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Abstract

Working memory is a crucial cognitive function that enables temporary
storage, retrieval, and manipulation of information in goal-directed be-
havior. While previous research has predominantly dissected these
processes in isolation within controlled settings, this study takes a
novel approach by examining and modeling the dynamic neural mech-
anisms underlying multifaceted working memory during a real-world
card-matching game. The participants were presented with covered
images arranged in a grid and were instructed to flip two images at
that time until all matching pairs were found. During this task the
participants needed to keep track of the position and content of the
images, allowing the analysis of behavioral data and neural activities.
We introduced a Hebbian attractor network to model and characterize
the memory dynamics of this complex naturalistic task. We showed
that the model was able to accurately predict human behavior, and
demonstrated similar patterns of memory decay and reaction times.
Moreover, we found qualitative equivalents to patients’ neural signals
that encoded novelty and familiarity, as well as signals that predicted
correct retrieval from memory of a tile’s pair location. The high tem-
poral resolution, extensive spatial sampling, and computational model
provide an opportunity to characterize the dynamics of memory in a
complex naturalistic task.
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Abbreviations

STM Short-term Memory

LTM Long-term Memory

WM Working Memory

ML Machine Learning

iEEG Intracranial electroencephalography

ECoG Electrocorticography

sEEG Stereo electroencephalography

NSLC n-since-last-click

NSP n-since-pair

RT Reaction Time

IFPs Intercranial Field Potentials

GLM Generalized Linear Model

AUC Area Under the Curve

VIF Variance Inflation Factor
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Chapter 1

Introduction

Working Memory (WM) plays a pivotal role in our cognitive architecture,
enabling us to temporarily store and retrieve immediate information. Un-
like many contemporary Machine Learning (ML) algorithms that heavily
rely on supervised learning paradigms, the formation and retrieval of mem-
ories in biological systems occur in a predominantly unsupervised manner.
Memories are forgotten and summoned with single or limited exposures to
sensory inputs. This remarkable capability hinges on the brain’s capacity
to assess and distinguish between novelty and familiarity, establish connec-
tions between incoming sensory data and preexisting knowledge, amalga-
mate spatial and temporal cues, and adeptly retrieve pertinent information
in response to current task demands. While extensive research has probed
neural responses related to individual facets of WM in controlled laboratory
tasks, the holistic orchestration of these components in real-life scenarios
remains largely uncharted territory.

One fundamental aspect of WM pertains to non-associative recognition mem-
ory, which involves the ability to discern whether a stimulus has been pre-
viously encountered. The ability to differentiate between novel and familiar
stimuli is a crucial precursor to effective memory encoding [2]. Conversely,
recognizing an item as familiar is instrumental in facilitating memory re-
trieval [3]. Numerous studies have examined neural correlates of recogni-
tion memory for novelty versus familiarity, with a primary focus on, but not
restricted to, medial temporal lobe structures in various species, including
rodents, monkeys, and humans [4–15]. These investigations often centered
on tasks that featured the presentation of lists of items, such as words, im-
ages, or video clips, followed by either item recall or assessments of recogni-
tion memory for those items (e.g. [7, 9–13, 16–21]). Both novel and familiar
items must be seamlessly assimilated into the repository of prior knowledge
through the formation of novel associations.

In addition to recognition memory, another fundamental component of WM
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1. Introduction

is associative memory. Associative memory encompasses the capacity to es-
tablish connections between items or to evaluate the accuracy of such associ-
ations [22–31]. This facet of memory has been frequently explored through
tasks that require participants to learn pairs of items and subsequently re-
call one item when presented with the other or to determine the correctness
of given associations. While recognition memory and associative memory
have traditionally been studied as separate constructs, they are inherently
intertwined in real-world memory tasks. The effective operation of asso-
ciative memory relies on the foundational processes of recognition memory.
Understanding the interplay and distinctions among different memory com-
ponents during natural and intricate behaviors necessitates a comprehensive
investigation.

In this thesis, we delve into the neural underpinnings of Short-term Memory
(STM) during complex human behavior and present a computational model
that aims to elucidate its cognitive mechanisms. Specifically, we focus on
the integration of recognition and WM processes and their neural correlates
in a real-life memory task.

1.1 Motivation

The exploration of the neural underpinnings of WM through computational
models has been a subject of enduring scientific inquiry aiming to elucidate
its neural mechanisms and cognitive significance [32]. Models rooted in
persistent neuronal activity [33–41] provide foundational insights into short-
term memory’s neural basis. Recent perspectives, including those involving
attractor networks [42–48], have also highlighted the significance of Hebbian
synaptic plasticity and short-term depression and facilitation as means to
enhance memory encoding [49–53].

As a proof of principle, we introduce a computational model rooted in
attractor-based neural networks. This model represents an attempt to bridge
the gap between behavioral and neurophysiological observations and the
computational underpinnings of WM during complex human behavior. Our
model aims to capture the behavioral and neural responses observed during
a naturalistic memory task.

1.2 Thesis Objective

The objective of this thesis is to present and analyze a Hebbian attractor-
based computational model that simulates WM during complex human be-
havior. Through this model, we seek to provide a comprehensive under-
standing of how recognition and associative memory processes interact and
influence neural responses during real-world memory tasks.
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1.3. Structure of the Thesis

To achieve this objective, we employ a multifaceted approach that combines
behavioral data collection, intracranial field potential recordings from hu-
man participants, and computational modeling techniques. By examining
neural activity patterns in response to complex memory tasks and integrat-
ing these findings into our computational model, we propose a way to elu-
cidate some of the neural mechanisms governing WM in natural settings.

This thesis describes the motivation, development, evaluation, and applica-
tion of the Hebbian attractor model to simulate and interpret WM behavior
in complex human scenarios. Through experimental insights and compu-
tational modeling, this work aims to advance the understanding of WM
processes in the context of real-life tasks.

1.3 Structure of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 provides a detailed review of the relevant literature on STM,
recognition memory, associative memory, and computational models of mem-
ory.

Chapter 3 outlines the methodology employed in this research, including
data collection procedures, neural recording techniques, and the develop-
ment of the Hebbian attractor model.

Chapter 4 presents the results obtained by analyzing the behavioral data
and neurophysiological recordings, detailing the comparison between the
human experiments results and the one obtained from the model.

Chapter 5 concludes the thesis by summarizing the key findings, high-
lighting their significance, and offering a reflection on the broader implica-
tions of this research.
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Chapter 2

Background

This chapter serves as the essential theoretical foundation, enabling the con-
textualization and comprehension of the subsequent chapters. It commences
with a concise introduction to the concept of WM and includes a review of
pertinent literature spanning psychology, biology, and neuroscience. Ad-
ditionally, it provides an overview of both theoretical and computational
models of WM. Within this context, we review Hebbian learning and at-
tractor networks and elucidate how these concepts have been leveraged to
unravel the dynamics of brain computation.

2.1 Working memory

2.1.1 Long-term, short-term and working memory

The broader landscape of memory research, spanning psychology, biology,
and neuroscience, has experienced more than a century of exploration. Since
the inception of the term ”memory” by Hermann Ebbinghaus in the 1880s,
the field has undergone significant evolution. William James [54] introduced
the differentiation between primary and secondary memory. This marked
the initial steps toward the establishment of contemporary memory tax-
onomy, which now encompasses recognized categories such as short-term,
long-term, and WM (Fig. 2.1). These categories represent enduring frame-
works that have guided extensive research endeavors aimed at unraveling
the intricacies of the abstract concept known as memory [55–59].

Long-term Memory (LTM) is the repository of vast knowledge and a record
of past experiences. It encompasses all the information accumulated over
a lifetime. This form of memory is what allows individuals to recall facts,
events, and personal experiences from the distant past. For example, the
ability to remember historical dates, childhood memories, or learned skills
relies on LTM.
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2. Background

STM, as introduced by James [54], can be seen as the immediate, temporar-
ily accessible storage of a limited amount of information [60]. It functions
as a mental workspace for holding and processing information needed for
immediate tasks. One classic example is remembering a phone number long
enough to dial it or recalling a set of directions while navigating through a
new city. STM plays a crucial role in various cognitive activities that require
temporary retention and manipulation of information.

Figure 2.1: A depiction of the theoretical modeling framework. In this framework, STM is
derived from a temporarily activated subset of information in LTM. This activated subset may
decay as a function of time unless it is refreshed, although the evidence for decay is still tentative
at best. A subset of the activated information is the focus of attention, which appears to be
limited in chunk capacity (how many separate items can be included at once). New associations
between activated elements can form the focus of attention. (Taken from Cowan [61])

WM, a concept refined by Baddeley and Hitch [62], extends beyond STM.
It encompasses the active manipulation of information held in STM and its
integration into ongoing cognitive processes. WM is involved in complex
cognitive tasks that demand both the storage and processing of information
simultaneously. For instance, solving mathematical problems, comprehend-
ing complex sentences, or following multi-step instructions all rely on WM.
It is a dynamic system that helps individuals maintain and manipulate in-
formation relevant to their current cognitive endeavors.

6



2.1. Working memory

2.1.2 Working memory

WM, a critical system involved in the retention of information during com-
plex cognitive tasks such as reasoning, comprehension, and learning, has
fascinated scholars since the 1960s [32, 63]. Its influence extends beyond
its origins in cognitive psychology, permeating various realms of cognitive
science and neuroscience. Moreover, its application has traversed diverse
fields, ranging from education and psychiatry to paleoanthropology [32].

The term ”WM” made its debut in 1960, attributed to Miller, Galanter, and
Pribram in their seminal work, ’Plans and the Structure of Behavior’ [64],
which conceptualized WM as a form of rapid-access memory utilized in
executing plans. Soon after, Pribham et al. [65] speculated that the neu-
ral underpinnings of WM involve the prefrontal cortex (PFC), particularly
based on observations of deficits resulting from PFC lesions in tasks neces-
sitating delays between stimuli and corresponding responses. Subsequently,
in 1968, Atkinson and Shiffrin’s influential paper embraced this term [60],
which was then adopted by Baddeley and Hitch [62] as the title for a multi-
component model.

2.1.3 Neural underpinnings of working memory

A seminal study by Fuster and Alexander from 1971 revealed that neurons in
the prefrontal cortex exhibited heightened firing rates during delay periods,
implying their role in memory maintenance [39]. Subsequent experiments
corroborated these findings, further emphasizing the significance of sponta-
neous neural activity in WM [38, 40, 41, 66]. In fact, inhibiting this persistent
activity during delay periods has been shown to diminish task recall accu-
racy [67]. Moreover, ML models trained on neuronal spike data during this
persistent activity have demonstrated the ability to predict animal behavior
during recall phases [68]. Consequently, persistent activity within cortical
networks has emerged as a leading candidate mechanism for WM, giving
rise to computational models such as the ring model, which relies on mutual
excitation among neurons to sustain information [34].

Moreover, recent research has unveiled that WM can exist independently of
persistent activities, offering a fresh perspective on its neural mechanism.
Studies under dual-task conditions have shown that, even when subjects
make correct choices, the spatial selectivity of delayed activities diminishes
[69]. This implies that WM can be retained within neural states character-
ized by ”activity silence” [70]. Additionally, transient gamma oscillations
have been linked to the reactivation of coded sensory information, suggest-
ing their potential role in WM [71]. This has led to the proposal of alter-
native models where synaptic changes, rather than neural activity, serve as
the foundation for information storage. Such models emphasize specific
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2. Background

synaptic mechanisms like presynaptic calcium residue and short-term en-
hancement [49–51].

While these two mechanisms appear fundamentally distinct, it’s essential to
recognize that observed experimental phenomena may stem from diverse
species, individual conditions, and experimental methodologies, possibly
addressing distinct aspects of WM. Moreover, even within research related
to persistent activity, only a subset of neurons engaged in the experimen-
tal task exhibit persistent activity, displaying diverse temporal patterns [41].
These nuances suggest the potential coexistence of these mechanisms within
the brain or an underlying deeper integration. Recent efforts have indeed
aimed to unify these seemingly disparate mechanisms into a cohesive frame-
work, offering a new perspective on the neural basis of WM [72].

2.2 Hebbian learning

Hebbian learning, proposed by the Canadian psychologist Donald Hebb in
1949 [73], represents a fundamental concept in neural network theory. At its
core, Hebbian learning is a synaptic plasticity rule that posits that ”cells that
fire together, wire together.”. In other words, if two neurons are consistently
active at the same time, the strength of the connection between them should
increase. This rule can be formally expressed as:

∆wij = η · xi · xj (2.1)

Here, ∆wij represents the change in the synaptic weight between neuron i
and neuron j, η denotes the learning rate, and xi and xj are the activities of
neurons i and j, respectively. Importantly, Hebbian learning lacks a mech-
anism for weakening synapses when neurons do not fire together, which
can lead to rapid and uncontrolled network growth. To mitigate this, the
learning rule is often refined and combined with other mechanisms, such as
synaptic normalization or competition.

Hebbian learning has garnered attention in the neuroscience community
due to its biological plausibility. It aligns with observed patterns of synaptic
strengthening in biological neural networks. For instance, in the brain’s
visual cortex, neurons that respond to adjacent regions of the visual field
exhibit enhanced synaptic connectivity, reflecting the principle of Hebbian
learning. Moreover, experimental studies, including long-term potentiation
(LTP) and long-term depression (LTD) in the hippocampus and other brain
regions, provide empirical support for the synaptic modifications implied
by Hebbian learning.
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2.3. Attractor networks

The concept of Hebbian learning is closely tied to associative memories.
This association arises because Hebbian learning strengthens connections
between neurons that tend to activate together, effectively encoding corre-
lations in the data. In the context of neural networks, this leads to the for-
mation of attractor states, where specific patterns of neural activity become
more stable and attract the network towards particular memory represen-
tations. This aligns with the notion of content-addressable memory, where
partial or noisy input patterns can retrieve complete stored patterns, a key
feature of associative memories. Hebbian learning thus serves as a foun-
dational mechanism for encoding and recalling associations, contributing to
our understanding of how the brain forms and retrieves memories [74].

Specifically, Hebbian learning rules enable the establishment of associative
connections among neurons that become active together. This allows for the
subsequent reactivation of the initial group of active neurons when a partial
pattern is reintroduced through associative recall. This short-term Hebbian
plasticity, which has been observed in pyramidal neurons, relies on postsy-
naptic NMDA receptors, manifests rapidly after brief stimulation (e.g., as
little as 25 spikes within 500 ms), and can endure for as long as 15 min-
utes [75]. Lately, various types of rapid-acting Hebbian synaptic plasticity,
such as short-term potentiation, have been examined in experiments and put
forward as potential contenders for synaptic WM [76, 77]. Short term poten-
tiation becomes evident following brief, high-frequency bursts and notably
diminishes in an activity-dependent fashion rather than in a time manner
[78].

2.3 Attractor networks

The term ”attractor” has gained increasing recognition in neurophysiology
as a means to describe stable and stereotyped spatiotemporal dynamics
within neural circuits. These dynamics manifest in various forms, such as
rhythmic activity in central pattern generators, well-organized propagation
patterns of neuronal spike firing in cortical circuits, self-sustained persis-
tent activity in WM processes, and the representation of associative LTM by
neuronal ensembles. These intricate neural activity patterns primarily arise
through regenerative mechanisms and collective interactions within recur-
rent networks. The growing interest in attractor networks is driven by the
realization that neural circuits often possess numerous feedback loops, and
the attractor theory offers a conceptual framework and analytical tools for
comprehending these highly recurrent networks.

The concept of attractors originates from the field of dynamical systems
mathematics. In a system consisting of interacting units like neurons, given
a fixed input, the system typically evolves over time toward a stable state.
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2. Background

Figure 2.2: Illustration of an attractor model within neural networks. The computational
energy function is portrayed as a topographical landscape comprising hills and valleys, plotted
against the neural activity states on the XY plane. The configuration of the circuit, including
synaptic connections and other intrinsic properties, as well as external inputs, dictate the contours
of this landscape. The circuit engages in computation by traversing a trajectory that diminishes
the computational energy until it reaches the base of a valley, symbolizing a stable state within
the system, often referred to as an attractor. In the context of an associative memory circuit,
these valleys correspond to stored memories represented by sets of associated information (the
neural activities). When the circuit commences with approximate or incomplete data, it fol-
lows a downhill path toward the nearest valley (depicted in red), which contains the complete
information. (Taken from Tank and Hopfield [79])

Such stable states are termed attractors because even a minor transient per-
turbation temporarily alters the system, but it subsequently reconverges to
the same state. This concept is visually represented in Fig. 2.2, where a neu-
ral network is described by a computational energy function in the space of
neural activity patterns. The system’s time evolution corresponds to move-
ment downhill in the direction of decreasing computational energy. Each
minimum of the energy function represents a stable (attractor) state, while a
maximum at the top of a valley represents an unstable state. This depiction
can be quantitatively applied to specific neural models.

While characterizing attractor networks as stable and stereotyped may im-
ply insensitivity to external stimuli and a lack of reconfigurability, recent
studies have demonstrated the opposite. Attractor networks are responsive
to inputs and crucial for the slow-time integration of sensory information
in the brain. Moreover, sustained inputs can create or dismantle attractors,
allowing the same network to fulfill various functions, such as WM and
decision-making, depending on inputs and cognitive control signals. The
attractor landscape of a neural circuit can be readily modified by alterations
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2.3. Attractor networks

in cellular and synaptic properties, forming the foundation for the attractor
model of associative learning.

2.3.1 Hopfield networks

Hopfield Networks, named after the renowned American physicist John
Hopfield, represent a seminal class of recurrent artificial neural networks
with associative memory and optimization capabilities [80]. These networks
have found significant applications in diverse fields, ranging from pattern
recognition to optimization problems.

A Hopfield Network typically consists of a set of binary units or neurons,
denoted as si, where i = 1, 2, . . . , N, with N being the total number of neu-
rons. Each neuron can take binary values, si ∈ {−1, 1}, representing an
”off” or ”on” state. The state of the network evolves over time in discrete
steps according to a dynamical update rule. One common update rule is
the asynchronous stochastic update, where at each time step, a randomly
selected neuron is updated according to:

si(t + 1) = sign

(
N

∑
j=1

wijsj(t)

)
(2.2)

Here, wij represents the synaptic weight between neuron i and neuron j,
which is often symmetric (wij = wji) and may include self-connections (wii).
The sign(·) function ensures that the state of each neuron remains binary.

Figure 2.3: Energy Landscape of a Hopfield Network. It depicts the current state of the
network (up the hill), an attractor state to which it will eventually converge, a minimum energy
level and a basin of attraction shaded in green. Note how the update of the Hopfield Network is
always going down in Energy. (Taken from Mrazvan22 [81])

One of the remarkable features of Hopfield Networks is their ability to store
and retrieve patterns from their synaptic weights. These networks can serve
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2. Background

as content-addressable memory systems, where given a partial or noisy in-
put pattern, the network can recall and retrieve the complete stored pattern
that is most similar to the input. This associative memory property is gov-
erned by the network’s energy function, known as the Hopfield Energy:

E = −1
2

N

∑
i=1

N

∑
j=1

wijsisj (2.3)

The network evolves towards lower energy states (Fig. 2.3), and stable attrac-
tor states in the network’s dynamics correspond to stored patterns. How-
ever, Hopfield Networks have limitations in terms of capacity and noise
tolerance.

Continuous Hopfield Networks extend the concept of Hopfield Networks to
continuous-valued neurons, often using analog activation functions such as
sigmoid or hyperbolic tangent. These networks allow for a broader range of
values, not limited to binary states. The dynamics of continuous Hopfield
Networks can be described using differential equations, such as:

dsi

dt
= −si +

N

∑
j=1

wij φ(sj) (2.4)

Where φ(sj) represents the activation function for neuron j. Continuous
Hopfield Networks have been used in various applications, including opti-
mization problems and neural modeling, and offer a more flexible represen-
tation compared to their binary counterparts.

2.3.2 Representation and memory

Low-dimensional attractor dynamics in neural networks offer a rich array
of properties that can significantly impact brain computations. These prop-
erties include robust representation of information, memory retention, se-
quence generation, information integration, and effective decision-making,
all of which have been thoroughly examined in scientific literature [82].

Representation and memory form the core of cognitive computation. Rep-
resentation involves associating inputs with specific states and being able to
reliably recall those states when needed. Attractor networks are well-suited
for this task as they provide stable internal states that can represent differ-
ent variables. This mapping from external states to attractor states can be
achieved through a learning process.
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2.3. Attractor networks

Memory in attractor networks comes in two forms. First, it’s embedded
in the network’s architecture, defined by the weights that specify the en-
semble of attractors. If these weights change based on input, they store
long-term information about those inputs. Second, attractor networks can
maintain persistent activity within a specific attractor state. When initial-
ized in one of these states, the network tends to stay there for a while, acting
as STM for the input that initiated the state. If these memory states can be
activated based on their content without specific addressing, they are con-
sidered content-addressable, adding complexity to the memory processes in
attractor networks.

STM in attractor networks relies on first establishing stable states through
long-term synaptic changes. For example, in networks like the Hopfield
model, states cannot persist if they were not previously trained to be at-
tractor states. Even STM models based on synaptic facilitation, which are
different from persistent activity, implicitly depend on prior long-term plas-
ticity. This is crucial in building neural ensembles that can be reactivated by
random inputs. In simpler terms, models without plasticity struggle to ex-
plain STM for completely new inputs. However, combining attractors with
Hebbian plasticity opens the door to more adaptable STM capabilities.

2.3.3 Working memory

The concept of attractor models extends its influence into the domain of
WM [42–45, 47], which pertains to the brain’s capacity to temporarily hold
information for short durations. Neurons involved in maintaining WM must
exhibit sustained activity, even in the absence of direct external input. This
persistent activity, a key aspect of WM, is believed to be generated through
feedback loop connections. In this context, each neuron in a WM network
receives excitatory input from both external sources and intrinsic synaptic
connections. Inputs activate specific neuron assemblies, and the resulting
spike activity propagates through excitatory synaptic circuits, enabling the
network to sustain elevated firing rates when external inputs are removed.
Attractor models formalize this concept, proposing that a WM circuit com-
prises multiple attractor states, each representing a distinct memory item,
coexisting with a background or resting state. These attractor states are self-
sustained and relatively stable in the face of minor perturbations or noise,
yet they can be activated or deactivated by brief external stimuli.

Observations of stimulus-selective neural persistent activity in awake an-
imals performing tasks reliant on WM provide empirical support for the
attractor model. For instance, in tasks like the delayed match-to-sample
task, where subjects must recall whether two presented visual objects are
the same, or tasks involving spatial WM, neurons in various brain regions,
including the prefrontal, posterior parietal, inferotemporal, and premotor
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cortices, exhibit elevated persistent activity that is selective to specific stim-
uli. This mnemonic coding encompasses cells tuned to discrete memory
items, cells representing spatial information with a bell-shaped tuning func-
tion, and cells encoding parametric WM, such as stimulus magnitude, with
a monotonic tuning function. These observations align with the attractor
model, as they demonstrate that stimulus-selective persistent firing patterns
are maintained internally, even in the absence of sensory input, and remain
relatively stable over time [83].

However, the heterogeneity and temporal dynamics of mnemonic persistent
activity pose challenges to the attractor network model. The specific cellular
and circuit mechanisms responsible for generating this persistent activity
are still open questions, and researchers are addressing them using biolog-
ically constrained models. These models take into account known cortical
electrophysiology and emphasize the importance of recurrent connections
between neurons, as well as the interplay between excitatory and inhibitory
elements, such as the role of N-methyl-D-aspartate (NMDA) receptors in
stabilizing WM. Additionally, other processes with time constants of hun-
dreds of milliseconds, such as short-term synaptic facilitation or intrinsic ion
channels in single cells, may also contribute to the reverberatory dynamics
underlying WM. These complexities further underscore the multifaceted
nature of WM and the ongoing quest to unravel its underlying mechanisms.

2.4 Intracranial Electroencephalography

In this manuscript, we compare the model with intracranial field potentials
obtained from epileptic patients who underwent implantation of Intracranial
electroencephalography (iEEG) electrodes as part of their clinical evalua-
tion. The primary objective of iEEG is to precisely delineate the location of
epileptic foci within the brain, a crucial step in the presurgical assessment
of epilepsy patients. The ultimate clinical aim is to surgically resect the
epileptogenic cortical regions for each individual patient [84]. We analyzed
two distinct types of iEEG recordings: (1) Electrocorticography (ECoG),
which employs electrodes placed directly on the cortical surface, and (2)
Stereo electroencephalography (sEEG), involving wire electrodes that pen-
etrate deeper into the brain tissue [84]. Human iEEG affords the unique
capability to capture the activity of a population of neurons with excep-
tional spatiotemporal precision, thereby providing invaluable insights into
the functioning of the human brain.

iEEG records field potentials that encapsulate the aggregate activity of ex-
tensive and diverse neural populations. The information conveyed by iEEG
signals can be characterized by various frequency bands, including gamma
(30-150 Hz), beta (14-30 Hz), and alpha (8-14 Hz) [85]. Specifically, the anal-
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2.4. Intracranial Electroencephalography

ysis conducted by Yuchen Xiao and Paula Sanchez Lopez focused on the
gamma frequency band (30-150 Hz) due to a wealth of research suggesting
that high-frequency neuronal activities within this range reflect synchro-
nized firing of neuron ensembles and cortical activations [86, 87]. Existing
studies have established that gamma band activities exhibit correlations with
neural spiking patterns [71, 88, 89] and have the capacity to convey rich in-
formation pertaining to motor control, language processing, memory, and
other cognitive functions [71, 90–92].

The literature has documented that different WM modalities, such as STM
in our investigation, may be underpinned by the intricate interplay between
gamma oscillations and lower-frequency activities, such as those in the beta
[71, 93, 94] and alpha bands [95, 96]. A push-pull relationship has been pos-
tulated, particularly in the prefrontal cortex: the elevation of beta activity
coincides with the suppression of gamma activity, and conversely, leading
to the regulation of WM and control over its maintenance [71]. During
the encoding and retrieval phases, the default state characterized by beta
oscillations is disrupted, with a decrease in beta activities facilitating the
increase in gamma activities, thereby enabling the accessibility of informa-
tion to STM. A similar push-pull dynamic has been reported between the
alpha band and neuronal spiking activities [95] in regions encompassing
somatosensory and motor cortices, as well as between alpha and gamma
power within the visual cortex [96]. While these findings have emerged
from studies conducted in non-human primates, our comprehension of how
such cross-frequency coupling orchestrates memory processes in humans
remains an ongoing area of exploration.
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Chapter 3

Methods

In this chapter, we discuss how we approached investigating and addressing
the research questions and objectives we outlined in the previous chapters.
This will include explaining the task, describing how we collected and an-
alyzed data from human experiments, outlining the model’s architecture,
and explaining how we collected and analyzed data from the model-based
experiments.

3.1 Task paradigm

3.1.1 Human experiments

1st tile 2nd tile

n-trial = 1 (mismatch)

1st tile 2nd tile 1st tile 2nd tile

n-trial = 3 (mismatch)

n-since-pair = 3

n-since-last-click = 3

A B C

reaction time

n-trial = 2 (match)

2 dva

Figure 3.1: Experimental paradigm. A-C. Three consecutive trials in a 3×3 board. In each
trial, two tiles were flipped sequentially in a self-paced manner (1st tile, then 2nd tile). If the two
tiles contained different images (A, C, mismatch), both tiles reset to their original active (black)
state after 1 second. If both tiles contained the same image (B, match), they turned green after
1 second and stayed green for the remainder of the block. Three behavioral predictors used in
the generalized linear models (GLM) are defined here: Reaction Time (RT) (the time between
the 1st and 2nd tile within a trial), n-since-last-click (NSLC) (the number of clicks elapsed since
the same tile was clicked last), and n-since-pair (NSP) (the number of clicks elapsed since the
last time a given tile’s matching pair was clicked). Each tile spanned approximately 2 degrees of
visual angle (dva) in size. (Figure made by Yuchen Xiao)
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Participants performed an implementation of the classical memory match-
ing game (Fig. 3.1). The task was designed by Yuchen Xiao and Gabriel
Kreiman and implemented by Yuchen Xiao. The game involves remember-
ing the location and content of a set of tiles to find all the matching pairs.
A square board containing n × n tiles was shown throughout each block.
In the beginning, all tiles were shown in black. In each trial, participants
chose one tile, and then a second tile, by clicking on them in a self-paced
fashion. Upon clicking, the tile revealed a common object like a cat or an
indoor scene like a kitchen. At the end of each trial, either the two tiles
revealed the same content (match) or not (mismatch). If the tiles matched,
then the two tiles turned green 1,000 ms after the second click, and the two
tiles could not be clicked again for the remainder of the block. If the tiles
did not match, they turned black 1,000 ms after the second click and could
be clicked again in subsequent trials. When all tiles turned green, i.e., all
matches were found, the block ended, and another block began. During
each block, the map between positions and objects was fixed. The game al-
ways started with a block of size 3×3 and progressed to more difficult blocks
(4×4, 5×5, 6×6, and finally 7×7). Blocks with an odd number of tiles (3×3,
5×5, and 7×7) contained one distractor object (a human face) with no corre-
sponding pair. For each block except the 3×3 board, there was a limit for the
total time elapsed (2 minutes for 4×4, 3.3 min for 5×5, 4.8 min for 6×6, and
8.2 min for 7x7). If a participant did not complete a block within the time
limit, the block ended, and a new, easier block started by reducing the board
size n by 1, except when n=7, where it was reduced by 2. Conversely, when
participants successfully completed a block with a board of size n within
the allotted time limit, they moved on to a more difficult block by increasing
n by 1. When participants completed an n=7 block, they performed further
n=7 blocks. There was no image repetition across blocks.

All the images were from the Microsoft COCO 2017 validation dataset [97]
and were rendered in grayscale and square shape. We included a balanced
number of pictures from 5 categories: person, animal, food, vehicle, and
indoor scenes. All the images were rendered on a 13-inch Apple MacBook
Pro laptop. The size of each tile was 0.75×0.75 inches (approximately 2x2
degrees of visual angle, dva) and the separation between two adjacent tiles
was 0.125 inch (0.33 dva) for board size n=7 and 0.25 inch (0.67 dva) for
the others. The game implementation was written and presented using the
Psychtoolbox extension [98, 99] in Matlab 2016b (Mathworks, Natick, MA).

3.1.2 Model experiments

Our computational model undertook a modified version of the task outlined
in the preceding paragraph. It tackled this task across 20 boards for each
board size, ranging from 3x3 to 7x7.

18



3.2. The computational model

In the human experiments, participants actively exercised choice in select-
ing the first tile, a process influenced by elements beyond the scope of the
model we sought to construct—namely, strategy and positional bias. Conse-
quently, we directed our model’s development towards capturing the num-
ber of clicks to solve the task and the behavioral metrics associated with the
second tile selection. In the model’s execution of the task, the initial tile
choice was made uniformly at random from the available tiles, while the
model employed information related to the first tile and its own internal
state to make its selection for the second tile.

Furthermore, our model operates based on two additional fundamental as-
sumptions. Firstly, we presuppose that patients possess the capacity to per-
fectly encode the images they are presented with. This presupposition en-
tails that any likeness or similarity between images does not exert an influ-
ence on how memories of these similar images might interfere with the task
at hand. Secondly, we assume that the grid’s positional factors do not exert
any influence on the memorization process. This implies that we disregard
any potential edge effects and the proximity of errors to the accurate tile
location. These assumptions are represented by one-hot encoding both the
position and label of the tiles. These assumptions are based on the analysis
of the human behavioral data explained in Sections 3.3.2 and 3.3.3.

3.2 The computational model

3.2.1 Model architecture and dynamics

We developed an attractor network model consisting of a fully connected
recurrent network with the number of units n equal to the number of tiles in
the grid plus the number of different images. For example, the model for the
3x3 board shown in (Fig. 3.2.A) was an attractor network with n=3x3+5=14
units.

The units in the network were designed to model “where” and “what”, i.e.,
position and image labels. Let xp be a vector of length equal to the number
of tiles in the grid, xl be a vector of length equal to the number of different
images in the grid, and x denote the concatenation [xp, xl ] (Fig. 3.2.A). The
input to the network is x. Each entry in xp and xl can take the values −1, 0,
or 1. The state of the network at time t is denoted by the vector ht = [pt, lt]
of size n, where pt and lt are the vectors of activations of the position and
label units, respectively. Each entry in ht is a scalar value. The units in the
network are connected in an all-to-all fashion and the matrix Mt indicates
the weights at time t (Mt ∈ Rn×n).

The network stores memories in both persistent activities (active representa-
tions) and weights (silent representations) [45]. In contrast to Manohar et al.
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3. Methods

B C DA

Figure 3.2: Hebbian attractor model architecture and operating regimes. A. Schematic
representation of the model architecture used for the 3x3 grid. The 9 blue units encode position
(xp), while the 5 orange units represent the image label (xl). The black lines between units
illustrate the Hebbian weights Mt in the attractor network. B. Learning regime. In this example,
the model represents a cat (label=2) at position=5. The dark color indicates strong activation
of the corresponding units. C, D. Inference regime. In this example, the model is tasked with
matching the cat (label=2) observed at position=1. Only the label information is provided to the
model in the inference regime. The model’s updates (Section 3.2) lead to the unit representing
position=5 to exhibit the highest activity (D), thereby determining the corresponding tile to be
clicked. The darker color indicates stronger activation of the corresponding units. The red color
indicates the tile to match (unavailable, Section 3.2) and the corresponding positional unit.

[45] approach, which incorporates a bottleneck in the model to restrict its
capacity, our model lacks any such bottleneck. Given an input x at time t,
the network state and weights were updated similarly to Ba et al. [100], i.e.,
according to:

ht = f (N (x + Mt−1ht)) (3.1)

Mt = λMt−1 + ηhth⊤t (3.2)

Here f (·) is the LeakyReLU activation function and N (·) is activation nor-
malization. λ and η represent a decay rate for the previously stored mem-
ories and the learning rate for new memories, respectively. Before the start
of each board, the network weights were initialized uniformly at random in
[0, 1], while the state of the network was initialized to 0. We note that the
Hebbian learning is computed on the state of the network ht rather than on
the input x. This means that the update of the memory matrix Mt is in-
fluenced by the interference between active and silent representations, thus
limiting the network capacity.
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3.3. Behavioral analysis

3.2.2 Operation regimes

The model operates in two distinct regimes, which we refer to as learning
(Fig. 3.2.B) and inference (Fig. 3.2.C-D). For each trial, the 1st tile was chosen
at random among the available tiles. To simulate the gameplay, for each
trial, the model performs learning→inference→learning. First, the model
learns the position and label of the 1st tile. Second, the model performs
inference on the label of the 1st tile. At the end of the inference regime, the
most active neuron in determines which tile to click (Fig. 3.2.D). Last, the
model learns the position and label of the 2nd tile.

During learning (Fig. 3.2.B), the corresponding position entry of xp is set to
1 and all other units are set to -1. Similarly, the corresponding label entry
of xl is set to 1 and all other units are set to -1. The network dynamics
goes through 10 steps according to Eqs. (3.1) and (3.2). During inference
(Fig. 3.2.C-D), the corresponding label xl of is set to 1 and all the other units
are set to -1. All the units of xp corresponding to the available tiles are set
to 0, while the ones corresponding to the unavailable tiles are set to -1. The
network dynamics goes through 10 steps according to Eqs. (3.1) and (3.2).
After these 10 steps, we select the unit with the maximum activation within
the units of xp corresponding to available tiles. If the second tile is a match,
then those two tiles become unavailable in the next trials. The weight matrix
Mt, however, continues to include all the connections among all the units.
The model proceeds until all tiles have been matched. The algorithms for
implementing these regimes are detailed in Appendix A.

3.3 Behavioral analysis

3.3.1 Human data

Two computational models were created to simulate behavior assuming per-
fect memory or no memory (chance performance, Fig. 4.1). The perfect
memory model remembered all revealed tiles without forgetting. The ran-
dom model simulated random clicking. The analyzed data included the
reaction time (RT, time between two clicks in a trial), n-since-pair (NSP,
number of clicks since the last time a tile’s matching pair was seen), n-
since-last-click (NSLC, the number of clicks since the same tile was clicked).
For NSP and NSLC, the trials in which any tile was seen for the first time
were excluded, i.e., when a tile’s matching pair had never been revealed, or
there was no previous click. These variables were compared for match and
mismatch trials at each board size (Figs. 4.3 and 4.4, permutation test, 5,000
iterations, α=0.01). Random matches were defined as a match trial where the
second tile had never been seen before; such trials were excluded from both
the behavioral and neurophysiological analyses. The F-test was used for lin-
ear regression models to assess whether RT, NSP, NSLC, and n-times-seen
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significantly covary with board size. The linear regression models’ predic-
tors were these four behavioral parameters and the dependent variable the
board size. We created separate models for match and mismatch trials and
1st and 2nd tiles. The human behavioral data analysis was conducted by
Yuchen Xiao and Paula Sanchez Lopez.

3.3.2 Random-perfect and perfect memory

We conducted a comparison between two models: the perfect memory model
and the random-perfect memory model. In the perfect memory model, each
tile’s position and label are stored whenever it’s clicked. Before each trial,
this model scans its memory to identify if there are two tiles with matching
labels in distinct positions. If such a pair is found, these two tiles are selected
for the trial. In contrast, the random-perfect memory model selects the first
tile of each trial uniformly at random and then relies on its stored mem-
ory to choose the second tile. We observe that there is minimal disparity
between these two models in terms of the N clicks per tile metric (Fig. 3.3).

Figure 3.3: N clicks per tile reported for random memory, random-perfect memory, and
perfect memory.

3.3.3 Distance from correct tile

We conducted supplementary analyses on the human behavioral data to
probe whether, during mismatch trials, participants tend to choose tiles sit-
uated near the correct tile. Specifically, for mismatch trials across varying

22



3.3. Behavioral analysis

board sizes, we calculated the Euclidean distance between the correct tile
and the tile chosen.

A B C

Figure 3.4: Average distance from correct tile in mismatch trials. A-C. Comparison between
random model and human behavioral data. B. The distance in the human behavioral data is
binned by the value of the NSLC. C. The distance in the human behavioral data is binned by
the value of the NSP.

Our findings reveal a minimal distinction between the behavior of a random
model and that of human participants concerning the distance from the
correct tile (Fig. 3.4.A). Furthermore, we observed that this distance is not
affected by how recently the same tile was last clicked (Fig. 3.4.B) or by the
last time a matching tile was selected (Fig. 3.4.C).

We extended our analysis to examine the positions of selected tiles in both
match and mismatch trials, to find potential edge effects. We computed
the frequency of match (Fig. B.1) and mismatch trials (Fig. B.2) for each
position in the board for each board size, as well as the difference between
frequencies of matches and mismatches (Fig. B.3). We conducted an identical
experiment using a random memory model (20 trials per board size). It
is worth noting that our investigation did not yield any results indicating
the presence of corner or edge effects. However, the visual representations
in our analysis suggest the possibility of the impact linked to participants’
bias in selecting tiles during the first trials and potential primacy effects in
memorization. Nevertheless, further analysis is required to confirm these
observations definitively.

3.3.4 Model data

The N clicks per tile, NSLC, and NSP click for the 2nd tile were calculated
for the model identically as for the humans and compared to the participant

23



3. Methods

behavior (Figs. 4.3 and 4.4).

To compute a proxy for the RT in the model, we used the same approach as
in Manohar et al. [45], whereby the unit in xp with the strongest activation
during the inference time was selected and the RT was computed as the
number of steps the unit takes to reach 0.9 of its maximum value.

3.4 Neurophysiological recordings

3.4.1 Epilepsy participants and recording procedures

Intercranial Field Potentials (IFPs) from 20 patients with pharmacologically
intractable epilepsy (12-52 years old, 9 female) were recorded by Yuchen
Xiao and Ruijie Wu. These patients were undergoing monitoring at Boston
Children’s Hospital (Boston, US), Brigham and Women’s Hospital (Boston,
US), and Xuanwu Hospital (Beijing, China) were rec. All recording sessions
were seizure-free. All patients had normal or corrected-to-normal vision.
The study protocol was approved by each hospital’s institutional review
board. Experiments were run under patients’ or their legal guardians’ in-
formed consent. One patient at Brigham and Women’s Hospital (BWH) was
implanted with both sEEG and ECoG electrodes, while all other patients had
only sEEG electrodes (Ad-tech, USA; ALCIS, France). IFPs were recorded
with Natus (Pleasanton, CA) and Micromed (Italy). The sampling rate was
2048 Hz at Boston Children’s Hospital, 512 Hz or 1024 Hz at BWH, and 512
Hz at Xuanwu Hospital. Electrode trajectories were determined based on
clinical purposes for precisely localizing suspected epileptogenic foci and
surgically treating epilepsy [101].

3.4.2 Electrode localization

Electrodes were localized using the iELVis [103] toolbox. Yuchen Xiao used
Freesurfer [104] to segment the preimplant magnetic resonance (MR) im-
ages, upon which post-implant CT was rigidly registered. Electrodes were
marked in the CT aligned to preimplant MRI using Bioimage Suite [105].
Each electrode was assigned to an anatomical location using the Desikan-
Killiany [102] atlas for subdural grids or strips or FreeSurfer’s volumetric
brain segmentation for depth electrodes. For white matter electrodes, we
also reported their closest gray matter locations. Out of 1,750 electrodes in
total, 676 bipolarly referenced electrodes in the gray matter were included
(Fig. 3.5) and 492 bipolarly referenced electrodes in the white matter. Five
hundred eighty-two electrodes were not considered for analyses due to bipo-
lar referencing, locations in pathological sites, or electrodes containing large
artifacts. Electrode locations were mapped onto the MNI305 average brain
via affine transformation [106] for display purposes (e.g., Fig. 3.5).
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A B

C D

Figure 3.5: Locations of electrodes in the gray matter. Each circle shows a bipolarly refer-
enced electrode (n=676), overlayed on the Desikan-Killiany Atlas with different views: A. left D.
right medial. The colors reflect the Desikan-Killiany parcellation [102]. (Figure made by Yuchen
Xiao)

3.4.3 Preprocessing of intracranial field potential data

Bipolar subtraction was applied to each pair of neighboring electrodes on
each shank of depth electrodes or subdural grids/strips [107]. A zero-phase
digital notch filter (Matlab function ”filtfilt”) was applied to the bipolarly
subtracted broadband signals to remove the line frequency at 60 Hz (BCH,
BWH) or 50 Hz (Xuanwu) and their harmonics. For each electrode, tri-
als whose amplitudes (Voltagemax-Voltagemin) were larger than 5 standard
deviations from the mean amplitude across all trials were considered poten-
tial artifacts and discarded from further analyses [108]. For the first tile, the
time window for artifact rejection was from 400 ms before the click until 1
second after the average RT. For the second tile, the time window was [400
ms + average RT] before the second click until 1 second after the second
click. Across all electrodes, 1.75% of all trials for the 1st tile and 1.73% for
the second tile we rejected. These analyses were conducted by Yuchen Xiao
and Paula Sanchez Lopez.
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3.4.4 Time-frequency decomposition

The gamma band (30-150 Hz) power was computed using the Chronux tool-
box [109]. A time-bandwidth product of 5 and 7 leading tapers, a moving
window size of 200 ms, and 569 a step size of 10 ms [110] were used. For
each trial, the power was normalized by subtracting the mean gamma band
power during the baseline (400 ms before 1st tile) and dividing by the stan-
dard deviation of the gamma power during the baseline. For all the partic-
ipants, there were more mismatches than match trials. In the raster plots,
we subsampled the mismatch trials, keeping those trials whose RTs were
closest to the mean RT of match trials. All random matches were excluded
from analyses. These analyses were conducted by Yuchen Xiao and Paula
Sanchez Lopez.

3.4.5 Generalized linear models

Generalized Linear Models (GLMs) [111, 112] were employed to analyze
the relationship between gamma-band power and behavioral parameters in
this study, focusing on neural responses between the 1st and 2nd tiles. The
response variable for the GLM analyses was defined as the Area Under the
Curve (AUC) of gamma-band power within the specified time windows.
For computing the AUC, the analysis window commenced when the 1st tile
was clicked and concluded at a time corresponding to the 90th percentile of
the reaction time distribution, a choice made to balance minimizing overlap
with responses after the 2nd tile and maximizing the information captured.

Multicollinearity analysis was performed to assess the presence of highly
correlated predictors that could impair the model’s performance. Variance
Inflation Factor (VIF) for each predictor was calculated to detect the presence
of multicollinearities. A VIF of 1 indicates that there is no correlation with
other predictors. The larger the VIF, the higher the correlation. A VIF
greater than 5 indicates a very high correlation that could significantly harm
the model’s performance. For all participants in this analysis, the VIFs of all
predictors were smaller than 3.

For each predictor, the parameter estimate (beta coefficient) were computed
based on the least mean squares fit of the model to the data, the t-statistic
(beta divided by its standard error), and the p-value to assess the impact
of each predictor on the neural responses. A beta coefficient or t-statistic of
zero indicated that the predictor had no effect on the neural responses. A
predictor was considered statistically significant if the GLM model differed
from a constant model (p<0.01), and the p-value for that predictor was
less than 0.01. These analyses were conducted by Yuchen Xiao and Paula
Sanchez Lopez.
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3.4.6 Mapping the model to neurophysiological recordings

In this work, we modeled the response of two selected electrodes (Fig. 3.6).
We selected these electrodes based on the interpretable and interesting prop-
erties they exhibited. For the selected electrode in the left pars opercularis
(Fig. 3.6.A-B), the NSLC was a significant predictor, while for the selected
electrode in the right lateral orbirtontal cortex (Fig. 3.6.C-D) weather a trial
was a match or a mismatch was a significant predictor. The significance was
determined using the GLMs (Section 3.4.5). We refer to the signal encoded
by these electrodes as surprise (Fig. 3.6.B) and confidence (Fig. 3.6.D) signals.
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Figure 3.6: The two electrodes which were selected to be modeled using the Hebbian
attractor network. A, B. Selected electrode in the left pars opercularis. A. Location of the
electrode. B. Z-scored gamma band power aligned to the 1st tile onset (solid vertical line) for
novel tiles (blue), unfamiliar tiles (n-since-last-click>1, yellow), and familiar tiles (n-since-last-
click=1, red). The vertical dashed line indicates the mean RT. Multiple dashed lines indicate RT
equalization (Section 3.4.3). The time axis extends from 400 ms before the click to 500 ms after
the average RT. C, D. Selected electrode in the right lateral orbitofrontal cortex. C. Location
of the electrode. D. Z-scored gamma band power aligned to the 1st tile onset (solid vertical
line) for match trials (green) and mismatch trials (black). The vertical dashed line indicates the
mean RT. Shaded error bars indicate s.e.m.

Novelty/Familiarity signal First, we defined the max-energy metric com-
puted during the 1st learning phase of each trial, in analogy to the memory
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signals in Fig. 3.6.A. The energy of the network was computed as:

Et = −htMth⊤t (3.3)

Min-max normalization was applied to the energy in each trial, and the
maximum value in each trial was reported. The model’s max-energy signal
during gameplay is shown in Fig. 4.5.B.

Confidence signal Second, we defined a confidence metric that reflected
the evidence for a match in a given trial, in analogy with the predictive
signals shown in Fig. 3.6.B. The confidence metric was defined by selecting
the strongest activation in pt during inference, subtracting the mean value of
pt, applying min-max normalization to the difference, and then taking the
maximum over time t in each trial. The model’s confidence signal during
gameplay is shown in Fig. 4.6.B.

3.5 Model selection

We tuned the model’s hyperparameters to align with the N clicks per tile
metric derived from human behavioral data. To accomplish this, we con-
ducted a grid search to find the optimal values for the learning rate (η) and
decay rate (γ), exploring the parameter space within the range of (0, 1] with
increments of 0.05.

�

�

Figure 3.7: Results of the grid-search. Each square color indicates the value of the MSE
between human and model N clicks per tile found during the grid-search.

For each combination of these parameter values, for each board size (from
3x3 to 7x7), the model executed the task and recorded the N clicks per tile.
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3.5. Model selection

Subsequently, we computed the mean N clicks per tile for both the model’s
simulations and the participant data for each board size. We then computed
the Mean Squared Error (MSE) between these two sets of values. The model
that achieved the lowest MSE was the one configured with η = 0.9 and
λ = 0.6. These parameter settings were then employed consistently across
all simulations in this study.

In accordance with Ba et al. [100], the implementation of activation normal-
ization renders the network robust when it comes to selecting suitable decay
and learning rates. Our experiments align with this notion as we observe a
smooth landscape in the MSE across the explored range of hyperparameter
values. Notably, even when we deviate from the optimal hyperparameters,
we observe minimal influence on the MSE value (Fig. 3.7).
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Chapter 4

Results

We recorded IFPs from 20 patients with pharmacologically intractable epi-
lepsy implanted with depth electrodes (Fig. 3.5). These participants played a
memory-matching game (Section 3.1.1, Fig. 3.1). Each trial consisted of two
self-paced clicks. Clicking on a tile revealed an image (Fig. 3.1.A). Image
categories included person, animal, food, vehicle, and indoor scenes. If the
two tiles in a trial contained the same image (match, Fig. 3.1.B), the two
tiles turned green and could not be clicked again for the remainder of the
block. If the two images were different (mismatch, Fig. 3.1.A, C), the two tiles
turned black and could be clicked again. Participants started in a 3×3 tile
board block like the one shown in Fig. 3.1 and progressed to more difficult
blocks (4×4, 5×5, 6×6, or 7×7 tiles). All tiles had a corresponding match,
except for one tile in the boards with an odd number of tiles (3×3, 5×5, and
7×7). We ran the same experiments on the computational model, which was
tested for 20 trials for each board size.

4.1 Human experiments

4.1.1 Behavioral data

As board difficulty increased, the average number of clicks per tile also rose
as expected (Fig. 4.1.A). Participants outperformed a memoryless model
(random clicking) by a significant margin (p<0.001, permutation test with
5,000 iterations, one-tailed), but they fell short of a model assuming perfect
memory (p<0.001, Fig. 4.1.A). RTs, defined as the time between the first
and second clicks within a trial, was consistently longer for mismatch trials
compared to match trials for all board sizes (p<0.007, Fig. 4.2.B).

In each trial, NSLC represented the number of clicks since the last time the
same tile was clicked (Fig. 3.1.A-B). For the 2nd tile, NSLC was larger in
mismatch trials than in match trials for all board sizes except the 3×3 case
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(p<0.001, Fig. 4.3.A), indicating a memory decay for tiles not recently seen.
Another measure, NSP, counted the number of clicks since the last time
a tile’s matching pair was seen (Fig. 3.1.A, C). For the 2nd tile, NSP was
always one in match trials, as the matching pair was revealed in the previous
click, resulting in a significant difference between match and mismatch trials
(p<0.001, Fig. 4.4.A).

4.1.2 Intracranial field potentials

IFPs were recorded from numerous electrodes, with some excluded due to
various factors. Results from electrodes in the white matter were also con-
sidered in the analysis. A GLM was developed to characterize how neural
responses related to cognitive demands in each trial, focusing on the 1st tile.

The GLM considered various predictors, including match status, RTs, NSLC,
NSP, and additional factors like first-click, number of times an image had
been seen, board size, tile position, and image content. Multicollinearity
was addressed using the variance inflation factor, confirming that predictor
correlations didn’t impact model performance.

Neural responses to the 1st tile were found to correlate with novelty, with
decreased activity for novel tiles (Fig. 4.5.A). This correlation was observed
in specific brain regions. Familiarity, as indicated by NSLC, also influenced
neural responses. Interestingly, novelty and familiarity effects persisted even
after reaction time equalization.

Neural signals before the 2nd tile appeared predictive of the trial’s outcome
(match or mismatch), suggesting that participants internally retrieved pair
locations (Fig. 4.6.A). These predictions were observed in specific brain re-
gions, such as the lateral orbitofrontal cortex, medial temporal lobe, and
insula.

4.2 Model experiments

We built a computational model that focused on the storage and retrieval of
information (Fig. 3.2, Section 3.2). The computational model consists of a
Hebbian attractor neural network with all-to-all connectivity. The units are
divided into position units (the number equaling the number of tiles on the
board) and label units (the number equaling the number of images on the
board) (Fig. 3.2.A). The model has two main modes of operation: learning
(Fig. 3.2.B), and inference (Fig. 3.2.C-D). After the first click, the model re-
ceives as input the label of the tile and its position. The activity of each unit
evolves over time based on the input and the weighted input from other
units followed by a rectifying non-linearity and normalization (Section 3.2,
Eq. (3.1)). Concomitantly, the weights are updated in a Hebbian manner
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4.2. Model experiments

(Section 3.2, Eq. (3.2)). During inference, the model selects the position unit
with the maximum activation for the second click. The model proceeds in
this manner until all matches have been found.

4.2.1 The model predicts human behavior

We evaluate the performance of the model using the same evaluators as in
the human experiments, i.e. total number of clicks per board size, RT, NSLC,
NSP. We did not compute NSLC and NSP for the first tile because the model
chooses the first tile randomly among the available tiles (Section 3.1.2). We
defined the reaction time as the number of steps needed for the selected
unit to reach 0.9 of its maximum value (Section 3.3.4). The model was fit to
match the total number of clicks per tile for each board size (Section 3.5).
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Figure 4.1: Number of clicks per tile (log scale) as a function of board size. Figure shows
metric for random simulation model (red, n=20), perfect memory simulation model (blue, n=20),
and epilepsy patient participants (A, purple, n=20) and Hebbian attractor (B, purple, n=20)
(Section 3.3). Perfect memory simulation models may generate a different number of clicks
per tile because the click location for new tiles was randomized. The performance of both the
epilepsy patients and the Hebbian attractor was better than the random model and worse than
the perfect model. In both cases, the number of clicks per tile increased as board size increased.

N-click-per-tile Fig. 4.1 illustrates the number of clicks per tile (log scale) as
a function of board size for different models, including a random simulation
model, a perfect memory simulation model, epilepsy patient participants,
and our Hebbian attractor model. Notably, the number of clicks per tile
increased with the board size, closely resembling the behavior exhibited by
participants (compare Fig. 4.1.A and B).
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Figure 4.2: Reaction times for match (green) and mismatch (gray) trials. Figure shows
metric for different board sizes for epilepsy patient participants (A) and Hebbian attractor (B)
(Section 3.3). The reaction time of both the epilepsy patients and the Hebbian attractor of
mismatch trials was longer than match trials. Error bars indicate s.e.m. (n=20 trials). Aster-
isks denote significant difference between match and mismatch trials (permutation test, 5,000
iterations, α=0.01).

Reaction times Fig. 4.2 showcases reaction times for match and mismatch
trials across various board sizes for both epilepsy patient participants and
our Hebbian attractor model. The reaction time for both the epilepsy pa-
tients and the model was longer for mismatch trials compared to match trials
across all board sizes, indicating a significant difference (p<0.001, compare
Fig. 4.2.A and B).

N-since-last-click In Fig. 4.3, we present the average NSLC values for the
2nd tile across different board sizes for both epilepsy patient participants
and the Hebbian attractor model. These NSLC values increased with board
size and were notably larger for mismatch trials compared to match trials,
which aligns with the behavior observed in participants (p<0.001, compare
Fig. 4.3.A and B).

N-since-pair Fig. 4.4 displays the average n-since-pair (NSP) values for the
2nd tile across various board sizes for both epilepsy patient participants and
our Hebbian attractor model. Similar to NSLC, the NSP values increased
with board size and were significantly larger in mismatch trials compared
to match trials for all board sizes (p<0.001, compare Fig. 4.4.A and B). These
findings demonstrate that our computational model replicates key aspects
of human behavior in this context.
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4.2.2 The model maps to the intracranial field potentials

To investigate the model’s inner workings, we defined two metrics based on
the unit activations.
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Novelty/Familiarity signal To compare with the match related signals in
Fig. 4.5.A, we computed an overall maximum energy (Section 3.4.6, Eq. (3.3)).
This maximum energy was smaller for trials with NSLC=1 (p<0.001, Fig. 4.5.B),
reflecting a strong correlate of memory for recently seen tiles (compare
Fig. 4.5.A and B).
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Figure 4.5: Comparison between novelty/familirity signal and model. A. Neural signal from
the selected electrode in the left pars opercularis. The plot shows the Z-scored gamma band
power aligned to the 1st tile onset (solid blue vertical line) for novel tiles (blue), unfamiliar tiles
(n-since-last-click>1, yellow), and familiar tiles (n-since-last-click=1, red). The vertical dashed
line indicates the mean reaction time. Multiple dashed lines indicate reaction time equalization
(Section 3.4). The time axis extends from 400 ms before the click to 500 ms after the average
reaction time. Shaded error bars indicate s.e.m. B. Max-energy for novel tiles (blue), unfamiliar
tiles (n-since-last-click>1, yellow), and familiar tiles (n-since-last-click=1, red) (Section 3.4.6).
Error bars indicate s.e.m. (n=20 trials). Asterisks denote significant difference between match
and mismatch trials (permutation test, 5,000 iterations, α=0.01).

Confidence signal To compare with the match-related signals in Fig. 4.6.A,
we defined a confidence metric by assessing the relative activation for the
strongest unit with respect to the other units during the inference step (Sec-
tion 3.4.6). The confidence metric was significantly larger for match trials
compared to non-match trials (p<0.01, Fig. 4.6.B), which was qualitatively
similar to the neural responses (compare Fig. 4.6.A and B).

36



4.2. Model experiments

A

Z
-s

c
o

re
d

  
  
p

o
w

e
r

0 0.5 1 1.5 2

Time from 1st tile (s)

0

2

4

6

match,ntrials=180

mismatch,ntrials=602

Match

Mismatch

B

0

0.2

0.4

c
o

n
fi
d

e
n

c
e

Board size

* * * * *

3 4 5 6 7

Figure 4.6: Comparison between confidence signal and model. A. Neural signal from the
selected electrode in the right orbitofrontal cortex. The plot shows the Z-scored gamma band
power aligned to the 1st tile onset (solid vertical line) for match trials (green) and mismatch
trials (black). The vertical dashed line indicates the mean reaction time (Section 3.4). Shaded
error bars indicate s.e.m. B. Model confidence for match (green) and mismatch (gray) trials for
different board sizes (Section 3.4.6). Error bars indicate s.e.m. (n=20 trials). Asterisks denote
significant difference between match and mismatch trials (permutation test, 5,000 iterations,
α=0.01). The model confidence in match trials was larger than in mismatch trials.
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Chapter 5

Discussion

5.1 Summary

We modeled behavioral and neurophysiological data collected from humans
playing a natural task that involved working memory. The model we pro-
pose is a simple Hebbian attractor network, which is selected to match the
precision of humans solving this task. From this simple model, we obtain
accurate predictions on behavioral metrics beyond the precision, including
memory strength and decay, and their effect on retrieval of past informa-
tion. Moreover, from the same model’s activation, we can extract signals
that qualitatively map to iEEG recordings collected during the task.

5.1.1 Working memory in complex human behavior

In this study, we conducted an investigation into the neural dynamics during
a memory task involving a classic card-matching game. Participants demon-
strated competent task performance which was slightly below the level of a
perfect memory model, as expected. Notably, they exhibited increased reac-
tion times during mismatch trials and a discernible decay in memory traces
over time since encoding.

This novel task strikes a balance between traditional memory studies in-
volving sequentially presented stimuli and real-world behavioral scenarios
[2, 8, 13, 20, 25, 113–119]. It introduces a complex yet realistic setting encom-
passing both associative and non-associative memory components. Despite
this complexity, the task provides a high degree of experimental control
over stimulus timing and parameters, which can be challenging to achieve
in real-world memory research.
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5.1.2 Intracranial recordings

To dissect the interplay of various intercorrelated variables inherent to com-
plex and natural tasks, we employed a GLM. This model allowed us to
quantitatively assess the influence of distinct predictors on neural responses,
effectively capturing neurophysiological responses while considering pre-
dictor correlations. Additionally, extensive brain region sampling, involving
data from over 1,000 electrodes across 20 participants, provided comprehen-
sive coverage of neural responses during each task step.

The task initially involved recognizing whether a tile was novel or familiar,
reflecting non-associative recognition memory. Strong neural responses sig-
naling both novelty and familiarity were observed, particularly in areas like
the lateral orbitofrontal cortex, the pars opercularis, and the medial temporal
lobe. These responses were not content-specific, emphasizing the rarity of
responses sharply tuned to specific sensory features in memory formation.

Following the first tile presentation, participants made internal predictions
about whether they remembered the pair’s location, influencing their subse-
quent click decisions. Neural responses notably reflected these predictions
and the internal memory strength estimates or confidence levels. Even be-
fore the second tile revelation, significant neural differences between match
and mismatch trials emerged. Transient and sustained responses were ob-
served, potentially signifying sudden realizations, high confidence, and ac-
tive retrieval processes. These findings emphasize the role of the hippocam-
pus, medial temporal lobe, and other regions like the lateral orbitofrontal
cortex in working memory.

5.1.3 A Hebbian attractor can predict human behavior

Building on previous research [43, 45, 82, 120], we provided a proof-of-
principle demonstration showcasing the ability of a simple instantiation of
such a model to qualitatively replicate human behavioral and neural re-
sponses in a complex memory task. Through a series of performance evalu-
ators mirroring human behavior, our model not only replicated the pattern
of increased clicks per tile with board size but also revealed prolonged re-
action times during mismatch trials compared to match trials. Importantly,
we introduced metrics based on unit activations to delve into the model’s
inner workings. These metrics, including an overall maximum energy re-
flecting memory for recently seen tiles and a confidence metric mirroring
neural responses, provided further insights into the cognitive processes un-
derpinning the task.

The implications of our work extend beyond the immediate findings, as this
basic neural network architecture can be seamlessly integrated with visual
neural networks, opening avenues to investigate the representation of visual
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signals in working memory further. Moreover, the adaptability of our model
allows for its extension to more intricate tasks, involving multi-way associ-
ations and dynamic environmental changes over time. The comprehensive
analysis of human behavior also yielded valuable insights, highlighting the
interplay between memory load, reaction times, and eye movements in a
naturalistic setting.

These observations collectively represent initial steps towards advancing our
understanding of the intricate interactions involved in the formation of nat-
ural memory events. By bridging the gap between computational modeling
and real-world memory tasks, this thesis contributes to the broader field of
memory research and sets the stage for further exploration into the com-
plexities of memory encoding and retrieval mechanisms.

5.2 Future Work

The work presented in this thesis can be extended along different axes. For
one, it would be interesting to explore how the same architecture could
predict the first click selection from human behavior.

Another direction in which this work could be extended is the implementa-
tion of a visual/spatial backbone that would substitute the simple encoding
of the image label and the tile position we analyzed in this work. For exam-
ple, the number of units in the model could be scaled to match the size of
a selected layer in a deep neural network, effectively allowing the model to
memorize feature associations between positional and visual information.
This line of work could be complemented by additional behavioral stud-
ies, that could include controlled similarity between images, or different
arrangements of the tiles.

Moreover, the model could be tested on variations of the task we presented,
including different grid configurations to study positional effects or tile-
swapping to test the robustness of the model to noise. Additionally, this
line of work could be extended by testing the model on different tasks, e.g.
delayed match to sample or recall of past seen objects given partial informa-
tion.

Lastly, it would be interesting to explore more behavioral metrics that could
give interesting insights into the patients’ and model’s behavior. As an ex-
ample, primacy and recency effects have not been studied in this work and
could add an interesting contribution to finding differences or similarities
between the patients and the model.
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Appendix A

Algorithms

1 n ← number of units
2

3 t ← 0
4 M(t) ← rand(0,1)n×n
5 h(t) ← [0]n
6

7 function update_memory(x, steps)
8

9 while t < t+steps
10 h(t+1) ← σ(N(x + h(t)·M(t)))
11 M(t+1) ← λ·M(t) + η·h(t+1)·M(t)
12 t ← t+1
13 end while
14

15 return h(t)
16

17 end function

Algorithm A.1: Algorithm for updating the memory model as explained in Section 3.2.
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1 p ← number of tiles
2 l ← number of labels
3

4 steps ← 10
5

6 function learn(memory, position, label)
7

8 xp ← [-1]p
9 xl ← [-1]l

10

11 xp[position] ← 1
12 xl[label] ← 1
13 x ← [xp, xl]
14

15 memory.update_memory(x, steps)
16

17 end function

Algorithm A.2: Algorithm for the learning regime explained in Section 3.2.2.

1 p ← number of tiles
2 l ← number of labels
3

4 steps ← 10
5

6 function infer(memory, available, label)
7

8 xp ← [-1]p
9 xl ← [0]l

10

11 xp[available] ← 0
12 xl[label] ← 1
13 x ← [xp, xl]
14

15 memory.update_memory(x, steps)
16

17 i ← argmax(memory.p[available])
18 return i
19

20 end function

Algorithm A.3: Algorithm for the inference regime explained in Section 3.2.2.
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Appendix B

Frequencies of clicks per tile position
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B. Frequencies of clicks per tile position

Human Behavioral Data Random  Model Data

Figure B.1: Frequencies of clicks per tile position in match trials. Each row refers to one
board size (3x3 on the top row to 7x7 on the bottom row). The left column shows the data
from the human experiments. The right column shows the data from a random model.
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Human Behavioral Data Random  Model Data

Figure B.2: Frequencies of clicks per tile position in mismatch trials. Each row refers to
one board size (3x3 on the top row to 7x7 on the bottom row). The left column shows the data
from the human experiments. The right column shows the data from a random model.
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Human Behavioral Data Random  Model Data

Figure B.3: Difference in frequencies of clicks per tile position between match vs mismatch
trials. Each row refers to one board size (3x3 on the top row to 7x7 on the bottom row). The
left column shows the data from the human experiments. The right column shows the data from
a random model. Positive values indicate a higher frequency of mismatches, negative values
indicate a higher frequency of matches.
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[95] Saskia Haegens, Verónica Nácher, Rogelio Luna, Ranulfo Romo, and
Ole Jensen. α-oscillations in the monkey sensorimotor network influ-
ence discrimination performance by rhythmical inhibition of neuronal
spiking. Proceedings of the National Academy of Sciences, 108(48):19377–
19382, 2011.

[96] Eelke Spaak, Mathilde Bonnefond, Alexander Maier, David A
Leopold, and Ole Jensen. Layer-specific entrainment of gamma-band
neural activity by the alpha rhythm in monkey visual cortex. Current
biology, 22(24):2313–2318, 2012.

[97] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross
Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zit-
nick, and Piotr Dollár. Microsoft coco: Common objects in context,
2015.

[98] David H. Brainard. The psychophysics toolbox. Spatial Vi-
sion, 10(4):433 – 436, 1997. doi: https://doi.org/10.1163/
156856897X00357. URL https://brill.com/view/journals/
sv/10/4/article-p433_15.xml.

[99] Denis G. Pelli. The videotoolbox software for visual psy-
chophysics: transforming numbers into movies. Spatial Vi-
sion, 10(4):437 – 442, 1997. doi: https://doi.org/10.1163/
156856897X00366. URL https://brill.com/view/journals/
sv/10/4/article-p437_16.xml.

[100] Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z. Leibo, and
Catalin Ionescu. Using fast weights to attend to the recent past, 2016.

[101] Itzhak Fried, Ueli Rutishauser, Moran Cerf, and Gabriel Kreiman.
Single Neuron Studies of the Human Brain: Probing Cognition. The
MIT Press, 07 2014. ISBN 9780262027205. doi: 10.7551/
mitpress/9780262027205.001.0001. URL https://doi.org/10.
7551/mitpress/9780262027205.001.0001.

[102] Rahul Desikan, Florent Ségonne, Bruce Fischl, Brian Quinn, Brad-
ford Dickerson, Deborah Blacker, Randy Buckner, Anders Dale, Ralph
Maguire, Bradley Hyman, Marilyn Albert, and Ronald Killiany. An

58

https://brill.com/view/journals/sv/10/4/article-p433_15.xml
https://brill.com/view/journals/sv/10/4/article-p433_15.xml
https://brill.com/view/journals/sv/10/4/article-p437_16.xml
https://brill.com/view/journals/sv/10/4/article-p437_16.xml
https://doi.org/10.7551/mitpress/9780262027205.001.0001
https://doi.org/10.7551/mitpress/9780262027205.001.0001


Bibliography

automated labeling system for subdiving the human cerebral cortex
on mri scans into gyral based regions of interest. NeuroImage, 31:968–
80, 08 2006. doi: 10.1016/j.neuroimage.2006.01.021.

[103] David M. Groppe, Stephan Bickel, Andrew R. Dykstra, Xiuyuan
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