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Deep reinforcement learning (RL) has been successful in a variety of domains
but has not yet been directly used to learn biological tasks by interacting
withaliving nervous system. As proof of principle, we show how to create

suchahybrid system trained on a target-finding task. Using optogenetics,
we interfaced the nervous system of the nematode Caenorhabditis elegans
withadeep RL agent. Agents adapted to strikingly different sites of neural
integration and learned site-specific activations to guide animals towards
atarget, includingin cases where agents interfaced with sets of neurons
with previously uncharacterized responses to optogenetic modulation.
Agents were analysed by plotting their learned policies to understand

how different sets of neurons were used to guide movement. Further, the
animal and agent generalized to new environments using the same learned
policiesinfood-search tasks, showing that the system achieved cooperative
computation rather than the agent acting as a controller for a soft robot.
Our system demonstrates that deep RLis a viable tool both for learning
how neural circuits can produce goal-directed behaviour and forimproving
biologically relevant behaviour in a flexible way.

Guiding or improving animal behaviour directly through the nerv-
ous systemis acommon goal for neuroscience and robotics research-
ers alike' . Previous work in brain interfaces and animal robotics has
attempted to use directinterventions to affect behaviour onavariety
of tasks, relying on manual specification for stimulation frequencies,
locations, dynamics and patterns* . A central difficulty with these
approaches is that manual tuning has limited applicability, as it relies
on knowledge of the neural circuits or mechanisms involved. Activa-
tion patterns for a given task and set of neurons are often unknown’,
nervous systems have complexintrinsic neural dynamics, and thereis

acombinatorial explosion of stimulation parameters to test. For direct
neural stimulation, effective patterns can vary depending on which
neurons are targeted and on the animal itself*>?*. Thus, even though
technologies for precise neuronal modulation exist**?, there lies the
challenge of how to design an algorithm that can systematically and
automatically learn strategies to activate a set of neurons to improve
aparticular behaviour*—°,

Here we addressed this challenge using deep reinforcement learn-
ing (RL), assessing whether RL can autonomously integrate with an
animal’s nervous system to improve behaviour. In an RL setting, an
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agent collects rewards through interactions with its environment.
By leveraging deep neural networks, RL algorithms have successfully
discovered complex sequences of actions to solve awide set of tasks® ',
These past successes relied on reward signals to train algorithms, a
framework that can be adapted to biologically relevant goals, such
as finding food or mates. Although other studies have incorporated
machine learning into designing cyborg or biohybrid organisms***,
they have largely focused on optimizing only one means of interfacing
with an animal, which could be difficult to scale upin neural interfaces,
especially given the highly variable nature of living nervous systems.
By using deep RL, we present instead a flexible framework that can,
given only areward signal, observations and a set of relevant actions,
learn different ways of achieving a goal behaviour that adapt to the
choseninterface.

We tested our ideas on the nematode Caenorhabditis elegans,
interfacing an RL agent with its nervous system using optogenetic
tools?*¥, This animal has a small and accessible nervous system while
still possessing a rich behavioural repertoire*®, making it a suitable
candidate to test deep RLintegration”. In a natural setting, C. elegans
must navigate variable environments to avoid danger or find targets
like food. Therefore, we aimed to build an RL agent that could learn
how to interface with neurons to assist C. elegans in target-finding
and food search. We tested the agent by connecting it to different
sets of neurons with distinct roles in behaviour, where some of these
neuronal sets did not have fully understood roles in directed move-
ment. Agents could not only couple with different sets of neurons
to perform a target-finding task but also generalize to improve food
searchacross new environments in azero-shot fashion: thatis, without
any prior training. We show that our neural-RL interface can be used
to investigate the function of neural circuits in task performance,
including with sets of neurons whose links to behaviours have not been
previously established.

Connecting the nervous system to artificial
intelligence and training agents

We used a closed-loop setup to couple an RLagent to ananimal’s nerv-
ous system (Fig. 1a,b). We formulated target-finding as an RL problem
by defining a reward value as the negative distance of the animal’s
coordinates toauser-specified target (Fig. 1c; Methods). The RL agent’s
environment consisted of a -1 mm adult animal and a 4-cm-diameter
arena on an agar plate. Observations of the environment were
given to the agent through a camera at 3 Hz, and features were
automatically extracted from each cameraframe to track the animal’s
centre of mass. During evaluation, target coordinates were subtracted
from the animal’s coordinates before being sent as part of theinput to
agents, (x,,y,). Head and body angles (H?Ody, g"eadywere extracted from
each frame relative to the +x axis, and head angles were measured
relative to body angles. We took polar coordinates of the angle meas-
urements so that an observation was defined for every frame ¢,
(sin 87°Y, cos™°Y  singhead el cosghead el x|y XFig.1d). Each obser-
vationthe agentreceivedincluded these six variables from frames over
the past 5 seconds, making agent inputs 90-dimensional at each
timestep (6 variables x 3 frames per second (fps) x 5 seconds;
Methods). These variables arerelevant for the navigation task, although
we note that other tasks may benefit from different sets of task-
specific variables.

Given an observation at time ¢, the RL agent was trained to learn
what action g, to take at that time to maximize return, defined as a
sum of rewards discounted over time (Fig. le and Methods). To take an
action, the agent could decide whether to turn alight-emitting diode
(LED) on or offat each timestep. Using optogenetics*, the agent could
modulate selected neurons that expressed either channelrhodopsin, a
light-gatedion channel that can be stimulated by blue light (480 nm) to
activate neurons®, or archaerhodopsin, alight-sensitive proton pump
that can be stimulated with green light (540 nm) to inhibit neurons.

We chose the soft actor-critic (SAC) algorithm for the RL agent
because of its successes in simulated and real-world RL environ-
ments®**84° SAC has separate neural networks for a critic thatlearns
to evaluate observations and an actor that learns to optimize actions
based oncritic evaluations for return maximization (Fig. 1f, Methods).
Both networks take observations as input and consist of two layers with
64 units per layer (Methods). The actor network outputs probabilities
ofturningonthelight attimet, P(a,=1). We assigned the agent’s action
for that observation as ‘light on’ if the actor’s output P(a,=1) > 0.5.

Deep RL tends to require large amounts of data. For instance,
agents learning to play Atari can require thousands of hours of game-
play to achieve good performance®**. It was infeasible to collect thou-
sands of hours of recordings in our environment, and unlike video
games or physical systems withreliable dynamics, adequate computer
simulations of the C. elegans nervous system and its behaviours are
not available to generate training data®. Therefore, to facilitate algo-
rithm development and reduce the amount of data needed to learn
the target-finding task, agents were trained offline on prerecorded
data, collected for 20 min per animal for a total of 5 h. During training
datacollection, thelight was turned on randomly with a probability of
0.1every second (Fig.1g, top, and Methods). Following approachesin
supervised learning, the data were then augmented during training by
randomly translating and rotating the animalinavirtual arenaapproxi-
mately the size of the 4-cm-diameter evaluation arena (Methods).

During training, deep RL agents were unstable and prone to sud-
den performance drops (Supplementary Fig. 1), similar to previous
work®*%, Insimulated environments, such performance crashes can be
monitored using evaluation episodes in the exact environment used
for testing. In our environment, evaluation episodes wereimpractical
because they would have required many more times the amount of
datathanwere usedtotrain agents. Therefore, we tested several regu-
larization methods to help with stability and found that ensembles of
agents were effective for our environment (Supplementary Figs. 2-4).
The final deep RL agents were ensembles of SAC agents, with the col-
lection, training and evaluation pipeline shownin Fig.1g. For lines1-3
described inSupplementary Table 1, ensembles consisted of 20 agents.
For lines 4-6, which exhibited less stable training dynamics, ensembles
consisted of 30 agents (see Methods for training protocol). Supplemen-
tary Figs. 4 and 5 show examples of variation between independently
trained agents and how ensembles stabilized agent policies.

Agents could navigate animals to targets
Wefirst tested our system on the transgenicline Pttx-3::ChR2, referred
toaslinelin the text (Fig. 2a and Supplementary Table1).Inlinel,
the ttx-3 promoter drives expression of channelrhodopsin in AlY
interneurons, which are known to be involved in chemotaxis. Prior
work has established a deterministic strategy for navigating animals
using optogenetic activation of AIY?®, used here as a ‘human expert’
standard to see whether our agent could achieve similar performance.
After training an RL agent on line 1, the agent was evaluated by
placing an animal in the centre of a 4-cm-diameter arena and enter-
ing target coordinates as input to the agent (Fig. 2b). The agent was
set to navigate the animal over a 10 min episode to a target placed in
one of four possible locations. The agent learned a pattern of light
activation (blue points) to manoeuvre the animal towards the target.
Asample track of an animal driven by the agent to a target is in Fig. 2¢
(see also Supplementary Video 1). In contrast, when the light was off
all the time (Fig. 2d) or turned on randomly (Fig. 2e and Supplemen-
tary Video 2), the animal fails to reach the target. For comparison, we
considered the case where the light was turned on according to the
known ‘human expert’ policy, which was also successful in driving
the animal to the target (Fig. 2f). Figure 2g shows statistics for each
condition: the closer the distance to the target, the better the perfor-
mance. The agent’s learned policy performed as well as the known
policy, and both of those performed significantly better than controls
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Fig.1| A system thatintegrates deep RL with the C. elegans neural network.
a, Concept for combining artificial and biological neural networks for a shared
task. b, Closed-loop setup using optogenetics. A single nematode was placedina
4-cm-diameter field and illuminated by ared ring light for imaging. A camera and
ahigh-powered LED (blue or green) were connected to acomputer to forma
closed-loop system. The LED modulated neurons carrying optogenetic
constructs (see main text). ¢, Reward at time ¢, r,', was defined as the change in
distance to target between times tand ¢ + 15.d, Sample cameraimage at time ¢. An
observation was a stack of six measurements from 15 frames (5 s at 3 fps) fora
total of 90 variables per observation received by the agent at each timestep.
Measurements were coordinates of the animal’s centre of mass at time ¢ (x,, y,)
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Ensemble of agents

Q00000
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Running experiment with ensemble

and the sines and cosines of the head and body angles, (6?°dy, O’r‘e“d) of the animal
relative to the positive x axis. e, RLloop diagram of the combined system.

f, Actor—critic architecture used as a deep RL agent. g, Pipeline for training and
evaluating the RL-animal system (see main text and Methods for details). A total
of 5 h of data were collected where alight is flashed randomly on an animal stored
inamemory pool (labelled M). Animals were switched out approximately every
20 min. Multiple soft actor-critic agents were independently trained on the
memory pool. During evaluation, the agents were put into an ensemble that
voted on actionsin real time. Eachindividual agent’s decision was based on the
observation received from the camera.

(learned policy: P=0.00054, no agent; P=0.00019, random light.
Known policy: P=0.0011, no agent; P=0.00017, random light). There
was no significant difference in the time taken to reach within 0.5 cm
of the target between the learned and known policies (Fig. 2g, inset;
P=0.36,one-sided Mann-Whitney U-test).

To understand what the agent trained on line 1 had learned®, we
sought arepresentative subspace of the 90-dimensional observation
space in which to plot agent decisions. For every SAC agent in the

ensemble, we plotted weights of the first layer of the actor network as
afunction of frame number to assess whichinput variables were associ-
ated with large weights (Fig. 2h and Supplementary Fig. 5). Head and
body angles corresponding to the most recent frame in an observation
(black arrows in Fig. 2h) had larger weight magnitudes than in earlier
frames. Therefore, to visualize agent strategies, we fixed the 30 coor-
dinate variables ((x;,, y;,); t—5s <t < t) in each observationto a
position left of the target (Fig. 2i and Methods) and plotted the
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Fig.2|The system learned to navigate the C. elegansline 1to a target.

a, Optogenetically modified AlY neurons (black arrow) inline 1. b, Evaluation
setup. The animal was placed in the centre (purple circle) of afilter paper circle
with diameter 4 cm.In each10 minepisode, agents were tested on their ability
to navigate the animal to one of the four target locations shown (red).
c-f,Sample tracks with agent (c), without agent (d), with random light (e)

and with a‘human expert’ policy from literature (f)*°. g, Closest distance to
target achieved by animals for trials with and without an agent as well as with
random light stimulations (n =10 for each condition). Animals with agents
moved significantly closer to targets than animals without agents. Plots show
mean + s.e.m. One-sided Mann-Whitney U-test, with agent versus with control
conditions indicated by asterisks, **P < 0.01, **P < 0.001. (Learned policy:
P=0.00054, no agent; P=0.00019, random light. Known policy: P= 0.0011,

no agent; P=0.00017, random light.) Times to reach within 0.5 cm of target for
animals with learned and known policies were comparable, shownininset (not
significant (NS), P=0.36, one-sided Mann-Whitney U-test). h, Weights of the
first 64-neuron layer in all actor (top) and critic (bottom) networks in the agent
ensemble. For angle-related variables, the most recent frames (black arrows) had
the largest weights. i, Reference for the policy plots injand k, showing example
animal conformations. j, Trained agent probabilities for simulated inputs. k, The
human expert policy plotted for comparison. Itis similar to the learned agent
policy butnotidentical.l, The L2 difference in the policy matrix between the
final ensemble and ensembles at each epoch during training. By definition, the
differenceis O at epoch 20. m, Mean L2 differences between individual agents
and the final ensemble, with standard deviation shaded in blue.

probability that the ensemble turned the light on as afunction of body
and head angles at the latest time in the observation (62°%, ')
(Fig. 2j). The human expert policy is plotted in Fig. 2k using the same
projection.

To interpret the policies, it is useful to compare Fig. 2i,j. The
high-probability diagonal band in Fig. 2j corresponds to the same
diagonal in Fig. 2i where the animal’s head points towards the target.
Interestingly, the agent’s learned policy was conceptually similar
but quantitatively different from the known expert policy in Fig. 2k,
which placed greater emphasis on turning animals in the correct
direction. Nonetheless, both policies were effective in the targeted
navigation task.

The projection in Fig. 2j provided a way to plot agent training
progress, with Fig. 2, m showing the change in agent policies over 20
epochs of training. Figure 2| is the difference between the policy of
fullensembles during and after training, and Fig. 2m takes differences
between individual agent policies and compares them to the trained
ensemble, plotting average differences with standard deviations.

We saw that individual agents, even after training, could be quite far
from the final policy, which highlighted the importance of ensembling.

Agents learned policies based on sites of
integration

We aimed to build a robust and flexible algorithm that could adapt
to its connected neurons. We next tested whether the RL agent could
learn appropriate rules for a variety of neural connections without
explicit prior knowledge about them. New agents were trained on five
additional transgenic lines that were functionally distinct from line 1
and did not have associated human expert policies (Fig. 3). These lines
areorderedinthe text by agent performance compared tono lightand
random matched-frequency light controls. See Supplementary Table 1
and Fig. 3a for line genotypes and neuron expression.

Lines 3-6 expressed light-sensitive channels in multiple neuron
types.Line3 and 4 animals expressed archaerhodopsin, whichinhibits
neurons upon stimulation with green light (540 nm). Due to concerns
about phototoxicity, agents for line 4 were restricted to short pulses
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Fig.3| The system could successfully navigate different optogenetic lines
to atarget. a, Images of optogenetic lines with promoters and modified
neurons. b, Statistics for each line (n =10) comparing performance with agents,
without agents and with frequency-matched random light controls, plotted as
mean + s.e.m. One-sided Mann-Whitney U-test, with agent versus with control
conditions indicated by asterisks, *P < 0.05,*P < 0.01, **P< 0.001. Lines 1-5
were successful. Line1: P= 0.00054, no agent; P= 0.00019, random light. Line
2:P=0.0005, no agent; P=0.0029, random light. Line 3: P= 0.0060, no agent;
P=0.0071,random light. Line 4: P= 0.0008, no agent; P= 0.0104, random light.
Line 5: P=0.0057, no agent; P= 0.03216, random light. Line 6: P= 0.9192, no
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agent; P=0.4841, random light. c-e, Following the format in Fig. 2c-f, example
tracks for line 2 with positions of light activation along the trajectory highlighted
inblue for animals with the agent (c), without any optogenetic activation (d)

and with randomly flashing light (e). f-q, Example tracks for lines 3-6 for each
experimental conditionin c:line 3 with agent (f), without agent (g), random

light (h); line 4 with agent (i), random light (j), no agent (k); line 5 with agent

(I), random light (m), no agent (n); line 6 with agent (0), no agent (p), random
light (q). Variability in starting positions for controls can be explained by free
movement in the time between placing animals on the plate and starting the
experiment, approximately 1 min.

during evaluation (Methods). These lines tested the abilities of the RL
agent with different sets of neuronal connections and different means
of modulation.

In lines 1-5, animals with trained agents moved closer to tar-
gets than control animals did (Fig. 3b). Example tracks showing
agent activity during evaluation and controls are shown in Fig. 3c-q.

Supplementary Videos 1-6 show agent performance and controls for
lines 1-3, which performed best. Given that policies for goal-directed
movement using optogenetic modulation of these lines were previously
unknown, it wasremarkable that agents still learned to direct these ani-
mals towards atarget (for line 3, see ref. 54 for npr-4 mutant behaviour;
and forline 5, see ref. 55 for IL1involvement in head withdrawal).
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Fig. 4| The system learned to navigate different optogeneticlines to a target
with neuron-specific strategies. a, L2 differences between final ensembles

and ensembles at each epoch during training. b, Mean L2 differences between
individual agents in the ensemble and the final trained ensemble; shaded regions
denote s.d. Within an ensemble, agents for lines 4-6 varied more thanin lines
1-3, whichisreflected in the narrower range of probabilities for Line 4-6inb.

¢, The animal conformation reference plot for agent policies in b (repeated from
Fig. 2i).d, Allagent policies for Lines 1-6 and an agent trained on wild type data
where there was no possible successful policy. Lines1and 4, as well as 2 and 3, had
similar agent policies. e, Probabilities in d plotted as a histogram. Lines 1-3 had
larger ranges, suggesting greater certainty. WT, wild type.

Theagentsuccessfully interacted with lines 3-5, which allinvolved
multiple neurons (Fig. 3b), including line 4, which used the entire nerv-
ous system’. In this instance, the agents took advantage of increased
movement after aperiod of freezing, in contrast to theline 3 policy that
relied on slowing or turning during neuron inhibition. However, the
agent failed to find an effective policy for line 6, where it was coupled
to cholinergic muscle excitation in the ventral cord”. The standard
deviation in the learned policy between agents in the ensembles was
noticeably greater for lines 4-6 (Fig. 4a,b), which had poorer perfor-
mance than lines 1-3 (Fig. 3b). Together these results show that the
choice of sites of integration impact the performance of the animal-
agent system.

We visualized policies using the metrics from Fig. 2i,j to under-
stand how interfaced neurons were involved in target navigation.
For reference, Fig. 4c shows animal postures used in mapping agent
policies. Policies are plotted in Fig. 4d. Ensemble action certainty
isalsovisibleinFig.4d,e, inwhichlines1-3 have probability values
with a wider range than lines 4-6. This indicates agents are more
certainabout when to turn the light on or offin lines 1-3. For com-
parison, we show an agent trained on wild type animals (Fig. 4d)
withnoresponse to optogenetic modulation. The policiesin Fig. 4d
show that agents learned strategies tailored to the neurons they
interfaced.

Agents predicted similarities between neural
circuits

Broadly, there were three strategies represented by lines1and 4, lines 2
and 3 andline 5 (Fig. 4d). Tounderstand how agent policiesinteracted
with the nervous system, we focused on the most successful lines: 1,
2 and 3. Although the behaviour of line 1in response to blue light is
mostly to move forward and line 2 is mostly to reverse, policies were
not merely inverses of each other. Rather, agents learned that line 1
controlwas dependent on the animal’s head angle relative to the target,
whereas Line 2 and 3 control depended on specifichead and body angle
combinations. Despite large differences in lines 2 and 3 (excitation
of asingle neuron in line 2 versus inhibition of multiple neurons in
line 3), training on line 3 resulted in an action probability matrix that
was remarkably similar to line 2.

To quantify these similarities in learned actions and to assess
generalization across different sites of integration, we ran experiments
where each agent was tested on eachline (Fig. 5a). Sample tracks from
combinations of agents and animals are shown in Fig. 5b with average
resultsinFig. 5c. To evaluate whether agent policies were predictive of
cross-evaluation performance, we measured L2 normdifferences of the
action probability matrices (Fig. 5d). As intuitively observedin Fig. 5d,
the policies fromlines 2 and 3 are most similar. The corresponding plot
using experimental data from Fig. 5¢ is shown in Fig. 5e. As expected,
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Fig. 5| Agent policies can predict agent performance on other lines. a, An
illustration of cross-evaluation experiments in which agents trained on each of
the three best-performing lines were evaluated on every other line. b, Sample
tracks with agent actions for each combination of agent and animal not shownin
Fig.2cor Fig. 3¢ f. ¢, Statistics of closest distance to target for each combination
ofagentand animal, with n =10 per condition. Data are presented as mean

In boxes: mean (standard error)
in cm. n =10 for all experiments

values +s.e.m. d, L2 distances between ensemble action probability matrices
for each genetic line. e, Mean closest distances (cm) to the target ina10 min
evaluation episode is shown with standard error in parentheses. Distances
between the ensemble action probability matrices ind correlate with the
closest distances achieved in across-policy evaluation experiments (Pearson’sr,
r*=0.8578,P=0.000334).

diagonal entries have low distances to targets; line 3 animals tested
with line 2 agents also showed low distances.

Results in Fig. 5e correlated well with predictions based on the
similarity of the action probability matrices in Fig. 5d (r*= 0.8578,
P=0.000334). As expected from the contrastin action probabilitiesin
Fig.4d, line1versuslines 2 and 3, line 1 did not respond well to agents
trained on line 2 or 3. For example, when the agent trained on line 1
was tested with an animal from line 2, the closest distance reached
from the target was about 1.477 + 0.102 cm, much larger than when
tested on line 1, 0.280 + 0.104 cm (Fig. 5e). The closest distance was
also comparable to or greater than the control conditions for line 2
(Fig. 3b), as the line 1 agent tended to drive line 2 animals away from
rather than towards targets (Pvalue < 0.08, no agent; Pvalue < 0.009,
random light; one-sided Mann-Whitney U-test). Likewise, neither
line 2 nor 3 animals performed well on the task when paired with the
line 1 agent. In summary, by comparing action probabilities learned
by agents that were trained to couple to specific sets of neurons, we
could make accurate predictions about the behaviour of these lines
under optogenetic control in the target-finding task.

Another interesting finding was that line 2 and 3 animals were
most successful when paired with the line 2 agent, even though the
line 3 agent was trained on data from the line itself (P<0.002, line 2
linewithline2 versusline 3 agent; P < 0.04,line3 line withline 2 versus
line 3 agent, one-sided Mann-Whitney U-test, n =10). These results
may be explained by higher data quality from the stronger response
ofline 2 to optogenetic stimulation (Supplementary Videos1, 2,5 and
6), reflected in greater action certainties in line 2 compared to line 3
(Fig. 4d). This suggests that training RL agents with less action noise
could improve performance in noisy biological environments®®. Over-
all, we demonstrate that our system can generate hypotheses about
learning in biological environments, with greater access to internal
mechanisms (through the artificial network) thanan animal’s nervous
system alone can provide.

Animals corrected errors made by agents during
food search

We aimed to see whether agents and animals could achieve tasksin a
general way, integrating information flexibly just as animals can on
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Fig. 6 | Animals with agents can correct errors and generalize to new
situations. a, Error-handling food-search experiments. An animal was placed at
the opposite end of a plate (large purple circle) from a 5 pm drop of OP50 E. coli
bacteria (orange circle). Trials lasted 20 min and success was defined by whether
animals reached food. Agents were directed to navigate animals a distance away
from food (target location denoted by concentric red circles). b-d, Proportion
of animals that reached food for line1(b), line 2 (¢) and line 3 (d), n =10 for each
condition. For lines 1and 2, targets up to 0.5 cm away led to significantly better
performance than without agents. One-sided permutation tests; **P < 0.01,

***P < 0.001(with agent versus no agent; P=0.00034 for line 1 with target at O
and 0.5 cm from food and line 2 with target at O cm from food; P=0.0053 for line
2 with target at 0.5 cm from food). e-g, Sample tracks for line 1 (e), line 2 (f) and
line 3 (g) animals with agents based on the majority result of trials. Conditions

without agents are shown in the fifth columns. h, Plate used for experiments with
obstacles. Twelve paper quadrilaterals with side lengths approximately 2 mm
were scattered on the plate. Agents were directed to navigate animals to food,
and success was determined by whether animals reached food. i, Sample tracks
for line 1animals that succeeded (top left) or failed (top right), with control trials
without agents (bottom). Success rates shown in pie charts. Animals with agents
were significantly more likely to succeed; ***P < 0.001; one-sided permutation
test; P=0.000076.j, Sample tracks for line 2 animals: 13 of 20 animals succeeded
withagents and 2 of 20 without. ***P < 0.001; one-sided permutation test;
P=0.000407.k, Sample tracks with line 3 animals. A failed trial in the top left
represents the majority outcome: 2 of 20 animals reached food with agents and O
of 20 without (one-sided permutation test, P= 0.244).

their own, so we next evaluated whether agents and animals could
transfer abilities from the target-finding task to food search. Using
the three best-performinglines, we tested whether animals could cor-
recterrors made by agents about the location of food. Targets for the
artificial intelligence agent were placed at increasing distances from
the edge of a5 pl patch of food (OP50 Escherichia coli (E. coli) bacteria)
tomimicerrors made by the agent (Fig. 6aand Methods). Agents were
on throughout the experiment, including after animals had reached
the target. Animals were tested on whether they could reach food in
20 min trials with or without agents. Agents were identical to those
usedinFigs.2-5,and eachline was tested with its own agent. For lines
land 2, whentargets were 0.5 cm away from food, animals could leave
an agent’s target region (a circle of radius 0.0625 cm; Methods) and
moved to the foodin eight of ten trials (P < 0.0004) (Fig. 6b,c). This was
significantly different from trials without agent assistance, in which
zero animals reached food in ten trials for both lines. Line 3 was not
as successful with agent assistance (Fig. 6d), likely due to less reliable
control (Fig. 3b). This suggests that simultaneous modulation of the
neurons in this line is not as strongly linked to directed movement as
inlines1and 2. In contrast, line 1 and 2 animals could switch between

making decisions based on their own sensory systems or the agents,
which were trained to keep animals at targets. Sample tracks for all
experimental conditions are in Fig. 6e-g.

RL agents with animals could navigate new
environments
We next tested whether the animal and agent could navigate an environ-
mentwithobstaclestoreachfood, which represents anovel condition
with a biologically relevant goal. We designed trials where 12 paper
quadrilaterals with1-3 mm edges (comparable to thel mmbody length
of C. elegans) were scattered randomly on the plate (Fig. 6h; Meth-
ods). Animals cannot cross these obstacles. We again tested animals on
whether they could reach food during a20 mintrial, with and without
agents. This was a challenging task because animals had to use their
sensory and motor systems to navigate around obstacles, whereas
agents had to navigate animals to food despite noisier movements.
Line 1and 2 animals performed well in this new environment
(Fig. 6i,j, Pvalue < 0.0001, line1; Pvalue < 0.0004, line 2; permutation
tests). Line 3 was not as successful (Fig. 6k); overall, agents could navi-
gate line 3 animals closer to targets but could not achieve more difficult
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food-search tasks. For lines 1 and 2, however, these data provide evi-
dence that our system displays cooperative computation between
artificial and biological neural networks to improve C. elegans food
searchinazero-shot fashion in new environments.

Discussion

We presented a hybrid system that used deep RL to interact with an
animal’s nervous system to achieve a task following a reward signal.
Agents customized themselves to specific and diverse sites of neural
integration, and the combined system retained the animal’s ability to
flexibly integrate information in new environments. Importantly, we
could use the same architecture and training process in all lines. Our
results did not depend on the number of neurons that agents were
interfaced with, nor whether interactions were excitatory or inhibi-
tory, although a failure to learn (asin line 6) shows the importance of
the particular neural circuit under control.

In previous work, brain-machine interfaces have allowed ani-
mals to control machines through neural recordings>*°°. Conversely,
supervised optogenetic manipulations have taken control of C. elegans
neurons or muscles to turn the animal into a passive robot***"*, In con-
trast toboth of these types of artificial-biological neural interactions,
our work integrated a living nervous system with an artificial neural
network, automatically discovered tailored neural activation patterns
and did so in a way that allowed computations from both networks to
drive animal behaviour.

We could then map out patterns of neural activity that were suf-
ficient to drive specific behaviours, enabling us to learn about and
compare the roles of different sets of neurons in producing the same
behavioural outcome. Mapping out neural policies was possible not
only for sets of neurons that were previously well-understood but also
for sets that were not. We focused here on navigational tasks, which
constitute a central aspect of worm behaviour, but our method for
learning and visualizing agent policies can broadly be used to learn
information about animal behaviour using other biologically relevant
features besides the particular state space we chose.

It would be interesting for future work to test our methodinlarger
state and action spaces, as one would find in animals with larger nerv-
ous systems than C. elegans. Deep RL has already solved complex
simulated tasks in high-dimensional spaces with large numbers of
parameters®***, That, in addition to our work showing that deep RL
is flexible to the site of integration, suggests its potential for use with
larger animals whose nervous systems are more variable between
individuals. Also, due to broad applicability of the RL framework, the
algorithm canbe applied to any other behavioural task with ameasur-
able reward function. Overall, our study opens new avenues for using
deep RL to understand neural circuits, train in biologically relevant
real-world environments and modulate animal behaviour.

Methods

Animal genetics and care

Genetic lines. Strains are listed in Supplementary Table 1, available
upon request. All animals had lite-I mutant backgrounds to reduce
light sensitivity. Lines were chosen after aninitial screen for response
to optogenetic activation or inhibition.

Animal maintenance. C. elegans strains were cultured at 20 °C (room
temperature) on nematode growth media (NGM) plates seeded with
E. coli strain OP50. Animals used in optogenetic experiments were
cultured at 20 °C on NGM plates seeded with E. coli strain OP50 with
1 mMall-trans-retinal (ATR) ata9:1 volumeratio for at least 12 h before
experiments. (ATRis a cofactor required for rhodopsin activity.)

Experimental setup
Experimental system hardware. Experiments were conducted at
20 °C.Two setups were built as in the diagramin Fig. 1b. The first used

an Edmund Optics 5012 LE Monochrome USB 3.0 Lite Edition camera.
The assay plate was lit with an Advanced Illumination RL1660 ring
light. For the second rig, the camera was a USB-connected ThorLabs
DCC1545M. Both cameras were run at 3 fps, which was a rate slow
enough for image capture, image processing, action decision and
action transmission to occur.

Lights for optogenetic illumination were Kessil PR1I60L LEDs at
wavelengths of 467 nm for blue and 525 nm for green. The plate was
illuminated with a Grandview COB Angel Eyes 110 mm Halo ring light.
Kessil LEDs for optogenetic activation were controlled by a National
Instruments DAQmx that was in turnmanaged through aPythonlibrary.

Animal tracking. For all experiments, animals were moved from food
platestoalO-cm-diameter NGM tracking plate. Tracking-plate setups
depended on the experiment, but all plates had a filter paper ring to
confine the animal to a 4-cm-diameter circle. We soaked the paper in
20 mMcopper (1) chloride solution, an aversive substance to C. elegans,
before placing it on the plates. Obstacles used in Fig. 6h—k were not
soakedin copper solution. If food patches were used in the experiment,
asinFig. 6,5 plof OP50 £. colibacteria were deposited on the plate and
allowed to grow at room temperature (20 °C) for roughly 24 hours.

Collecting training data

Five hours of data were collected for each genetic line in 20 min epi-
sodes.Inevery episode, asingle nematode cultured with ATR was placed
onanNGM plate. Asinthe animal tracking setup, afilter paper barrier of
diameter 4 cmwas placed onthe plate. A camerathenrecorded images
at 3 fps while ablue or green LED flashed randomly on the plate. Blue
light was used for animals modified with channelrhodopsin, and green
light was used for animals modified with archaerhodopsin. A decision
to turn the light on or off was made every 1 s with a probability of 10%
on.Ifon, thelight durationwas also1s. Animals were switched out for
new ones after each episode. Light decisions and images were stored
for agenttrainingin separate datasets for eachline.

RL details
RLisaframeworkinwhich anagentinteracts withanenvironmentand
attempts to maximize areward signal. The agent receives observations
from the environment, giving it an idea of the environment’s current
state, and learns what actions to take that will be most likely to maxi-
mize the reward signal received from the environment. The RL agent
learns through experience an action probability distribution, m(als,),
where a, is the action taken at time ¢, s, is the state received from the
environment corresponding to time ¢, and the maximized reward r,is
received at time ¢. Each of these variables is defined below.

We used a discrete SAC algorithm for all agents**%, For each
geneticline, 20 SAC agents were independently trained offline on the
same data pool.

Variable definitions. Observations. Every cameraimage was preproc-
essed into features known to be relevant in C. elegans behaviour. We
used pixel coordinates (x,y) of the animal’s centroid location in the
image, with target coordinates subtracted from the centroid. During
training, the target was always assumed to be (0,0), with coverage
over the plate provided by random translations and rotations. Body
angles were measured relative to the +x axis and head angles relative
to the body angle. Body angles were computed by fitting a line to a
skeletonized worm image, and head angles were computed through
template matching.

We performed head/tail identification by assigning the head label
to the endpoint that was closest to the head endpoint in a previous
frame. To handle reversals, a common behaviour in freely moving
animals, the overall movement vector over 10 s was compared to
tail-to-head vectors during the same window of time. If the vectors
pointed in different directions, head and tail labels were switched.
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Before each evaluation episode, 5 s of frames were collected to
assign the first head label again by comparing movement vectors to
tail-to-head vectors.

Angles were converted to sine and cosine pairs to avoid angle
wraparound issues. Fifteen frames (5 s at 3 fps) were concatenated
together forasingle observation. Coordinates were normalized so their
meanineach15-frame observation was within[-0.5,0.5]. An observa-
tions,corresponding to time ¢ thus comprised 6 x 15=90 variables:

f, = (sin GEOdy, cos O?Ody, sin 64, cos B'Qead,x,,y,)

E IRV FETRNN #)

Above, f,denotes the tuple of variables for the frame at time ¢. See
Fig.1d for adiagram defining the head and body angles.

Actions. An action at time ¢, a,, was defined as a choice between the
options ‘light on’ or ‘light off’, denoted by a binary O or 1 signal:

a,€1{0,1}

We did not place any constraints on actions, as all ensembles
learned policies with overall light exposure that was under 50% of the
time (‘Standard evaluation’).

Rewards.Reward r,was based on the target-finding task and defined as
the distance moved towards the target between the time of the action
tand15frames (5 s) after the action (Fig. 1¢):

2 2 2 2
= \/(xt - xtarget) + (yt _ytarget) - \/(xt+15 - Xtarget) + (.yt+15 _ytarget)

Atargetregionwas defined asa circle of radius 30 pixels (625 pm).
If the animal was within the target region, the calculated reward was
replaced by a constant reward of 2. All other rewards were scaled by a
factor of 2 to normalize values and facilitate training.

Training. As in standard RL, SAC searches for a policy m(a,ls,) for an
environment withatransition distribution p,.. m(a,ls,) is the probability
of taking an action a,givenan observations,. Here we also make explicit
the dependence of r,on s, and a,. SAC deviates from the standard goal
of maximizing the return or expected sum of rewards over time,

2 Esuappy VT (S0 a0)].

Here, y (fixed at 0.95) is atemporal discount factor that diminishes
rewards far into the future. SAC maximizes not only the expected
sum of rewards but also an entropy term weighted by a temperature
parameter a:

Zt[E(s[,a,)wn [V'r, (s ar) + aH(m (+ls,))].

The sum now contains an added entropy term H of the policy
m(+|s;), scaled by atemperature parameter a. m (-|s,) signifies the policy
function m over all possible events. We used a discrete version of SAC
with automatic entropy tuning (see code for implementation®®*).

Data augmentation. Once data were collected, they were stored in a
memory buffer as tuples:

m = (S, ap, I, Ser1s)
Ateachtraining step, abatch of 64 memory tuples were randomly

drawn from the buffer and independently augmented by a random
translation and rotation. First the tuple was centred such that the

average of the location coordinates was at the origin, (0,0) pixels.
Thenalocation within a +900 pixel square (comparable to the size of
the evaluation arena) was drawn from a uniform distribution and the
coordinatesrecentred around thatlocation. An angle was likewise cho-
senfromauniformdistribution [0°,360°) and added to the measured
anglesinthe memory tuple.

Training details.See Supplementary Table 2 for architecture and hyper-
parameter choices. Twenty agents per genetic line for lines 1-3 were
trained independently on the same memory buffer for 20 epochs of
5,000 steps each. See Supplementary Fig. 5 for anexample of training
progression for individual agents on line 2. For lines 4-6, we found
greater agent policy instability during training (Fig. 4b). In these cases,
the animals’ responses to optogenetic modulation were less tightly
coupledtotarget navigation. We therefore trained 30 agents for lines
4-6.Each ensemble was trained for aminimum of 20 epochs of 5,000
steps. We theninspected policies visually to check that they satisfied
two conditions. First, the ensemble policy needed to be non-trivial, or
not always-on or always-off. Second, the policies needed to be fairly
symmetric about the origin when plotted with body angles relative to
target, asthey should have beengiven the uniform random translations
and rotations during training.

Minibatch size for all agents was 64. Weights were initialized using
Xavier uniforminitialization, and biases wereinitialized at 0. We tried
dropout and weight decay on actors, critics or both and found that
none of these regularizers helped enough to compensate for the need
to choose more hyperparameters (see Supplementary Figs. 2-4).

Independent agents were trained such that the randomly taken
action a,, reward r, and the associated states s, and s,,;; were used to
learnastate-action value function. Thisis called aQ-functionand was
learned by the critic network. The actor network thenlearned apolicy
that was the exponential of the Q-function. See ref. 41 for details.

Ensembles. Once the 20 agents for one ensemble were trained, they
were combined by taking the average of their action probabilities and
setting athreshold at 0.5. That is,

N
1
Tensemble (¢, |, S¢) = N Z T, (a|S,)
n

where N=20.Ifthe average probability . sempe (@: |,S;) > 0.5, thenthe
light was on at that timestep. Three to five random seeds were run for
eachgeneticline, and the final ensemble was chosen based oninspec-
tion of visualized agent strategies.

Compute resources. All training was done on the FASRC Cannon
cluster supported by the FAS Division of Science Research Computing
Group at Harvard University. Every agent was trained on a compute
node withone of the graphics processing units available on the cluster:
Nvidia TitanX, K20m, K40m, K80, P100, A40, V100 or A100.

Agent strategy visualization. To visualize agent decisions, we simu-
lated animal states in a smaller space than the full 90-dimensional
inputs based oninput weight magnitudes. Because the final timesteps
of all angle measurements had larger magnitudes than previous
timesteps (Fig. 2h and Supplementary Fig. 6), we chose to keep input
angles constant within each observation and explored the full range
of angle possibilities [-180°,180°) in increments of 10° for 6°°® and
624 (36 values each). The 30 coordinate variables (x;,, y,,); t -5 <t <)
were always fixed to 0.94 cmto the left of the target, which was exactly
halfthe maximumdistance used for random translations during train-
ing. In total, 36 head angle values x 36 body angle values gave rise to
1,296 different input observations, each of which was given to an agent
ensemble that then output the decision probabilities recorded in the
resultant action probability matrix.
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Evaluation

All experiments involved a single animal placed on a 10-cm-diameter
NGM plate witha4-cm-diameter filter paper barrier soaked in copper
(II) chloride. Allanimals were cultured on food with ATR and were thus
sensitive to optogenetic perturbation. Animals were switched out for
anew ones after each evaluation episode.

Standard evaluation. Animals were placed in the centre of the field. A
target wasrandomly chosen among top, bottom, left and right options
(Fig.2b). The experiments with agents were run for 10 minutes each at
3 fps. At the end of the experiment, animals were switched out.

For controls without the agent, animals freely moved on the plate
and were recorded for 10 min. A random target was assigned to com-
pare controls to trials with agents.

For controls with random light exposure, the idea was to make
sure that light exposure alone was not responsible for more move-
ment, which could lead to an increased rate of success. Once all trials
with agents had been run, the proportion of time where the light was
onwas calculated for each geneticline. These proportions were 0.4647
forlinel,0.2896 forline 2 and 0.3844 for line 3. Animals were recorded
while light decisions were made every1s, with the probability of light
onaccordingto the genetic lines listed.

For line 4 (Pan-Arch), due to concerns about phototoxicity,
the evaluation was restricted to 1s light pulses with 4 s rest periods
between them.

Cross-agent evaluation. In Fig. 5, trained ensembles of agents were
tested on the genetic lines they had not been trained on. The experi-
ments were conducted identically to standard target-finding evalua-
tions. Tentrials of 10 min each were performed for every agent-genetic
line combination.

Error-handling food-search experiments. For the food-search
experiments in Fig. 6a-g, a 10 cm NGM plate was prepared with a
4-cm-diameter filter paper circle soaked in 20 mM copper (Il) chlo-
ride. Five pl of OP50 bacteriawere grown for -24 hbefore experiments.

Each trial lasted 20 min. An animal was placed on one end of the
plate with the OP50 droplet at the opposite end. During the 20 min, the
same agentstrained onrandomdataasin the standard evaluations were
setto navigate animals to targets at 0, 0.5,10or 1.5 cm from the edge of
the OP50 droplet. For control trials, agents were left off, and the animal
roamed freely for 20 min.

Success was defined as abinary outcome asin the obstacle experi-
ments. If an animal reached the food within the 20 min trial, it was
counted asasuccess. Out of 270 trials runacross all genetic linesinvolv-
ing OP50 droplets (obstacles and food search), only one Line 1animal
left food after reaching it during a food-search trial when the target
was placed 1 cm fromthe food edge. This trial was counted as asuccess.

Obstacle food-search experiments. For the obstacletrialsin Fig. 6h-k,
a10 cm NGM plate was prepared with a 4-cm-diameter filter paper
ring soaked in a20 mM copper (II) chloride solution. We cut 12 pieces
of filter paper into quadrilaterals with side lengths 1-3 mm and scat-
tered them on the plate (they were not soaked in copper (ll) chloride
solution). Sample arrangements are shown in Fig. 6h-k. Plates were
replaced with new obstacle arrangements every 5-10 trials. Five pl
of OP50 bacteria were grown on one side of the plate for ~24 h before
experiments.

Each obstacle experiment was a 20 min trial. A single animal was
placed on one end of the plate as in Fig. 6h, with the food droplet on
the other end and the obstacles between animal and food. Trained
agents (the same agent ensembles used in standard evaluations) were
run on the genetic line they were trained on for 20 min. Agents were
not retrained to handle obstacles. Control trials had no optogenetic
manipulation; that is, the animal was allowed to freely roam the plate

with obstacles and food for 20 min. Success was defined as a binary
outcome, indicating whether an animal reached food during the trial.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All processed animal tracks used to generate figures are available at
https://github.com/ccli3896/RLWorms.git (ref. 63).

Code availability

Analysis code and training code are available at https://github.
com/ccli3896/RLWorms.git (ref. 63) and https://doi.org/10.5281/
zen0do.11002033 (ref. 65).

References

1. Romano, D., Donati, E., Benelli, G. & Stefanini, C. A review on
animal-robot interaction: from bio-hybrid organisms to mixed
societies. Biol. Cybern. 113, 201-225 (2019).

2. Tankus, A., Fried, I. & Shoham, S. Cognitive-motor brain-machine
interfaces. J. Physiol. Paris 108, 38-44 (2014).

3. Bostrom, N. & Sandberg, A. Cognitive enhancement: methods,
ethics, regulatory challenges. Sci. Eng. Ethics 15, 311-341
(2009).

4. Afraz, S.-R., Kiani, R. & Esteky, H. Microstimulation of
inferotemporal cortex influences face categorization. Nature 442,
692-695 (2006).

5. Bonizzato, M. & Martinez, M. An intracortical neuroprosthesis
immediately alleviates walking deficits and improves recovery of
leg control after spinal cord injury. Sci. Transl. Med. 13, eabb4422
(2021).

6. Enriquez-Geppert, S., Huster, R. J. & Herrmann, C. S. Boosting
brain functions: Improving executive functions with behavioral
training, neurostimulation, and neurofeedback. Int. J.
Psychophysiol. 88, 1-16 (2013).

7. lturrate, |, Pereira, M., Millan, J. & del, R. Closed-loop electrical
neurostimulation: challenges and opportunities. Curr. Opin.
Biomed. Eng. 8, 28-37 (2018).

8. Lafer-Sousa, R. et al. Behavioral detectability of optogenetic
stimulation of inferior temporal cortex varies with the size of
concurrently viewed objects. Curr. Res. Neurobiol. 4,100063
(2023).

9. Lu,Y.etal. Optogenetically induced spatiotemporal gamma
oscillations and neuronal spiking activity in primate motor cortex.
J. Neurophysiol. 113, 3574-3587 (2015).

10. Salzman, D. C., Britten, K. H. & Newsome, W. T. Cortical
microstimulation influences perceptual judgements of motion
direction. Nature 346, 174-177 (1990).

1. Schild, L. C. & Glauser, D. A. Dual color neural activation and
behavior control with Chrimson and CoChR in Caenorhabditis
elegans. Genetics 200, 1029-1034 (2015).

12. Xu, J. et al. Thalamic stimulation improves postictal cortical
arousal and behavior. J. Neurosci. 40, 7343-7354 (2020).

13. Park, S.-G. et al. Medial preoptic circuit induces hunting-like
actions to target objects and prey. Nat. Neurosci. 21, 364-372
(2018).

14. Yang, J., Huai, R., Wang, H., Lv, C. & Su, X. A robo-pigeon based on
an innovative multi-mode telestimulation system. Biomed. Mater.
Eng. 26, S357-S363 (2015).

15. Holzer, R. & Shimoyama, |. Locomotion control of a bio-robotic
system via electric stimulation. In Proc. Institute of Electrical and
Electronics Engineers/Robotics Society of Japan International
Conference on Intelligent Robot and Systems. Innovative Robotics
for Real-World Applications 1514-1519 (IEEE, 1997).

Nature Machine Intelligence


http://www.nature.com/natmachintell
https://github.com/ccli3896/RLWorms.git
https://github.com/ccli3896/RLWorms.git
https://github.com/ccli3896/RLWorms.git
https://doi.org/10.5281/zenodo.11002033
https://doi.org/10.5281/zenodo.11002033

Article

https://doi.org/10.1038/s42256-024-00854-2

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

30.

40.

Talwar, S. K. et al. Rat navigation guided by remote control. Nature
417, 37-38 (2002).

Sato, H. et al. A cyborg beetle: insect flight control through an
implantable, tetherless microsystem. In Proc. 21st Institute of
Electrical and Electronics Engineers International Conference on
Micro Electro Mechanical Systems 164-167 (IEEE, 2008);
https://doi.org/10.1109/MEMSYS.2008.4443618

Peckham, P. H. & Knutson, J. S. Functional electrical stimulation
for neuromuscular applications. Annu. Rev. Biomed. Eng. 7,
327-360 (2005).

Kashin, S. M., Feldman, A. G. & Orlovsky, G. N. Locomotion of fish
evoked by electrical stimulation of the brain. Brain Res. 82, 41-47
(1974).

Hinterwirth, A. J. et al. Wireless stimulation of antennal muscles in
freely flying Hawkmoths leads to flight path changes. PLoS ONE
7, e52725 (2012).

Sanchez, C. J. et al. Locomotion control of hybrid cockroach
robots. J. R. Soc. Interface 12, 20141363 (2015).

Bergmann, E., Gofman, X., Kavushansky, A. & Kahn, I. Individual
variability in functional connectivity architecture of the mouse
brain. Commun. Biol. 3, 1-10 (2020).

Mueller, S. et al. Individual variability in functional connectivity
architecture of the human brain. Neuron 77, 586-595 (2013).
Husson, S. J., Gottschalk, A. & Leifer, A. M. Optogenetic
manipulation of neural activity in C. elegans: from synapse to
circuits and behaviour. Biol. Cell 105, 235-250 (2013).

Nagel, G. et al. Channelrhodopsin-2, a directly light-gated
cation-selective membrane channel. Proc. Natl Acad. Sci. USA
100, 13940-13945 (2003).

Kocabas, A., Shen, C.-H., Guo, Z. V. & Ramanathan, S. Controlling
interneuron activity in Caenorhabditis elegans to evoke
chemotactic behaviour. Nature 490, 273-277 (2012).

Leifer, A. M., Fang-Yen, C., Gershow, M., Alkema, M. J. & Samuel, A.
D. T. Optogenetic manipulation of neural activity in freely moving
Caenorhabditis elegans. Nat. Methods 8, 147-152 (2011).

Wen, Q. et al. Proprioceptive coupling within motor neurons
drives C. elegans forward locomotion. Neuron 76, 750-761(2012).
Hernandez-Nunez, L. et al. Reverse-correlation analysis of
navigation dynamics in Drosophila larva using optogenetics. eLife
4,e06225 (2015).

Donnelly, J. L. et al. Monoaminergic orchestration of motor
programs in a complex C. elegans behavior. PLoS Biol. 11,
1001529 (2013).

Silver, D. et al. Mastering the game of Go with deep neural
networks and tree search. Nature 529, 484-489 (2016).

Silver, D. et al. Mastering the game of Go without human
knowledge. Nature 550, 354-359 (2017).

Schrittwieser, J. et al. Mastering Atari, Go, chess and shogi by
planning with a learned model. Nature 588, 604-609 (2020).
Mnih, V. et al. Human-level control through deep reinforcement
learning. Nature 518, 529-533 (2015).

Vinyals, O. et al. Grandmaster level in StarCraft Il using
multi-agent reinforcement learning. Nature 575, 350-354 (2019).
Berner, C. et al. Dota 2 with large scale deep reinforcement
learning. Preprint at http://arxiv.org/abs/1912.06680 (2019).
Wurman, P. R. et al. Outracing champion Gran Turismo drivers
with deep reinforcement learning. Nature 602, 223-228 (2022).
Degrave, J. et al. Magnetic control of tokamak plasmas through
deep reinforcement learning. Nature 602, 414-419 (2022).

Ibarz, J. et al. How to train your robot with deep reinforcement
learning: lessons we have learned. Int. J. Rob. Res. 40, 698-721
(2021).

Haydari, A. & Yilmaz, Y. Deep reinforcement learning for intelligent
transportation systems: a survey. IEEE Trans. Intell. Transp. Syst.
23,11-32(2022).

a1.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

56.

56.

57.

58.

59.

60.

61.

Haarnoja, T., Zhou, A., Abbeel, P. & Levine, S. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In Proc. 35th International Conference on
Machine Learning 1861-1870 (PMLR, 2018).

Yang, X., Jiang, X.-L., Su, Z.-L. & Wang, B. Cyborg moth flight
control based on fuzzy deep learning. Micromachines 13, 611
(2022).

Ariyanto, M., Refat, C. M. M., Hirao, K. & Morishima, K. Movement
optimization for a cyborg cockroach in a bounded space
incorporating machine learning. Cyborg Bionic Syst. 4, 0012
(2023).

Zheng, N. et al. Real-time and precise insect flight control
system based on virtual reality. Electron. Lett. 53, 387-389
(2017).

Zheng, N. et al. Abdominal-waving control of tethered
bumblebees based on sarsa with transformed reward. IEEE Trans.
Cybern. 49, 3064-3073 (2019).

Ardiel, E. L. & Rankin, C. H. An elegant mind: learning and memory
in Caenorhabditis elegans. Learn. Mem. 17,191-201 (2010).

Kim, J. & Shlizerman, E. Deep reinforcement learning for neural
control. Preprint at https://arxiv.org/abs/2006.07352 (2020).
Christodoulou, P. Soft actor-critic for discrete action settings.
Preprint at https://arxiv.org/abs/1910.07207 (2019).

Wong, C.-C., Chien, S.-Y., Feng, H.-M. & Aoyama, H. Motion
planning for dual-arm robot based on soft actor-critic. IEEE
Access 9, 26871-26885 (2021).

Sarma, G. P. et al. OpenWorm: overview and recent advances in
integrative biological simulation of Caenorhabditis elegans.
Phil. Trans. R. Soc. B 373, 20170382 (2018).

Shorten, C. & Khoshgoftaar, T. M. A survey on image data
augmentation for deep learning. J. Big Data 6, 60 (2019).
Nikishin, E. et al. Improving stability in deep reinforcement
learning with weight averaging. Uncertainty in Artificial
Intelligence Workshop on Uncertainty in Deep Learning (2018).
Stable Baselines 2.10.2 documentation. Reinforcement Learning
Resources https://stable-baselines.readthedocs.io/en/master/
guide/rl.Lhtml (2021).

Bhardwaj, A., Thapliyal, S., Dahiya, Y. & Babu, K. FLP-18 functions
through the G-protein-coupled receptors NPR-1and NPR-4 to
modulate reversal length in Caenorhabditis elegans. J. Neurosci.
38, 4641-4654 (2018).

Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.
Mechanosensory Control of Locomotion. C. elegans Il 2nd edn
(Cold Spring Harbor Laboratory Press, 1997).

Brandt, R., Gergou, A., Wacker, |., Fath, T. & Hutter, H. A
Caenorhabditis elegans model of tau hyperphosphorylation:
induction of developmental defects by transgenic overexpression
of Alzheimer’s disease-like modified tau. Neurobiol. Aging 30,
22-33(2009).

Jospin, M. et al. A neuronal acetylcholine receptor regulates the
balance of muscle excitation and inhibition in Caenorhabditis
elegans. PLoS Biol. 7, €1000265 (2009).

Hollenstein, J., Auddy, S., Saveriano, M., Renaudo, E. & Piater, J.
Action noise in off-policy deep reinforcement learning: Impact on
exploration and performance. Transactions on Machine Learning
Research (2022); https://openreview.net/forum?id=N[jBlZ6hmG
Andersen, R. A., Aflalo, T., Bashford, L., Bjanes, D. & Kellis, S.
Exploring cognition with brain-machine interfaces. Annu. Rev.
Psychol. 73, 131-158 (2022).

Sussillo, D., Stavisky, S. D., Kao, J. C., Ryu, S. I. & Shenoy, K.

V. Making brain-machine interfaces robust to future neural
variability. Nat. Commun. 7, 1-13 (2016).

Dong, X. et al. Toward a living soft microrobot through
optogenetic locomotion control of Caenorhabditis elegans.

Sci. Robot. 6, eabe3950 (2021).

Nature Machine Intelligence


http://www.nature.com/natmachintell
https://doi.org/10.1109/MEMSYS.2008.4443618
http://arxiv.org/abs/1912.06680
https://arxiv.org/abs/2006.07352
https://arxiv.org/abs/1910.07207
https://stable-baselines.readthedocs.io/en/master/guide/rl.html
https://stable-baselines.readthedocs.io/en/master/guide/rl.html
https://openreview.net/forum?id=NljBlZ6hmG

Article

https://doi.org/10.1038/s42256-024-00854-2

62. Tandon, P. pytorch-soft-actor-critic. GitHub https://github.com/
pranz24/pytorch-soft-actor-critic (2022).

63. Li, C. RLWorms. GitHub https://github.com/ccli3896/RLWorms.git
(2024).

64. Kazemipour, A. Discrete SAC PyTorch, GitHub, https://github.
com/alirezakazemipour/Discrete-SAC-PyTorch (2020).

65. Li, C. RLWorms. Zenodo https://doi.org/10.5281/zenodo.11002033
(2024).

Acknowledgements

We thank S. Bhupatiraju for discussions about RL and comments on
the manuscript. We thank T. Hallacy and A. Yonar for guidance in C.
elegans experiments and C. McCartan for input on statistical analyses.
We would like to thank Dr. Jeffrey Lee for providing us with customized
high power LED light sources. We thank K. Blum, C. Pehlevan, G.
Anand, A. Bacanu, B. Brissette, D. Hidalgo, R. Huang, H. Megale, W.
Weiter, Y. llker Yaman, V. Zhuang and S. Zwick for comments on the
manuscript. This work was supported in part by National Institute

of General Medical Sciences grant no. IROINS117908-01(S.R.),

the Dean’s Competitive Fund from Harvard University (S.R., C.L.),
National Institutes of Health grant no. RO1EY026025 (G.K.), the Fetzer
Foundation (G.K.) and a National Science Foundation Graduate
Research Fellowship Program fellowship (C.L.).

Author contributions

All the authors designed the study. C.L. wrote code, performed
experiments and did data analysis. All the authors wrote the
manuscript.

Competinginterests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42256-024-00854-2.

Correspondence and requests for materials should be addressed to
Chenguang Li, Gabriel Kreiman or Sharad Ramanathan.

Peer review information Nature Machine Intelligence thanks Artur Luczak
and Greg Wayne for their contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited
2024

Nature Machine Intelligence


http://www.nature.com/natmachintell
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/ccli3896/RLWorms.git
https://github.com/alirezakazemipour/Discrete-SAC-PyTorch
https://github.com/alirezakazemipour/Discrete-SAC-PyTorch
https://doi.org/10.5281/zenodo.11002033
https://doi.org/10.1038/s42256-024-00854-2
http://www.nature.com/reprints

nature portfolio

Corresponding author(s): Ramanathan

Last updated by author(s): Aug 15, 2023

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

/a | Confirmed

>

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] A description of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XX [ [0 XX [0

X0

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Custom code available at public repository stated in manuscript. https://github.com/ccli3896/RLWorms.git

Data analysis Custom code available at public repository stated in manuscript. https://github.com/ccli3896/RLWorms.git

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data publicly available at repository stated in manuscript. https://github.com/ccli3896/RLWorms.git

>
Q
Q
c
@
O
]
=
o
=
—
®
©O
]
=
S
(e}
wv
c
3
3
Q
<




Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid
confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in
study design whether sex and/or gender was determined based on self-reporting or assigned and methods used. Provide in the
source data disaggregated sex and gender data where this information has been collected, and consent has been obtained for
sharing of individual-level data, provide overall numbers in this Reporting Summary. Please state if this information has not
been collected. Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based
analysis.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|Z| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were chosen by heuristic to demonstrate reliable effects.

Data exclusions  Animals were excluded as mentioned in Methods section if they were immobile throughout an evaluation or collection episode.
Replication Results were replicable between trials.

Randomization  Allocation into control/evaluation groups was random.

Blinding Blinding was not done to keep track of animal lines. Metrics were collected and analyzed immediately using a common pipeline and scripts
between animal lines and control/experiment trials.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies & |:| ChIP-seq
Eukaryotic cell lines & |:| Flow cytometry
Palaeontology and archaeology & |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

XXOXNXNX &
OOXOOO

>
Q
L
C
=
(D
5,
o)
=
o
=
-
@
S,
o)
=
>
@
wv
e
3
=
QO
=
A




Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Caenorhabditis elegans strains: srakEx281, sraEx301, sraEx352, srakx446, sraEx336, srabx437, adult hermaphrodites. All available
upon request.

Wild animals No wild animals.
Reporting on sex All animals were hermaphrodites.
Field-collected samples  No samples from field.

Ethics oversight No ethical approval required for C. elegans research.

>
QO
L
c
)
e,
o)
=
o
=
—
@
S,
o)
=
>
Q
wv
C
3
3
QO
<

Note that full information on the approval of the study protocol must also be provided in the manuscript.




	Discovering neural policies to drive behaviour by integrating deep reinforcement learning agents with biological neural net ...
	Connecting the nervous system to artificial intelligence and training agents

	Agents could navigate animals to targets

	Agents learned policies based on sites of integration

	Agents predicted similarities between neural circuits

	Animals corrected errors made by agents during food search

	RL agents with animals could navigate new environments

	Discussion

	Methods

	Animal genetics and care

	Genetic lines
	Animal maintenance

	Experimental setup

	Experimental system hardware
	Animal tracking

	Collecting training data

	RL details

	Variable definitions
	Training
	Compute resources
	Agent strategy visualization

	Evaluation

	Standard evaluation
	Cross-agent evaluation
	Error-handling food-search experiments
	Obstacle food-search experiments

	Reporting summary


	Acknowledgements

	Fig. 1 A system that integrates deep RL with the C.
	Fig. 2 The system learned to navigate the C.
	Fig. 3 The system could successfully navigate different optogenetic lines to a target.
	Fig. 4 The system learned to navigate different optogenetic lines to a target with neuron-specific strategies.
	Fig. 5 Agent policies can predict agent performance on other lines.
	Fig. 6 Animals with agents can correct errors and generalize to new situations.




