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Abstract  29 

 30 
 31 
 32 
 33 
During natural vision, we rarely see objects in isolation but rather embedded in rich and complex 34 
contexts. Understanding how the brain recognizes objects in natural scenes by integrating 35 
contextual information remains a key challenge. To elucidate neural mechanisms compatible with 36 
human visual processing, we need an animal model that behaves similarly to humans, so that 37 
inferred neural mechanisms can provide hypotheses relevant to the human brain. Here we 38 
assessed whether rhesus macaques could model human context-driven object recognition by 39 
quantifying visual object identification abilities across variations in the amount, quality, and 40 
congruency of contextual cues. Behavioral metrics revealed strikingly similar context-dependent 41 
patterns between humans and monkeys. However, neural responses in the inferior temporal (IT) 42 
cortex of monkeys that were never explicitly trained to discriminate objects in context, as well as 43 
current artificial neural network models, could only partially explain this cross-species 44 
correspondence. The shared behavioral variance unexplained by context-naive neural data or 45 
computational models highlights fundamental knowledge gaps. Our findings demonstrate an 46 
intriguing alignment of human and monkey visual object processing that defies full explanation by 47 
either brain activity in a key visual region or state-of-the-art models.  48 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2024. ; https://doi.org/10.1101/2024.05.27.596127doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.27.596127
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

Introduction 49 

 50 
The field of visual neuroscience has long been fascinated by the computationally remarkable 51 
process of object recognition1–3, a cornerstone of primate visual perception. However, 52 
understanding an image transcends the ability to identify specific and isolated objects4–6. 53 
Interpreting an image requires knowledge about object correlations (e.g., bananas tend to co-54 
occur with trees), relative object sizes (e.g., bananas are often smaller than trees), and relative 55 
object positions (e.g., bananas tend to be near the top part of a tree). Contextual information can 56 
dramatically alter how object information is interpreted 7,8. There has been a long-standing interest 57 
in the statistics of natural images, and there are foundational behavioral studies of the role of 58 
context in vision 9–14. The mechanisms behind incorporating contextual cues at the computational 59 
and neurophysiological levels remain poorly understood. Multiple prior studies focused on the role 60 
of context in relatively "low-level" visual phenomena such as extra-classical receptive fields and 61 
surround suppression 15–19. However, little is known about how the brain represents prior high-62 
level knowledge and integrates it with incoming inputs to modulate visual cognition.  63 
  64 
Over the last decades, the field has made much progress in identifying the primate ventral visual 65 
pathway as crucial for housing neural circuits essential to object recognition4,20,5. A critical factor 66 
that led to progress in this domain has been the availability of rhesus macaques as an animal 67 
model that can mimic human object recognition behavior21,22. Given the ability to invasively probe 68 
finer-grain neural mechanisms in macaques23,24, studies have shown that a linear combination of 69 
image-driven population activity distributed across the macaque inferior temporal (IT) cortex (at 70 
the apex of the macaque ventral visual pathway) can sufficiently predict human object recognition 71 
behavioral error patterns on a battery of tasks5,25. Remarkably, these responses are typically 72 
recorded in monkeys who passively view the images without actively engaging in (or learning) the 73 
task -- suggesting that these representations are primarily bottom-up5,25 and task-independent26. 74 
Furthermore, a significant effort to model the transformations that follow the retinal responses 75 
(driven by the image) and culminate into the pattern of activity in IT has recently come in the form 76 
of a set of artificial neural networks (ANNs) that can partly explain the neural responses along 77 
these pathways13,27,28. Therefore, a reasonable approach to probe the mechanisms underlying 78 
the visual processing of scene context is to ask if macaques also mimic human context-driven 79 
behavior. If so, one could empirically probe the underlying neural mechanisms and compare 80 
current ANNs' ability to explain those representations.  81 
 82 
Interestingly, while current ANNs have been able to partially explain neural responses in V129, 83 
V230, V427,31,32, and IT27,33,34, and many aspects of object recognition behavior22, recent studies 84 
have also shown that these models are heavily biased by the visual context during their training13 85 
which lead to their misalignment with human behavior. These models also develop specific biases 86 
(e.g., shape-texture bias) that do not align with human strategies35–37. With the increasing 87 
evidence of discrepancies between ANNs and human behavior, it is critical to figure out how these 88 
models can be improved. The ability to probe context-dependent behavioral biases in monkeys 89 
and their underlying neural mechanisms allows us to develop strong constraints that can guide 90 
future model development.    91 
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 92 
In this study, we first developed quantitative behavioral metrics (coarse to fine-grained) to 93 
evaluate the psychophysical effects of contextual changes during object discrimination. We then 94 
conducted a thorough comparative analysis of the behavior of humans and monkeys. We further 95 
performed large-scale neural recordings across the macaque IT cortex to probe the strength of 96 
the image-driven IT responses and explain the observed behavioral variances. We contrasted the 97 
IT representations with those retrieved from the current most human-aligned ANNs. Our results 98 
unveil a nuanced understanding of how context influences object recognition in biological and 99 
artificial systems, which highlights significant parallels but also divergences in how humans, 100 
monkeys, and ANNs process visual context information.   101 
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Results 102 

We investigated the behavioral effects of scene context on humans and macaques during 103 
recognition of real-world objects, such as cars, animals, and fruits. We introduced multiple 104 
variations of the contextual information to further our understanding of what aspects of the object’s 105 
surrounding impact recognition. These variations include incongruent context, no context, and 106 
blurred context, among many others (Fig 1A). We developed a binary delayed match to sample 107 
object discrimination task (Fig 1B), where the participants, humans (Fig 1C) and monkeys (Fig 108 
1D), identified the Target object shown in a sample test image (with varying contexts) when 109 
probed with two object choices (a target and a distractor).  We quantified context-driven 110 
behavioral responses in both species with multiple quantitative metrics and assessed how well 111 
these metrics matched each other. Next, to probe the nature of the neural representations that 112 
could support these behavioral patterns, we examined how well the shared variance in their 113 
behavior is explainable by neural data from the inferior temporal (IT) cortex and the IT-like sub-114 
units of current ANN models of primate vision (Fig 1E).  115 
 116 
 117 

 118 
Fig 1. Comparing the influence of context in object discrimination performance across humans, 119 
monkeys and artificial neural networks (ANNs). A. Example of the ten contextual manipulations for one 120 
image of the set used for the experiments (details in Methods). The frames around each image indicate the 121 
color associated with that context type (only used for reference in the article, not in the actual experiments). 122 
B. Binary object discrimination task, showing the timeline of events for each trial. Subjects fixate on a cross, 123 
then the test image containing one of ten possible objects and contextual manipulations is shown at the 124 
center of the visual field (subtending 8 degrees of visual angle) for 100 ms. After a 100-ms delay, a 125 
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canonical view of the target object (the same category as, but not a template match to, the test image) and 126 
a distractor object (one of the other nine objects) appears. The human or monkey indicates which object 127 
was present in the test image by clicking on one of the two choices. C. Schematic of the human behavioral 128 
task for 309 participants recruited from Amazon MTurk. D. Schematic of the monkey behavioral task for 129 
two context-trained adult macaques. E. Schematic of the model behavioral task for eighteen pre-trained 130 
ANN models (bottom, details in Table 1) and the neural data (top). To make the artificial models compatible 131 
with the specific primate binary object discrimination task, their most IT-similar feature representations were 132 
extracted and used to train the decoder - a multiclass SVM classifier - calculating the cross-validated 133 
probabilities for each object class in a one-vs-all manner. The model output is then the object class with the 134 
highest one-vs-all probability. Similarly, the most reliable neural responses (n=122 neural sites) from two 135 
context-naive monkeys were used to train the decoder and obtain the object class probabilities.  136 

Quantifying Context-Driven Changes in Object Recognition through Behavioral 137 
Metrics  138 

To characterize how scene context influences the behavior of biological and artificial visual 139 
systems during object recognition, we developed quantitative metrics beyond the overall 140 
performance accuracy across all images. These metrics include the behavioral signature at the 141 
context level (B.C1, Behavioral, Context-Level 1-dimensional; see Methods) and a more fine-142 
grained image level (B.I1, Behavioral, Image-Level 1-dimensional). The context-level 143 
performance metric, B.C1 (human performances shown in Fig 2A - right), assesses the overall 144 
object discriminability within each context category (C). It does so by pooling accuracies across 145 
all images of a given context type (C) and all combinations of target and distractor pairs for those 146 
images (see Methods). This approach provides a broad understanding of how context influences 147 
recognition performance on a categorical level. In contrast, the image-level metric,  B.I1 (detailed 148 
in Methods, human performance shown in Fig 2A, left), focuses on the discriminability of 149 
individual images, assessing how well the system distinguishes each object (O) from all others 150 
per image across varying contexts. This finer-grained metric allows for a more detailed analysis 151 
of performance variations at the image level. Expanding upon this foundation, we then seek to 152 
estimate the shared behavioral variance between humans and monkeys (behavioral signatures 153 
shown in Fig S1A), as depicted in Fig 2B. This comparative analysis could reveal one of the 154 
following scenarios. First, given species level differences38, we might observe that monkeys do 155 
not process visual context in the same way as humans and, therefore, exhibit no shared variance 156 
with humans (H0; Fig 2B - top panel). Second, it is possible that monkeys only share a fraction 157 
of variance with humans (H1; Fig 2B - middle panel). Lastly, it is also possible that within our set 158 
of tasks, images, and contextual variations – monkey and human behavior fully align with each 159 
other (H2; Fig 2B - lower panel). These conditions can be independently assessed for each of 160 
our behavioral metrics, and we expect that finer-grained metrics will enable us to more rigorously 161 
quantify the boundaries of the shared behavior between these two systems.  162 
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 163 
Fig 2. Behavioral metrics to quantify context-driven variations in task performance. A. Human 164 
accuracy patterns at an image-level (fine granularity, B.I1, left) and context-level (coarse granularity, B.C1, 165 
right). Each element of the B.I1 vector represents the overall accuracy (averaged across all tasks) for an 166 
image. A few example images are shown in the middle panel grouped by object category. The context-level 167 
signature (B.C1, right panel), is obtained by averaging the B.I1 values for all images of each specific context 168 
type (see Fig 1 for examples of all the context types). The light and dark teal colors indicate lower and 169 
higher performances (see color scale next to each signature). B. The three hypotheses on the human-170 
monkey shared behavioral variance. 171 

 172 

Object context induces significant changes in human behavior 173 

 174 
Humans (309 participants on Amazon Mechanical Turk) participated in a binary object 175 
discrimination task (Fig 1B, for details, see Methods). Our results show that varying the context 176 
of the image changes the performance of the human participants. For instance, consistent with 177 
previous research10,13,14 humans show a significant reduction in accuracy for incongruent 178 
compared to congruent contexts (ΔAccuracy = 0.13 ± 0.21; Lilliefors test: full context p=0.004, 179 
incongruent context p=0.371, non-normal distribution, p>0.005; Wilcoxon rank-sum test 180 
statistic=4.4, p=0.0001; Fig 3A: blue vs green bars).  The effect of contextual manipulations 181 
resulted in a consistent pattern of behavior (with a trial-split reliability of approximately 0.74, see 182 
Fig S2A, reliability across context types in Fig S2B). This high self-reliability is critical to ensure 183 
that contextual effects can be compared across animals, across species, and from biological 184 
systems to ANN models. The decline in accuracy for incongruent (compared to congruent) context 185 
was not solely due to the abrupt transition from the background to the object; even when the 186 
context/object boundary was blurred (termed blurred boundary), we observed the same effect. 187 
Predictably, removing the object, retaining only its silhouette, also led to reduced accuracy; 188 
however, performance remained well above chance, indicating that the context alone (with the 189 
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object outline) provided enough information for accurate object discrimination. Moreover, when 190 
the context was removed or minimized, there was again a decrease in performance, confirming 191 
that humans also rely on the surroundings for object recognition. The blurring process itself 192 
seemed to have minimal influence on human responses, as the kernel size used was relatively 193 
small (see Methods). Using a synthesized texture (textured context), which retained the visual 194 
attributes of the original context, also adversely affected human behavior. Our results align with 195 
extensive research on context modulated human behavior7,13 and notably extend beyond the 196 
scope of previous work. In particular, we provide quantitative results from a forced binary choice 197 
task for a wider range of context variations. We define two behavioral signatures, allowing a 198 
coarse and fine-grain comparison within the human population and, importantly, across species - 199 
similarity with rhesus macaques. The cross-species consistency, coupled with access to the 200 
macaques’ neural circuits, provides a path for studying the neural  mechanisms underlying 201 
contextual processing. 202 
 203 
 204 

 205 
Fig 3. Context-driven changes in human behavioral task performance.  A. Contextual manipulations 206 
produce significant changes in human visual recognition. Accuracy (mean 0.71±0.05) for each contextual 207 
manipulation (B.C1, Fig 2), with standard error across images. Statistics are shown for full context 208 
compared to other context variations (* denotes independent t-test, p<0.05). B. Left: Image-level accuracies 209 
(from the object discrimination task, with standard error across image trials) for full and incongruent context, 210 
each dot represents the human behavioral accuracy for the same object embedded in either full or 211 
incongruent context. Example images are shown where the object is better predicted in each context 212 
variation. Right: Similar as left, but comparing the accuracy for objects embedded in full context vs removing 213 
the context. Note that the car object is very small (< 1 degrees of visual angle) and hard to see without a 214 
lot of zoom (images are presented at the center of the visual field subtending 8 DOV angle, Fig 1). 215 
 216 

Object context induces significant changes in monkey behavior 217 

 218 
To establish macaques as an appropriate animal model to probe the neural mechanisms of 219 
human context processing it is critical to first ask whether macaques behaviorally show similar 220 
contextual effects to humans. To ensure that macaques are familiar with the scene context per 221 
object category, we first explicitly trained them with images in full context (from the Microsoft 222 
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COCO dataset, 160 images per object for ten objects). Macaques showed robust cross-validated 223 
accuracy during such training (Fig S1B).  224 
Once the monkeys (n=2) were fully trained (i.e., reached ≥80% performance) in their home cages 225 

(see learning curve Fig S1B), we measured their object discrimination performances with the 226 
same contextually manipulated images as humans (Fig 1A). Monkey behaviors were highly 227 
reliable (as measured by trial split-half reliability, r=0.76, see Methods, Fig S3A), and correlated 228 
with each other at both the context level (corrected Pearson R=0.98, corrected by both monkeys’ 229 
self-consistency, see Methods, Fig S4A), and at the image-level (corrected Pearson R=0.83, Fig 230 
S4B). Similar to humans, monkeys also showed a significant reduction in accuracy for 231 
incongruent compared to congruent contexts (ΔAccuracy = 0.104 ± 0.18; Lilliefors test: full context 232 
p=0.173, incongruent context p=0.58, normal distribution, p>0.005; independent t-test, t(59) = 233 
3.305,  p=0.001, Fig 4A: blue vs green bars). Fig 4B compares the trial averaged image by image 234 
accuracy between full and incongruent context (left), as well as full and no context (right). At the 235 
individual image level, we observe some images for which the object placed in an incongruent 236 
context was better recognised than when the same object was embedded in a congruent context 237 
(see example of an apple in Fig 4B, left). Similarly, some objects were better recognized when 238 
fully removing the context compared to keeping the full congruent context (see apple example in 239 
Fig 4B right).   240 
 241 
 242 

 243 
Fig 4. Context-driven changes in monkey behavioral task performance. A. Contextual manipulations 244 
produce significant changes in monkey behavior. Accuracy (mean 0.68±0.04) for each contextual 245 
manipulation (B.C1), with standard error across images. As in Fig 3A, statistics are shown for full context 246 
compared to other context variations (* denotes independent t-test, p<0.05). Chance = 0.5.  B. Left: Image-247 
level accuracy for incongruent context versus full context (format as in Fig 3B), each dot represents the 248 
pooled monkeys’ behavioral accuracy for the same object embedded in incongruent (y-axis) or full (x-axis) 249 
context with standard error across image trials. We show example images where the object is better 250 
recognized in each context variation. Right: Similar as left, but for no context (y-axis) versus full context (x-251 
axis).   252 
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Humans and monkeys share significant variance in context driven changes in 253 
object recognition 254 

We directly compared monkey and human performance for the same images and task. Our results 255 
show a remarkable consistency between monkeys and humans at the context level (C1 corrected 256 
Pearson R=0.83, Fig 5A). For example, both monkeys and humans performed best in the full 257 
context condition (blue point) and worst in the incongruent context condition (green point). 258 
However, the majority of points in Fig 5A fall below the diagonal, indicating that humans 259 
outperformed monkeys in most context conditions (Δ (human - monkey) =0.02±0.03,  Lilliefors 260 
p=(0.517, 0.487) : normal distribution; paired t-test, t(9) = 1.86, p=0.1). The two exceptions were 261 
the jigsaw and textured context conditions, where monkeys slightly outperformed humans. To 262 
quantify the variability across humans, we calculated the human ceiling by comparing the shared 263 
variance between two separate pools of human subjects (teal band in Fig 5B). We then compared 264 
the shared human-monkey variance to this human ceiling. Since we are comparing a pooled 265 
population of 309 humans to the n=2 monkey pool, we looked at the effects of monkey pool size 266 
on its consistency with human data. As the number of monkeys in the pool increased from one to 267 
two, the shared human-monkey variance increased by 4.3% (gray bars in Fig 5B). Extrapolating 268 
to an infinite pool of monkeys using a "pseudo" human consistency function (sigmoid) derived 269 
from subsampling the human pool, we estimate that the asymptotic shared variance between 270 
monkeys and humans would reach approximately 80% of the human ceiling. Next, we compared 271 
monkey and human performance at the individual image level (Fig 5C). Again, we found a 272 
significant correlation between monkeys and humans (I1 corrected Pearson R=0.63), although 273 
the relationship was weaker than at the context level. The slope of the regression line in Fig 5C 274 
suggests that humans outperformed monkeys on average, but this difference was not as 275 
pronounced as at the context level  (Δ (human - monkey) =0.02±0.18, Lilliefors p=(0.001, 0.001): 276 
non-normal distribution; Wilcoxon test: statistic = 79913.5, p=0.02). The shared variance analysis 277 
at the image level (Fig 5D) revealed that humans were less consistent with each other compared 278 
to the context level (Fig 5B), as expected due to the increased granularity of individual images. 279 
This effect was even more pronounced for monkeys, with a larger drop in shared variance at the 280 
image level compared to the context level. Increasing the number of monkeys in the pool from 281 
one to two improved the shared human-monkey variance by 8.2% at the image level (Fig 5D). 282 
Extrapolating to an infinite pool of monkeys, we estimate that the asymptotic shared variance 283 
would reach approximately 70% of the human ceiling at the image level. 284 
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 285 
Fig 5. Monkeys and humans show similar (but not identical) context-driven behavioral changes. A. 286 
Context-level (B.C1) correlation between the pooled monkeys (n=2) and pooled humans (n=309). Each 287 
point represents the mean accuracy for a contextual variation with standard error across images of that 288 
context type (colors as in Fig 1A, pooled monkeys mean 0.69±0.20, humans mean 0.71±0.18). The three 289 
main context types: full (blue), incongruent (green) and no context (red), are shown with a black stride 290 
around the filled point. The value ρ indicates the noise corrected correlation coefficient (Pearson R). B. 291 
Shared human-monkey explained variance at a context-level (mean with standard deviation across context 292 
types), as a function of the number of monkeys used for pooling. The asymptotic value for an infinite pool 293 
of monkeys is obtained by extrapolating the “pseudo” human consistency function (Methods). The human 294 
self-consistency ceiling is shown as a teal band. E. Image-level correlation (B.I1) for the pooled monkeys 295 
and humans, each low opacity point shows the performance (mean accuracy) for an image with standard 296 
error over image trials, the higher opacity points are the B.C1 mean (from A), colors map to context types 297 
as defined in Fig 1A. F. Similar to C but mean shared variance at an image-level with standard deviation 298 
across image subsamples. 299 
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Population activity across the IT cortex in a context-naive monkey fully explains 300 
the shared behavioral variance between humans and monkeys at the overall 301 
context-level 302 

 303 
Our behavioral results (Fig 5) demonstrate that humans and macaques share a significant 304 
proportion of variance (context level shared EV=62.43%) induced by context variations during 305 
object discrimination. To understand the neural mechanisms behind these contextual influences, 306 
we require a more detailed examination of the neural networks involved. Previous studies have 307 
shown that IT population responses in monkeys (passively viewing images, see Methods) can be 308 
linearly combined to sufficiently explain human object category (and category-orthogonal) based 309 
behavioral patterns 1,5,25. Therefore, we aimed to assess the extent to which the image-driven 310 
responses in the IT cortex of context-naive macaques could account for the variance observed 311 
between humans and monkeys. Similar to the expected observations while comparing human 312 
and monkey behavior (Fig 2B), we hypothesized that there could be no overlap (H0; Fig 6A), 313 
partial overlap (H1; Fig 6A), or full overlap (H2; Fig 6A) between the neural predictions and 314 
primate behavior.  315 
 316 
We performed chronic neural recordings using Utah arrays across the IT cortex in two macaques 317 
that passively viewed the images (used in the behavioral tasks) presented for 100 ms each (Fig 318 
6B, see Methods). We combined the most reliable neural sites (n=122; see criteria in Methods, 319 
30 sites from monkey 1, 92 sites from monkey 2) across the two monkeys to generate a pooled 320 
neural population for further analysis. Similar to previous methods5,23,28, we used linear 321 
classification-based algorithms (Fig 6B) to decode the object category for each image from the 322 
pooled neural data and estimated the neural predictions for the behavioral metrics (explained 323 
above, e.g. C1, I1).  324 
 325 
We first asked how well the macaque neural responses can predict the shared variance between 326 
humans and macaques at the B.C1 level. Therefore,  we performed a partial correlation analysis 327 
between human and macaque C1 behavioral patterns while controlling for the IT population 328 
activity-based predictions of B.C1. To account for the irreducible noise in the neural data, we 329 
corrected the partial correlation by extrapolating it to an infinite number of trials for the neural data 330 
(see inset Fig 6F). Interestingly, the neural data (122 sites) explained 75% of the context-level 331 
shared monkey-human C1 variance (Fig 6E). To further address the data limitations arising from 332 
the limited number of neural recordings, we extrapolated the neural decoding accuracy to match 333 
the monkey accuracy (logarithmic function, Fig 6D). This extrapolation led to an estimation of 334 
4357 neural sites needed to reach monkey accuracy. A logarithmic extrapolation of the explained 335 
variance (EV) to 4357 neural sites indicates that IT would fully explain the human-monkey B.C1 336 
variance if we had more neural recordings (Fig 6C).  337 
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 338 
Fig 6. Context naive macaque IT fully explains the human-monkey shared behavioral variance at a 339 
context-level but only partially at an image-level. A. The hypotheses for how much of the human-340 
monkey shared explained variance (HM-EV) can be explained by IT.  B. The neural data was recorded 341 
while the monkey was passively fixating on the center of an image (8 degrees of visual angle) presented at 342 
the animal’s center of gaze for 100 ms. The object category decoding was done by training a multi-class 343 
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SVM classifier (one vs all for each object category) tested in a cross-validated way on the same images 344 
and tasks as those presented to humans and monkeys. For a given image, the decoding output is the object 345 
class with the highest one vs all probability. All behavioral predictions from the decoder were for images 346 
where the object was not seen in any phase of the model training, making sure we never show an image 347 
of the same object (regardless of the contextual manipulation) during the fitting and testing. We decoded 348 
the object category from each possible time-bin of the neural data by varying the tStart (start of the time-349 
bin with respect to image onset, in ms) and binwidth (length of the time-bin, in ms) of the obtained neural 350 
population vector (0-300 ms per image presentation). C. Results from decoding all time-bins (filtered with 351 
self-consistency >0.1) from the neural data, color indicates the bin start, size indicates the bin length. The 352 
percent of image-level explained variance from the shared human-monkey variance is shown (y-axis, with 353 
standard error across image subsamples) as a function of the decoding accuracy for each bin (x-axis, with 354 
standard error across images). We used the 70-170 ms time-bin for all subsequent analyses. D. Decoding 355 
accuracy with standard deviation (one-vs-all accuracy, chance level = 0.5) across neuron subsamples for 356 
the 70-170 ms time-bin, as a function of the number of neurons . An extrapolation (dashed red curve) 357 
estimates the decoded accuracy from a neural population of 4537 recorded neural sites would reach the 358 
overall pooled monkey accuracy (0.69, gray band shows monkey accuracy mean with standard error across 359 
the 600 images).  E. Context-level variance explained by the neural data, from the HM-EV. The EV is 360 
obtained by subtracting the HM-EV when controlling for the neural data (partial correlation) from the full 361 
HM-EV and normalizing by the full HM-EV (see Methods). We show the EV as a function of the number of 362 
neurons used for decoding, showing an extrapolation to 4537 neurons would fully explain the B.C1 HM-EV. 363 
Each point shows an average (with standard deviation error bar) across ten different subsamples of neurons 364 
used, corrected by extrapolating to an infinite number of trials for those specific neurons. F. Similar to E, 365 
but for image-level shared variance. The inset shows the correction for the EV for 122 neurons  by 366 
extrapolating to an infinite number of trials as done for context-level, each point shows an average (with 367 
standard deviation error bar) across ten different subsamples of trials. The extrapolation of the EV to the 368 
number of neurons needed to reach monkey accuracy (see decoding accuracy extrapolation in D) gives a 369 
ceiling of 48.3% of image-level human-monkey behavioral variance that can be explained by the context 370 
naive monkey IT neural data. 371 

Population activity across the IT cortex in a context-naive monkey only partially 372 
explains the shared context-driven behavioral variance between humans and 373 
monkeys at the image-level 374 

 375 
To further stress test whether IT responses from untrained (task-naive) monkeys can explain finer 376 
grained behavioral patterns, we next turned to predictions for the I1 level (image-level shared 377 
variance). As shown in Fig 6F, the recorded reliable neural population (122 neural sites) explains 378 
only a fraction of the image-by-image behavioral variance (up to 25%). This result suggests that 379 
the context-naive IT population may not capture all the necessary information to fully predict the 380 
shared human-monkey behavioral patterns at the image level. To address the possibility that the 381 
limited explained variance might be due to the restricted number of recorded neurons, we applied 382 
the same extrapolation method as used for the context-level EV (Fig 6E). We estimated that 383 
approximately 4357 neural sites would be needed to match the pooled monkey behavioral 384 
accuracy (Fig 6D). However, despite this extrapolation, the neural data from context-naive IT 385 
could not fully explain the image-by-image shared primate variance, reaching a ceiling of only 386 
48.3% (Fig 6F). The discrepancy between the context-level and image-level explained variance 387 
highlights the complexity of the neural mechanisms underlying context-dependent object 388 
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recognition and the limitations of using context-naive neural responses to predict fine-grained 389 
behavioral patterns. In summary, while the context-naive IT population activity can fully explain 390 
the shared human-monkey behavioral variance at the context level (Fig 6E), it only partially 391 
accounts for the variance at the image level (Fig 6F). This finding underscores the need for further 392 
investigation into the neural mechanisms that shape the shared behavioral patterns between 393 
humans and monkeys in the presence of contextual variations. 394 

Low-level image-based features do not explain the shared human-monkey 395 
behavioral variance  396 

So far, we have observed that human and macaques share a significant amount of behavioral 397 
variance both at the coarse (B.C1) level and the finer-grained (B.I1) level. The image-driven task 398 
naive IT responses can fully explain the C1 variance but not the I1 level variance. We next asked 399 
how much of these results can be explained by low-level image features. For every image, we 400 
extracted a range of basic image features, such as object size, location, and category, spectral 401 
mean and standard deviation(std), and contrast mean and standard deviation (std) (Fig 7A). The 402 
low-level features were chosen to capture basic properties of the images that could potentially 403 
influence object recognition performance, such as the object's saliency (contrast) and its 404 
placement within the scene (location). We observed that these low-level features do not explain 405 
the context-level (Fig 7B, 55.39±7.08% mean±95% CI of noise ceiling, max low-level feature EV 406 
= 3.03±2.2%) or image-level (Fig 7C, 23.4±2.9% mean±95% CI of noise ceiling, max low-level 407 
feature EV = 2.47±1.47%) measured shared behavioral variance. Among all the low-level features 408 
tested, object size showed the most consistency with the shared human-monkey variance at the 409 
image level, aligning with prior studies highlighting its influence on human behavior  (Zhang et al., 410 
2020). In particular, the positive correlation with human and monkey performance was more 411 
significant for smaller object sizes and diminished for objects with size beyond 5 degrees of visual 412 
angle (Fig S5). Its effect, however, is marginal, accounting for only 10% of the shared human-413 
monkey image-level variance. This suggests that while object size plays a role in shaping the 414 
shared behavioral patterns, it alone cannot fully explain the observed consistency between 415 
humans and monkeys. Taken together, we infer that low-level image features alone are 416 
insufficient to explain the shared behavioral patterns observed in humans and monkeys, indicating 417 
the need for more complex, higher-order processing to fully account for the context-dependent 418 
object recognition performance. 419 
 420 

ANNs fully explain the overall context-level human-monkey shared behavioral 421 
variance 422 

Next, we tested whether the current best models of primate vision, a family of deep convolutional 423 
neural networks (DCNNs), vision transformers, or recurrent convolutional neural networks, can 424 
predict the behavioral variance observed on a context and image-by-image level. Using a 425 
multiclass SVM decoder, we mimicked the same object discrimination task presented to humans 426 
and monkeys. We used the most ‘IT-like’ layer features from each model (for details, see Table 427 
1), projected to a 3k lower dimensional space (via a Random Gaussian Projection). These model 428 
accuracy decodes showed sensitivity to contextual changes, with their accuracy varying across 429 
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different context types and images, as shown in their behavioral signatures (Fig S9). The ANN 430 
models' ability to capture context-dependent performance variations suggests that they have 431 
learned to extract and process contextual information in a manner that is relevant for primate 432 
object recognition.Similarly, for the neural data, we did a partial correlation analysis for the pooled 433 
monkey and human population behavioral patterns while controlling for each of the artificial 434 
models’ variance. Our results show that most models, including the Pixels control model, can 435 
explain the context-level shared behavioral accuracy patterns of humans and monkeys.  436 
 437 

 438 
Fig 7. ANNs fully explain the human-monkey shared behavioral variance at a context-level but only 439 
partially at an image-level. A. Example of images with increasing “intensity” (top to bottom) of 4 example 440 
low-level image features: mean image contrast, object size, object x and y position. The objects are noted 441 
with a red dot or bounding box. B. The human-monkey shared variance explained by the low-level features 442 
and ANN models at a context level, showing the mean fraction of explained shared variance with standard 443 
deviation across different image subsamples from 20 bootstraps (choosing 600 images with repetition). The 444 
low-level features are shown with dotted light blue bars. The ANN decoding was done in the same way as 445 
for the neural population (multiclass SVM), only using the extracted model features from the ‘IT’ layer for 446 
each model. Pixels’ (control model - flattened image pixels) performance is shown in a dashed gray bar. 447 
The mean human-monkey shared variance ceiling is shown in gray, with standard deviation across different 448 
image subsamples from 20 bootstraps (same as for the bars). We are noting the neural corrected EV 449 
(purple) when using all the recorded reliable neural responses (122), and the extrapolation (from Fig 6) 450 
with the dotted bar.  C. Similar to B but showing the explained variance at an image-level. 451 

ANNs only partially explain the image-level human-monkey shared behavioral 452 
variance 453 

While ANNs fully capture the shared human-monkey behavioral variance at the context-level, 454 
their performance at the finer-grained, image-level is less comprehensive. Despite the models' 455 
ability to explain the overall context-dependent behavioral patterns, they struggle to account for 456 
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the more intricate, image-specific variations in primate behavior. At B.I1 level,  the models explain 457 
at most 70% of the image-level shared primate behavioral variance. This discrepancy is due to 458 
the finer grain accuracy variations within both context and object category types that are not 459 
consistently aligned between the primates and the artificial models. We found a strong correlation 460 
between the fraction of explained shared human-monkey variance and the decoding accuracy 461 
from the model features (Pearson R=0.78 for B.C1 and 0.95 for B.I1, Fig S7), indicating that 462 
improving the model accuracy could allow them to fully explain the shared human-monkey B.I1 463 
behavioral variance. The control Pixels model - using the raw image pixel values, capturing the 464 
context-level shared behavioral patterns, was falsified at an image level. This reveals more 465 
complex image-level shared behavioral patterns that are not due to the raw image features. The 466 
image-level gap was consistent when comparing at an individual level - these models could not 467 
fully explain the (full) human, monkey or neural image-level behavioral patterns (Fig S2, S3 and 468 
S8). This indicates that such models do not currently possess the mechanisms required to 469 
process scene context in a primate-like fashion.  470 
 471 
In summary, while low-level image features and current artificial neural networks can account for 472 
the overall context-level shared behavioral variance between humans and monkeys, they fall 473 
short in fully explaining the more intricate, image-level behavioral patterns. These findings 474 
highlight the need for further advancements in artificial neural network architectures and training 475 
paradigms to better capture the nuanced, context-dependent object recognition processes 476 
observed in primates.  477 
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Discussion 478 

In this study, we highlighted the critical role of context in primate object recognition. The visual 479 
object recognition abilities of monkeys that were initially trained to categorize objects in their 480 
natural context were strongly modulated when we deliberately varied the contextual cues. Our 481 
findings reveal that both humans and monkeys exhibit a significant sensitivity to contextual cues, 482 
which goes beyond low-level image attributes. Indeed, macaques shared a significant variance in 483 
their context-driven behavioral error patterns with humans. Thus, we established rhesus 484 
macaques as a viable animal model for investigating scene context in human visual recognition, 485 
paving the way for further studies into the neural underpinnings of contextual modulation. 486 
However, our analysis also revealed that at the image-level, monkeys do not entirely mimic 487 
human behavioral patterns, suggesting potential limitations in the depth and duration of their 488 
training or inherent species-level differences in sensory processing and cognition. In addition, we 489 
observed that the population activity distributed across the IT cortex of naive monkeys that were 490 
not explicitly trained with objects in context do not fully explain the context-driven behavioral 491 
patterns of the context-trained monkeys. Furthermore, our ANN-based simulations further reveal  492 
the substantial impact of context on the predictive behavior of current ANN models. Notably, 493 
ANNs exhibit limitations in their explanatory power for image-level comparisons with primates 494 
under varying contexts, indicating a clear need for model enhancements to accurately mimic the 495 
complex influence of context in primate visual recognition.  496 
 497 

Context modulates visual object recognition in humans and monkeys 498 

Our results underscore the critical role of context in primate object recognition, aligning with an 499 
extensive corpus of literature on visual cognition 11,13,39. This research has established that human 500 
visual object recognition capabilities are modulated by contextual cues. Such cues are informed 501 
by our understanding of object occurrence statistics, which dictate notions of congruency or 502 
incongruency within a given scene. Interestingly, our findings reveal that monkeys, much like 503 
humans, exhibit sensitivity to these statistical cues.  Across diverse context manipulations, we 504 
observed substantial decrements in object discrimination accuracy compared to fully congruent 505 
scenes - up to 13% in humans and 10.4% in monkeys for incongruent contexts. These striking 506 
parallels between the two primate species underscore the viability of macaques as a model 507 
system for probing the neural computations underlying context processing. Critically, our results 508 
extend beyond prior work by demonstrating context sensitivity across a broad range of 509 
manipulations and employing rigorous, multi-faceted behavioral metrics designed to quantify 510 
performance changes induced by contextual cues. The tight concordance points to potential 511 
shared cognitive mechanisms, such as knowledge of object co-occurrence statistics, relative 512 
sizes, and positional regularities, which could account for the context facilitation effects observed 513 
in both species.  514 

Goodness of monkeys as a model of  human contextual processing 515 

 516 
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While the largely consistent effects at the coarser, context-level, validate macaques as a model, 517 
some discrepancies remain. Our analysis revealed that at the image-level, monkeys do not 518 
entirely mimic human behavioral patterns. To familiarize them with various contexts—such as 519 
cars on roads, bears in the jungle, and chairs in rooms—we trained these monkeys extensively 520 
with natural photographs (from the MS COCO image dataset) until their performance plateaued, 521 
as shown in Fig S1B. Despite reaching high performance, the mismatch between human and 522 
monkey responses suggests that the depth and duration of training might not have been sufficient. 523 
Enhancing the training regimen could potentially lead to a better alignment with human context-524 
level behavior, reducing the disparity observed in image-level variance. However, potential 525 
confounds like the limited stimulus set size and specific task demands cannot be ruled out either. 526 
Importantly, instances where context manipulations like blurring had relatively small impact on 527 
performance in both species provide insights into boundary conditions that inform and constrain 528 
models of contextual reasoning. Another critical consideration is the inherent species-level 529 
idiosyncrasies and differences in brain structures between humans and monkeys 38. These 530 
biological distinctions might inherently limit the degree to which monkeys can model human 531 
contextual processing. While further training might narrow the behavioral gap, some level of 532 
divergence might always persist due to fundamental differences in sensory processing, visual 533 
experience, and cognition between the two species. Understanding and acknowledging these 534 
limitations is vital as we continue to refine monkeys as models for human visual processing. 535 
Future research should explore both the potential and the boundaries of this animal model, aiming 536 
to optimize training strategies and deepen our understanding of the species-specific factors that 537 
influence contextual processing. Through this nuanced approach, we can better leverage the 538 
strengths of monkeys as models while being mindful of their inherent limitations. 539 

Insufficiency of ANN models to explain primate context-driven behavior  540 

Deep ANNs are currently the best models of human vision and also show remarkable 541 
performance in computer vision tasks 3,28. These models have been trained extensively on images 542 
of objects in context from large datasets (typically ImageNet). Our findings show that while these 543 
ANNs were able to fully explain the context level (B.C1; the coarser metric) shared primate 544 
variance, they failed to completely capture the finer grain image level accuracy patterns (B.I1). 545 
Even simple pixel-based models could predict the broad variations in B.C1 (Fig 7), underscoring 546 
the limitation of such coarse metrics in capturing the nuanced differences in visual context 547 
processing. However, a shift in focus to finer, image-by-image level variations revealed a more 548 
intricate picture. At this granular level, we discerned the primary distinctions between humans, 549 
monkeys, and ANNs. While monkeys show partial overlap with human behavior, a significant 550 
portion of this image-level variance remains unexplained by current ANN models. This gap 551 
highlights a critical area where artificial systems diverge from natural primate visual processing, 552 
suggesting that while ANNs can mimic some aspects of primate vision, they still lack certain 553 
mechanisms that drive the nuanced, context-driven behaviors observed in humans and monkeys. 554 
These observations not only challenge the sufficiency of broad behavioral metrics in capturing 555 
the essence of visual context processing but also point to image-level analyses as a more 556 
sensitive and discriminating tool for understanding the subtleties of primate vision. The partial 557 
alignment yet notable divergence of current ANN models from primates points towards key 558 
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computational mechanisms underlying context integration during object recognition that may still 559 
be lacking in artificial systems. Aspects like rapid integration of segmented objects with contextual 560 
associations and scene statistics, combination of high-resolution foveal and low-resolution 561 
peripheral representations, oculomotor sampling routines tuned for context (however, see13, 14), 562 
or other dynamic processes could be critical for human-level contextual reasoning. Pinpointing 563 
and distilling such mechanisms from the primate brain represent exciting future directions. We 564 
tested a range of models (Table 1), to gain further insight into the model architectures that could 565 
explain the B.I1 primate shared behavioral patterns better. We observed that deep ANNs with 566 
residual connections, as well as inception modules, are most aligned with human-monkey 567 
behavior (Fig S6). This indicates that allowing for feed-forward long-range dependencies between 568 
features (e.g., low-level features like edges with higher-level features)  and preserving the finer-569 
grained information from earlier layers (which can be lost due to the depth of models) by using 570 
bypass connections could benefit the alignment of these ANNs with primate behavior. 571 
Furthermore, ANN decoding accuracy (signatures in Fig S9) predicts the fraction of explained 572 
monkey-human shared variance (Fig S7), indicating that by improving the model’s decoding 573 
accuracy, we could come closer to bridging the I1 explainability gap.  574 

Role of IT cortex in processing scene context 575 

The inferior temporal (IT) cortex is integral to visual object processing 4,5,23,40, yet our findings 576 
indicate that responses from context-naive monkeys may not fully encapsulate the representation 577 
of scene context akin to that in humans or context-trained monkeys. This shortfall calls for a 578 
nuanced approach in future investigations into the IT cortex's role in context processing. One 579 
explanation for this is that our data might be sample-limited, affecting the breadth and depth of 580 
our inferences. Constraints such as the extent of IT neural data sampling, the diversity of images, 581 
trials, objects, and context variations might have curtailed our ability to fully capture IT's 582 
capabilities in context processing. To address these limitations, we conducted extrapolation 583 
analyses (Fig 6) to estimate the scaling laws governing our data, aiming to predict how increasing 584 
our sample might influence our findings – further corroborating the insufficiency of naive IT-based 585 
decodes to explain human behavior. Secondly, the lack of refined representational capacity in the 586 
IT cortex of naive monkeys might be due to insufficient exposure to varied contextual cues – 587 
improving which might amplify the IT cortex's ability to represent scene context. Additionally, 588 
investigating the interaction of the IT cortex with other brain regions, both within the ventral stream 589 
like areas V4 and outside the ventral pathway such as the ventrolateral prefrontal cortex (vlPFC), 590 
and their correlation with behavior in trained and untrained monkeys could illuminate new aspects 591 
of neural processing. This exploration is crucial to discern whether other areas might compensate 592 
for or augment the IT cortex's function in context processing, thus providing a more holistic view 593 
of the neural networks at play in this intricate task. Together, these strategies will deepen our 594 
understanding of the IT cortex's role and pave the way for a more comprehensive grasp of the 595 
neural underpinnings of context processing in vision. 596 
 597 
By bridging behavioral, computational and neural levels of analyses41, we can develop integrated 598 
accounts reconciling the cognitive influences of context with their neural underpinnings and use 599 
them to inspire more neurally-grounded computational models. Overall, this multi-pronged 600 
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approach paves the way for a deeper understanding of how context facilitates robust object 601 
perception across primates.  602 
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Methods 603 

Visual Stimuli 604 

We generated an imageset comprising 600 grayscale images from 10 object categories (bear, 605 
elephant, person, car, dog, apple, chair, plane, bird, zebra). For each object category, we selected 606 
six natural images from the Microsoft Common Objects in Context (COCO) dataset, varying in 607 
object size and location, which were center cropped, converted to grayscale, and recalled to 608 
512x512 pixels. We then generated 10 different contextual variations for each image. The 609 
changes were made using the object segmentation for each image obtained from the COCO 610 
object annotation masks and (for some conditions) replacing the background with different 611 
backgrounds based on the contextual manipulation conditions. The main manipulations per 612 
context type are as follows: (1) Full context: No manipulation, serving as the reference image with 613 
the object in a congruent context; (2) Incongruent context: Context swapped with a different 614 
(wrong) context; (3) No context: Context removed by swapping with gray pixels; (4) No object: 615 
Object removed by swapping with gray pixels; (5) Blurred context: Gaussian blur with kernel size 616 
2 applied on the context; (6) Blurred object: Gaussian blur with kernel size 2 applied on the object; 617 
(7) Blurred incongruent boundary: Gaussian blur with kernel size 2 applied on the object-618 
incongruent context boundary; (8) Minimal context: All context apart from the smallest bounding 619 
box around the object is removed; (9) Jigsaw context: 25x25 pixel context patches randomly 620 
shuffled around the object; and (10) Textured context: Context swapped with texture generated 621 
with Portilla & Simoncelli method42 (5 iterations) on the baseline image. Each of these context 622 
conditions was applied to 60 images, with 6 images per object category, resulting in a total of 600 623 
images in the imageset. 624 
 625 

Low-Level Image Features 626 

For every image, we extracted a range of basic image features, such as object size, location and 627 
category, spectral mean and standard deviation(std), and contrast mean and standard deviation 628 
(std). The standard contrast metric for gray-scale images was used, calculated by the highest and 629 
lowest pixel values. The contrast standard deviation was derived from the pixel-wise standard 630 
deviation of the grayscale image. From the COCO object annotations, we determined the object 631 
size, represented in degrees of visual angle, as the fraction of the full image size (considering the 632 
full image was presented at 8 degrees) covered by the smallest bounding square around the 633 
object. The x and y coordinates, relative to the image, captured the object's central position. Using 634 
the Fast Fourier Transform (FFT), we transformed the image in the spectral domain, and noted 635 
its spectral mean and standard deviation.  636 
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Subjects  637 

Human Participants 638 

A total of 309 human subjects participated in the binary object discrimination tasks. Observers 639 
completed 5–10-min tasks through Amazon Mechanical Turk (MTurk), an online platform in which 640 
subjects could complete experiments for a payment of $15 CAD/hour. We confirm that this 641 
experimental protocol involving human participants was approved by and in concordance with the 642 
guidelines of the York University Human Participants Review Subcommittee. 643 

 Non human primates 644 

 645 
The nonhuman subjects in our experiments were four adult male rhesus monkeys (Macaca 646 
mulatta). 2 of these monkeys (monkey M and monkey B), were trained with objects in congruent 647 
context and could perform the object discrimination tasks. The other 2 (monkey P, and monkey 648 
K) were naive to the discrmination task, and were only trained to passively fixate on the screen. 649 
All data were collected, and animal procedures were performed, in accordance with the NIH 650 
guidelines, the Massachusetts Institute of Technology Committee on Animal Care, and the 651 
guidelines of the Canadian Council on Animal Care on the use of laboratory animals and were 652 
also approved by the York University Animal Care Committee. 653 
 654 

Behavioral testing 655 

Primate behavioral testing 656 

Humans active binary object discrimination task 657 

 658 
We collected large-scale psychophysical data from 309 subjects using Amazon Mechanical Turk 659 
(MTurk), an online crowdsourcing platform. The reliability of MTurk for psychophysical 660 
experiments has been previously validated by comparing online and in-lab results. Each trial 661 
began with a brief presentation (100 ms) of a sample image, selected from a set of 600 images. 662 
After a 100 ms blank gray screen, subjects were shown a choice screen displaying the target and 663 
distractor objects, similar to the procedure used in22,23. Subjects indicated their choice by touching 664 
the screen or clicking the mouse on the target object. No information regarding the sex of the 665 
participants was collected. 666 

Macaques active binary object discrimination task 667 

 668 
We measured monkey behavior from 2 male rhesus macaques. Images were presented on a 24-669 
inch LCD monitor (1920 × 1080 at 60 Hz) positioned 42.5 cm in front of the animal. Monkeys were 670 
head fixed. Monkeys fixated a white cross (0.2°) for 300 ms to initiate a trial. The trial started with 671 
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the presentation of a sample image (from a set of 640 images) for 100 ms. This was followed by 672 
a blank gray screen for 100 ms, after which the choice screen was shown containing a standard 673 
image of the target object (the correct choice) and a standard image of the distractor object. The 674 
monkey was allowed to view freely the choice objects for up to 1500 ms and indicated its final 675 
choice by holding fixation over the selected object for 400 ms. Trials were aborted if gaze was not 676 
held within ±2° of the central fixation dot during any point until the choice screen was shown. Prior 677 
to testing in the laboratory, monkeys were trained in their home-cages to perform the delayed 678 
match to sample tasks on the same object categories (but with a different set of images).   679 
 680 
 681 

ANN behavioral testing 682 

We evaluated eighteen ANN models, on the exact images shown to the macaques and humans. 683 
We focused on publicly available pre-trained PyTorch model architectures that have 684 
demonstrated significant success in computer vision benchmarks. Table 1 lists the models used 685 
and their characteristics.  686 
 687 
  688 

Model  Architecture Layer used 

Image classification models trained on ImageNet 

AlexNet43 Generic CNN features.12 

VGG-1944 Generic CNN features.27 

MobileNet-v245 Generic CNN features.15 

ResNet-1846 Skip connections CNN layer4.1 

ResNet-5046 Skip connections CNN layer4.2 

ResNet-10146 Skip connections CNN layer4.2 

ResNet-15246 Skip connections CNN layer4.2 

DenseNet-20147 Skip connections CNN features.transition3.pool 

ConvNetXt 
Large48 

Skip connections CNN avgpool 

GoogleNet49 Inception block CNN inception5b 

Inception-v350 Inception block CNN Mixed_7c 

RegNetX 32GF51 Generic CNN trunk_output.block3.block
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3-12.activation 

ViT-b3252 Transformer encoder.layers.encoder_l
ayer_11.ln_2 

Swin-b53 Transformer features.7.1.norm2 

Image memorability models trained on LaMem 

MemNet54 Generic CNN pool5 

ResMem55 Skip connections CNN features.layer4.2 

Object detection  models trained on Microsoft COCO 

FasterRCNN 
(ResNet50 

backbone)56 

Skip connections RCNN backbone.body.layer4.2 

RetinaNet 
(ResNet50 

backbone)57 

Skip connections RCNN backbone.body.layer4.2 

 689 
Table 1. Summary of the ANN models used grouped by training objective. 690 
 691 
To make these pre-trained models compatible with our specific 10-way object recognition task, 692 
we used the extracted features from each model for every stimulus, from the most IT-like layers 693 
(chosen based on BrainScore if that data was available, otherwise the most reasonable 694 
penultimate layer) shown in Table 1. To ensure consistency in results across the models, given 695 
the varying layer sizes for each, we standardized the dimension for every model down to 3,000 696 
features. This was done by using Gaussian random projection with 3,000 components to project 697 
the full extracted features space on a randomly generated linear subspace in such a way that 698 
distances between the points are nearly preserved. We trained a multiclass SVM classifier using 699 
these scaled features (standard scaling) to calculate the cross validated probabilities for each 700 
object class (using 10 one-vs-all classifiers, 5 folds, 10 repetitions), mimicking the subjects’ active 701 
binary object discrimination task. All behavioral predictions from the decoder were for images 702 
where the object was not seen in any phase of the model training regardless of the surrounding 703 
context. 704 

Electrophysiological recording and data preprocessing 705 

Passive Fixation Task 706 

During the passive viewing task, monkeys fixated a white cross (0.2°) for 300 ms to initiate a trial. 707 
We then presented a sequence of 5 to 10 images, each ON for 100 ms followed by a 100 ms gray 708 
(background, ‘OFF’) blank screen. This was followed by fluid (water) reward and an inter-trial 709 
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interval of 500 ms, followed by the next sequence. The animals (n = 2, male rhesus macaques) 710 
used in the passive fixation experiments study can be classified as “categorization task naive”, 711 
since they have not been explicitly trained to perform any object categorization tasks.  712 
 713 

Eye Tracking 714 

We monitored eye movements using video eye tracking (SR Research EyeLink 1000). Using 715 
operant conditioning and water reward, our 2 subjects were trained to fixate a central white square 716 
(0.2°) within a square fixation window that ranged from ±2°. At the start of each behavioral 717 
session, monkeys performed an eye-tracking calibration task by making a saccade to a range of 718 
spatial targets and maintaining fixation for 500 ms. Calibration was repeated if drift was noticed 719 
over the course of the session.  720 
Real-time eye-tracking was employed to ensure that eye jitter did not exceed ±2°, otherwise the 721 
trial was aborted, and data discarded. Stimulus display and reward control were managed using 722 
the MWorks Software (https://mworks.github.io). 723 

Data Analyses 724 

Behavioral Metrics 725 

We developed two behavioral metrics, the hit rate at context level - B.C1 and more fine grained 726 
image level - B.I1 (as introduced in22). We obtained a biological or artificial signature for each 727 
system by applying each metric to its behavioral accuracies per image averaged across all trials. 728 
The one-versus-all context-level performance metric (B.C1) estimates the discriminability of all 729 
images of context category c, essentially pooling the accuracies across all images of context type 730 
c and all object/distractor pairs within. Because we tested 10 context categories, the resulting 731 
B.C1 signature has 10 independent values.  732 
 733 
The one-versus-all image-level performance metric (B.I1) estimates the discriminability of each 734 
image, pooling across all distractors. Because we have an image test set of 600 images (60 per 735 
object, see above), the resulting B.I1 signature has 600 independent values. Given an image i of 736 
object category o, and all nine distractor objects (d≠o), we computed the average performance 737 

per image as: 𝐼1!" = (∑ ⬚#$
%&# 𝑃𝐶!

",%(") ÷ 9, where PC (percent correct) is the fraction of correct 738 
responses for the binary task between object categories o and d. Considering every image 𝑖)of 739 
context type c, the B.C1 performance for each context type is the mean across the performance 740 
of all images (60 per context type): 𝐶1) = (∑ ⬚*$

!!&# 𝐼1!!
⬚) ÷ 60 741 

Human-monkey shared behavioral variance 742 

To quantify the behavioral pattern similarity at a context and image level across humans and 743 
monkeys, we calculated the percent of shared behavioral variance (SV) for both signatures. The 744 
SV is obtained as the square of the correlation (Pearson’s R) of the pooled humans and pooled 745 
monkeys behavioral signature, corrected by the human and monkey signature internal 746 
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consistency. This was repeated 20 times choosing 600 images with repetition (bootstrap). The 747 
ceiling estimates in Fig 7B and 7C show the full range for the 20 bootstrap values for C1 and I1 748 
respectively. 749 

Partial correlation analysis 750 

To estimate the fraction of shared human-monkey variance that is explained by the models 751 
(including the Neural model), we calculated the partial correlation for the pooled humans and 752 
monkeys population - while controlling individually for each model. The partial correlation gives 753 
us the fraction of the primate shared variance that is independent of the model variance. The 754 
percentage of shared human-monkey variance explained by the model is then given by the 755 
formula: 756 
 (𝑅,−𝑅-,)/𝑅,,  where 𝑅⬚is the human-monkey Pearson correlation, 𝑅- is the human-monkey 757 
partial correlation, while controlling for the model (calculated as the product of the residuals of the 758 
model predictions).  759 
 760 
The neural correction of the partial correlation is done by fitting a sigmoid extrapolation to an 761 
infinite number of neural trials (see Fig 6D inset for 122 neurons). Both 𝑅⬚and 𝑅- are corrected 762 
by the (Spearman-Brown corrected) human and monkey split-half reliabilities 2𝜌. ∗ 𝜌/⬚

, 763 
however, due to the normalization by 𝑅,, we did not need to account for the human or monkey 764 
noise. 765 

Internal consistency 766 

The reliability of each system (pooled human, monkey, and IT population) was assessed by 767 
calculating the trial split-half Spearman-Brown corrected correlation. For the pooled humans or 768 
monkeys, this  was done by splitting all the accuracy trials per image in two halves, taking the 769 
mean for both halves (for each image), and computing the corrected Spearman correlation across 770 
all images for the two halves, repeated 100 times with different trial splits. The internal consistency 771 
for the decoding accuracy of the neural data was computed by calculating the decoding accuracy 772 
for each mean half of the neural trials and correlating the two obtained accuracies (across all 773 
images). The ceiling estimates shown in Fig 5B and 5D are the pooled human internal 774 
consistency, showing the full range of values (min-max).  775 
 776 

Statistical Analyses 777 

For each statistical analysis, we first tested the normality of the data. We used the Lilliefors test 778 
assuming normal distribution, with a threshold 5% (normal distribution: p>0.05).  779 
 780 
To test for statistical significance with a normal distribution of the data, a paired (monkey-human 781 
comparison) independent (comparing contextual variations) T-test was performed .This is a test 782 
for the null hypothesis that two samples have identical average (expected) values. The t(DOF)-783 
statistic value quantifies the difference between the arithmetic means of the two samples. It is 784 
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calculated as the mean of the difference of the two variables, divided by the standard error. The 785 
p-value quantifies the probability of observing as or more extreme values assuming the null 786 
hypothesis, that the samples are drawn from populations with the same population means, is true.  787 
 788 
A Wilcoxon signed rank (paired variables) or ranksum (independent variables) was performed in 789 
case of a non-normal data distribution. The null hypothesis is that two (paired or independent 790 
respectively) samples come from the same distribution. In particular, it tests whether the 791 
distribution of the differences x -y is symmetric about zero. It is a non-parametric version of the T-792 
test. 793 
 794 
We chose the threshold 5% (p<0.05) to reject the null hypothesis for all tests. 795 

Supplementary Figures 796 

 797 
Fig S1. Monkeys’ behavioral signatures, context learning curve and image-level consistency per 798 
context type. A. Context-level (B.C1) and image-level (B.I1) behavioral signatures defined from the 799 
monkeys’ accuracy. Same as Fig 2A, but for the pooled monkeys.  B. Training process for one macaque 800 
in the task shown in Fig 1B (chance = 0.5). The monkey, who was previously not exposed to images with 801 
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objects in context, has low starting performance for full-context images (light blue curve). However, the 802 
monkey quickly learns to recognize images in full context (blue curve). Furthermore, this ability 803 
generalizes to new images (dark blue curve). Error-bars show the standard deviation across object 804 
categories. C. Each bar shows the corrected Pearson correlation between the two monkeys (monkey M 805 
and monkey B) for the images of a context category. Error-bars are standard errors across ten 806 
subsamples of images within a context category. Statistics are shown for full context compared to each 807 
other context variation (* denotes t-test, p<0.05). D. Similar to C but shows the corrected Pearson 808 
correlation between the pooled two monkeys and the pooled human population.  809 
 810 
 811 

 812 
Fig S2. ANNs and IT population are consistent with human behavior at a context-level and only 813 
partially at an image-level. A. Human population self-consistency: Spearman-Brown corrected split-half 814 
correlation for increasing number of trials. The mean correlation for 100 different splits for each subset of 815 
trials, with standard deviation across the splits. B. Human population self-consistency (Spearman-Brown 816 
corrected split-half correlation) using all 24 trials per image, for images grouped by context category. The 817 
mean human internal reliability across 100 splits with standard deviation for each context category (color 818 
coding same as Fig 1A, and labeled on the x axis).  C. The human consistency - Pearson R with the low-819 
level features, ANN models and the Neural model at a context level. The low-level features are shown with 820 
light blue text (dashed bars). The mean human internal behavioral consistency ceiling is shown in gray, 821 
with standard deviation across different image subsamples. We show the noise corrected (by the split-half 822 
decoding consistency) neural consistency (purple bar), when using all the recorded reliable neural 823 
responses (122), the extrapolated consistency (to 4537 neurons, as in Fig 6E) is shown with a dashed bar 824 
on top. The noise corrected (by the monkey internal reliability) consistency with monkeys is shown in coral. 825 
D. Similar to C but showing the consistency at an image-level. 826 
 827 
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 828 

 829 
 830 
Fig S3. ANNs and IT population are consistent with monkey behavior at a context-level and only 831 
partially at an image-level. A. Monkey self-consistency: Spearman-Brown corrected split-half correlation 832 
for increasing number of trials. The mean correlation for 100 different splits for each subset of trials, with 833 
standard deviation across the splits. B. Monkey self-consistency (Spearman-Brown corrected split-half 834 
correlation) using all 22 trials per image, for images grouped by context category. The mean monkey 835 
internal reliability across 100 splits with standard deviation for each context category (color coding same as 836 
Fig 1A, and labeled on the x axis). C. The monkey consistency - Pearson R with the low-level features, 837 
ANN models and the Neural model at a context level. The low-level features are shown with light blue text 838 
(dashed bars). The mean monkey internal behavioral consistency ceiling is shown in gray, with standard 839 
deviation across different image subsamples. We are noting the noise corrected (by the split-half decoding 840 
consistency) neural consistency (purple) when using all the recorded reliable neural responses (122), the 841 
extrapolated consistency (to 4537 neurons, as in Fig 6E) is shown with a dashed bar on top (no 842 
extrapolation needed for context-level as the consistency is already within the monkey ceiling). The noise 843 
corrected (by the human internal reliability) consistency with humans is shown in teal. D. Similar to C but 844 
showing the consistency at an image-level. 845 
 846 
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 847 
Fig S4. Two monkeys show similar (but not identical) context-driven behavioral changes. A. Context-848 
level (B.C1) correlation between the two monkeys. Each point represents the mean accuracy for a 849 
contextual variation with standard error across images of that context type (colors as in Fig 1A, Monkey B 850 
mean 0.66±0.03, Monkey M mean 0.72±0.05). The three main context types: full (blue), incongruent (green) 851 
and no context (red), are shown with a black stride. The value ρ indicates the noise corrected correlation 852 
coefficient (Pearson R). B. Image-level correlation (B.I1) for the two macaques, each low opacity point 853 
shows the performance(accuracy) for an image with standard error across trials, the higher opacity points 854 
are the B.C1 mean (from A), colors map to context types as defined in Fig 1A. 855 
 856 

 857 
Fig S5. Object size predicts primate and ANN average accuracy. A. Average image-level accuracy (for 858 
all images) grouped in bins based on the object size (in degrees of visual angle, the full image is 8 degrees), 859 
with standard error across images in each bin. The performance is shown for humans (teal), pooled 860 
monkeys (coral),  IT population (purple), Pixels (gray) and ConvNeXt (black) - the best model explaining 861 
the highest fraction of the human-monkey shared image-level behavioral variance (see Fig 7C). Chance 862 
level accuracy (0.5) is noted with the dashed gray line. The size bins are labeled with the minimum size 863 
and max size (not included) of the bin (eg. the size bin [1,2) contains all images where the object size is 864 
greater or equal to 1 degree and smaller than 2 degrees). B. Human accuracy for each object size grouped 865 
by context category (color coding for context type from Fig 1), with standard error across images in each 866 
bin. The human data in part A (teal) is the average over all context conditions shown in part B.  867 
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 868 
Fig S6. ANN model architecture effects on explained human-monkey shared variance. A. Shows 869 
the same models as Fig 7, but the bars are color coded for the model architecture (see legend in B). 870 
Green is used for CNNs (with subgroups: models with Inception modules and residual connections), blue 871 
for visual transformers and yellow for recurrent neural networks. B. The model performance, grouped by 872 
model architecture, with the standard deviation across models. CNN models with residual or inception 873 
blocks share the most of the shared human-monkey variance. C. Same as A but for image-level EV. D. 874 
Same as B but for image-level EV.  875 
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 876 
 877 

 878 
 879 
Fig S7. The models’ decoding accuracy predicts the fraction of explained shared human-monkey 880 
variance. A. The percent of variance explained by each model from the shared human-monkey variance 881 
at a context-level as a function of the mean image decoding accuracy for each model. Each point is a 882 
different ANN model (Neural model in purple, Pixels in black), color coded by model architecture (as in Fig 883 
S6, see legend and Table 1). The y axis shows the normalized % EV (by the human-monkey shared 884 

variance ceiling)  with standard deviation across image subsamples for each model. The x axis shows the 885 

mean decoding accuracy across all images (with standard error, x error bars are smaller than the points). 886 

⍴ notes the Pearson correlation between the accuracy and EV across models. B. Same as A but showing 887 
the %EV as a function of the decoding accuracy at an image-level.  888 
 889 
 890 
 891 
 892 
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 893 
Fig S8. ANNs and primates are consistent with context-naive IT decoded behavior at a context-level 894 
and only partially at an image-level. A. Neural decoding accuracy self-consistency: Spearman-Brown 895 
corrected split-half correlation of the decoding accuracy across all images for increasing number of neural 896 
trials used for decoding (n=122 neural sites used). The mean correlation for 20 different splits for each 897 
subset of trials, with standard deviation across the splits. B. Neural decoding accuracy self-consistency 898 
(Spearman-Brown corrected split-half correlation) using all 30 neural trials per image, per neuron (for the 899 
122 neurons), for images grouped by context category. The mean neural decoding internal reliability across 900 
20 splits with standard deviation for each context category (color coding same as Fig 1A, and labeled on 901 
the x axis). C. The consistency with neural decode based predictions (Pearson R) with the low-level 902 
features, ANN models, pooled humans and monkeys behavioral accuracy at a context-level. The low-level 903 
features are shown with light blue text (dashed bars). The mean neural internal behavioral consistency 904 
ceiling is shown in gray (split-half decoding reliability), with standard deviation across different image 905 
subsamples. We are noting the (internal reliability corrected) human (teal) and monkey (coral) consistency. 906 
D. Similar to C but showing the consistency at an image-level. 907 
 908 
 909 
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 910 
Fig S9. Pixels and ANN models behavioral signatures. A. Context-level behavioral signature (B.C1) for 911 
each model (column), sorted by their overall average decoding accuracy - least accurate (left) to most 912 
accurate (right). The average accuracy is shown for each context type (row) with the color indicating the 913 
accuracy (increasing from white to black, see colorbar on the right). B. Similar to A but showing the image-914 
level signature for each model (B.I1), each line represents the image accuracy averaged across trials and 915 
distractors, with the rows sorted and grouped by object category (see on the left). 916 
 917 
 918 
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