
Look Around! Unexpected gains from training on
environments in the vicinity of the target

Serena Bono1 Spandan Madan2,3 Ishaan Grover1 Mao Yasueda3,4

Cynthia Breazeal1 Hanspeter Pfister2 Gabriel Kreiman3∗

1MIT Media Lab 2Harvard SEAS 3Boston Children’s Hospital 4Mount Holyoke College
∗Corresponding author: gabriel.kreiman@tch.harvard.edu

Abstract
Solutions to Markov Decision Processes (MDP) are
often very sensitive to state transition probabili-
ties. As the estimation of these probabilities is
often inaccurate in practice, it is important to un-
derstand when and how Reinforcement Learning
(RL) agents generalize when transition probabili-
ties change. Here we present a new methodology
to evaluate such generalization of RL agents under
small shifts in the transition probabilities. Specif-
ically, we evaluate agents in new environments
(MDPs) in the vicinity of the training MDP cre-
ated by adding quantifiable, parametric noise into
the transition function of the training MDP. We re-
fer to this process as Noise Injection, and the result-
ing environments as δ-environments. This process
allows us to create controlled variations of the same
environment with the level of the noise serving as
a metric of distance between environments. Con-
ventional wisdom suggests that training and test-
ing on the same MDP should yield the best results.
However, we report several cases of the opposite—
when targeting a specific environment, training the
agent in an alternative noise setting can yield su-
perior outcomes. We showcase this phenomenon
across 60 different variations of ATARI games, in-
cluding PacMan, Pong, and Breakout.

1 Introduction
Markov Decision Processes (MDPs) are a well-established
formulation to model and solve sequential decision-making
problems [Bertsekas, 2012; Puterman, 2014]. A MDP is typ-
ically described by a State Space S, an Action Space A, a
Transition Function T that specifies the transition probabil-
ities between states given an action, and a Reward Func-
tion R denoting reward for every state-action pair [Ceder-
borg et al., 2015]. In practice, these parameters and transi-
tion probabilities are assumed known or estimable with rea-
sonable precision [Bäuerle and Glauner, 2022; Goyal and
Grand-Clement, 2023]. However, several works have show-
cased the difficulty in accurately estimating transition prob-
abilities [Abbad et al., 1990; Kalyanasundaram et al., 2002;
Feinberg and Shwartz, 2012], and their large impact on the

solution which often deteriorates as transition probabilities
are changed [Xu and Mannor, 2010; Nilim and El Ghaoui,
2005; Suilen et al., 2022; Moos et al., 2022a].

In stark contrast to these works, here we report several
cases of the opposite phenomenon—we show that a shift in
the transition probabilities between the training and testing
environments can actually help under certain conditions. This
observation is in contrast to conventional wisdom which sug-
gests that the best approach to perform well on a target MDP
is to train an RL agent on the same target MDP.

We explored zero-shot policy transfer where a policy
trained in one environment is tested on a different environ-
ment. We extend past works which focus on uncertainty
in the transition probabilities [Nilim and El Ghaoui, 2005;
Moos et al., 2022a; Goyal and Grand-Clement, 2023], and
propose a novel framework for studying policy transfer in en-
vironments with controlled, quantifiable distribution shifts in
the transition probabilities.

Our framework introduces these shifts by pre-computing
the transition function of an MDP, and adding small Gaus-
sian noise to its entries, as shown in Fig. 1(a). For brevity,
we refer to this approach as Noise Injection and the result-
ing new MDPs as δ-environments. Starting with an envi-
ronment (MT ), noise is sampled and added to it to obtain
the new MDP (Mδ). Noise addition introduces several non-
standard transitions, which had 0 probability in the original
MDP as shown in Fig. 1(a). Multiple such environments can
be created by sampling noise, and the distance between these
worlds can be quantified by the added noise. This approach
allows us to create multiple worlds in the vicinity of a tar-
get MDP, with quantitative control over the variations in the
transition probabilities. An increase in the standard devia-
tion of the Gaussian noise results in increasingly perturbed
MDPs. We report experiments with Noise Injection on multi-
ple domains across three ATARI games—PacMan, Pong, and
Breakout as shown in Fig. 1 (b), (c), and (d), respectively.

To study policy transfer we define two agents as shown
in Fig. 1(e). Firstly, a Learnability Agent which is trained
and tested on the same target MDP (Mδ), and a Generaliza-
tion Agent which is trained on a different environment(MT )
but tested on the target MDP (Mδ). Conventional wisdom
suggests that agents trained on Mδ will outperform agents
trained onMT when evaluated onMδ . However, our study
across 60 MDPs built on ATARI games reveals a surpris-
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Figure 1: ATARI games modified with Noise Injection. (a) In the
original Target Environment(MT ), when the agent (PacMan) moves
right, PacMan moves right with probability 1.0. Noise Injection
allows us to create multiple worlds in the vicinity of this environ-
ment by adding controlled Gaussian noise (δ) to the original Tran-
sition Function (T ). When the agent takes the action right in these
δ−environments, with a low probability the game may transition to a
state which would not be possible in non-noisy PacMan. For brevity,
we refer to these transitions as non-standard transitions which are 0
probability in the original Target, but are now possible. Experiments
with noise injection are presented on three ATARI games—(b) Pac-
Man, (c) Pong, and (d) Breakout. (e) We compare two agents with
these environments—a Learnability agent trained and tested on the
same target environment (Mδ), and a Generalization agent trained
on a different MDP (MT ) and tested on Mδ .

ing finding—there are several cases where the Generalization
Agent (GT ) outperformed the Learnability Agent (Lδ).

We validated that this finding extends beyond our setup of
noise injection and δ-environments, and also holds true for
target MDPs differing in terms of the stochasticity of game
elements. This includes variations in the distribution of the
Ghost for PacMan, and the computer bar in the Pong. For
brevity, we refer to these as semantic variations in MDPs.
More details on their construction are provided in Sec. 4.4.
We observed the same phenomenon in semantic variations as
well—at times, training an agent on a different MDP resulted
in better performance than training on the target MDP itself.

Finally, to better understand this phenomenon we analyzed
the exploration patterns of the Learnability (Lδ) and Gener-
alization Agent (GT ) agents, and the corresponding policies
learned by them. Our analyses revealed thatLδ agents outper-
formed GT agents only in scenarios where they were able to
explore a unique, significantly larger set of State-Action pairs
as compared to the GT agents. In contrast, when when there
were no differences in their exploration, the performance of
the GT aligned or exceeded that of the Lδ agent.

2 Preliminaries: Reinforcement Learning
Similar to [Cederborg et al., 2015], our work considers Rein-
forcement Learning (RL) as a group of algorithms designed
to solve problems formulated as Markov Decision Processes
(MDPs). A Markov Decision Process is characterized by the
tuple (S,A, T ,R, λ), representing the collection of potential
world states (S), space of actions (A), the transition function
(T : S×A → P(S)), the reward function (R : S×A → R),
and a discount factor (0 < λ ≤ 1). The objective is to identify
policies (π : S×A → R) that maximize cumulative rewards.

Q-learning [Watkins and Dayan, 1992] and SARSA [Rum-
mery and Niranjan, 1994] are two algorithms to learn such
policies. Both Q-Learning and SARSA algorithms update
the Q-values of state-action pairs, but they differ in their ap-
proaches. Q-Learning focuses on the maximum expected fu-
ture rewards, and updates Q-values using the formula:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
(1)

where α is the learning rate, γ is the discount factor, and
s, s′, a, a′, r represent the current state, next state, current ac-
tion, next action, and immediate reward, respectively.

On the other hand, SARSA updates Q-values based on the
actual policy’s actions with the formula:

Q(s, a)← Q(s, a) + α [r + γQ(s′, a′)−Q(s, a)] (2)

Here the update incorporates both immediate rewards and the
Q-value of the actual next action taken.

Agents need to balance two critical aspects: exploration
and exploitation. Exploration involves trying potentially less
optimal actions to understand the environment better. Con-
versely, exploitation means choosing actions known to yield
high rewards. We report results with the Boltzmann and the
ϵ-greedy exploration strategies. Boltzmann exploration deter-
mines the probability of selecting an action as follows:

Prq(a) =
eQ(s,a)/τ∑
a′ eQ(s,a′)/τ

(3)

The constant τ is referred to as the temperature. On the
other hand, the ϵ-greedy strategy is simpler and more direct—
the agent selects a random action with probability ϵ, and the
action with the highest Q-value with probability 1− ϵ.

3 Related Works
3.1 Generalization in Reinforcement Learning
Generalization in Reinforcement Learning (RL) aims to learn
policies that perform well in novel, unseen environments at
the time of deployment [Kirk et al., 2021; Moos et al., 2022b;
OpenAI et al., 2019; Filos et al., 2020; Biedenkapp et al.,
2020]. Recent years have seen several generalization bench-
marks, which includes variations in the state space [Hafner,
2021], dynamics [Dulac-Arnold et al., 2019], observation
[Zhu et al., 2020], reward function [Bapst et al., 2019],
and new game levels [Justesen et al., 2018], among oth-
ers. Broadly, these works can be divided into two categories.
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Figure 2: Variations for PacMan.(a) Game dynamics when the agent picks the action right in a standard, non-noisy MDP for the v3 Grid.
Ghosts follow a uniform distribution over possible moves and move up or right with an equal probability of 0.5. This is referred to as a
RandomGhost. (b) Grid variations for PacMan—v2, v3, and v4. These grids vary in grid size, positions of walls, and positions of food
pellets. v2, v3, and v4 are designed to be increasingly hard. (c) Semantic variations involves changing the distribution of stochastic game
elements. Here, a FollowingGhost is depicted which has a higher probability of taking a move which brings it closer to the PacMan (0.8).
(d) Noise injected MDP generated by adding gaussian noise to the standard Transition Function. Alongside states reachable by the ghost
taking a legal move, non-standard transitions now become possible which result in the game reaching states otherwise unreachable—ghost
and PacMan arrive to the right hand corners of the grid in a single step with a non-zero probability.

Firstly, Procedural Content Generation which involves cre-
ation of diverse and dynamic environments based on algo-
rithms driven by a seed value. Examples of this include Ope-
nAI Procgen benchmark [Cobbe et al., 2020] and the Dis-
tracting Control Suite [Stone et al., 2021]. Secondly, recent
work on Controllable Environments [Kirk et al., 2021] allows
explicit manipulation of individual components as parame-
ters of the environment, providing more granular control.
CausalWorld [Ahmed et al., 2020], RWRL [Dulac-Arnold et
al., 2019], Alchemy [Wang et al., 2021], Meta-world [Yu et
al., 2019] are examples of such parametric worlds. A major
drawback in these benchmarks is the difficulty in concretely
quantifying the distribution shifts between the train and test
MDPs. In contrast, our methodology allows for a concrete
and parametric definition for this distribution shift, and al-
lows explicit modification of transition probabilities.

3.2 Inspiration from controlled analysis of
generalization behaviour in visual recognition

We draw inspiration from work studying generalization un-
der controlled, quantifiable distribution shifts. This in-
cludes shifts in 3D rotations [Mondal et al., 2022; Madan et
al., 2023], category-viewpoint combinations [Madan et al.,
2022a], incongruent scene context [Bomatter et al., 2021],
novel light and viewpoint combinations [Sakai et al., 2022],
object materials [Madan et al., 2022b], and non-canonical
viewpoints [Barbu et al., 2019], among others. Inspired by
these, we characterize generalization in RL through carefully
constructed environments with a consistent metric defining
the distribution shifts between environments.

4 Generating MDPs for investigating
generalization

We created 60 different MDPs across three ATARI games
(PacMan, Pong, and Breakout) by varying grid layouts, distri-
butions defining the stochasticity of different game elements,

and modifying transition probabilities using Noise Injection
(See Fig. 2 and Table. 1). Here we outline these variations.

4.1 Domains
We implemented all three ATARI games from scratch, build-
ing on the Berkeley PacMan Projects [DeNero et al., 2014].
PacMan was modelled as an MDP characterized by the tuple
(S,A, T ,R, λ). Below we define these:
State (s) and State Space (S): We represented a grid of size
M × N as a matrix of the same shape with the entries cor-
responding to the game element occupying the position in
the grid—p (PacMan), g (Ghost), f (Food), w (Wall), or e
(Empty). States were computed by unrolling this matrix into
a vector of length M ∗N . The state space S refers to the set
of all possible states.
Action Space (A(s)): Set of legal actions PacMan could take
in state s. PacMan can move Left, Right, Up, or Down but not
enter walls. Thus, when the PacMan is at the top left position
the set of legal actions was only Right, Down.
Transition Matrix (T (si, a, sj)): Probability of moving to
state sj if the agent took action a at state si (see Fig. 2(a)).
Reward Function (R(s)): PacMan received +20 for eating
a food pellet, -1 for every time step, -200 when it was killed,
and +500 for finishing the game. [Cederborg et al., 2015].
Game Stochasticity: The motion of PacMan is
deterministic—a Left action (if legal) will ensure that
PacMan moves left. However, ghosts move stochastically
according to a pre-fixed distribution. For instance, a Ran-
domGhost moves in all directions with equal probability
(accounting for walls). Thus, the game is non-deterministic.

MDPs for Pong and Breakout are defined analogously. For
additional details, please refer to Supplementary Sec. A.

4.2 Grid Variations of ATARI games
We build on past work [Biedenkapp et al., 2020], and train
RL agents on the v2, v3, v4 grids for PacMan as depicted in
Fig. 2(b). For Pong and Breakout we report results on two



ATARI Game Grid Variations Noise Injected Variations Semantic Variation Total

PacMan

δ = 0 (No Noise) RandomGhost
v2, v3, v4 δ ∼ N (0, 0.1) FollowingGhost (p = 0.3, 0.6) 33

δ ∼ N (0, 0.5) TeleportingGhost (p = 0.5, 0.2)

Pong

δ = 0 (No Noise) RandomPaddle
p1, p2 δ ∼ N (0, 0.1) FollowingPaddle (p = 0.3, 0.6) 18

δ ∼ N (0, 0.5)

Breakout

δ = 0 (No Noise)
b1, b2, b3 δ ∼ N (0, 0.1) - 9

δ ∼ N (0, 0.5)

Table 1: Oveview of experimental protocol. Our experiments include multiple variations of three ATARI games—PacMan, Pong, and
Breakout. For each game, we have multiple grid variations of increasing difficulty. When introducing variations in these grids with noise
injection, we report results for two levels of added noise—a low-noise setting: δ ∼ N (0, 0.1), and a high-noise setting: δ ∼ N (0, 0.5).
Furthermore, for each grid we introduce further variations by modifying the distribution of the stochastic game element (ghost in PacMan,
and the computer paddle in Pong). In all, we report results on 60 MDPs across these games.

(p1 and p2) and three grids (b1, b2, and b3) respectively (see
Supplementary Fig. Sup1 and Fig. Sup2). These grids are
designed to be increasingly hard for RL agents, and confirm
that our findings are not an artefact of a specific ATARI game
or grid.

4.3 Noise Injection: Generating new, controlled
environments in the vicinity of an MDP

We generate controlled variations of a target MDP by explic-
itly computing its Transition Function and then adding sam-
pled noise to it. Below we outline this process:
Explicit enumeration of all states: We first enumerate all
possible states by representing the game as a tree, and recur-
sively rolling out all possible actions and moves by the agent
and stochastic game elements. For PacMan, these correspond
to the PacMan and the ghosts. For Pong, these correspond to
the two paddles. For Breakout, the single paddle.
Explicit computation of Transition Function: With all
states enumerated, T (si, a, sj) can be computed explicitly.
As the movement of all elements is independent, T (si, a, sj)
was computed by multiplying the probability of each element
moving from its grid-position in si to its grid-position in sj .
Creating δ−environments: The new transition function for
a δ-enrivonment is denoted Tδ = T + δ, with δ ∼ N (µ, σ)
sampled i.i.d. before every game to ensure randomization.
Then, Tδ is normalized to ensure all probabilities pi,j for all
possible transitions from a given state si and action a to any
successor state sj sum to 1:

Tδ(sj , a, si) =
|S|pi,j + δi,j
|S|+

∑
j δi,j

(4)

|S| denotes the number of states, and guarantees the prob-
ability of legal successors does not approach 0 as the state
space grows. We investigated two settings—(i) Low-Noise
with δ ∼ N (0, 0.1), where some non-standard transitions
previously impossible without noise are now possible with
a low probability. (ii) High-Noise with δ ∼ N (0, 0.5), where
non-standard transitions are possible with higher probability.

4.4 Semantic variations of ATARI games
PacMan Variations: We modified PacMan by changing the
distribution of the ghost in three different ways:

• RandomGhost: Let ls denote possible legal moves for
the ghost given state s. A RandomGhost samples move
m ∼ Unif(ls). Thus, ghost movement is randomly
sampled from legal moves with equal probability.

• FollowingGhost (p): Ghost follows PacMan with prob-
ability p—picks the legal move which minimizes the
Manhattan Distance between the ghost and PacMan.
The ghost picks one of the remaining legal moves with
probability (1 − p)/(|ls| − 1), where |ls| denotes total
legal moves. We report results for p = 0.3, 0.6.

• TeleportingGhost (p): The ghost picks one of Left,
Right, Up, Down with probability p/4 each. If the cho-
sen action is not permissible (i.e., it runs into a wall), the
ghost teleports to a random position on the grid. With
probability 1−p, the ghost behaves like a RandomGhost.

Pong Variations: We focus on the single-player Pong—
the RL agent controlled one paddle and aimed to outperform
a computer-controlled paddle. Variations were introduced by
altering the distribution of the computer-controlled paddle:

• RandomPaddle: Next move m ∼ Unif(ls), where ls
denotes set of legal moves.

• FollowingPaddle (p): Computer-controlled paddle fol-
lows the ball with probability p (minimizing manhattan
distance), and functions as RandomPaddle with proba-
bility 1 − p. Setting p = 1 guarantees the computer
never loses. We report results for p = 0.3, 0.6.

5 Experimental Details
5.1 Evaluation metric
We compared the mean reward curve of Learnability and
Generalization agents. An agent GT is said to generalize well
with respect toMδ , if its mean reward is as good as the cor-
responding learnability agent Lδ .
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Figure 3: Generalization agents can outperform Learnability
agents. Results for PacMan v4 grid reporting mean reward as a func-
tion of episode number. (a) SARSA agent trained with a Boltzmann
exploration strategy. For Target MDPs generated with both high
(solid line) and low (line with ‘x’ markers) level noise injection, the
Generalization Agent (red) beats the Learnability Agent (green). (b)
The same result holds for a SARSA agent trained with the ϵ−greedy
exploration strategy. This finding also holds for Q-Learning agents
trained with (c) Boltzmann and (d) ϵ−greedy exploration strategies.
Noise added to the transition function is sampled δ ∼ N (0, 0.1) in
Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings.

5.2 Learning algorithm and Evaluation details
Agents are trained with both tabular Q-Learning [Watkins and
Dayan, 1992] and SARSA Q-learning [Rummery and Niran-
jan, 1994], using Boltzmann or ϵ-greedy exploration strate-
gies. In particular, we trained agents for 1000 episodes and
averaged results over 500 trained agents. After every 10 train-
ing episodes, agents were evaluated using 10 testing episodes.
We report the mean reward curves at convergence. Hyper-
parameters were inherited from past work [Cederborg et al.,
2015] and are available in the supplement in Sec. B.

6 Results
We report findings from the Generalization and Learnability
agents trained with the multiple variations of PacMan, Pong,
and Breakout as described in Sec. 4 and Table 1.

6.1 There exist several MDPs where
Generalization Agents outperform the
Learnability Agents.

The mean reward increases with training, as expected (Fig. 3).
Also, as intuitively expected, agents achieved higher per-
formance under conditions of low noise compared to high
noise (Fig. 3, compare solid lines versus lines with ‘x’ mark-
ers). Less intuitive was the relationship between General-
ization and Learnability agents. Fig. 3, shows mean reward
curves for multiple RL agents trained to solve the PacMan v4

v2 Grid
RandomGhost

v2 Grid
FollowingGhost (p=0.3)

v2 Grid
FollowingGhost (p=0.6)

v3 Grid
RandomGhost

v3 Grid
FollowingGhost (p=0.3)

v3 Grid
FollowingGhost (p=0.6)

v4 Grid
RandomGhost

v4 Grid
FollowingGhost (p=0.3)

v4 Grid
FollowingGhost (p=0.6)

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 4: Generalization can outperform Learnability across mul-
tiple variations of PacMan. (a) Agents trained on the PacMan v2
grid with the Ghost dynamics set to the RandomGhost setting—
the ghost picks a move from all possible legal moves with an equal
probability. (b) Agents trained on v2 with a DirectionalGhost with
p = 0.3—ghost has probability of 0.3 to move in a pre-specified
direction (here right), and a probability of 0.7 of picking one of
the remaining moves (each remaining move equally likely). (c)
DirectionalGhost with p = 0.6. (d),(e),(f) Variations with the v3
grid with RandomGhost, DirectionGhost (p = 0.3) and Directional-
Ghost (p = 0.6) respectively. (g),(h),(i) Same variations with the v4
grid. All experiments are shown for SARSA agents trained with the
ϵ−greedy exploration strategy. Generalization agents consistently
beat Learnability Agents across multiple Target MDPs which vary
in the grid complexity and game stochasticity (ghost behaviour).

Grid with RandomGhosts, including Q-Learning and SARSA
agents trained with the Boltzmann and ϵ−greedy exploration
strategies. The Learnability agent was trained on the noise
injected target MDP, while the generalization agent is trained
on the non-noisy MDP, and then both agents evaluated on the
Target noise-injected environment. Intriguingly, the Gener-
alization agents (Fig. 3, red) consistently outperformed the
Learnability agents (Fig. 3, green). This gap continued until
convergence at 1000 episodes, was observed across both low
and high noise levels, and was apparent for SARSA and Q-
Learning, for Boltzman and ϵ−greedy exploration strategies.

To assess whether this observation was dependent on the
target MDP, we replicated these findings on multiple Pac-
Man grids and stochastic variations. These results are pre-
sented in Fig. 4 for 9 different target MDPs for General-
ization and Learnability agents trained with SARSA and the
ϵ−greedy strategy. In several cases, the Generalization agents
beat the Learnability agents, for both low and high levels of
noise. Corresponding results for agents trained with SARSA
+ Boltzmann exploration strategy, and for Q-Learning with
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Figure 5: Mean Reward Curves for Learnability and Generaliza-
tion Agents for Pong and Breakout. Performance of SARSA agents
trained with a ϵ−greedy exploration strategy on (a) Pong p1 grid, (b)
Pong p2 grid, (c) Breakout b1 grid, and (d) Breakout b2 grid. The
Generalization Agent beats the Learnability Agent for Target MDPs
created with both high and low noise for all grids.

both ϵ−greedy and Boltzmann exploration strategies are in
Supplementary Figures Sup3, Sup4 and Sup5.

We also extended these findings to two additional ATARI
games to evaluate if these extend to other games. Fig. 5
reports these findings for Pong and Breakout. We report
results for multiple grids for each, for agents trained with
SARSA and ϵ−greedy strategy. These experiments con-
firmed that Generalization agents can outperform Learnabil-
ity agents consistently across several ATARI environments.
Corresponding agents trained with Q-Learning and differ-
ent exploration strategies are reported in the Supplementary
Figs. Sup6, Sup7, Sup8, Sup9, Sup10, Sup11, and Sup12. In
these plots we compare generalization and learnability agents
of 18 variations for Pong and 9 variations for Breakout.

In sum, there exist several MDPs where it is better to train
on a different MDP than the target MDP. To the best of our
knowledge, these results provide the first evidence suggest-
ing that training on a different MDP can enable more effi-
cient policy learning than training on the target environment.
In doing so, our finding fundamentally challenges our under-
standing of the generalization capabilities of RL agents under
shifts in transition probabilities.

6.2 Generalization agents also thrive in
semantically meaningful δ-environments

Results presented so far focused on MDPs generated by noise
injection. We further confirmed that analogous trends also
hold true for semantic variations of the two ATARI Games
(see Sec. 4.4). We denote these alternate semantic environ-
ments as MT ′ (semantic noise), as opposed to Mδ in the
case of noise injection.

For PacMan, Learnability agents were trained and tested
using TeleportingGhosts (MT ′ ), while the Generalization
agents were trained with PacMan with RandomGhosts (MT )

PacMan (MT: TeleportingGhost, Mδ: RandomGhost)

v2 Grid v3 Grid

Pong(MT: FollowingPaddle, Mδ: RandomPaddle)
p1 Grid p2 Grid

(a) (b)

(c) (d)

Generalization

Learnability

Figure 6: Rewards across semantic variations of PacMan and Pong.
(a) Given the target PacMan MDP with the v2 grid and Teleport-
ingGhost, the Generalization trained on the RandomGhost outper-
formed the Learnability agent that was trained and tested on the
same Target MDP (TeleportingGhost). (b) This finding extends to
TeleportingGhost and RandomGhost MDPs with the PacMan v3
Grid as well. (c) For the Pong p1 grid, Generalization agents trained
on an MDP with DirectionalPaddle performed better on the Ran-
domPaddle MDP during testing, as compared to the Learnability
Agent trained and tested on the RandomPaddle MDP. (d) The same
finding extends to the p2 grid as well.

and then tested on TeleportingGhosts (MT ′ ) (Fig. 6a, b).
Even under these semantic noise conditions, Generalization
agents outperformed Learnability agents. These results pro-
vide compelling evidence suggesting these findings extend
beyond the vicinity of MDPs.

In the case of Pong, we report analogous results withMT ′

set to FollowingPaddle, and MT set to RandomPaddle. As
shown in Fig. 6(c) and (d), Generalization agents also out-
performed Learnability agents (by a smaller margin) in both
the p1 and p2 grids. These results are for SARSA agents
trained with ϵ−greedy exploration strategy. Analogous re-
sults for Pong with Q-Learning and other exploration strate-
gies are reported in Supplementary Figs. Sup16, Sup17,
Sup18, Sup19, Sup20, Sup21, Sup22, Sup23

6.3 The exploration patterns of state-action pairs
can predict differences between Generalization
and Learning agents

So far, we have presented comprehensive analyses with sev-
eral examples of our main finding—Generalization Agents
beating Learnability Agents. Here, we present a potential ex-
planation for this counter-intuitive phenomenon.

Noise Injection modifies MDPs such that non-standard
transitions become increasingly probable as noise is added.
Intuitively, Lδ trained on the noisy environment should be
able to explore significantly more states and acquire knowl-
edge about these low-probability transitions. This would en-
able it to beat GT , as conventional wisdom suggests. This
motivated us to compare the exploration patterns for Lδ and
GT to explain the gap in their performance.
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Figure 7: Exploration patterns predict the reward gap between Lδ

and GT . (a) Reward for agents trained on PacMan v3, where GT

outperforms Lδ . (b) The exploration grid visualizing the difference
in State-Action (S-A) pairs explored by these agents (DLG). Each
cell corresponds to one S-A Pair, and the color denotes which agents
visited this S-A pair. In this case, a negligible fraction of S-A pairs
were visited only by one agent (pink). (c) Rewards for agents trained
on PacMan v3. Here, GT performs worse than Lδ . (d) Correspond-
ing exploration shows a large fraction of pairs were only visited by
the Lδ agent. (e) DLG averaged over PacMan grids where GT out-
performed Lδ and vice-versa. (f) DLG averaged over Pong grids.

We enumerate all State-Action Pairs, and divide them into
three groups—(i) Fraction of state-action (S-A) pairs ex-
plored by both agents (PLG), (ii) pairs explored only by the
Learnability Agent (PL), and (iii) pairs explored only by the
Generalization agent (PG). Thus, PLG + PL + PG = 1. We
denote the feature DLG = PL + PG, which measures the
divergence in the exploration patterns of these two agents.

In Fig. 7 we visualize DLG for grids where GT outper-
formed Lδ agents, and where it did not. Fig. 7(a) shows
an agent trained with Q-Learning and Boltzmann exploration
strategy for the PacMan v3 grid with RandomGhost stochas-
ticity. Here, GT beats the Lδ agent. The corresponding panel
Fig. 7(b) depicts DLG visually—each cell of this grid rep-
resents an S-A pair, and its color denotes which of the two
agents explored the particular S-A pair. We refer to this as
the exploration grid for these agents. Here, the exploration

grid shows that most S-A pairs were explored by both agents,
with no significant differences in their exploration patterns.
In contrast, Fig. 7(c, d) report these numbers for PacMan
v2 which are starkly different. Here, the GT agent performs
worse than theLδ agent, and the exploration grid reveals there
is a very high fraction of S-A pairs explored only by the Lδ

agent. These figures visually depict the relationship between
DLG and the Reward Gap between the two agents which we
denote as RLG = RL −RG.

Fig. 7(e) reports the mean value of DLG across all Pac-
Man MDPs created with noise injection. On average, DLG

is significantly higher in MDPs where Lδ outperformed GT ,
than when it did not (two-sided t-test, p < 0.05). The same
result holds true for Pong MDPs as reported in Fig. 7(f). Ex-
ploration grids and additional results for variations of Pac-
Man, Pong, and Breakout can be found in the supplement in
Sec. ??.

Next, we conducted a correlation analysis to better under-
stand the impact of exploration patterns on the reward gap be-
tween these two agents. The Spearman correlation coefficient
between DLG and RLG was found to be 0.43(p < 0.005) for
PacMan and 0.26(p < 0.005) for Pong indicating a moderate
positive monotonic relationship between the two variables.
Combined, these analyses show that the Reward Gap between
these agents is driven by the differences in their exploration
patterns under noisy transition probabilities. Lδ agents can
beat GT agents, but only when they successfully explore a
large, unique set of State-Action pairs which the GT agent is
not able to. In the absence of a substantial difference in their
exploration patterns, Generalization agents perform better, or
as well as, Learnability agents.

7 Discussion
Here, we propose a new methodology to evaluate robustness
of RL agents by generating new MDPs in the vicinity of the
target with a metric to quantify the distance between these
environments. This approach led us to discover a striking
phenomenon—sometimes, training an agent on alternative
MDPs can lead to outcomes even better than training on the
target MDP itself. This phenomenon occurred across multi-
ple algorithms and exploration strategies (Fig. 3), grid layouts
and game stochasticity (Fig. 4), and multiple ATARI games
(Fig. 5). We also showed that this phenomenon extends be-
yond Noise Injected environments, and can also occur when
semantic changes are introduced in game elements(Fig. 6).
Finally, we showed that this reward gap between the two
agents appears to be driven by the exploration patterns of the
agents under different transition probabilities (Fig. 7).

This phenomenon fundamentally challenges conventional
wisdom regarding generalization under shifts in transition
probabilities. Real-world applications often require mod-
eling the environment stochasticity, and understanding the
susceptibilities of RL agents under small errors in estimat-
ing or modeling this stochasticity is imperative to build ro-
bust agents that can be deployed with confidence. Thus, we
strongly believe that the tools and analyses presented in this
work can benefit the RL, Planning, and Robotics communi-
ties by shedding light on the generalization behaviour of RL



agents under subtle shifts in transition probabilities.
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A Domains

We present details for the ATARI PacMan, Pong and Break-
out domains.

A.1 PacMan

PacMan is set in a two-dimensional grid that contains food,
walls, ghosts, and the PacMan character. The game concludes
with a +500 reward when all food pellets are consumed, while
encountering a ghost results in a -500 penalty and game over.
Each consumed food pellet awards +10 points, and PacMan
incurs a -1 penalty for every time step. The available ac-
tions for PacMan are moving Up, Down, Right, or Left. The
game’s state includes the location of PacMan, the position
and direction of any ghosts, and the distribution of food pel-
lets. In this iteration of the game, ghosts move according to
some distributions.

A.2 Pong

In this one-player version of Pong, the player competes
against a computer-controlled paddle. The game is set on a
two-dimensional grid, with the player controlling one paddle
and the computer controlling the other. The game concludes
with a +500 reward when the ball reaches the grid bound-
aries on the computer controlled paddle side, while if the grid
boundary is reached on the agent’s side, a -500 penalty is ap-
plied and game over. The agent incurs a -1 penalty for every
time step. The available actions for the paddles are moving
Right and Left or to Stop. The game’s state includes the loca-
tion of the ball and the position and direction of any paddle.
In this iteration of the game, the computer controlled paddle
moves according to some distribution. Visualizations of the
grids are presented in Sup1.

A.3 Breakout

In this version of Breakout, the agent competes against a wall
of bricks using a horizontally-moving paddle and a ball. The
game is set on a two-dimensional grid, with the agent control-
ling the paddle located at the bottom of the screen. The ob-
jective is to break bricks by hitting them with the ball, which
bounces back after each hit. The game concludes with a +500
reward when all bricks are destroyed, but if the ball passes the
paddle and reaches the bottom grid boundary, a -500 penalty
is applied, resulting in game over. Each hit brick awards +10
points, and the agent incurs a -1 penalty for every time step.
The available actions for the agent’s paddle are moving Right
or Left, or choosing to Stop. The game’s state includes the
position of the ball, the location of the paddle, and the con-
figuration and status of the bricks. Visualizations of the grids
are presented in Sup2.

B Training Parameters

In our experiments, parameters for Q-Learning and SARSA
are inherited by [Cederborg et al., 2015]. In particular, T =
1.5 α = 0.05, and λ = 0.9.

C Additional graphs showing the
Generalization Agent outperforming the
Learnability Agent in Non-Semantic
variations

This section presents supplementary results showing the Gen-
eralization Agent and Learnability Agent behavior for Non-
Semantic variations of grids throughout the analyzed do-
mains.

C.1 PacMan
Additional results showing the Generalization Agent and
Learnability Agent behaviour in Pacman for grids v2, v3, v4,
are presented in the Supplementary figures. In particular, re-
sults for SARSA Agent with Boltzmann exploration strategy
are presented in Sup3. Sup4, Sup5 show Q-learning Agent
with Boltzmann and ϵ-greedy exploration strategies respec-
tively.

C.2 Pong
Similarly, for Pong grids p1, p2 results are presented in the
Supplementary figures Sup6 for SARSA Agent and Sup7,
Sup8 for Q-learning Agent.

C.3 Breakout
Analogously, for Breakout grids b1, b2, b3 results are pre-
sented in the Supplementary figures Sup9, Sup10 for SARSA
Agent and Sup11, Sup12 for Q-learning Agent.

D Additional graphs showing the
Generalization Agent outperforming the
Learnability Agent in Semantic variations

In this section we present supplementary results showing the
Generalization Agent and Learnability Agent behavior for
Semantic variations of grids throughout Pacman and Pong.

D.1 PacMan
The behavior of the Generalization and Learnabilty Agents
under semantic variations of PacMan on grids v2, v3, v4 are
presented in Supplementary figures Sup13 for SARSA Agent
and Sup14 and Sup15 for Q-learning Agent.

D.2 Pong
Similarly, for Pong grids p1, p2 results are presented in the
Supplementary figures. In particular, semantic variations fea-
turing Directional Ghost p = 0.3 are presented in Sup16,
Sup17 for SARSA Agent and Sup18, Sup19 for Q-learning
Agent. While semantic variations featuring Directional Ghost
p = 0.6 are shown in Sup20, Sup21 for SARSA Agent and
Sup22, Sup23 for Q-learning.

E Additional graphs showing patterns of
state-action pairs

This section shows the supplementary results for the explo-
ration grid visualizing the difference in State-Action (S-A)
pairs explored by these agents (DLG) throughout the ana-
lyzed domains.



E.1 PacMan
Results of the exploration grid for PacMan v2, v3, v4 are
shown in Supplementary figures. In particular, for non-
semantic grid variations, Sup24 and Sup25 report grid ex-
ploration graphs for Q-learning Agent and Sup26 and Sup27
for SARSA Agent. Additionally, for semantic games vari-
ations, Sup28 and Sup29 report grid exploration graphs for
Q-learning Agent and Sup30 and Sup31 for SARSA Agent.

E.2 Pong
Similarly, for pong p1 and p2, Sup32, Sup33, Sup34, and
Sup35 report grid exploration graphs for non-semantic vari-
ations of Q-learning Agent and SARSA Agent respectively,
while Sup36, Sup37, Sup38, and Sup39 for semantic varia-
tions.

E.3 Breakout
For Breakout grids b1,b2, and b3, exploration graphs for non-
semantic variations of Q-learning Agent and SARSA Agent
are reported in Supplementary figures Sup40, Sup41, Sup42,
and Sup43.
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Figure Sup2: Grid variations for Breakout.



0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Random Ghost

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.3

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.6

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Random Ghost

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.3

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.6

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Random Ghost

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.3

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.6

Figure Sup3: SARSA Agent with Boltzmann exploration strategy: Results for PacMan v2, v3, v4 grids reporting mean reward as a function of
episode number. The agent is trained on the non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1) in
Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).
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Figure Sup4: Q-learning Agent with Boltzmann exploration strategy: Results for PacMan v2, v3, v4 grids reporting mean reward as a function
of episode number. The agent is trained on the non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1) in
Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).
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Figure Sup5: Q-learning Agent with ϵ-greedy exploration strategy: Results for PacMan v2, v3, v4 grids reporting mean reward as a function
of episode number. The agent is trained on the non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1) in
Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).
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Figure Sup6: SARSA Agent with Boltzmann exploration strategy: Results for Pong p1, p2 grids reporting mean reward as a function of episode
number. The agent is trained on the non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1) in Low-Noise
and δ ∼ N (0, 0.5) in High-Noise settings).
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Figure Sup7: Q-learning Agent with Boltzmann exploration strategy: Results for Pong p1, p2 grids reporting mean reward as a function of
episode number. The agent is trained on the non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1) in
Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).
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Figure Sup8: Q-learning Agent with ϵ-greedy exploration strategy: Results for Pong p1, p2 grids reporting mean reward as a function of
episode number. The agent is trained on the non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1) in
Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).
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Figure Sup9: SARSA Agent with Boltzmann exploration strategy: Results for Breakout b1, b2, b3 grids reporting mean reward as a function
of episode number. The agent is trained on the non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1) in
Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).



0 500 1000
Episodes

-500
-250

0
250

M
ea

n 
Re

wa
rd

Breakout: b1 Grid

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b2 Grid

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b3 Grid

Figure Sup10: SARSA Agent with ϵ-greedy exploration strategy: Results for Breakout b1, b2, b3 grids reporting mean reward as a function
of episode number. The agent is trained on the non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1) in
Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).
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Figure Sup11: Q-learning Agent with Boltzmann exploration strategy: Results for Breakout b1, b2, b3 grids reporting mean reward as
a function of episode number. The agent is trained on the non-noisy version of the environment and tested on different level of noise
(δ ∼ N (0, 0.1) in Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).
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Figure Sup12: Q-learning Agent with ϵ-greedy exploration strategy Results for Pong p1, p2 grids reporting mean reward as a function of
episode number. The agent is trained on the non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1) in
Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).
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Figure Sup13: SARSA Agent with Boltzmann exploration strategy: Results for PacMan v2, v3, v4 grids reporting mean reward as a function
of episode number. The agent is trained on the Random Ghost environment and tested on the Teleporting Ghost variation (p = 0.2, p = 0.5)

0 500 1000
Episodes

-500
-250

0
250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.5

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.5

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.5

0 500 1000
Episodes

-500
-250

0
250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.2

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.2

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.2

Figure Sup14: Q-learning Agent with Boltzmann exploration strategy: Results for PacMan v2, v3, v4 grids reporting mean reward as a
function of episode number. The agent is trained on the Random Ghost environment and tested on the Teleporting Ghost variation (p = 0.2,
p = 0.5)
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Figure Sup15: Q-learning Agent with ϵ-greedy exploration strategy: Results for PacMan v2, v3, v4 grids reporting mean reward as a function
of episode number. The agent is trained on the Random Ghost environment and tested on the Teleporting Ghost variation (p = 0.2, p = 0.5)
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Figure Sup16: SARSA Agent with Boltzmann exploration strategy: Results for Pong p1, p2 grids reporting mean reward as a function of
episode number. The agent is trained on the Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.
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Figure Sup17: SARSA Agent with ϵ-greedy exploration strategy: Results for Pong p1, p2 grids reporting mean reward as a function of episode
number. The agent is trained on the Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.
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Figure Sup18: Q-learning Agent with Boltzmann exploration strategy: Results for Pong p1, p2 grids reporting mean reward as a function of
episode number. The agent is trained on the Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.
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Figure Sup19: Q-learning Agent with ϵ-greedy exploration strategy: Results for Pong p1, p2 grids reporting mean reward as a function of
episode number. The agent is trained on the Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.
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Figure Sup20: SARSA Agent with Boltzmann exploration strategy: Results for Pong p1, p2 grids reporting mean reward as a function of
episode number. The agent is trained on the Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.
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Figure Sup21: SARSA Agent with ϵ-greedy exploration strategy: Results for Pong p1, p2 grids reporting mean reward as a function of episode
number. The agent is trained on the Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.
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Figure Sup22: Q-learning Agent with Boltzmann exploration strategy: Results for Pong p1, p2 grids reporting mean reward as a function of
episode number. The agent is trained on the Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.



0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

Figure Sup23: Q-learning Agent with ϵ-greedy exploration strategy: Results for Pong p1, p2 grids reporting mean reward as a function of
episode number. The agent is trained on the Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.
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Figure Sup24: Q-learning Agent with Boltzmann exploration strategy: The exploration grid visualizing the difference in State-Action (S-
A) pairs explored by these agents (DLG). Results for PacMan v2, v3, v4 grids, the agent is trained on non-noisy variations of different
environments (reported in the headings) and tested in the Low-Noise regime. Rows in the right figure represents agent’s actions Left, Right,
Up, or Down.
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Figure Sup25: Q-learning Agent with ϵ-greedy exploration strategy: The exploration grid visualizing the difference in State-Action (S-
A) pairs explored by these agents (DLG). Results for PacMan v2, v3, v4 grids, the agent is trained on non-noisy variations of different
environments (reported in the headings) and tested in the Low-Noise regime. Rows in the right figure represents agent’s actions Left, Right,
Up, or Down.
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Figure Sup26: SARSA Agent with Boltzmann exploration strategy: The exploration grid visualizing the difference in State-Action (S-A) pairs
explored by these agents (DLG). Results for PacMan v2, v3, v4 grids, the agent is trained on non-noisy variations of different environments
(reported in the headings) and tested in the Low-Noise regime. Rows in the right figure represents agent’s actions Left, Right, Up, or Down.
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Figure Sup27: SARSA Agent with ϵ-greedy exploration strategy: The exploration grid visualizing the difference in State-Action (S-A) pairs
explored by these agents (DLG). Results for PacMan v2, v3, v4 grids, the agent is trained on non-noisy variations of different environments
(reported in the headings) and tested in the Low-Noise regime. Rows in the right figure represents agent’s actions Left, Right, Up, or Down.
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Figure Sup28: Q-learning Agent with Boltzmann exploration strategy: The exploration grid visualizing the difference in State-Action (S-A)
pairs explored by these agents (DLG). Results for PacMan v2, v3, v4 grids, the agent is trained on Teleporting Ghost variation (p = 0.2,
p = 0.5) and tested in different environments (reported in the headings). Rows in the right figure represents agent’s actions Left, Right, Up,
or Down.



0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.2

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.2

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.2

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.5

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.5

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.5

Figure Sup29: Q-learning Agent with ϵ-greedy exploration strategy: The exploration grid visualizing the difference in State-Action (S-A)
pairs explored by these agents (DLG). Results for PacMan v2, v3, v4 grids, the agent is trained on Teleporting Ghost variation (p = 0.2,
p = 0.5) and tested in different environments (reported in the headings). Rows in the right figure represents agent’s actions Left, Right, Up,
or Down.
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Figure Sup30: SARSA Agent with Boltzmann exploration strategy: The exploration grid visualizing the difference in State-Action (S-A) pairs
explored by these agents (DLG). Results for PacMan v2, v3, v4 grids, the agent is trained on Teleporting Ghost variation (p = 0.2, p = 0.5)
and tested in different environments (reported in the headings). Rows in the right figure represents agent’s actions Left, Right, Up, or Down.
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Figure Sup31: SARSA Agent with ϵ-greedy exploration strategy: The exploration grid visualizing the difference in State-Action (S-A) pairs
explored by these agents (DLG). Results for PacMan v2, v3, v4 grids, the agent is trained on Teleporting Ghost variation (p = 0.2, p = 0.5)
and tested in different environments (reported in the headings). Rows in the right figure represents agent’s actions Left, Right, Up, or Down.
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Figure Sup32: Q-learning Agent with Boltzmann exploration strategy: The exploration grid visualizing the difference in State-Action (S-A)
pairs explored by these agents (DLG). Results for Pong p1, p2 grids, the agent is trained on non-noisy variations of different environments
(reported in the headings) and tested in the Low-Noise regime. Rows in the right figure represents agent’s actions Left, Right, Stop.
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Figure Sup33: Q-learning Agent with ϵ-greedy exploration strategy: The exploration grid visualizing the difference in State-Action (S-A)
pairs explored by these agents (DLG). Results for Pong p1, p2 grids, the agent is trained on non-noisy variations of different environments
(reported in the headings) and tested in the Low-Noise regime. Rows in the right figure represents agent’s actions Left, Right, Stop.
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Figure Sup34: SARSA Agent with Boltzmann exploration strategy: The exploration grid visualizing the difference in State-Action (S-A)
pairs explored by these agents (DLG). Results for Pong p1, p2 grids, the agent is trained on non-noisy variations of different environments
(reported in the headings) and tested in the Low-Noise regime. Rows in the right figure represents agent’s actions Left, Right, Stop.
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Figure Sup35: SARSA Agent with ϵ-greedy exploration strategy: The exploration grid visualizing the difference in State-Action (S-A) pairs
explored by these agents (DLG). Results for Pong p1, p2 grids, the agent is trained on non-noisy variations of different environments (reported
in the headings) and tested in the Low-Noise regime. Rows in the right figure represents agent’s actions Left, Right, Stop.
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Figure Sup36: Q-learning Agent with Boltzmann exploration strategy: The exploration grid visualizing the difference in State-Action (S-A)
pairs explored by these agents (DLG). Results for Pong p1, p2 grids, the agent is trained on Directional paddle (p = 0.3 top, p = 0.6,
bottom) variation and tested in the Random paddle environment. Rows in the right figure represents agent’s actions Left, Right, Stop.
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Figure Sup37: Q-learning Agent with ϵ-greedy exploration strategy: The exploration grid visualizing the difference in State-Action (S-A)
pairs explored by these agents (DLG). Results for Pong p1, p2 grids, the agent is trained on Directional Paddle (p = 0.3 top, p = 0.6,
bottom) variation and tested in the Random Paddle environment. Rows in the right figure represents agent’s actions Left, Right, Stop.
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Figure Sup38: SARSA Agent with Boltzmann exploration strategy: The exploration grid visualizing the difference in State-Action (S-A) pairs
explored by these agents (DLG). Results for Pong p1, p2 grids, the agent is trained on Directional Paddle (p = 0.3 top, p = 0.6, bottom)
variation and tested in the Random Paddle environment. Rows in the right figure represents agent’s actions Left, Right, Stop.
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Figure Sup39: SARSA Agent with ϵ-greedy exploration strategy: The exploration grid visualizing the difference in State-Action (S-A) pairs
explored by these agents (DLG). Results for Pong p1, p2 grids, the agent is trained on Directional Paddle (p = 0.3 top, p = 0.6, bottom)
variation and tested in the Random Paddle environment. Rows in the right figure represents agent’s actions Left, Right, Stop.
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Figure Sup40: Q-learning Agent with Boltzmann exploration strategy: The exploration grid visualizing the difference in State-Action (S-
A) pairs explored by these agents (DLG). Results for Breakout b1, b2, b3 grids, the agent is trained on non-noisy variations of different
environments (reported in the headings) and tested in the Low-Noise regime. Rows in the right figure represents agent’s actions Left, Right,
Stop.
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Figure Sup41: Q-learning Agent with ϵ-greedy exploration strategy: The exploration grid visualizing the difference in State-Action (S-
A) pairs explored by these agents (DLG). Results for Breakout b1, b2, b3 grids, the agent is trained on non-noisy variations of different
environments (reported in the headings) and tested in the Low-Noise regime. Rows in the right figure represents agent’s actions Left, Right,
Stop.
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Figure Sup42: SARSA Agent with Boltzmann exploration strategy: The exploration grid visualizing the difference in State-Action (S-A) pairs
explored by these agents (DLG). Results for Breakout b1, b2, b3 grids, the agent is trained on non-noisy variations of different environments
(reported in the headings) and tested in the Low-Noise regime. Rows in the right figure represents agent’s actions Left, Right, Stop.
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Figure Sup43: SARSA Agent with ϵ-greedy exploration strategy: The exploration grid visualizing the difference in State-Action (S-A) pairs
explored by these agents (DLG). Results for Breakout b1, b2, b3 grids, the agent is trained on non-noisy variations of different environments
(reported in the headings) and tested in the Low-Noise regime. Rows in the right figure represents agent’s actions Left, Right, Stop.
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