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ABSTRACT

We present a new perspective on bridging the generalization gap between bio-
logical and computer vision—mimicking the human visual diet. While com-
puter vision models rely on internet-scraped datasets, humans learn from lim-
ited 3D scenes under diverse real-world transformations with objects in natural
context. Our results demonstrate that incorporating variations and contextual
cues ubiquitous in the human visual training data (visual diet) significantly im-
proves generalization to real-world transformations such as lighting, viewpoint,
and material changes. This improvement also extends to generalizing from syn-
thetic to real-world data—all models trained with a human-like visual diet out-
perform specialized architectures by large margins when tested on natural im-
age data. These experiments are enabled by our two key contributions: a novel
dataset capturing scene context and diverse real-world transformations to mimic
the human visual diet, and a transformer model tailored to leverage these as-
pects of the human visual diet. All data and source code can be accessed at
https://github.com/Spandan-Madan/human_visual_diet.

1 MAIN

Biological vision generalizes effortlessly across real-world transformations including changes in
lighting, texture, and viewpoint. In contrast, visual recognition models are well known to fail at
generalizing across real-world transformations including 2D rotations and shifts [1, 2], changes
in lighting [3, 4, 5], object viewpoints [6, 7, 8, 3, 9], and color changes [10, 11], among others.
The dominant narrative guiding recent approaches to bridge the generalization gap is to improve
how machines process the data provided to them. Using large-scale internet-scraped datasets as
benchmarks, modern approaches have attempted to improve pre-processing through data augmen-
tation [12, 13, 14], generative modeling [15, 16], extracting features better suited for generaliza-
tion [17, 18, 19, 20, 21, 22], proposing specialized architectures optimized for domain generaliza-
tion [23, 24, 25, 26, 27, 28, 29], or using specialized models to detect out-of-distribution (OOD)
samples to process them separately [30, 31, 32, 33], among others. However, despite unprecedented
progress in these closely related fields of domain adaptation, domain generalization, and out-of-
distribution detection, human-like generalization remains an unsolved problem.

In this article, we present an alternative perspective on addressing this generalization gap inspired by
how humans and other animals learn—instead of focusing on differences in how data are processed,
we focus on the fundamental differences in the data, i.e., the visual diet of humans and machines. It
is well documented that data fed during training can have profound impacts on the behaviour of both
biological [34, 35, 36, 37, 38, 39, 40] and computer vision [41, 9, 3, 42]. Here, we investigate how
generalization behaviour of visual recognition models changes as they are trained with a human-like
visual diet, as opposed to internet-scraped datasets which are currently at the heart of most modern
computer vision models.
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Figure 1: Mimicking and exploiting the human visual diet. (a) Comparing human and machine
visual diets: The desk in the 3D room is viewed under a variety of real-world transformations which
are essential components of the human visual diet. Furthermore, objects are always seen in context
of their surroundings. In contrast, sample images of internet-scraped desks which constitute the
machine visual diet do not contain these real-world transformations, or scene context. (b) Mimicking
the human visual diet by introducing disentangled lighting, material, and viewpoint changes to a 3D
scene where objects are shown in context. (c) Exploiting the human visual diet by using a two-
stream architecture which reasons over both target object and its surrounding scene context.

Figure 1(a) highlights two major differences between the typical human and machine visual di-
ets. First, children learn from the physical space they occupy—a few 3D scenes and objects while
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Figure 2: Datasets with real-world transformations. (a) Sample images from the Human Vi-
sual Diet dataset: We created 15 photo-realistic domains with three, disentangled real-world
transformations—lighting, material, and viewpoint changes. Each 3D scene was created by re-
constructing an existing ScanNet [43] scene using the OpenRooms framework [44], followed by
introduction of controlled changes in scene parameters before rendering these images. (b) Sample
images from the Semantic-iLab dataset: We modify the existing iLab dataset [45] by augmenting
images with changes in lighting and material. These changes are achieved by modifying the white
balance and using AdaIN [46] based style transfer, respectively.

sampling densely from their surroundings under diverse real-world transformations. This includes
viewing the same room from different viewpoints, under different lighting over the day, natural oc-
clusions due to the room’s layout, and changes in object textures. Second, humans rarely see objects
in complete isolation but rather encounter objects in the context of their surroundings. In contrast,
popular internet scraped datasets like ImageNet [47] and CIFAR [48] contain sparsely sampled in-
formation (∼ 1 photograph) from a large number of scenes. Each image is a single snapshot into
the information available in the original scene, and data augmentation methods like 2D rotations
and crops do not reflect the complex real-world transformations seen by the human visual system.
Furthermore, these images often contain objects with minimal scene context and most of the image



is occupied by single objects placed in the center. For brevity, we refer to these as differences in
transformational diversity and scene context, respectively.

Our main finding is that mimicking and leveraging a human-like visual diet enables better gener-
alization, and models trained with such a diet outperform specialized architectures trained without
transformational diversity and scene context. The experiments in this work are enabled by two key
technical contributions. First, we introduce a new Human Visual Diet (HVD) dataset, which mod-
els both transformational diversity and scene context to better mimick data seen by the human visual
system. Figure 2 showcases how HVD was created. Second, we propose a new model to lever-
age the visual diet presented in HVD, as existing recognition models are not designed to exploit a
human-like diet. We call this model the Human Diet Network (HDNet). As shown in Fig. 1(c),
HDNet uses a two-stream architecture where one stream operates on the target object, while the
other stream operates on the scene context to jointly reason over target and context to perform vi-
sual recognition. HDNet also utilizes transformational diversity by employing a contrastive loss
over real-world transformations in the form of lighting, material, and viewpoint changes (Section
4). With these findings, we present compelling evidence for the field of computer vision to move
towards biologically inspired, diverse data which more accurately model the training data seen by
human vision.

2 RESULTS

We evaluated the utility of mimicking the human visual diet in improving generalization across real-
world transformations in the form of lighting, material and viewpoint changes. First, we evaluated
the generalization capabilities of standard architectures trained with data simulating the visual diet
commonly used in computer vision—consisting of large-scale, internet-scraped data with low real-
world transformational diversity and minimal scene context (Sec. 2.1). Then, we confirmed that
incorporating and utilizing these two hallmarks of the human visual diet (real-world transforma-
tional diversity and scene context) significantly improves generalization (Sec. 2.2). We also con-
firmed that this approach outperforms specialized domain generalization architectures trained with
alternatives like traditional data augmentation methods, and specialized GAN-based augmentation
methods (Sec. 2.3). Finally, as a real litmus test for our findings, we demonstrated that utilizing a
human-like visual diet improves generalization from synthetic training data to real-world, natural
image data (Sec. 2.4).

These experiments are enabled by two datasets containing real-world transformations—the human
visual diet (HVD) dataset which is introduced here, and the Semantic-iLab dataset which we created
by modifying the multi-view iLab dataset [45]. Each dataset was created to consist of 15 domains
with disjoint real-world transformations in the form of lighting, material and viewpoint changes (5
domains per transformation). Sample images from these datasets are shown in Fig. 2, and Supple-
mentary Fig. Sup1, Fig. Sup2 and Fig. Sup3. For instance, the 5 material domains in HVD were
created by starting with 250 object materials and splitting them into 5 non-overlapping sets of 50
each. For each material domain, these 50 materials were randomly assigned to scene objects, and
images were rendered. This procedure ensures that every material shows up in only one particular
domain while still ensuring high material diversity across scenes. For every transformation, one do-
main was held out for testing (e.g., out-of-distribution (OOD) Materials), and never used for training
any model. Data diversity is defined as the number of domains the training data is sampled from
(ranging from 1 to 4). A similar protocol was used to create disjoint domains and study generaliza-
tion across lighting and viewpoint changes in the HVD dataset. Experiments with the Semantic-iLab
dataset also followed the same protocol as well—15 domains in all with 5 domains per transforma-
tion, and models trained with 1, 2, 3 or 4 domains with 1 held-out domain used for testing which
was never used for training (Sec. 4).

2.1 MODELS TRAINED WITHOUT HUMAN-LIKE VISUAL DIET STRUGGLE TO GENERALIZE
ACROSS REAL-WORLD TRANSFORMATIONS

We simulated the typical visual diet used in many computer vision studies consisting of large-scale,
internet-scraped datasets by training visual recognition models with low real-world transformational
diversity and minimal scene context. Specifically, for each type of transformation (lighting, mate-
rials, and viewpoints), models were trained with only 1 domain and then tested on the held-out test
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Figure 3: Human Visual Diet leads to significantly improved generalization across real-world
transformations.((a) Existing models struggle to generalize across real-world transformations, es-
pecially material and viewpoint changes. This result holds for both HVD and Semantic-iLab
datasets. (b) Increasing real-world transformational diversity leads to a significant increase in gen-
eralization performance for all transformations (lighting, viewpoint and materials) for both datasets.
(c) HDNet leverages scene context resulting in substantially better generalization than seminal do-
main generalization architectures like ERM [49], IRM [25]. HDNet is designed to incorporate scene
context into visual recognition, by using a two-stream architecture to reason over the target object
and scene context simultaneously. In contrast, above mentioned state-of-the-art approaches for do-
main generalization are single stream architectures that do not leverage scene context. HDNet also
beats a suite of additional domain generalization baselines presented in Table 1. The closest per-
forming baseline is another context-aware [26] model (CRTNet[50]), and our proposed model beats
theses baselines for all three transformations with statistical significance. For all plots, statistical sig-
nificance is evaluated using a two-sample t-test, and an ∗ indicates a p-value lower than the threshold
of 0.05. See methods for additional details.



domain with the corresponding transformation. Minimal scene context was simulated by training
on cropped images showing only the target object as is common in visual recognition datasets like
ImageNet [47]. All models presented below were pre-trained on ImageNet.

We evaluated how well a ResNet18 [51] trained with one lighting domain and minimal context
could generalize to the held-out, unseen lighting domain. We similarly evaluated how well a ResNet
could generalize across different material domains, or viewpoint domains. For HVD, Fig. 3(a)
shows that ResNet generalized better across lighting changes than material changes (two-sided t-
test, p < 10−5) or viewpoint changes (two-sided t-test, p < 10−6). These results show that there
is ample room for improvement for models trained with a visual diet typical in computer vision,
especially when tested on unseen material and viewpoint transformations. Similar conclusions can
also be drawn for DenseNet [52] and ViT [53] architectures.

We also confirmed that the above findings extend to the natural image Semantic-iLab dataset
(Fig. 3(b)). ResNet generalized better across lighting changes than material changes (two-sided
t-test, p < 10−6) or viewpoint changes (two-sided t-test, p < 10−6). In the Semantic-iLab dataset,
the degree of generalization for material and viewpoints were particularly low. The same conclu-
sions held true for DenseNet and ViT architectures as well.

The generalization deficits were even more striking for the Semantic-iLab dataset compared to the
HVD dataset. One potential explanation for this is that unlike the highly photorealistic HVD dataset
which was rendered with complete control over lighting and material, Semantic-iLab was created by
introducing approximate light and material changes to images in the iLab [45] dataset using white
balance modifications and style transfer which result in stark changes across domains (see Sec. 4 for
details). In sum, state-of-the-art computer vision architectures trained with minimal transformational
diversity show only moderate generalization across real-world object transformations, especially for
material and viewpoint changes.

2.2 A HUMAN-LIKE VISUAL DIET IMPROVES GENERALIZATION

Below we present evidence in support of our main hypothesis—mimicking and utilizing a human-
like visual diet improves this generalization behavior. Specifically, we study two aspects of the hu-
man visual diet—Real-World Transformational Diversity (RWTD) and Scene Context, as presented
in Fig. 1. The impact of these two factors are reported in Sec. 2.2.1 and Sec. 2.2.2 respectively.

2.2.1 REAL-WORD TRANSFORMATIONAL DIVERSITY IMPROVES GENERALIZATION

We evaluated the effect of increasing transformational diversity on generalization by ResNet. Real-
World Transformational Diversity (RWTD) shown to the model during training is defined by the
number of domains from which the training dataset was sampled. For each transformation (lighting,
material, or viewpoint), there was one fixed testing domain which stayed constant across all models.
The training dataset was always of a fixed size, but the training images were sampled from 1, 2, 3 or
4 domains (corresponding to 20%, 40%, 60%, and 80% data diversity). This procedure resulted in
different levels of transformational diversity shown during training while maintaining a fixed dataset
size, thus disentangling the role of transformational diversity and dataset size (Sec. 4).

Performance monotonically increased with data diversity in the HVD dataset for all three transfor-
mations (Fig. 3(c): lighting: 0.85 to 0.94, p < 10−6; material: 0.64 to 0.89, p < 10−5; viewpoint:
0.63 to 0.73, p < 10−6). The improvement in generalization accuracy with data diversity was sig-
nificantly greater for unseen materials than for unseen lighting (p < 10−4) and unseen viewpoints
(p < 10−4). The smaller increase for unseen lighting changes is expected as the performance was
already high for this transformation with low data diversity which left less room for improvement.
For unseen viewpoints, these experiments suggest that despite a statistically significant improve-
ment, increasing data diversity is not a sufficient solution for solving generalization, consistent with
past work investigating invariance to 3D viewpoint changes [3, 54, 55, 56].

To ensure our findings also extend to natural image data, we also report results with the Semantic-
iLab dataset in Fig. 3(d). Increasing real-world transformational diversity improved generalization
also for the Semantic-iLab dataset: lighting: 0.93 to 1.0, p < 10−3; materials: 0.36 to 0.96, p <
10−4; viewpoint: 0.46 to 0.75, p < 10−7. As with the HVD dataset, improvement in generalization



was higher for unseen materials than for unseen lighting (p < 10−3) and unseen viewpoints (p <
10−6).

The results across both datasets consistently show that generalization across real-world transforma-
tions increases with transformational diversity. With sufficient diversity, generalization to unseen
lighting and materials reached almost ceiling levels. However, despite improvement, unseen view-
points remain an open challenge.

2.2.2 LEVERAGING SCENE CONTEXT SUBSTANTIALLY IMPROVES GENERALIZATION TO
OOD REAL-WORLD TRANSFORMATIONS.

Next, we evaluated the impact of incorporating another hallmark of the human visual diet—scene
context. As shown in the schematic in Fig. 1(c), our proposed architecture, HDNet, uses a two-
stream architecture that reasons over both the target object and the scene context to classify images.
One stream operates on a crop around the target object, while the second stream operates on the
full image containing the scene context. HDNet also performs an additional contrastive loss across
real-world transformations in the form of lighting, materials, and viewpoints. While contrastive loss
has become a staple in modern vision models, this is the first implementation applying contrastive
loss over real-world transformations including lighting, materials and 3D viewpoint changes. These
features allow HDNet to exploit both aspects of the human visual diet modeled in this study—
transformational diversity and scene context (for additional details on the architecture, see Sec. 4).

We compared results for multiple state-of-the-art algorithms including a suite of domain generaliza-
tion methods, a recent context-aware model (CRTNet [50]), and a FasterRCNN model modified to
perform visual recognition with our proposed HDNet which utilizes the human-like visual diet. For
each real-world transformation, all models were trained with 80% Transformational Diversity, i.e.,
4 training domains, and tested on the corresponding held-out test domain. Note that these domain
generalization baselines are highly-specialized methodologies with novel engineering combining
architectural modifications, optimization strategies, and model selection criteria optimized for the
task of domain generalization. In contrast, HDNet is a general purpose architecture meant for visual
recognition designed to leverage a human-like visual diet.

Our hypothesis is that the benefits from leveraging the correct diet can outperform the gains from
these specialized domain generalization methodologies. Results investigating this hypothesis are
presented in Fig. 3(e) and Table 1. As shown in Fig. 3(e), HDNet beat ERM [57] across all three real-
world transformations with an accuracies of 0.98, 0.94, 0.83 compared to ERM’s 0.83, 0.75, 0.79 on
unseen lighting, material, and viewpoint changes respectively. Similarly, HDNet also beat IRM [25])
which achieves lower Top-1 accuracies of 0.83, 0.74, 0.79 on unseen lighting, material, and view-
point changes respectively. The best performing baseline was found to be another context-aware
model—CRTNET [50]) which is also reported in Fig. 3(e). Our proposed HDNet model beat
this CRTNet baseline with statistical significance on all three real-world transformations. For un-
seen lighting, HDNet beats CRTNet with an accuracy of 0.98 compared to 0.93 (two-sided t-test,
p < 0.05). For unseen material changes, HDNet achieves 0.94 which is higher than HDNet’s Top-1
accuracy of 0.76 (two-sided t-test, p < 0.05). Similarly, for unseen viewpoint changes, HDNet
beats MTL with an accuracy of 0.83 compared to 0.79 (two-sided t-test, p < 0.05). In summary,
both context-aware models (our proposed HDNet and existing CRTNet) outperformed specialized
domain generalization approaches on all real-world transformations, and our proposed HDNet also
outperformed the closest baseline (CRTNet) with statistical significance.

We also compared HDNet against a suite of additional baselines as reported in Table 1. This includes
additional domain generalization benchmarks, and a modified FasterRCNN [58] designed to do
visual recognition [50]. Findings are consistent across all architectures—HDNet, which utilizes
scene context, outperformed all benchmarks across all real-world transformations including lighting,
material, and viewpoint changes.

Given the success of HDNet, we asked whether implementing a two-stream separation of target and
context would also improve performance for other architectures. We modified ResNet18 [51] and
ViT [53] to leverage scene context in the same way as HDNet. For ResNet, a two-stream version
was made where each stream is a ResNet backbone. One stream operates on the target, and the other
one on the scene context. Output features from each stream were concatenated, and passed through
a fully connected layer for classification as shown in Fig. 1(c). The two-stream architecture for ViT



Real-World
Transformation

AND
Mask
[23]

CAD
[29]

COR
AL
[24]

MTL
[49]

Self
Reg
[26]

VREx
[28]

Faster
RCNN

[58]

HDNet
(ours)

Light 0.82 0.80 0.81 0.81 0.75 0.83 0.95 0.98
Materials 0.75 0.75 0.75 0.74 0.74 0.75 0.78 0.94

Viewpoints 0.75 0.77 0.79 0.79 0.76 0.78 0.65 0.83

Table 1: Contextual information improves generalization across OOD transformations. We
present additional baselines comparing HDNet to several domain generalization methods that do
not use contextual cues, building on results presented in Fig. 3. All architectures were trained with
transformational diversity of 80% and tested on the held-out remaining 20% of the corresponding
semantic shift. HDNet beats all baselines by a large margin for all semantic shifts. HDNet also beat a
version of FasterRCNN modified to do object recognition, which was provided with contextual cues.
The best performing model (HDNet) has been shown in boldface for all real-world transformations.

Real-World
Transformation

Architecture 1 Stream 2 Stream

Lighting

ResNet 0.85± 0.004 0.95± 0.009∗

ViT 0.91± 0.003 0.97± 0.007∗

HDNet (Ours) - 0.98± 0.001

Materials

ResNet 0.64± 0.03 0.83± 0.008∗

ViT 0.78± 0.01 0.92± 0.003∗

HDNet (Ours) - 0.94± 0.002

Viewpoint

ResNet 0.63± 0.02 0.72± 0.009∗

ViT 0.77± 0.01 0.83± 0.001∗

HDNet (Ours) - 0.83± 0.006

Table 2: Adding scene context improves performance independent of architecture. Following
the design of HDNet shown in Fig. 1(c), we modified standard architectures to have two streams—
one operating on the target, and the other one on the contextual information. Representations for
both streams are then concatenated and passed through a classification layer as shown in Fig. 1(c).
We train the standard one-stream and these modified two-stream architectures on HVD, and report
the average Top-1 accuracy for all models . We also report error bars, which measures the variance in
accuracies over categories. Both the ResNet and the ViT architectures lead to a large improvement
in generalization for all semantic shifts when modified to leverage scene context. To ensure we
study impact of context independent of data diversity, all models were trained on 4 domains, i.e.,
80% transformational diversity and tested on the held out domain. Best performing model (HDNet)
has been shown in boldface for all real-world transformations. A ∗ refers to statistically significant
improvement in performance when using a two-stream architecture as compared to a one-stream
architecture (two-sided t-test, p < 0.05).

was analogous. In contrast, the one-stream architecture did not use scene context and operated on
the target object alone (see Sec. 4 for additional details).

The two-stream architectures consistently led to improved performance with statistical significance
(two-sided t test, p < 0.05), as shown in Table 2. The increase in performance is due to the addition
of contextual information and not to the two-stream architecture per se. Indeed, when both streams
were trained with the target information, there was a decrease in performance (Table. Sup2).

To further understand the role of contextual information on visual recognition, we evaluated the
impact of blurring the scene context while keeping the target intact [59]. For each real-world trans-
formation, we trained and tested models with increasing levels of Gaussian blurring applied to the
scene context. Blurring was applied to the images in the form of a Gaussian kernel filter, with the
kernel standard deviation (σ) set to 0, 25, or 125. The cropped image of the target object was passed
to the second stream of the network without blurring (Supplementary Sec. C). There was a drop in
performance with context blurring for all three real-world transformations(Table 3).



Semantic
Shift

Full
Context
(σ = 0)

Less
Context
(σ = 25)

Least
Context

(σ = 125)
Lighting 0.98± 0.001 0.96± 0.001 0.94± 0.001
Material 0.94± 0.002 0.88± 0.01 0.83± 0.006

Viewpoint 0.83± 0.006 0.77± 0.01 0.76± 0.01

Table 3: Blurring scene context worsens generalization performance. We trained and tested
HDNet with the scene context in HVD images blurred using a Gaussian blur. Here, σ is the standard
deviation for the gaussian kernel applied to the image as a filter. Thus, blurring increases with σ.
We applied three values for σ—0,25, and 125. For brevity, numbers less than 0.001 are reported as
0.001.

2.3 ALTERNATIVES TO MIMICKING THE HUMAN-LIKE VISUAL DIET ARE NOT EQUALLY
ADVANTAGEOUS

We asked whether similar performance gains to the ones achieved by using a human-like visual
diet could be obtained by alternate strategies that can be implemented on existing internet-scraped
datasets. Achieving comparable performance using internet-scraped datasets would bypass the labo-
rious efforts in collecting data and adequate controls. We investigated three such approaches which
have been popularly used in the literature—data augmentation, using generative models to modify
existing images, and increasing diversity on more easily controllable real-world transformations.

2.3.1 TRADITIONAL DATA AUGMENTATION DOES NOT PROVIDE SIMILAR PERFORMANCE TO
TRUE DIVERSITY WITH REAL-WORLD TRANSFORMATIONS.

Here we investigated how real-world transformational diversity (RWTD) compares to traditional
data augmentation strategies including 2D rotations, scaling, and changes in contrast. Models trained
with a visual diet consisting of 80% RWTD were reported in Fig.3(e). We compared these with
models trained with a visual diet consisting of 20% RWTD + traditional augmentation. As before,
all models were tested on unseen lighting, material, and viewpoint changes.

Note that the number of training images was kept constant across all training scenarios to evaluate the
quality of the training images rather than their quantity. Training set size equalization was achieved
by sampling fewer images per domain in the 80% RTWD training set. For instance, for HVD
experiments with unseen viewpoints we sampled 15, 000 training images per viewpoint domain to
construct the training set with 20% RWTD + Data Augmentations. In comparison, we sampled only
3, 750 per viewpoint domain to construct the 80% RWTD training set. Thus, the initial sizes of the
80%RWTD and the 20%RWTD+Data Augmentation training sets was identical. However, due to
data augmentations being stochastic the total number of unique images shown to models trained with
data augmentations was much larger. Assuming a unique image was created by data augmentation
in every epoch, over 50 epochs the dataset size would be 50 times larger with data augmentations.
Additional details on dataset construction can be found in the methods in Sec. 4.

HDNet trained on HVD with 80% RWTD outperformed the same architecture trained with 20%
RWTD+traditional data augmentation for lighting changes (two-sided t test, p < 10−4), material
changes (two-sided t test, p < 10−5), and viewpoint changes (two-sided t test, p < 10−6) (Fig. 4(a)).
Similar conclusions were reached for the Semantic-iLab dataset. A ResNet model trained with 80%
RWTD outperformed the same architecture trained with 20% RWTD+traditional data augmentation
for lighting changes (two-sided t test, p < 10−4), material changes (two-sided t test, p < 10−7), and
viewpoint changes (two-sided t test, p < 10−5) (Fig. 4(b)).

One explanation for this finding could be that traditional data augmentation largely involves 2D
affine operations (crops, rotations) or image-processing based methods (contrast, solarize) which
are not necessarily representative of real-world transformations. In summary, the positive impact of
a visual diet consisting of diverse lighting, material, and viewpoint changes (real-world transforma-
tional diversity) cannot be replicated by using traditional data augmentation applied to the dataset
after data collection—diversity must be ensured at the data collection level.
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Real-world transformational diversity outperforms Data augmentation
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Figure 4: Data post-processing does not match gains from collecting data mimicking the human
visual diet. (a) Models trained 80% real-world transformational diversity (RWTD) significantly
outperform modesl trained with 20% along with traditional data augmentation. This is true for all
transformations (lighting, material, and viewpoint) across both HVD and Semantic-iLab datasets.
Number of images is held constant in these experiments. (b) Sample images from style transfer do-
mains created using AdaIn [46], alongside accuracies of models trained with these domains. Mod-
els trained on style transfer domains generalize significantly worse than those trained with material
diversity. (c) Generalization from one transformation to another (asymmetric diversity) does not
help as much as training with the correct transformation—best generalization to unseen materials is
achieved when material diversity is added to the training data. For generalizing to unseen light and
viewpoint changes as well, training with the corresponding real-world diversity helps the most.



2.3.2 REAL-WORLD TRANSFORMATIONS OUTPERFORM MODIFYING A LOW DIVERSITY
SAMPLE WITH GENERATIVE MODELS.

Several existing works rely on increasing data diversity using AdaIn-based methods [46, 60]. These
style transfer methods change the colors in the image while retaining object boundaries, but do not
modify materials explicitly as done in our HVD dataset. We evaluated how well models perform
if diversity is increased using style transfer as opposed to material diversity. We started with one
material domain, and created four additional domains using style transfer. Sample images of style
transfer domains are shown in Fig. 4(c). Corresponding images from the HVD dataset with real-
world transformation in materials can be seen in Fig. 2(a). The total number of domains (and
images) created using style transfer was kept the same as the material domains in HVD. The only
difference in the training data was that instead of four additional material domains, we have four
additional style transfer domains. We compare models trained with these two different visual diets—
one consisting of four material domains, and the other consisting of four style transfer domains. All
models are then tested on the same held out OOD Materials domain.

Style transfer domains did not enable models to generalize to new materials as well as the material
shift domains presented in HVD (Fig. 4(d)). These experiments support the notion that in order to
build visual recognition models that can generalize to unseen materials, it is important to explicitly
increase diversity using additional materials at the time of training data collection. The impact
of diverse materials cannot be replicated by using style transfer to augment the dataset after data
collection.

2.3.3 IMPORTANCE OF DIVERSITY ON ALL REAL-WORLD TRANSFORMATIONS

Some real-world transformations are easier to capture than others. For instance, capturing light
changes during data collection might be significantly easier than collecting all possible room layouts,
or object viewpoints. Thus, it would be beneficial if training with one transformation (e.g., light
changes) can improve performance on a different transformation (e.g., viewpoint changes). We refer
to such a regime as assymetric diversity—as models are trained with one kind of diversity, and tested
on a different kind of diversity (Fig. 4(e),(f)).

In all cases, the best generalization performance was obtained when training and testing with the
same real-world transformation for both HVD (Fig. 4(e)) and Semantic-iLab datasets (Fig. 4(f)). In
most cases, there was a drop in performance of 10% or more when training in one transformation and
testing in with a different (assymetric) transformation. These experiments imply that to build models
that generalize well, it is important to collect training data with multiple real-world transformations.

2.4 MODELS TRAINED WITH A HUMAN-LIKE VISUAL DIET CAN GENERALIZE TO
REAL-WORLD IMAGES

As a litmus test for our findings, we investigated if models trained with a human-like visual diet can
generalize well to the natural images from the ScanNet dataset despite only being trained with syn-
thetic images from HVD. Fig. 5(a) shows paired testing and training data across these two datasets.
The test set is composed of natural images from the ScanNet dataset, while the training set con-
sists of only synthetic images from HVD. HVD images were created by 3D reconstructing ScanNet
scenes, and then rendering them under diverse lighting, material and viewpoint change as shown in
Fig. 5(a).

We made three adaptations for these experiments. Firstly, as both ScanNet and ImageNet contain
natural images and overlapping categories, we trained models from scratch to ensure pre-training
does not interfere with our results. Thus, these models never saw any real-world images, not even
ImageNet as they were not pretrained on those datasets. Secondly, we trained and tested models
on overlapping classes between HVD and ShapeNet. Finally, we used the LabelMe [61] software
to manually annotate a test set from ScanNet and training set for the HVD dataset using the same
procedure to make sure biases from the annotation procedure do not impact experiments.

Thus, all models were trained purely on synthetic data from HVD and tested on only real-world nat-
ural image data from ScanNet as shown in Fig. 5(a). While all the models that we tested performed
above chance levels when tested in the real-world ScanNet images, there were large performance
differences among models (Fig. 5b).
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Figure 5: Utility of the human visual diet in generalizing from synthetic to real-world, natu-
ral image data. (a) Sample synthetic images from the HVD dataset used for training the model,
and the corresponding real-world natural image from ScanNet used for testing. (b) Human Visual
Diet enables substantially better generalization from synthetic to natural image data. Our approach,
which mimics and effectively utilizes transformational diversity and scene context leads to better
performance than all other baselines.

Results on generalization to the real world are presented in Fig. 5. As can be seen, the best per-
forming model (IRM) trained without the human visual diet obtained classification performance of
0.51, while HDNet trained with transformational diversity and scene context performs substantially



better at 0.69. Despite being trained only on synthetic data and no pre-training on natural images,
HDNet generalizes well to the real world by leveraging attributes of the human visual diet. Our ap-
proach with the HVD dataset and HDNet, which mimics and utilizes two hallmarks of human visual
diet (real-world transformational diversity and scene context) beats all benchmarks with statistical
significance (p < 0.05). This evidence confirms that our findings on Semantic-iLab and the HVD
datasets also extend to real-world natural images from the ScanNet dataset.

3 DISCUSSION

Alleviating the generalization gap between biological and computer vision remains an open and
elusive problem. The past few years have seen unprecedented progress in improving generalization
in machine vision driven by how algorithms process images through cutting-edge architectures and
data augmentation techniques. Here, we present an alternative direction bringing together ideas from
vision sciences, computer graphics, and computer vision—mimicking the human visual diet.

There is a long history of studies showing that changing the visual diet alters the visual cor-
tex [35, 34]. Such developmental neuroscience studies include evaluating the consequences of
rearing animals in visual environments deprived of binocular vision [37], environmental direction-
ality [38], temporal contiguity [39], surface features [40], or faces [36], among others. Some studies
have also tried to quantitatively define the human visual diet [62]. In a similar vein, some computa-
tional works have also studied how the training data distribution (visual diet) impacts visual search
assymetries [63], and object recognition [41, 3]. Here, we combined ideas from biological and com-
puter vision and evaluated the impact of a human-like visual diet on the generalization behavior of
visual recognition models.

Through controlled analyses, we show that two hallmarks of human visual diet (transformational
diversity and scene context) provide significant improvements in generalization across real-world
transformations compared to existing popular approaches. These experiments are enabled by two
computational contributions introduced here—a dataset which mimics the human visual diet, and an
architecture which can leverage this visual diet.

As a first step in mimicking the human visual diet, we focus on two important aspects of this diet—
scene context and transformational diversity. There is a long history of work studying the role scene
context in human vision [64, 65, 66, 67, 68, 69, 59] and modeling contextual cues computation-
ally [67, 70, 59, 50]. Additinoally, recent work in machine learning has stressed the importance of
data diversity for generalization [3, 41]. These two aspects of the human visual diet are certainly
not exhaustive and multiple other features warrant future investigation, including depth information,
occlusions, and dynamic cues.

The concept of generalization is ill-defined and depends on the training and test distributions. Hu-
mans also struggle with generalization when image statistics change (e.g., consider humans trying
to read bar codes in the supermarket, learning to diagnose clinical images, or deciphering the shapes
of new galaxies). A laudable goal in computer vision is often to align humans and machines. Such
alignment takes the form of avoiding adversarial attacks that are imperceptible for humans but alter
machine-produced labels, enhancing computer vision function in the real world, or even recognition
challenges that would benefit from human-machine collaboration. Ensuring that the visual diets are
similar can help accelerate such alignment.

Advances in algorithms usually accompany progress in building better datasets. The introduction of
a two-stream architecture constitutes a reasonable first-order approach to capitalize on transforma-
tional diversity and contextual cues. At the same time, we expect that more powerful datasets will
incentivize the development of better algorithms that could also be in turn inspired and constrained
by biological vision.

4 METHODS

4.1 DATASETS MIMICKING ATTRIBUTES OF THE HUMAN VISUAL DIET

Several benchmarks have been proposed to study generalization in computer vision. On one hand,
we have datasets like ImageNet-P [71] and ImageNet-C [71], which introduce controlled synthetic



noise that can be quantified, but the introduced noise does not reflect real-world transformations.
On the other hand, there are domain generalization datasets like PACS [72], VLCS [73], Office-
Home [74], DomainNet [75], and Terra Incognita [4], among others. While these datasets do in-
clude transformations that exist in the real world, the distribution shift between domains in these
benchmarks cannot be quantified or disentangled into scene parameters. For instance in PACS [72],
it is unclear how the Photo → Cartoon domain shift differs from a Photo → Art shift. Furthermore,
all these datasets show objects with minimal context, as they are composed of crops centered around
objects. The proposed HVD dataset was designed to address these issues—it shows objects in con-
text, with controlled, disentangled real-world transformations. Below we introduce HVD, and also
modify an existing natural image dataset to partly mimick the human-like visual diet.

4.1.1 HUMAN VISUAL DIET (HVD) DATASET

We reconstructed 1,288 real-world scenes from the ScanNet dataset with the exact same 3D objects,
scene layouts, class distributions and camera parameters using the OpenRooms framework [44, 76].
With these scenes, we created 15 photo-realistic domains with 3 types of real-world transforma-
tions including—lighting, material, and viewpoint changes. Some sample images are provided in
Fig. 2(a). We rendered 19, 800 images for each domain, which results in 70, 000 object instances
from 13 indoor object categories. Across all domains, this amounts to roughly 300, 000 images and
1 million object instances. Below, we explain how different semantic shifts were created.

Material shift domains: We used 250 high quality, procedural materials from Adobe Substances
including different types of wood, fabrics, floor and wall tiles, and metals, among others. These were
split into sets of 50 materials each to create 5 different material domains (supplementary Fig. Sup2).
For each domain, its 50 materials were randomly assigned to scene objects. One domain was held
out for testing (OOD Materials), and never used for training any model.

Light shift domains: Outdoor lighting was controlled using 250 High Dynamic Range (HDR)
environment maps from the Laval Outdoor HDR Dataset [77] and OpenRooms, which were split
into 5 sets of 50 each (one set per domain). Disjoint sets of indoor lighting were created by splitting
the HSV color space into chunks of disjoint hue values. Each domain sampled indoor light color and
intensity from one chunk (supplementary Fig. Sup1). One domain was held out for testing (OOD
Light), and never used for training.

Viewpoint shift domains: Controlling object viewpoints presents a challenge as indoor objects are
seen across a variety of azimuth angles (i.e., side vs front) across 3D scenes. Thus, to create disjoint
viewpoint domains (supplementary Fig. Sup3) we chose to control the zenith angle by changing the
height at which the camera is focusing. Again, of the 5 domains, one was held out for testing (OOD
Viewpoints).

4.1.2 NATURAL IMAGE TEST SET FROM SCANNET

To create the real-world test dataset, we sampled images from the ScanNet dataset [43]. ScanNet
contains scenes captured using a moving camera from which frames can be extracted. We manually
compared ScanNet scenes with our reconstructions of these scenes using OpenRooms, and selected
3D scenes for which OpenRooms was successfully able to recreate all three—scene layout, camera
parameters, and geometry. As the video is continuous, nearby frames are highly similar. Therefore,
we subsampled one frame for every 100 frames in the video. These frames were then annotated
using LabelMe. To ensure a high quality test set, results are reported in the main paper on a subset
of 350 images which are not blurry and do not have significant clutter. However, here we report
numbers on a larger subset of 700 test images where we allow clutter and minor blurring so as to
achieve a bigger test set. These results are reported in supplemtary Sec. C. The same procedure
was also followed to hand-annotate 8, 000 training object instances from the HVD dataset to ensure
there is no spurious impact of the annotation procedure on the performance of models when tested
on ScanNet.
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Figure 6: Architecture overview for Human Diet Network(HDNet). (a) Modular steps carried out
by HDNet in context-aware object recognition. HDNet consists of 3 modules: feature extraction,
integration of context and target information, and confidence-modulated classification. HDNet takes
the cropped target object It and the entire context image Ic as inputs and extracts their respective
features. These feature maps are tokenized and information from the two streams is integrated over
multiple cross-attention layers. HDNet also estimates a confidence score p for recognition using
the target object features alone, which is used to modulate the contributions of Ft and Ft,c in the
final weighted prediction yp. (b) To help HDNet learn generic representations across domains, we
introduce contrastive learning on the context-modulated object representations Ft,c in the embedding
space. Target and context representations for objects of the same category are enforced to attract each
other, while those from different categories are enforced to repel. Pairs for contrastive learning are
generated using various material, lighting or viewpoint shifts (Sec. 4.1.1).

4.1.3 SEMANTIC-ILAB DATASET

To ensure our findings extend to natural images, we modified the iLab [45] dataset to create a natural
image dataset with controlled variations in Lighting, Material, and Viewpoint, as shown in Fig. 2
(b). We call this the Semantic-iLab dataset. The iLab dataset contains objects from 15 categories
placed on a turntable and photographed from varied viewpoints. A foreground detector was used to
extract a mask for the object in each image. Material variations were implemented using AdaIN [78]
based style transfer on these images and overlaying the style transferred image onto the object mask
in the original image. Lighting changes were implemented by modifying the white balance. Note
that unlike HVD, this dataset does not contain scene context. Additional details can be found in
supplementary Sec. B.

4.2 HUMAN DIET NETWORK (HDNET)

A schematic of the proposed HDNet is shown in Fig 6. We start with CRTNet as the backbone [50]
and introduce critical modification of contrastive learning described below to enable generalization
across semantic shifts.

4.2.1 FEATURE EXTRACTION IN CONTEXT-AWARE RECOGNITION USING A
CROSS-ATTENTION TRANSFORMER

The context-aware recognition model in [50] achieved superior performance in in-context object
recognition when the training and test data are from the same domain. Here, we used the same
backbone and briefly introduce the network architecture below (see [50] for implementation details).

Given the training dataset D = {xi, yi}ni=1, HDNet is presented with an image xi with multiple
objects and the bounding box for a single target object location. Ii,t is obtained by cropping the input
image xi to the bounding box whereas Ii,c covers the entire contextual area of the image xi. yi is the
ground truth class label for Ii,t. In this subsection, we focus on extracting context and target features
in the embedding space and omit the index i for simplicity. Inspired by the eccentricity dependence
of human vision, HDNet has one stream that processes only the target object (It, 224× 224), and a
second stream devoted to the periphery (Ic, 224× 224) which processes the contextual area.

The context stream is a transformer decoder, taking Ic as the query input and It as the key and value
inputs. The network integrates object and context information via hierarchical reasoning through a



stack of cross-attention layers in the transformer, extracts context-integrated feature maps Ft,c and
predicts class label probabilities yt,c within C classes.

A model that always relies on context can make mistakes under distribution shifts. Thus, to increase
robustness, HDNet makes a second prediction yt, using only the target object information alone.
A 2D CNN is used to extract feature maps Ft from It, and estimates the confidence p of this
prediction yt. Finally, HDNet computes a confidence-weighted average of yt and yt,c to get the
final prediction yp. If the model makes a confident prediction with the object only, it overrules the
context reasoning stage.

4.2.2 SUPERVISED CONTRASTIVE LEARNING FOR DOMAIN GENERALIZATION

Contrastive learning has benefited many applications in computer vision tasks (e.g., [79, 80, 81, 82,
26]). However, all these approaches require sampling positive and negative pairs from real-world
data. To curate positive and negative pairs, image and video augmentations operate in 2D image
planes or spatial-temporal domains in videos. Here we introduce a contrastive learning method on
3D transformations.

Our contastive learning framework builds on top of the supervised contrastive learning loss
[83]. Given the training dataset D = {xi, yi}ni=1, we randomly sample N data and label pairs
{xk, yk}Nk=1. The corresponding batch pairs used for constrative learning consist of 2N pairs
{x̃l, ỹl}2Nl=1, where x̃2k and x̃2k−1 are two views created with random semantic domain shifts of
xk(k = 1, ..., N) and ỹ2k = ỹ2k−1 = ỹk. Domain shifts are randomly selected from a set of HVD
domains specified during training. For example, if xk is from a material domain, x̃2k and x̃2k−1

could be images from the same 3D scene but with different materials. For brevity, we refer to a set
of N samples as a batch and the set of 2N domain-shifted samples as their multiviewed batch.

Within a multiviewed batch, let m ∈ M := {1, ..., 2N} be the index of an arbitrary domain shifted
sample. Let j(m) be the index of the other domain shifted samples originating from the same source
samples belonging to the same object category, also known as the positive. Then A(m) := M\{m}
refers to the rest of indices in M except for m itself. Hence, we can also define P (m) := {p ∈
A(m) : ỹp = ỹm} as the collection of indices of all positives in the multiviewed batch distinct from
m. |P (m)| is the cardinality. The supervised contrastive learning loss is:

Lcontrast =
∑
m∈M

Lm =
∑
m∈M

−1

|P (m)|
∑

p∈P (m)

log
exp(zm · zp/τ)∑

a∈A(m) exp(zm · za/τ)
(1)

Here, zm refers to the context-dependent object features Fm,t,c on x̃m after L2 normalization. The
design motivation is to encourage HDNet to attract the objects and their associated context from the
same category and repel the objects and irrelevant context from different categories.

As previous works have demonstrated the essential role of context in object recognition [50, 59],
contrastive learning on the context-modulated object representations enforces HDNet to learn
generic category-specific semantic representations across various domains. τ is a scalar temper-
ature value which we empirically set to 0.1.

Overall, HDNet is jointly trained end-to-end with two types of loss functions: first, given any input
xm consisting of image pairs Im,c and Im,t, HDNet learns to classify the target object using the
cross-entropy loss with the ground truth label ym; and second, contrastive learning is performed
with features Fm,t,c extracted from the context streams:

L = αLcontrast,c,t + Lclassi,t + Lclassi,p + Lclassi,c,t (2)

Hyperparameter α is set to 0.5 to balance the supervision from constrastive learning and the classifi-
cation loss. Supplementary Table Sup1 shows that the contrastive loss introduced in HDNet results
in improved performance across all real-world transformations.



4.3 EXPERIMENTAL DETAILS

4.3.1 BASELINE ARCHITECTURES

HDNet was compared against several baselines presented below. All models were trained on
NVIDIA Tesla V100 16G GPUs. Optimal hyper-parameters for benchmarks were identified using
random search, and all hyper-parameters are available in the supplement in Sec. E.

2D feed-forward object recognition networks: Previous works have tested popular object recog-
nition models in generalization tests [84, 85]. We include the same popular architectures ranging
from 2D-ConvNets to transformers: DenseNet [86], ResNet [51], and ViT [53]. These models do
not use context, and take the target object patch It as input.

Domain generalization methods: We also compare HDNet to an array of state-of-the-art domain
generalization methods (Table 1). These methods also use only the target object, and do not use
contextual information.

Context-aware recognition models: To compare against models which use scene context, we in-
clude CRTNet [50] and Faster R-CNN [58]. CRTNet fuses object and contextual information with
a cross-attention transformer to reason about the class label of the target object. We also compare
HDNet with a Faster R-CNN [58] model modified to perform recognition by replacing the region
proposal network with the ground truth location of the target object.

4.3.2 EVALUATION OF COMPUTATIONAL MODELS

Performance for all models is evaluated as the Top-1 classification accuracy. Error bars reported
on all figures refer to the variance of per-class accuracies of different models. For statistical test-
ing, p-values were calculated using a two-sample paired t-test on the per-category accuracies for
different models. The t-test checks for the null hypothesis that these two independent samples have
identical average (expected) values. For ScanNet, a t-test is not optimal due to the smaller number
of samples, and thus a Wilcoxon rank-sum test was employed for hypothesis testing as suggested in
past works [87, 88]. All statistical testing was conducting using the python package scipy, and the
threshold for statistical significance was set at 0.05.

DATA AND CODE AVAILABILITY STATEMENT

Source code and data are available at https://github.com/Spandan-Madan/human_
visual_diet.
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APPENDIX

A SAMPLE IMAGES FROM THE HVD DATASET

We present additional images from the HVD dataset. Each figure shows change in one scene pa-
rameter, while holding all others constant. In Fig. Sup1 we show images from two different light
domains. Note that the first three rows in Fig Sup1 show different indoor lighting conditions con-
trolled using indoor light color and intensity sampled from disjoint chunks of the HSV space. The
last two rows show different outdoor lighting settings created by changing the environment maps.
Similarly, Fig. Sup2 shows five different scenes from two training domains with a material shift.
Fig. Sup3 shows viewpoint shifted domains.

B ADDITIONAL DETAILS FOR THE CREATION OF THE SEMANTIC ILAB
DATASET

We show sample images from the Semantic iLab dataset in Fig. Sup4 created by modifying the
existing iLab [45] dataset. This is a multi-view dataset, and hence already contains viewpoint shifted
variations of the same objects. We modify the dataset to also contain material and light shifts. To
mimick light shift, we modified the white balance of the original images, as shown in Fig. Sup4(b).
For material shifts, we first run a foreground detector on these objects using Google’s Cloud Vision
API. We also run style transfer on these images using AdaIn [78]. Then, we overlay the style
transferred image on to the object mask on the original image to mimick material shifts. Note that
this is approximate, and does not model the physics of material transfer in the same way as our
rendered HVD dataset which is far more photorealistic, as shown in Fig. Sup2. Material shifted
Semantic iLab images are shown in Fig. Sup4(c). As the dataset is originally multi-view, we do
not need to generate new viewpoints and can use images of a different viewpoint from the original
dataset as shown in Fig. Sup4(d).

C HDNET ABLATIONS WITH CONTRASTIVE LOSS

We evaluate the contribution of the contrastive loss by training variations of HDNet on HVD with
and without the contrastive loss as shown in Eq. 2. These numbers are reported in Table Sup1. As
can be seen, adding a contrastive loss improves performance for all three semantic shifts, providing
evidence for its utility.

Semantic
Shift

Without
Contrastive

Loss

With
Contrastive

Loss
Viewpoint 0.79 0.82
Material 0.89 0.94
Lighting 0.98 0.98

Table Sup1: Impact of removing contrastive loss. We evaluate the contribution of the contrastive
loss by training and testing HDNet on the HVD dataset with and without the contrastive loss. The
contrastive loss results in an improvement across all three semantic shifts.

D ADDITIONAL EXPERIMENT FOR THE ROLE OF CONTEXT

Besides results on the role of context presented in Table 2 and Table 3, we present here an ad-
ditional control evaluating the contribution of scene context on generalization. For this, we train
HDNet such that both streams are trained with the target object. Thus, this modified version is
forced to learn without scene context. These results are shown in Table. Sup2. For all semantic
shifts, forcing HDNet to learn with only the target results in a drop in accuracy. This provides
further evidence supporting the utility of scene context in enabling generalization.



Figure Sup1: Example images showing lighting tranformations. We show paired images from dif-
ferent lighting transformation domains between the right and left column in each row. All other
parameters held constant.



Figure Sup2: Example images showing material tranformations. We show paired images from
different material transformation domains between the right and left column in each row. All other
parameters held constant



Figure Sup3: Example images showing viewpoint tranformations. We show paired images from
different viewpoint transformation domains between the right and left column in each row. All other
parameters held constant



(a) (b) (c) (d)

Figure Sup4: Sample images from the Semantic-iLab dataset. (a) Original image of a toy car
placed on a turntable from the original iLab [45] dataset. (b) Light shifted image from Semantic-
iLab created by modifying the white balance of the original image. (c) Material shifted image from
Semantic-iLab created by modifying the original image by first detecting the foreground object
mask, and overlaying the style transferred image on this mask. (d) Viewpoint shifted image of the
same object from the iLab dataset.

Semantic
Shift

Target
only

Target and
Context

Viewpoint 0.77 0.82
Material 0.85 0.94
Lighting 0.97 0.98

Table Sup2: Training a two-stream HDNet with only target information. As a third control
for confirming the role of context, we train HDNet where both streams are passed just the target
object. Thus, it is forced to learn without scene context. This results in a drop in performance for all
semantic shifts, providing further evidence in support of the utility of scene context.

D.1 RESULTS WITH A LARGER, LESS CONTROLLED SCANNET TEST SET.

We extend the generalization to real-world results presented in the main paper by reporting these
numbers on a larger test set created by annotating additional images from ScanNet. As ScanNet
was created by shooting video footage of 3D scenes, many frames can be blurry. In the original,
smaller test-set such blurry frames were removed to ensure a higher quality test set. However, here
we also include additional images with lower fidelity to report numbers on a larger test set. These
numbers are reported in Table. Sup3. The trend is consistent with results reported on a smaller, more
controlled subset in the main paper—HDNet outperforms all other benchmarks by a large margin.
As expected, including these images in the test set results in a drop in accuracy across all methods.
All models were trained on synthetic images from HVD and were tested on a test set of natural
images from ScanNet.

Test
Dataset

ResNet
[51]

ViT
[53]

AND
Mask
[23]

CAD
[29]

COR
AL
[24]

ERM
[27]

IRM
[25]

MTL
[49]

Self
Reg
[26]

VREx
[28]

HDNet
(ours)

ScanNet 0.35 0.29 0.43 0.40 0.42 0.48 0.46 0.46 0.53 0.42 0.61

Table Sup3: Human visual diet improves generalization to larger real world dataset as well. We
curated a larger subset of ScanNet images, allowing more complex real world scenarios like blurry
images, clutter and occlusions. We report the capability of models to generalize from synthetic
HVD images to this more complex subset of ScanNet. HDNet leveraging human-like visual-diet
outperforms all baselines on this more complex dataset as well.



E HYPERPARAMETERS

HDNet: As our model builds on top of CRTNet [50] as backbone, we use the same hyperparameters
for the backbone as reported in the original paper. All models were trained for 20 epochs with a
learning rate of 0.0001, with a batch size of 15 on a Tesla V100 16Gb GPU.

Domain generalization: We used the code from Gulrajani et al. [57] to train and test domain
generalization methods on our dataset. The code is available here: https://github.com/
facebookresearch/DomainBed. To begin, we ran all available models and tried 10 random
hyperparameter initializations. Of these, we picked the best performing hyperparameter seed—
24596. We also picked the top performing algorithms as the baselines reported in the paper.

FasterRCNN: We used the code from Bomatter et al. [50] to train and test the modified FasterRCNN
model for recognition. The code is available here: https://github.com/kreimanlab/
WhenPigsFlyContext, and we used the exact hyperparameters mentioned in the repo.

https://github.com/facebookresearch/DomainBed
https://github.com/facebookresearch/DomainBed
https://github.com/kreimanlab/WhenPigsFlyContext
https://github.com/kreimanlab/WhenPigsFlyContext
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