-25, with similar results for
lower number of folds) for ten different variations of the splits. To avoid overfitting, we used
a Ridge regression51 with a strong regularization parameter (α=100, tuned with a cross val-
idated logarithmic scale search) to predict the response of each neural site and reported the
mean explained variance for all predictions.

3.2 Results

We assessed the predictivity of a series of DCNNmodel across various image crops and iden-
tified the visual angle corresponding to the maximum explained variance. An illustration for
one model, Inception-V3 is depicted in the inset of Figure 3.3.A. This model is most effective
at explaining neural responses when limited to a 9 to 10° of visual angle (mean preferred angle
= 9.6±1.3°). It is important to note that the model features for every crop are explaining the
same neural data, we are only changing their input image. This finding generalizes to all tested
DCNNs, depicted in the supplementary Figure A.2. All models seem to be most effective at
explaining neural responses when limited to a small window of 7-11 degrees of visual angle
(Figure 3.3.A). This suggests that presenting the full stimulus to themodels might provide an
inequitable representation of their ability to interpret neural data responding to a narrower
visual angle.
Our results showed that the central reduced visual angle is the best predicted location of the
image for the neural population. As a control, we analyzed this for individual neural sites for
different degree crops covering the full image. For each image, we extracted smaller patches
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Figure 3.3: Themostmacaque IT alignedANN image viewing angle is 7‐11degrees.AShows thepreferred visual angle for
each model, chosen based on the model’s highest explained variance for the same neural response. The standard
deviation is shown across different sub-sampling of images used in the linearmapping to estimate the parameters.
The inset illustrates the explained variance changes for Inception-v3 across different degrees of visual angle, with
the standard error for one sub-sampling seed. The average optimal visual angle for this model is 9.6±1.3 degrees,
EV=45.37±1.7%. The light blue band shows the mean with the standard deviation for the preferred visual
angle across models. BWe show the crop center location relative to the full image size, which led to the highest
predictivity for a neural site. The crops were done by starting at the edge of the image and sliding for 1 degree in
both directions. Every panel shows the count of neural sites which were best predicted when the model was fed
the patch in the depicted location. The model (Inception-v3) is best at predicting most neurons when viewing
only the central image patches.

of 2,5,8, and 12 degrees at every location and ran our analysis for each patch. We found that
most neural sites were best predicted for central crops. Figure 3.3.B shows the preferred cen-
ter location (x and y coordinates within the image) of the crop that best explains each neural
site. Although some periphery-preferring neurons were identified, the majority were unreli-
able and the difference in EV from the central and periphery crops were not significant (see
supplementary FigureA.1). The images presentedweremodified by eliminating their original
context and substituting it with randomnoise, to avoid any contextual effects on this analysis.
Nevertheless, we also verified the influence of the FOValterationon theunaltered, full context
images (see supplementary Figure A.2). Consistently, our findings indicated that the models
most accurately explained the neural population responding to these images when limited to
a narrower central FOV, with an average angle of 12.01±2.13°.
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3.3 Discussion

Overall, our research revealed the vital role of visual angle in neural predictivity. The perfor-
mance of all of our evaluated models was affected by the change in visual angle when predict-
ing the sameneural responses. Notably,mostmodelswere able to predict these responseswith
a higher accuracy when only shown a smaller center crop of the image, while themacaquewas
fixating on the full 20° image. We speculate that this is due to the IT neural population re-
sponding largely to the central≈10 degrees of the image, so only showing these crops would
allow themodel to better fit the data. Taken together our results urge the need for careful con-
sideration of the visual angle when presenting stimuli, to ensure a true comparison between
neural responses and artificial units.
There are several limitations of this work and future directions to consider. Ourmethodology
mainly adjusted the model’s FOV. However, a similar approach could be applied to empiri-
cal data: recording neural activity while the subject views images from varying visual angles
(2-20°). Here, the models would be presented the entire image, allowing us to validate if their
extracted features still optimally predict the neural responses to images viewed at smaller visual
angles. It is alsoworth investigating these effects in different brain regions, such as the primary
visual cortex and V4, allowing for an analysis of overlapping receptive fields. If the preferred
FOV remainswithin a similar range for all regions, we can speculate a need for a fixed universal
visual angle size for primate neural predictivity studies. Moreover, it would be insightful to
evaluate these effects on a behavioural level, with the aim of finding the optimal visual angle
size for which the model’s binary discrimination accuracies align most closely with primate
behaviour. Finally, the relatively small and simple set of stimuli used here might fail to ade-
quately capture the models’ performance. Repeating these experiments with a larger image
set and data from multiple subjects would be necessary to validate our results. Nevertheless,
our goal was not to find the “optimal” visual angle, rather to point out the significant effects
that visual angle has on the alignment of artificial units with empirical data, and underscore
the importance of careful experimental design that takes these effects into consideration. This
is crucial for consistent cross-study comparisons and further advancing our understanding of
visual perception and neural processing.

16



4
Context

Contextmatters. In real-world situations objects do not appear alone, rather surroundedwith
other objects and scene properties. In the visual domain, our perception of the environment
is shaped not just by what lies directly in our focal point, but also by the surrounding scene el-
ements and our past experiences132,5. Beyond psychophysical demonstrations of how context
can impact vision6,41, we knowvery little about themechanisms that help integrate objects and
surrounding information during scene understanding. “Low-level” contextual effects have
been studied extensively, including extra-classical receptive fields49, temporal adaptation49,
and surround suppression1. However, major lacunae remain in our understanding of how
context impacts “higher-level” visual recognition. Understanding context and relationships
between objects is essential for computer vision as well. Deep neural networks used for object
recognition, especially those trained on natural image datasets like ImageNet78, heavily and
implicitly depend on context37. In fact, these algorithms tend to struggle when objects are
situated in incongruent (wrong) contexts8,29.
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In this chapter, we evaluate the effects of scene context on neural predictivity and in visual
object recognition. Our findings reveal a consistent contextual modulation in macaque phys-
iology and the behavioral accuracies of both humans, monkeys and deep CNNs.

4.1 Data and methods

4.1.1 Visual Stimuli

We used a dataset of 600 gray-scale images from 10 object categories, including bear, elephant,
person, car, dog, apple, chair, plane, bird and zebra. For each object category, we selected 6
natural images from theMicrosoft CommonObjects in Context (COCO)85 dataset, varying
in object size and location, which were center square cropped (if needed), converted to gray-
scale, and finally re-scaled to 512x512 pixels. We then generated 10 different contextual vari-
ations for each image, including congruent, incongruent, no context, masked object, blurred
context, blurred object, blurred incongruent boundary, minimal, textured, and jigsaw con-
text. We extracted the object from each image using the COCO object annotationmasks and
did the defined contextualmanipulations. We used aGaussian blurring kernel of size 2 to blur
the object, background, and object-context boundary. The jigsaw context was generated by
cropping the context into 25x25 pixel chunks and randomly shuffling them around the ob-
ject. The textured context was created using the Portilla and Simoncelli method102 applied to
the original grayscale image with five iterations. An example of the contextual manipulations
can be seen in Figure 4.2.A.

Low level features

For every image, we extracted a range of basic features, such as object size, location and cat-
egory, spectral mean and std, and contrast mean and std. The standard contrast metric for
gray-scale images was obtained using the highest and lowest pixel values Pmax−Pmin

Pmax+Pmin
. The con-

trast standard deviation was derived from the pixel-wise standard deviation of the grayscale
image. From the COCO85 object annotations, we determined the object size, represented in
degrees of visual angle. The x and y coordinates, relative to the image, captured the object’s
central position. Using the Fast Fourier Transform10 (FFT) we transformed the image in the
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spectral domain, and noted its spectral mean and standard deviation. The peak power was set
as the maximum value of the spatial frequency (magnitude of the FFT) for each image.

4.1.2 Macaque neural data

The neural activity was recorded fromone adultmacaquemonkey, using twomicro-electrode
arrays (Utah arrays) implanted in IT cortex. All neural data analyzed for this study was col-
lectedwhen themacaquewas performing the passive fixation task, on the contextuallymanip-
ulated dataset of 600 images presented 31 times. Formore details of the neural data collection
and processing see 3.1.2. Using the mean time window of 100-170ms post image onset (se-
lected as the most reliable time-bin, see Figure 4.1), we selected the most consistent responses
(self-consistency>0.6) from both pooled arrays resulting with an IT population of 46 most
reliable sites.
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Figure 4.1: Averaged neural response and neural data consistency. A Overall averaged neural population response.
Mean across all 600 images, 30 trials per image, and 192 neural sites. Shown for increasing averaged 10ms re-
sponse time bins (with a 10ms time-step) from image onset. The lighter band indicates the standard error. B
Spearman-Brown corrected split-half reliability for the neural sites used, as a function of time from image onset.
Each time-bin is an average of 30 ms, and we are showing a 10ms time-step. The lighter band indicates the stan-
dard error.

4.1.3 Active binary object discrimination task

Macaque active binary object discrimination task

We measured monkey behavior from 2 male rhesus macaques. Images were presented on a
24-inch LCD monitor (1920 × 1080 at 60 Hz) positioned 42.5 cm in front of the animal.
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Monkeys were head fixed. Monkeys fixated a white dot (0.2°) for 300 ms to initiate a trial.
The trial started with the presentation of a sample image (from a set of 600 images) for 100
ms. This was followed by a blank gray screen for 100 ms, after which the choice screen was
shown containing a standard image of the target object (the correct choice) and a standard
image of the distractor object. The monkey was allowed to view freely the choice objects for
up to 1500 ms and indicated its final choice by holding fixation over the selected object for
400 ms. Trials were aborted if gaze was not held within ±2° of the central fixation dot during
any point until the choice screen was shown. Prior to testing in the laboratory, monkeys were
trained in their home-cages to perform the delayed match to sample tasks on the same object
categories (but with a different set of images). We obtained a minimum of 31 trials per image
from the pooled monkey responses.

Eye Tracking

Macaque behavioral testing was performed using standard operant conditioning (fluid re-
ward), head stabilization, and real-time video eye tracking. We monitored eye movements
using video eye tracking (SR Research EyeLink 1000). Our 2 macaque subjects were trained
to fixate a central white square (0.2°) within a square fixation window that ranged from ±2°.
At the start of each behavioral session, monkeys performed an eye-tracking calibration task by
making a saccade to a range of spatial targets andmaintaining fixation for 500ms. Calibration
was repeated if drift was noticed over the course of the session. Real-time eye-trackingwas em-
ployed to ensure that eye jitter did not exceed ±2°, otherwise the trial was aborted, and data
discarded. Stimulus display and reward control were managed using the MWorks Software.

Human active binary object discrimination task

We measured human behavior using the online Amazon MTurk platform which enables ef-
ficient collection of large-scale psychophysical data from crowd-sourced “human intelligence
tasks” (HITs). The reliability of the onlineMTurk platform has been validated by comparing
results obtained from online and in-lab psychophysical experiments92,104. Each trial started
with a 100 ms presentation of the sample image. This was followed by a blank gray screen for
100 ms; followed by a choice screen with the target and distractor objects, similar to Rajal-
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ingham et al., 2018103. The subjects (n=90) indicated their choice by touching the screen or
clicking the mouse over the target object. Each subject saw an image only once. We collected
the data such that, therewere aminimumof 25 valid pooled subject responses per image, with
varied distractor objects.
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Figure 4.2: Conceptual schematic of the binary discrimination task. AAn example of the ten contextualmanipulations
done for one image of the image-set used for both the neural and behavioral experiment. B Training process for
the eachmacaque. Themonkey is initially trained with incongruent-context images (black curve). This training
does not generalize and results in low starting performance in full-context (green curve) . However, monkeys
quickly learn to recognize images in full context (blue curve). Furthermore, this ability generalizes to new images
(red curve). C Binary object discrimination task, showing the timeline of events for each trial. Subjects fixate on
a cross, then the test image at 8 degrees containing one of ten possible objects and contextual manipulations is
shown for 100 ms. After a 100-ms delay, a canonical view of the target object (the same as that presented in the
test image) and a distractor object (one of the other nine objects) appears, and the human or monkey indicates
which object was present in the test image by clicking on or making a saccade, respectively, to one of the two
choices.

CNNs active binary object discrimination task

We evaluated a series of DCNN models, trained on ImageNet (described in section 3.1.3),
using the same images and tasks that were shown to humans and monkeys. To make these
ImageNet-trainedmodels compatible with our specific 10-way object recognition task, we ex-
tracted their most IT similar feature representations (based on BrainScore112), and trained a
multiclass logistic regression classifier using these features to calculate the cross validated prob-
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abilities for each object class, mimicking the binary object discrimination task. We trained the
regression on a different dataset of 800 unaltered (full-context), natural COCO images and
then assessed its performance on our set of 600 contextually-modified images.

4.1.4 Behavioral metrics and signatures

To characterize the behavior of the visual systems, we used two behavioral metrics, the hit rate
resolution at context-level - C1, and more fine grained image-level - I1n (refer to103 for more
details). Each behavioral metric computes a pattern of unbiased behavioral performance, us-
ing the model’s accuracies per image averaged across all trials. We obtained a biological or
artificial “signature” for each system by applying eachmetric to its behavioral accuracies. The
one-versus-all context-level performance metric (termed C1) estimates the discriminability of
each context category c, essentially pooling the accuracies across all images of context type c
and all object/distractor pairs within. Because we here tested 10 context categories, the result-
ing C1 signature has 10 independent values. Figure 4.3.A shows the C1 behavioral signatures
for primates and all tested models.
The one-versus-all image-level performance metric (termed I1) estimates the discriminability
of each image containing object o from all other objects, pooling across all possible distractor
choices. Because we focused on the primary image test set of 600 images (10 per object, see
above), the resulting I1 signature has 600 independent values, see Figure 4.3.B.Given an image
i of object o, and all nine distractor objects (d≠o) we computed the average performance per
image as:

I1oi =
∑10

d=1 Pc
o,d ̸=o
i

9
where Pc - percent correct, is the fraction of correct responses for the binary task between
objects o and d. Considering every image ic of context type c, the C1 performance for each
context type is the mean across all images’ (60 per context type) performance:

C1c =
∑60

ic=1, I1ic
60

Both of these behavioral signatures are however tightly linked. For instance, images with con-
text that is challenging to discriminate generally would display lower performance metrics as

22



opposed to images with “easier” context manipulations. To pinpoint the behavioral variabil-
ity strictly influenced by variations in images, and not determined by the context embedded
(as already represented inC1), we introduced normalized behavioral metrics at the image level
- I1n. For an image i of context type c and object o, this metric is then given by subtracting this
context mean from the image-level performance:

I1noic = I1oic − C1c

4.1.5 Behavioral consistency

To quantify the similarity between a model visual system and the primate visual system with
respect to a given behavioral metric, we used the “primate consistency” measure, similar to
the “human consistency” previously defined64,103. Primate consistency is computed, for the
two behavioral metrics, as a noise-adjusted correlation of behavioral signatures25. To obtain
the primate behavioral ceiling, we randomly split all behavioral trials into two equal halves
and applied each behavioral metric to each half, resulting in two independent estimates of
the system’s behavioral signature with respect to that metric. The self-consistency of the sys-
tem is then obtained by the Pearson correlation between these two estimates of the behavioral
signature, Spearman-Brown corrected. This is a measure of the reliability of that behavioral
signature given the amount of data collected, and is noted as the primate self-consistency. The
primate consistency for every model is then found by correlating the primate and model be-
havioral signatures. For the neural model this is noise-adjusted by the neural self-reliability.
The purpose of using the primate ceiling is to consider the unpredictable variances in behav-
ioral patterns due to differing factors - “noise” not reproducible by the experimental condi-
tion, which a model cannot anticipate.

4.2 Results and discussion

We testedhumans andmonkeys on contextual information for real-world objects, such as cars,
animals, and fruits. We introducemultiple variations of the contextual information to further
our understanding of what aspects of the object’s surround impact recognition including re-
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Figure 4.3: Behavioral signatures. A Showing the 10 dimensional C1 behavioral signature for primates (left) and
models (right). Each value represents the accuracy grouped across all images of that context type, for all distractor
objects. B Similar as A but for the I1n behavioral signature. Each line in the signature is the accuracy for an image,
averaged across distractors. Images are shown grouped by object category.

moving the context, swapping it with incongruent context, and blurring different parts of the
image.

4.2.1 Physiology

To rigorouslyquantify the effects of contextual changes on theneural predictivity,we recorded
the IT neural responses of one context-naivemonkeywhile passively fixating on our set of 600
contextually modified images.
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Effects of scene context on neural data

We first examined the impact of context on the neural responses. Using the IT population,
we decoded the context category through cross-validated one-vs-all classification. The con-
fusion matrix derived from the decoding accuracies is presented in Figure 4.4.A. The neural
data demonstrated the capability to decode the image context category at an accuracy surpass-
ing the chance level (≈26%), with notable variability across different context types. Neural
responses for contexts such as no context, minimal context, absence of object, textured, and
jigsaw contexts were decoded with greater certainty. Several patterns of contextual alterations
appeared to be frequently misclassified, implying their neural responses were closely related.
This was evident for no context versus minimal context, the full context when compared to
its blurred variants (either on the object or the context itself), and the incongruent context
compared to its “blurred boundary” version (where the sharp transition between the context
and object was softened).
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Figure 4.4: Confusion matrix when decoding context for the neural population and CNN features. A Confusion matrix
for the decoding accuracy of the neural data model, when decoding context. The diagonal shows the percent
of correctly predicted images of the appropriate context type. The i-th row and j-th column entry indicates the
percent of images with true context label being i-th context category and predicted label being j-th category. B
Similar as A but for the model features,showing the mean across all models’ confusion matrices. The outlined
results indicate the same pattern across the two plots.
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Effects of scene context on CNN activations

Similarly, we decoded the context type from the CNN activations, with a higher overall accu-
racy (≈ 45%), confusion matrix shown in Figure 4.4.B. A congruent pattern with the neural
data is evident, where again the most distinct responses typically occur when presented with
images with no context, minimal, jigsaw, and textured context; these contexts are predicted
with notable accuracy. The parallel confusion trends with the neural data are highlighted
in Figure 4.4.B. We subsequently analyzed the model activations’ similarities across different
context types for identical images, using the cosine similarity metric131. This was done for
features representations across context types of the same image and then averaged across all
images andmodels, see supplementary Figure A.6. Again, we see an analogous pattern of sim-
ilarity for the model features as those most confused from the neural data.
These results indicate that context has an impact on the IT population responses as well as on
the deep CNN activations, and it suggests that they might encode for it in a similar manner,
in particular for the most accurately predicted categories for both populations.

Contextual effects on the neural predictivity

A natural next step was to look at the alignment between these neural and artificial features.
Our findings suggest that the IT responses to isolated objects—those presented without any
surrounding context—are most effectively predicted by deep CNN models’ features. Fig-
ure 4.5.A illustrates the predictive capabilities of Inception-v3 across three markedly different
context scenarios: congruent, incongruent, and no context. There is a noticeable difference
between the prediction accuracy for images without context and those with the two other
contextual variations. It is essential to note that this difference is not a consequence of lim-
ited data availability; as seen in the figure, the pattern persists when the sample size of im-
ages in the linear mapping is increased. This indicates that the context-dependant gap would
not be bridged by increasing our image set, as perhaps the model learns these representations
“slower”. We presented one model, however, this inclination towards better prediction for
no-context images is consistent across all tested models, indicating a universal trend among
them. Figure 4.5.B shows the average explained variance distribution across all CNNs for the
three context types. We see a clear rightward shift when these models predict the responses to
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images with the context removed compared to keeping the congruent and incongruent con-
text. Furthermore, for each evaluated model the neural data responding to images with no
context or minimal context were always better predicted than the same images with the other
contextual manipulations that include the background (see supplementary Figure A.7). This
trend persisted when testing using other neural similarity metrics including RSA, CKA and
“neural correlation” (see A.1), shown in the supplementary Figure A.5.
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Figure 4.5: Comparison of neural predictivity for full, incongruent and no‐context images. A Percentage of average ex-
plained variance and standard error for Inception-v3 as a function of the number of images used in the linear
regression mapping. The colors indicate the different context types. B A KDE showing the distribution of the
percentage of average explained variance for the models, categorized by context. C A scatterplot of the EV for
80-140 ms early and 140-200 ms averaged late neural responses. Each point is a model, the colors indicate the
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Next, we looked at the differences in explained variance for early and late neural response inter-
vals. Based on the data peak response, the early interval was determined to be from 80 to 140
ms and the late from 140 to 200 ms, Figure 4.1.A. As highlighted in Figure 4.5.C, no context
responses are consistently better predicted across both these time-frames. Our observations
also confirm existing literature, as seen in Kar et al.67, suggesting that these models can better
explain earlier neural responses, compared to late. Kar et al.,67 also highlighted that shallower
recurrent CNNs outperformed standard feed-forward deep CNNs in predicting later neural
responses. Thismight stem from the putative top-downmechanisms at play during later neu-
ral processing stages—mechanisms that these feed-forward models might struggle to capture.
Over the past decade, studies on neural predictivity have used a range of image contextual ma-
nipulations. As shown in the supplementary Figure A.4, the context varies from no context
to textured and incongruent context, across and within species (humans). Yet, our findings
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underscore the significant influence of scene context (or its absence) on neural predictivity,
suggesting that results from these studies may not be directly comparable. Our results con-
sistently show that models struggle at aligning with neural data when presented images with
(incongruent and congruent) context compared to the same imageswith the context removed.
Additionally, these differences are there across contextual manipulations, notably, incongru-
ent context is always predicted worse than full context (Figure A.7). We speculate that this is
due to the need of more complex (feedback) mechanisms to capture the context (in particular
incongruent context), which are not present in these one-directional models. A promising di-
rection would be to assess the efficacy of recurrent neural networks in predicting these neural
mechanisms.

4.2.2 Behavior

Moving from physiology, we looked at these contextual effects on behavior. We measured
human and macaque behavior in a binary object discrimination task on the same contextu-
ally manipulated image set. To understand the neural processes behind the contextual in-
fluences, we require a more detailed examination of the neural networks involved. Rhesus
macaques constitute an ideal animal model due to their similar visual processing circuits to
humans97,103. Nevertheless, it is essential to first determine if macaques show comparable
contextual effects. We observed reliable contextual modulation in the monkeys’ behavioral
accuracies, which were significantly correlated, and aligned with those observed in humans at
the image-by-image level. Importantly, these changes could not be accounted for by low-level
image features. To formulate hypotheses regarding the neural mechanisms driving these task
performance patterns, we evaluated current deep neural network models of primate vision.
Althoughmany of these models sufficiently predicted the overall effects of context in primate
behavioral performance (C1), they demonstrated a significant explanatory gap for image-level
comparisons (I1n) across specific contextual manipulations.

Behavioral effects of scene context on humans

Humans (90 participants on Amazon Mechanical Turk) participated in a binary object dis-
crimination task (for details see, Kar et al., 201967). Not surprisingly, our results show that
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varying the context of the image significantly changed the performance of the human partici-
pants (Figure 4.6.A).The effect of contextualmanipulations resulted in a consistent pattern of
behavior (with a trial-split reliability of approximately 0.8, see figure inset). Thiswas critical to
ensure that such effects can be compared across other animals andANNmodels. Incongruent
context caused a significant drop in performance from full context, which supports previous
research6,41. This decline was not solely due to the abrupt transition from the background to
the object; even when this context/object boundary was blurred (termed as “blurred incon-
gruent”), we observe the same effect . Predictably, the removing the object, retaining only its
silhouette, also led to reduced accuracy. The blurring process itself seemed to have minimal
influence on human responses, as the kernel size used was relatively small. Using a synthe-
sized texture, which retained the visual attributes of the original context (generated using the
Portilla and Simoncelli iterative technique, refer to 4.1.1), also adversely affected human be-
havior. Moreover, when the context was removed or minimized, there was again a decline
in performance, indicating that humans also rely on the surrounding for object recognition.
Our results aligned with extensive previous research on human behavior132, which further
validated our method and data collection.

Behavioral effects of scene context on macaques

Rhesus macaques have a visual processing circuit that is homologous to humans. However,
it is critical to first ask whether macaques show similar contextual effects. To ensure that
macaques are familiar with scene context, we first explicitly trained them with images in con-
text (from theMicrosoft COCO dataset). Macaques showed robust cross-validated accuracy
during such training (Figure 4.2).

Contextual effects: human vs. macaques

Once the monkeys (n=2) were fully trained (i.e., reached ≥80% performance) in their home-
cages110, we presented them with the same contextually manipulated images as humans. We
recorded their responses and tested the internal consistency by calculating the split-half re-
liability across trial repetitions (for details, see Rajalingham et al., 2018103) of the monkeys’
behavioral accuracy as the context varied. We obtained a high correlation of≈ 0.9, validating
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the consistency of the monkey behavior. Figure 4.6.B shows that the contextual variations in
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Figure 4.6: Effects of context on human and monkey behavior. A Contextual manipulations produce significant
changes in human behavior. An example effect is shown between congruent and incongruent context. Inset
shows that the pattern of contextual effects can be reliably estimated as total number of trials per image increases
during human data collection (Pearson R ∼0.8, for 24 repetitions per image) B Contextual effects in monkeys
are correlated with those in humans (Pearson R = 0.75). The color indicates the context category from A

monkeys and humans were significantly correlated (noise-corrected Pearson R = 0.75). The
pooled humans and macaques have very similar contextual recognition patterns. Humans,
far more exposed to context, are more accurate for most context types, apart for jigsaw and
textured context. We observed that these low-level features do not predict the context-level
or image-level measured behavioral variance (see Figure 4.7). From these features, object size
showed themost consistency at the image level, aligningwith prior studies highlighting its sig-
nificant influence on human behavior132. Its effect however is marginal, accounting for only
10.5% of the explained variance. As expected, the control Pixels model - using the raw image
pixel values, did not reflect primate behavior at image nor context level. These observations
establishmonkeys as a goodmodel of humans to further study the neuralmechanisms of con-
text during visual object recognition.

Comparisonwith deep neural network models

Next, we tested whether the current best models of primate vision, a family of deep convolu-
tional neural networks (DCNNs), can predict the behavioral variance observed during con-
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Figure 4.7: DCNNs and low‐level image features primate behavioral consistency. A The C1 (context-level) primate
consistency with the std (across image sub-sampling), for all models and low-level features. The primate self-
consistency ceiling is shown in gray with its distribution across images on the right margin. Low-level image
properties (from left: spectral mean, spectral std, contrast std, peak power, contrast mean) and Pixels (model
of the flattened input image) do not capture the context-level primate accuracies. Most CNN models and the
neural data model reach the primate consistency band for C1. B Same as A, but for I1n, the context-corrected
image-level primate consistency. Low-level image properties (from left: context category, spectral std, contrast
std, contrast mean, object x-position, object y-position, spectral mean, peak power, object category, object size),
and current ImageNet pretrained DCNNs do not capture the image-level behavioral accuracies of the primate
behavior. The neural data model decreases the gap with primate consistency.

textual manipulations. These models also demonstrated sensitivity to contextual changes,
with their accuracy varying significantly across different context types, as depicted in their
C1 behavioral signature in Figure 4.3.A. Our results (Figure 4.7.A) comparing this contex-
tual signature to that of primates suggest that most DCNNs are able to capture the primate
context-level behavioral accuracy patterns (C1) and are within the primate consistency band
(pooled across the human and monkey behavioral data). However, as it can be seen from the
right panel, they do not fully explain the (context corrected) image-level accuracy patterns,
I1n, of the primates. This discrepancy arises because accuracy variations within both context
and object category types are not consistently aligned between the primates and the artificial
models (see supplementary Figure A.8, showing the consistency within each context type).
This indicates that such models do not currently possess the mechanisms required to process
scene context in a primate-like fashion.
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Figure 4.8: Extrapolation for the primate consistency of neural data. A Showing the corrected (by each time-bin’s in-
ternal reliability) primate consistency as a function of the decoding accuracy for each time-bin of the neural data.
Weused all 192neural sites to decode for every point. The color, fromdark blue to dark red indicates the start and
the size of the point indicates the length of the average time-frame used. We filtered the unreliable bins (internal
reliability<0.2) that would drive up the primate corrected consistency beyond 0.5. The lights gray lines indicate
the standard deviation for the decoding accuracy and primate consistency respectively, across different random-
ization of images used for training and testing the decoder (one-vs-all classifiers). BThe decoding accuracy using
the 70-170ms averaged time-frame, as a function of the number of neurons used for the accuracy decoding. A
double sigmoid function (eq. 4.1) is used to fit the points with a loss of 0.01 (sum of squared residuals). Based
on the extrapolation, 388 neural sites are needed for the neural data to reach primate accuracy of 0.675. The
light gray lines indicate the standard deviation across different sub-sampling of neural sites used for decoding. C
Similar as A, but extrapolating the neural data’s corrected consistency with the primate accuracy. The same dou-
ble sigmoid function is used (loss 0.21), to fit the points and extrapolate the consistency to 388 neural sites. The
extrapolated value, 1.05 (higher that 1 due to the reliability correction), reaches the primate consistency. The
light gray lines indicate the standard deviation across different sub-sampling of neural sites used for decoding.
(Supplementary Figure A.9 shows the same plots without the standard deviation, for more clarity)

Comparisonwith neural data models

In an attempt to reduce this image-level consistency gap, we decoded the neural data from
a context-naive monkey during passive fixation recorded in IT (responsible for core object
recognition25) and compared this model’s alignment with primate behavior. The neural data
accurately predicted the context-level primate behavioral patterns, similar to most state-of-
the-art models. Interestingly, the neural data model outperformed all CNN model features,
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inching closer to closing the primate consistency gap. To factor in potential constraints arising
from the number of neural sites, we extrapolated the primate consistency (corrected by the
neural self-reliability) based on the pool of neural responses used. The extrapolationmethod,
using a double sigmoid function (equation 4.1) is shown in Figure 4.8. We first found the
optimal time interval to use: 70-170ms, by calculating the decoding accuracy and consistency
for each possible interval of at least 10ms and up to 290 ms, then filtering unreliable frames
and sorting based on the primate consistency. We then extrapolated the decoding accuracy
using this averaged 70-170ms response, as a function of the number of neural sites. Figure
4.8.B shows the number of neural sites extrapolated to reach primate accuracy, found to be
388. Similarly, the primate consistency (for the same time-frame), was extrapolated for this
number of neurons. This extrapolated value reached the primate ceiling, indicating that with
a larger pool of neural data this model will likely mirror context-trained macaque behavior.
This indicates a potential path forward: by aligning artificial models with neural data, we
might foster a closer behavioral alignment with primates21.

σa,b,c(x) =
a

1+ e−(x−b)/c

σdouble(x) = σa1,b1,c1(x) + σa2,b2,c2(x) + d (4.1)

Our findings underscore the importance of context in real-world object recognition. We es-
tablish rhesusmacaques as an appropriate animalmodel to study the effect of scene context in
human visual object recognition, and lay the ground-work for further exploration of the neu-
ral mechanisms behind contextual modulation. We show that context has a strong effect on
the neural predictivity of artificial models. Additionally, these deepCNNs show a substantial
explanatory gap for image-level comparisons with primates across contextual manipulations.
Our results highlight the necessity of refining deep neural networkmodels tomore accurately
capture the intricacies of contextual influences on visual object recognition, which could po-
tentially be achieved by creating more IT-aligned models.
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5
IT aligned CNNs

While deep neural networks have demonstrated remarkable performance in computer vision
tasks78,119,115,45,28,87, they are very fragile in generalizing to simple imagedistortions121,14,15,107,11.
Conversely, the visual system of primates displays exceptional resistance to various pertur-
bations. The deep CNNs significantly differ from humans in their classification behavior
towards images that have undergone human-imperceptible and non-random perturbations
(typical adversarial attacks), as they can cause the models to misclassify images despite cor-
rectly classifying the unperturbed ones, resulting in poor robustness. By aligning the model
features to the extracted neural responses of the primates when viewing that same image, we
could force the model activations to become more ‘brain-like’ which could reduce this mis-
match. Prior research has shown that aligning CNNs to the primary visual cortex (V1) im-
proves their robustness22,32,109,84. These studies focused on the early-stage visual responses,
whereas primate visual object recognition is critically supported by the late-stage visual pro-
cessing region of the primate ventral stream - the IT region. Recently Dapello et al., 202221
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have been the first to explore this, by demonstrating that IT alignment improves adversarial
robustness, neural predictivity across subjects and human behavioural similarity.
Previous research faced constraints, due to their limited range in diversity of visual stimuli and
image distortion, and access to neural data. We adopted a data-intensive approach, mitigating
these limitations by using an extensive collection of recordings from over 4300 neural sites
across five macaques, coupled with approximately 700k images with a distribution similar
to that one of ImageNet. We also tested a wide range of image distortions beyond only ad-
versarial attacks. Furthermore, our method leverages a simplified architecture and neural loss
function,whichharmonizesmore effectivelywith the linear alignmentmethod. We introduce
twomodels based on an ImageNet pre-trainedAlexNet architecture. A “Neuralmodel”, fine-
tuned to predict neural activity in macaque inferior temporal cortex (IT) in reaction to some
natural stimuli, and a “Multitask model” simultaneously tuned to perform this neural pre-
diction and the standard image classification. We assessed these models’ out-of-distribution
generalization capabilities and their resilience to common image distortions and adversarial
attacks. We investigated the impact of augmenting the weight of the neural loss relative to the
classification loss in the joined task, on both generalization and robustness. To ensure the ob-
served effects were not simply a result of extended image classification training, we evaluated
a “Control model”, fine-tuned with the same amount of data, purely on ImageNet.

5.1 Data and methods

5.1.1 Macaque neural data collection and processing

The neural activity was collected from 5 adult macaques, in the span of many sessions, while
the monkeys were passively fixating. The recordings were done in a larger timeframe, with
the chronic array exact locations varying across different sessions, but always within IT. Ani-
mals were implanted with custom floating microelectrode arrays (32 channels, MicroProbes,
Gaithersburg, MD or 128 channels, NeuroNexus, Ann Arbor, MI) or microwire bundles
(64 channels; MicroProbes). Neural signals were amplified and sampled at 40 kHz using a
data acquisition system (OmniPlex, Plexon, Dallas, TX). Multi-unit spiking activity was de-
tected using a threshold-crossing criterion. Channels containing separable waveforms were
sorted online using a template-matching algorithm. All procedureswere approvedby theHar-
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vardMedical School Institutional Animal Care andUse Committee, and conformed toNIH
guidelines provided in the Guide for the Care and Use of Laboratory Animals.
Each imagewas presented an average of 3-4 times, we discarded the single presentation record-
ings and we filtered only the most consistent IT neural sites, using the average for 70-170ms
(see91) based on their split-half reliability (amount of internal consistency) with a threshold
of 0.6.

Monkey Mean reliability Total # reliable neurons Total # of images # train images # test images
Bo 0.457±0.224 1447 240 397 50 000 160 000
Fr 0.459±0.206 1116 133 055 50 000 60 000
Lo 0.282±0.208 548 91 501 50 000 X
Re 0.517±0.176 1945 213 619 X 213 619
Pa 0.230±0.240 278 112 263 X 112 263

Table 5.1: Summary of the acquired data for each macaque. The first column shows themonkey name (ID), followed
by the mean initial reliability across all sessions and the standard deviation. The next column indicates the total
number of filtered reliable neural sites (self-consistency>0.6) that were used in the analysis. The next column
shows the total number of images these monkeys were exposed to while recording neural activity. We used the
neural responses to 50k images from the first three macaques for training. The last column shows the number
of images in the testing sessions for all macaques used for evaluation.

5.1.2 Model architecture

Baseline model

All of our experiments were based on the AlexNet architecture, due to its good balance of
performance and complexity. While AlexNet is simpler than newer models, it still performs
exceptionally well onmany tasks. The standardAlexnet architecture is shown in Figure 5.1.A.

Neural model

Tocreate amodel capable ofpredicting theneural data, henceforth termed the “Neuralmodel”,
we modified this baseline architecture. We incorporated two linear layers subsequent to the
feature extraction layer - avgpool, chosen based on the BrainScore benchmark112,113. The ini-
tial linear layer served to reduce the dimensionality, channeling all 9216 avgpool features into
a 3k dimensional space. These features were used for all further neural predictivity analy-
ses. The subsequent linear layer represented the output corresponding to each recorded IT
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site across the three macaques. Every neural site incorporated in the training was distinctly
mapped one-to-one with a specific output unit in this layer. The loss was only propagated to
the lower (convolutional) layers, causing amisalignment of its convolutional and classification
layers, leading us to remove the latter from this new architecture. To maintain this model’s
capability for image classification, we incorporated a linear support vector machine20 (SVM)
after avgpool, more precisely, after the newly added linear layer for dimensionality reduction.
This allowed us to perform multiclass classification using the extracted features. The SVM
was trained using the CIFAR1076 training dataset, containing 50k images spanning 10 cate-
gories, and subsequently assessed on the 10k CIFAR10 test set.
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# reliable neurons recorded

MSE lossMSE loss

ImageNet train set

Cross Entropy lossCross Entropy loss

Minimize 
both!

Multitask Model
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Figure 5.1: Multitaskmodel architecture. AThebaselinemodel - the standardAlexNet architecture shown inblue. It
consists of eight layers, including five convolutional layers and three fully connected layers, with all convolutional
layers followed by rectified linear unit (ReLU) activation functions. The output of the last convolutional layer
goes through an average pooling layer (avgpool) and is fed into three fully connected layers, each with 4096
neurons. The last fully connected layer has an output size 1000, corresponding to the number of classes in the
ImageNet dataset. The Control model has the same architecture as the Baseline. The light blue band shows the
layers used for this architecture. BTheNeural model, changes done following the baseline model convolutional
layers are in red. The output of avgpool was fed to two new linear layers, the first for dimensionality reduction
to 3k features and an output layer for the neural predictions. An SVMwas added after the first linear layer, using
the extracted features for CIFAR10 multiclass classification. The light blue red shows the layers used for this
architecture. C The multitask model, using the full AlexNet architecture with the “neural enhancement”. This
model was jointly trained to reduce the neural and ImageNet classification loss, with their respective weights on
the learning given by the α and β parameters. The loss was back-propagated on both branches shown by the light
blue (LCE) and light red band (LMSE).
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Multitask model

Our aim is to enhance the model’s resilience and generalization without sacrificing perfor-
mance. The neural model with its classification layers removed, is not comparable with the
baselineAlexNet in terms of ImageNet classification. To address this, we adopted amulti-task
learning approach, for stability, also training the model on a subset of the ImageNet train set.
Thismulti-taskmodel retained the architecture of the neural model but also incorporated the
classification layers found in the baseline model. To preserve ImageNet accuracy and prevent
catastrophic forgetting, we fine-tuned the model using both the neural data and ImageNet
training data. We generated different variations of this model by changing the weight of the
neural loss relative to the classification loss (parameter α in equation 5.1).

Control model

As a control we fine-tuned the baseline model with the same amount of images as in the joint
task, but without co-training on the neural data. This was done to ensure that the effects ob-
served with the joint training were not due to more training on the classification task. In sim-
ple terms, we extended the standard ImageNet training previously done for this pre-trained
model for more epochs with 150k images.

5.1.3 Fine tuning

Wekept the standardCross-Entropy (LCE) loss for the classification andused theMeanSquared
Error (LMSE) for the neural predictivity task. While training the multitask model, both tasks
were alternately optimized using batches of 64 images from each reshuffled dataset images
during each epoch, aggregating 300k images in total. This included 150k images from the
ImageNet validation set and 150k from the neural predictivity dataset - 50k for each of the
three monkeys used for training. The combined loss was the weighted sum of the LCE and
LMSE , given by:

Ltotal = α ∗ LMSE + β ∗ LCE (5.1)

Where both parameters, α and β are set to 1 in the balanced loss scenario (standardMultitask
model), β = 0 for the Neural model and α = 0 for the Control model. For optimization, we
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used Stochastic Gradient Descent (SGD) with a learning rate set to 5 ∗ 10−1. Additionally, a
learning rate scheduler was applied, with a start and end factor of 1 and 0.5 respectively, over
60 epochs.
The multiclass linear SVM underwent typical training with ten one-versus-all classifiers, in-
corporating squared hinge loss, a L2 norm penalty, and a regularization parameter set to one.
The neural model was trained using identical parameters but was exclusively fed the 150k im-
ages from the neural set each epoch, optimizing solely through the neural MSE loss.

5.1.4 Image manipulations

To assess the robustness of our models we performed a series of common image alterations
on 10k images from the ImageNet validation set, including blurring, additive noise, random
image rotation and elastic transformation. Gaussian blurringwas applied using a kernel of size
3 (minimal blur) and 13 (maximal blur). As part of the noise alteration we randomly flipped
half of the image pixels to be 1 (salt) or 0 (pepper) with a balanced ratio of both (salt and
pepper noise). We also tested the robustness by adding Gaussian-distributed additive noise.
The random image rotations spanned from zero to 180 degrees.

5.1.5 Adversarial attacks

Adversarial attacks exploitmachinemodels’ vulnerabilities to small, intentional perturbations
of their inputs. Despite being barely noticeable to humans, these modifications can result
in the model misclassifying the input with high confidence. Projected Gradient Descent80

(PGD) is a form of adversarial attack that has demonstrated remarkable efficacy in deceiving
machine learning models91. PGD entails the repetitive distortion of an input in the direction
of the gradient of the loss function concerning the input. Additionally, this attack constrains
the distortions to remain within a designated epsilon radius (attack budget). All models in-
cluding the SVM were subjected to untargeted PGD attacks with a step size of 0.1 at each
iteration, using L∞ and a maximum perturbation ε = 0.2 that the attacker can introduce.
We used the Adversarial Robustness Toolkit96 to perform these attacks.
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5.2 Results and discussion

Our goal was to test whether aligning late ANN activations to the IT neural population, by
trainingwith a large neural dataset will improve their robustness and generalization. To evalu-
ate the out-of-distribution neural predictivity generalization wemeasured the predictivity on
new neural data from the same training monkeys and from completely different macaques.
We then tested the robustness, by subjecting the models to a series of image alterations and
attacks described above.

5.2.1 Neural data alignment improves generalization

First, we investigatedwhether IT alignedmodelswould retain their neural explainabilitywhen
applied to data from the same training monkeys which was left out from the fine-tuning (see
Table 5.1 for details). Figure 5.2.A shows the average variance explained for both models
for the left-out sessions from one training monkey. Both the Neural and Multitask model
demonstrate an improvement inneural predictivity. TheNeuralmodel, tailored solely around
neural data, as expected, achieves higher predictivity on the left out set, plateauing after a few
epochs potentially due to the simple AlexNet architecture overfitting beyond that. We show
the effects of increasing the neural loss weight (α=1, 2, 10) when training the model, linked to
an increase in IT-alignment, the higher neural loss weight leads to higher explained variance
of new sessions. Interestingly, the Control model, shows that further classification training
with the same set caused a slight decrease in IT-likeliness.
We next investigated how thesemodels’ IT alignment affected generalization across newmon-
key subjects. The predictivity of ourmodelswas tested against over 325knew images (see table
5.1 for details) with neural responses from two different macaques that had not been used in
the training phase. Figure 5.2.B shows the average EV for the models for a test macaque as a
function of the number of training epochs. It is evident that even after a handful of epochs,
there is a notable increase in the average explained variance for the IT-aligned models. Dur-
ing the first 5 epochs, we can see the same trend as observed before for the left-out sessions
from the training monkeys, namely increasing α increases the explained variance. Yet, with
further fine-tuning, it is again apparent that the models relying heavily on neural data rep-
resentations start to overfit to the training sessions, leading to a drop in generalization. The
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Figure 5.2: Generalization on new samples and subjects. AThe percent of explained variance with the standard error
across epochs of training for left out sessions of one macaque used for fine-tuning. The Baseline model perfor-
mance is shown with the grey dashed line. The average EV for the multitask model is depicted in blue, with the
color opacity indicating a higher weight to the neural loss. The Neural and the Control model are shown in red
and black respectively. B Same as A but for a left out macaque not used in training.

multitask model, while not matching the performance of the neural model, shows a more
gradual EV decline. This suggests that the joint training process inherent in the multitask
approach acts as a mitigating factor, reducing the propensity for the model to overfit. These
effects can also be seen on the other left-out subject (supplementary FigureA.11.B ).Here, the
trend of generalization is present with lower overall performance increase for all models. The
more neurally alignedmultitask model (α=10) fails to generalize and performs worse than the
baseline model. Nevertheless, since this macaque’s data is far less reliable (mean consistency
0.23, Table 5.1) with only 278 reliable neural sites, about 15% of the ones in Re, it poses a
more challenging model to fit.
Taken together, these results demonstrate that our IT tuningmethod increases generalization
by improving the IT-likeness in ourmodels for held out sessions and completely new subjects.

5.2.2 Neural data alignment improves robustness

We evaluated our Multitask model on a series of image manipulations on the ImageNet vali-
dation set.
As depicted in Figure 5.3, our model showed improvement in ImageNet top-1, 5, and 10
accuracy scores across a majority of these manipulations as well as on the non-altered test set.
Notable improvements include an increase of 27.67%when applying elastic transformations
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Figure 5.3: Performance of the multitask model on ImageNet manipulations and adversarial attacks. A We show the
percent of ImageNet top-1, top-5 and top-10 accuracy change from the Baseline model for theMultitask model
tuned to 15 epochs. Results for the benign (non-altered) ImageNet 10k validation subset, the same set after
applying Gaussian blurring with a kernel of size 3(min) and 13 (max), elastic transformation, random rotation
of the images, adding Gaussian noise, adding Salt and Pepper noise and results for ImageNet-A, a subset of
ImageNet where state-of-the-art models perform very poorly. B ImageNet top-1 accuracy as a function of the
strength of the PGD adversarial attack. The range of the attack budget (ε) is shown on the x-axis. The color
scheme from darker to lighter blue indicates models with increasing α parameter value. All models were taken
after 15 epochs of fine-tuning.

and12.74% for random image rotations in top1 accuracy. However, when comparedwith the
baseline pre-trained AlexNet, our multitask model was more sensitive to noise interference.
This is seen in the minor dip in performance upon the introduction of Gaussian noise and
a more pronounced decrease when subjected to S&P noise. However, when we evaluated
the purely Neural model on the CIFAR10 noisy altered test-set47, this model outperformed
the baseline for all noise distortion severity for both shot and Gaussian noise (supplementary
Figure A.13). The difference in noise robustness for the Multitask and Neural model might
stem from the relative simplicity of the CIFAR10 dataset compared to ImageNet, or it could
be attributed to the variances in classification methodologies, given that SVM classification
isn’t in line with traditional AlexNet classification techniques. We also tested the Multitask
model performance on ImageNet-A48, a similar dataset as ImageNet, but farmore challenging
for existing models, designed to expose their weaknesses. The IT-aligned model outperforms
the baseline for his dataset, with an increase of 17.4% top-5 performance, therewas no change
in top-1 accuracy.
We then performed a series of white-box adversarial attacks on the models to evaluate their
adversarial robustness. The performances of the Neural model facing an untargeted PGD
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attack directed at the SVM, is shown in Figure 5.4.A. The SVMwas trained onCIFAR10 (see
5.1.2) and evaluatedbothon thebenign (non-altered)CIFAR10 tested and thePGDmodified
version. Remarkably, our Neural model, exhibiting better IT alignment, is far less susceptible
to this adversarial attack than the baseline (shown in Figure 5.4with the dashed line), in fact its
performance stays very close to the one on the benign set while the baseline model is severely
affected and falls at 20%. After plotting the performance as a function of the attack strength
(shown in supplementaryFigureA.12),we can see amore linear, far slowerdrop for theNeural
model compared to the exponential decay for the Baseline model.
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Figure 5.4: Models show improved robustness against adversarial attacks.A Top-1 performance of the Neural model
on the CIFAR10 benign and PGD altered testset, across tuning epochs. The dashed bar shows the performance
of the Baseline model for both datasets. The PGD attack was done on the SVM used for classification.B Similar
as A, but for theMultitaskmodel and its performance on the ImageNet 10k validation set. The PGD attack was
done on the model itself.

Additionally, we performed a PGD attack directly on the multitask model when evaluating
it on a 10k ImageNet validation subset. The results in Figure 5.4.B show that aligning the
model to fit the IT data boosts its performance, evident both on the benign as well as the
PGD-altered ImageNet subset. We also tested the performance of this model with varying
IT-likeness (based on the parameter α), while increasing the PGD attack budget. Figure 5.3
shows that our model is more robust than baseline and the Control model, and for higher
perturbation (ε > 0.2), we see a trend of increased robustness linked to the IT-similarity
intensity. These findings reinforce the idea that neural data alignment can improve models,
making themmore robust to image distortions and adversarial attacks.
Our work highlights several directions for future study. The neural dataset we used was rela-
tively limited in terms of average trials per image. It would be insightful to see the effects on
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the model performance of increasing it, by adding more trials, neurons, images and different
subjects . It is also worth noting that we have not yet fully explored how different, more com-
plex model structures, training data, or learning techniques might affect the model’s ability
to mirror macaque IT responses. It is important to point out that while our method does in-
crease robustness, the actual extent of improvement is relatively small. A promising direction
for improving robustness is having amodel of the full primate ventral stream, by also aligning
the earlier and intermediate model features to the primary visual cortex (V1), V2 and V4.
Although these models are still far behind the generalization and robustness power of the pri-
mate visual system, our work is a conceptual step towards bridging the gap between artificial
and biological vision.
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6
Putting it all together

The work presented in this thesis was motivated by the broad scientific goal of discovering
models that quantitatively explain the neuronalmechanisms underlying primate invariant ob-
ject recognition behavior.
To this end, previous research has shown that deep convolutional models are able to explain
neural representations of the early and late ventral visual stream. Suchmodels are often evalu-
atedwith neurobehavioral datasetswhere the stimuli are presented in the subjects’ central field
of view (FOV). However, the exact visual angle often varies widely across studies. A unified
model of the primate visual system cannot have a varying FOV. Similarly, the type of images
used for model evaluation varies across studies, ranging from objects embedded in random-
ized contexts to objects with no and textured contexts. Here we systematically tested how the
predictivity ofmacaque inferior temporal (IT) neurons byDCNNs depends on the FOV and
the image-context, as well asmethods to increase this alignment and all the improvements that
follow.
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In chapter 3 we evaluated current state of the art CNNs to estimate their optimal FOV. We
performed large-scale recordings in one macaque (≈90 IT sites) while the monkey passively
fixated on images presented at a large 20 degree visual angle. To estimate the most neurally
aligned visual angle for the DCNNs, we compared the DCNN IT predictivity at varying
image crop sizes. We observed that 7-11 visual degree center crops produced the strongest
DCNN IT predictions across all models, suggesting a critical need for constraints on the vi-
sual angle when predicting animal neural data. Some future directions include evaluating
these effects using a broader and varied set of stimuli and assessing the influence of the FOV
on a behavioural level. Additionally, it would be beneficial to asses artificial models that emu-
late foveal-peripheral vision89, drawing inspiration from the retino-corticalmapping observed
in primates. Suchmodelsmight be immune to the visual angle effects shown for current state-
of-the-art DCNNs.
Next, in chapter 4.2.1 we looked at the effects of image-context on the DCNN neural align-
ment. To test this, we generated a dataset of ten contextual variations including full-context,
no-context, and incongruent-context. The DCNN’s IT predictivity was significantly higher
for no-context compared to the full/incongruent-context images. This raises the question of
whether there aremore complex, putative recurrence signals used for contextual processing in
ITwhich cannot be captured by these feed-forwardmodels. These strong effects provide criti-
cal constraintswithin the experimental design to guide thedevelopment ofmorebrain-aligned
artificial models. A natural future step would be to evaluate recurrentmodels, as well as novel
advancedmodels like vision transformers28, given their remarkable capacity for global context
understanding, image segmentation and state-of-the-art object recognition performance.
Moving from physiology, in chapter 4.2.2 we investigated these models’ primate behavioural
consistencies affected by scene-context in visual object recognition. Our findings reveal a con-
sistent contextual modulation in the behavioral accuracies of both humans and monkeys,
with a significant correlation between the two species observed at the image-level. Notably,
these results cannot be attributed to low-level image features. Furthermore, current deep neu-
ral network models do not adequately predict the overall effects of context on primate behav-
ioral performance. Models fall within the primate self-consistency zone for context-level sim-
ilarities, however they show a substantial explanatory gap for image-level comparisons across
contextual manipulations. Our research highlights the importance of understanding contex-
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tual influences on visual object recognition and the need to refine currentmodels to accurately
capture the critical role of contextual reasoning during real-world vision.
Finally, in chapter 5, we adopt a data-driven approach to further align these models to the
macaque Inferior Temporal (IT) Cortex, in hopes to achieve a more robust, primate-like be-
havior. We model spiking activity in IT using two architectural approaches: one that is ex-
haustively fine-tuned using neural data, and a multitask model trained simultaneously on the
classification task to preserve accuracy on object recognition tasks. Our evaluation on out-of-
sample non-human primates (macaques) validates the generalization of our fine-tuning ap-
proach, showing enhanced IT representational similarity. After a series of adversarial attacks
and image manipulations, we provide evidence for increased robustness due to this neural
alignment, bringing these models closer to primate object recognition behaviour. Moving
forward, this method should be assessed on more complex models and a broader scope of
tasks, including generalization challenges such as one-shot learning. Moreover, it would be
insightful to also incorporate novel techniques, such as “neural harmonization33”, by align-
ing ANNs with human visual strategies , which could lead to more human-like neural and
behavioural patterns.
While modern artificial neural networks continue to excel in computer vision tasks such as
object recognition, they seem to diverge further from their biological counterparts. Aligning
these two networks leads to mutual benefits — creating more resilient and universal artificial
intelligence, and enriching our understanding of visual processing in the brain. Taken to-
gether this work is a step forward in bridging the gap between primate and artificial vision. It
lays the foundation for further exploration in building more primate-like, generalizable and
robust artificial models, offering deeper insights into the complexities of the brain.
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A
Supporting Information

A.1 Alternative neural similarity metrics

A.1.1 Representational Similarity Analysis

The representational similarity analysis (RSA)75 is another metric for assessing the alignment
between themodel features andneural population. This approach begins by building anRep-
resentation Dissimilarity Matrix (RDM) for each population, detailing the variability in re-
sponses to each image pair. This matrix effectively captures the unique representational char-
acteristics of the population. The degree of similarity between two distinct populations is
subsequently obtained by correlating their respective variability matrices.
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A.1.2 Centered Kernel Alignment

CenteredKernelAlignment (CKA)provides a technique to assess the similarity betweenhigh-
dimensional representations. Leveraging kernel methods, CKA captures the alignment be-
tween two datasets in their respective feature spaces. This makes it an effective tool for com-
paring not only neural network layers but also a variety of datasets where a comparison of
underlying structures or patterns is needed.

A.1.3 Single-Unit Neural Correlation

Another metric measuring the alignment between artificial and biological models of vision,
pioneered in 2018, is the neural correlation. It is defined as the “correspondence at the level
of the population code: [where] stimulus category can be partially decoded from real neu-
ral responses using a classifier trained purely on a matched population of artificial units in a
model”4. This metric essentially evaluates the one-to-one(or one-to-few) mappings between
single units in a deep neural network model and neurons in the brain.
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Figure A.6: Cosine similarity for DCNN features exposed to context. The cosine similarity matrix for the extracted
model features compared pairwise for each context type for each image. The result shown is the mean across all
images and all models.
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Figure A.7: Shows the mean explained variance with standard deviation across images for every evaluated model,
across different context categories. Every point indicates the averaged predictive power (neural population EV)
of that model, on all 60 images of the specific context indicated by the color of the point.
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Figure A.8: Shows the image-level (I1n) primate consistency for all models. The mean consistency with standard
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