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Discovering neural policies to drive 
behaviour by integrating deep 
reinforcement learning agents with 
biological neural networks

Chenguang Li    1 , Gabriel Kreiman    2,3  & Sharad Ramanathan    4,5,6,7 

Deep reinforcement learning (RL) has been successful in a variety of domains 
but has not yet been directly used to learn biological tasks by interacting 
with a living nervous system. As proof of principle, we show how to create 
such a hybrid system trained on a target-finding task. Using optogenetics, 
we interfaced the nervous system of the nematode Caenorhabditis elegans 
with a deep RL agent. Agents adapted to strikingly different sites of neural 
integration and learned site-specific activations to guide animals towards 
a target, including in cases where agents interfaced with sets of neurons 
with previously uncharacterized responses to optogenetic modulation. 
Agents were analysed by plotting their learned policies to understand 
how different sets of neurons were used to guide movement. Further, the 
animal and agent generalized to new environments using the same learned 
policies in food-search tasks, showing that the system achieved cooperative 
computation rather than the agent acting as a controller for a soft robot. 
Our system demonstrates that deep RL is a viable tool both for learning 
how neural circuits can produce goal-directed behaviour and for improving 
biologically relevant behaviour in a flexible way.

Guiding or improving animal behaviour directly through the nerv-
ous system is a common goal for neuroscience and robotics research-
ers alike1–3. Previous work in brain interfaces and animal robotics has 
attempted to use direct interventions to affect behaviour on a variety 
of tasks, relying on manual specification for stimulation frequencies, 
locations, dynamics and patterns4–21. A central difficulty with these 
approaches is that manual tuning has limited applicability, as it relies 
on knowledge of the neural circuits or mechanisms involved. Activa-
tion patterns for a given task and set of neurons are often unknown7, 
nervous systems have complex intrinsic neural dynamics, and there is 

a combinatorial explosion of stimulation parameters to test. For direct 
neural stimulation, effective patterns can vary depending on which 
neurons are targeted and on the animal itself22,23. Thus, even though 
technologies for precise neuronal modulation exist24,25, there lies the 
challenge of how to design an algorithm that can systematically and 
automatically learn strategies to activate a set of neurons to improve 
a particular behaviour26–30.

Here we addressed this challenge using deep reinforcement learn-
ing (RL), assessing whether RL can autonomously integrate with an 
animal’s nervous system to improve behaviour. In an RL setting, an 
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We chose the soft actor–critic (SAC) algorithm for the RL agent 
because of its successes in simulated and real-world RL environ-
ments37,41,48,49. SAC has separate neural networks for a critic that learns 
to evaluate observations and an actor that learns to optimize actions 
based on critic evaluations for return maximization (Fig. 1f, Methods). 
Both networks take observations as input and consist of two layers with 
64 units per layer (Methods). The actor network outputs probabilities 
of turning on the light at time t, P(at = 1). We assigned the agent’s action 
for that observation as ‘light on’ if the actor’s output P(at = 1) ≥ 0.5.

Deep RL tends to require large amounts of data. For instance, 
agents learning to play Atari can require thousands of hours of game-
play to achieve good performance33,34. It was infeasible to collect thou-
sands of hours of recordings in our environment, and unlike video 
games or physical systems with reliable dynamics, adequate computer 
simulations of the C. elegans nervous system and its behaviours are 
not available to generate training data50. Therefore, to facilitate algo-
rithm development and reduce the amount of data needed to learn 
the target-finding task, agents were trained offline on prerecorded 
data, collected for 20 min per animal for a total of 5 h. During training 
data collection, the light was turned on randomly with a probability of 
0.1 every second (Fig. 1g, top, and Methods). Following approaches in 
supervised learning51, the data were then augmented during training by 
randomly translating and rotating the animal in a virtual arena approxi-
mately the size of the 4-cm-diameter evaluation arena (Methods).

During training, deep RL agents were unstable and prone to sud-
den performance drops (Supplementary Fig. 1), similar to previous 
work52,53. In simulated environments, such performance crashes can be 
monitored using evaluation episodes in the exact environment used 
for testing. In our environment, evaluation episodes were impractical 
because they would have required many more times the amount of 
data than were used to train agents. Therefore, we tested several regu-
larization methods to help with stability and found that ensembles of 
agents were effective for our environment (Supplementary Figs. 2–4). 
The final deep RL agents were ensembles of SAC agents, with the col-
lection, training and evaluation pipeline shown in Fig. 1g. For lines 1–3 
described in Supplementary Table 1, ensembles consisted of 20 agents. 
For lines 4–6, which exhibited less stable training dynamics, ensembles 
consisted of 30 agents (see Methods for training protocol). Supplemen-
tary Figs. 4 and 5 show examples of variation between independently 
trained agents and how ensembles stabilized agent policies.

Agents could navigate animals to targets
We first tested our system on the transgenic line Pttx-3::ChR2, referred 
to as line 1 in the text (Fig. 2a and Supplementary Table 1). In line 1, 
the ttx-3 promoter drives expression of channelrhodopsin in AIY 
interneurons, which are known to be involved in chemotaxis. Prior 
work has established a deterministic strategy for navigating animals 
using optogenetic activation of AIY26, used here as a ‘human expert’ 
standard to see whether our agent could achieve similar performance.

After training an RL agent on line 1, the agent was evaluated by 
placing an animal in the centre of a 4-cm-diameter arena and enter-
ing target coordinates as input to the agent (Fig. 2b). The agent was 
set to navigate the animal over a 10 min episode to a target placed in 
one of four possible locations. The agent learned a pattern of light 
activation (blue points) to manoeuvre the animal towards the target. 
A sample track of an animal driven by the agent to a target is in Fig. 2c 
(see also Supplementary Video 1). In contrast, when the light was off 
all the time (Fig. 2d) or turned on randomly (Fig. 2e and Supplemen-
tary Video 2), the animal fails to reach the target. For comparison, we 
considered the case where the light was turned on according to the 
known ‘human expert’ policy, which was also successful in driving 
the animal to the target (Fig. 2f). Figure 2g shows statistics for each 
condition: the closer the distance to the target, the better the perfor-
mance. The agent’s learned policy performed as well as the known 
policy, and both of those performed significantly better than controls 

agent collects rewards through interactions with its environment. 
By leveraging deep neural networks, RL algorithms have successfully 
discovered complex sequences of actions to solve a wide set of tasks31–41. 
These past successes relied on reward signals to train algorithms, a 
framework that can be adapted to biologically relevant goals, such 
as finding food or mates. Although other studies have incorporated 
machine learning into designing cyborg or biohybrid organisms42–45, 
they have largely focused on optimizing only one means of interfacing 
with an animal, which could be difficult to scale up in neural interfaces, 
especially given the highly variable nature of living nervous systems. 
By using deep RL, we present instead a flexible framework that can, 
given only a reward signal, observations and a set of relevant actions, 
learn different ways of achieving a goal behaviour that adapt to the 
chosen interface.

We tested our ideas on the nematode Caenorhabditis elegans, 
interfacing an RL agent with its nervous system using optogenetic 
tools24,27. This animal has a small and accessible nervous system while 
still possessing a rich behavioural repertoire46, making it a suitable 
candidate to test deep RL integration47. In a natural setting, C. elegans 
must navigate variable environments to avoid danger or find targets 
like food. Therefore, we aimed to build an RL agent that could learn 
how to interface with neurons to assist C. elegans in target-finding 
and food search. We tested the agent by connecting it to different 
sets of neurons with distinct roles in behaviour, where some of these 
neuronal sets did not have fully understood roles in directed move-
ment. Agents could not only couple with different sets of neurons 
to perform a target-finding task but also generalize to improve food 
search across new environments in a zero-shot fashion: that is, without 
any prior training. We show that our neural–RL interface can be used 
to investigate the function of neural circuits in task performance, 
including with sets of neurons whose links to behaviours have not been 
previously established.

Connecting the nervous system to artificial 
intelligence and training agents
We used a closed-loop setup to couple an RL agent to an animal’s nerv-
ous system (Fig. 1a,b). We formulated target-finding as an RL problem 
by defining a reward value as the negative distance of the animal’s 
coordinates to a user-specified target (Fig. 1c; Methods). The RL agent’s 
environment consisted of a ~1 mm adult animal and a 4-cm-diameter 
arena on an agar plate. Observations of the environment were  
given to the agent through a camera at 3 Hz, and features were  
automatically extracted from each camera frame to track the animal’s 
centre of mass. During evaluation, target coordinates were subtracted 
from the animal’s coordinates before being sent as part of the input to 
agents, (xt,yt). Head and body angles (θbody

t ,θhead
t ) were extracted from 

each frame relative to the +x axis, and head angles were measured 
relative to body angles. We took polar coordinates of the angle meas-
urements so that an observation was defined for every frame t, 
(sinθbody

t , cosθbody
t , sinθhead rel.

t , cosθhead rel.
t , xt, yt) (Fig. 1d). Each obser-

vation the agent received included these six variables from frames over 
the past 5 seconds, making agent inputs 90-dimensional at each 
timestep (6 variables × 3 frames per second (fps) × 5 seconds;  
Methods). These variables are relevant for the navigation task, although 
we note that other tasks may benefit from different sets of task- 
specific variables.

Given an observation at time t, the RL agent was trained to learn 
what action at to take at that time to maximize return, defined as a 
sum of rewards discounted over time (Fig. 1e and Methods). To take an 
action, the agent could decide whether to turn a light-emitting diode 
(LED) on or off at each timestep. Using optogenetics24, the agent could 
modulate selected neurons that expressed either channelrhodopsin, a 
light-gated ion channel that can be stimulated by blue light (480 nm) to 
activate neurons25, or archaerhodopsin, a light-sensitive proton pump 
that can be stimulated with green light (540 nm) to inhibit neurons.

http://www.nature.com/natmachintell
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(learned policy: P = 0.00054, no agent; P = 0.00019, random light. 
Known policy: P = 0.0011, no agent; P = 0.00017, random light). There 
was no significant difference in the time taken to reach within 0.5 cm 
of the target between the learned and known policies (Fig. 2g, inset; 
P = 0.36, one-sided Mann–Whitney U-test).

To understand what the agent trained on line 1 had learned26, we 
sought a representative subspace of the 90-dimensional observation 
space in which to plot agent decisions. For every SAC agent in the 

ensemble, we plotted weights of the first layer of the actor network as 
a function of frame number to assess which input variables were associ-
ated with large weights (Fig. 2h and Supplementary Fig. 5). Head and 
body angles corresponding to the most recent frame in an observation 
(black arrows in Fig. 2h) had larger weight magnitudes than in earlier 
frames. Therefore, to visualize agent strategies, we fixed the 30 coor-
dinate variables ((xt′, yt′); t − 5 s < t′ < t)  in each observation to a 
position left of the target (Fig. 2i and Methods) and plotted the 
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Fig. 1 | A system that integrates deep RL with the C. elegans neural network.  
a, Concept for combining artificial and biological neural networks for a shared 
task. b, Closed-loop setup using optogenetics. A single nematode was placed in a 
4-cm-diameter field and illuminated by a red ring light for imaging. A camera and 
a high-powered LED (blue or green) were connected to a computer to form a 
closed-loop system. The LED modulated neurons carrying optogenetic 
constructs (see main text). c, Reward at time t, rt

(15), was defined as the change in 
distance to target between times t and t + 15. d, Sample camera image at time t. An 
observation was a stack of six measurements from 15 frames (5 s at 3 fps) for a 
total of 90 variables per observation received by the agent at each timestep. 
Measurements were coordinates of the animal’s centre of mass at time t (xt, yt) 

and the sines and cosines of the head and body angles, (θbodyt ,θheadt ) of the animal 
relative to the positive x axis. e, RL loop diagram of the combined system.  
f, Actor–critic architecture used as a deep RL agent. g, Pipeline for training and 
evaluating the RL–animal system (see main text and Methods for details). A total 
of 5 h of data were collected where a light is flashed randomly on an animal stored 
in a memory pool (labelled M). Animals were switched out approximately every 
20 min. Multiple soft actor–critic agents were independently trained on the 
memory pool. During evaluation, the agents were put into an ensemble that 
voted on actions in real time. Each individual agent’s decision was based on the 
observation received from the camera.
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probability that the ensemble turned the light on as a function of body 
and head angles at the latest time in the observation (θbody

t , θhead
t ) 

(Fig. 2j). The human expert policy is plotted in Fig. 2k using the same 
projection.

To interpret the policies, it is useful to compare Fig. 2i,j. The 
high-probability diagonal band in Fig. 2j corresponds to the same 
diagonal in Fig. 2i where the animal’s head points towards the target. 
Interestingly, the agent’s learned policy was conceptually similar 
but quantitatively different from the known expert policy in Fig. 2k, 
which placed greater emphasis on turning animals in the correct 
direction. Nonetheless, both policies were effective in the targeted 
navigation task.

The projection in Fig. 2j provided a way to plot agent training 
progress, with Fig. 2l,m showing the change in agent policies over 20 
epochs of training. Figure 2l is the difference between the policy of 
full ensembles during and after training, and Fig. 2m takes differences 
between individual agent policies and compares them to the trained 
ensemble, plotting average differences with standard deviations.  

We saw that individual agents, even after training, could be quite far 
from the final policy, which highlighted the importance of ensembling.

Agents learned policies based on sites of 
integration
We aimed to build a robust and flexible algorithm that could adapt 
to its connected neurons. We next tested whether the RL agent could 
learn appropriate rules for a variety of neural connections without 
explicit prior knowledge about them. New agents were trained on five 
additional transgenic lines that were functionally distinct from line 1 
and did not have associated human expert policies (Fig. 3). These lines 
are ordered in the text by agent performance compared to no light and 
random matched-frequency light controls. See Supplementary Table 1 
and Fig. 3a for line genotypes and neuron expression.

Lines 3–6 expressed light-sensitive channels in multiple neuron 
types. Line 3 and 4 animals expressed archaerhodopsin, which inhibits 
neurons upon stimulation with green light (540 nm). Due to concerns 
about phototoxicity, agents for line 4 were restricted to short pulses 
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Fig. 2 | The system learned to navigate the C. elegans line 1 to a target.  
a, Optogenetically modified AIY neurons (black arrow) in line 1. b, Evaluation 
setup. The animal was placed in the centre (purple circle) of a filter paper circle 
with diameter 4 cm. In each 10 min episode, agents were tested on their ability  
to navigate the animal to one of the four target locations shown (red).  
c–f, Sample tracks with agent (c), without agent (d), with random light (e) 
and with a ‘human expert’ policy from literature (f)26. g, Closest distance to 
target achieved by animals for trials with and without an agent as well as with 
random light stimulations (n = 10 for each condition). Animals with agents 
moved significantly closer to targets than animals without agents. Plots show 
mean ± s.e.m. One-sided Mann–Whitney U-test, with agent versus with control 
conditions indicated by asterisks, **P < 0.01, ***P < 0.001. (Learned policy: 
P = 0.00054, no agent; P = 0.00019, random light. Known policy: P = 0.0011,  

no agent; P = 0.00017, random light.) Times to reach within 0.5 cm of target for 
animals with learned and known policies were comparable, shown in inset (not 
significant (NS), P = 0.36, one-sided Mann–Whitney U-test). h, Weights of the 
first 64-neuron layer in all actor (top) and critic (bottom) networks in the agent 
ensemble. For angle-related variables, the most recent frames (black arrows) had 
the largest weights. i, Reference for the policy plots in j and k, showing example 
animal conformations. j, Trained agent probabilities for simulated inputs. k, The 
human expert policy plotted for comparison. It is similar to the learned agent 
policy but not identical. l, The L2 difference in the policy matrix between the 
final ensemble and ensembles at each epoch during training. By definition, the 
difference is 0 at epoch 20. m, Mean L2 differences between individual agents 
and the final ensemble, with standard deviation shaded in blue.
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during evaluation (Methods). These lines tested the abilities of the RL 
agent with different sets of neuronal connections and different means 
of modulation.

In lines 1–5, animals with trained agents moved closer to tar-
gets than control animals did (Fig. 3b). Example tracks showing 
agent activity during evaluation and controls are shown in Fig. 3c–q. 

Supplementary Videos 1–6 show agent performance and controls for 
lines 1–3, which performed best. Given that policies for goal-directed 
movement using optogenetic modulation of these lines were previously 
unknown, it was remarkable that agents still learned to direct these ani-
mals towards a target (for line 3, see ref. 54 for npr-4 mutant behaviour; 
and for line 5, see ref. 55 for IL1 involvement in head withdrawal).

W
ith

 a
ge

nt

With agent

N
o 

ag
en

t
Ra

nd
om

 li
gh

t

W
ith

 a
ge

nt
N

o 
ag

en
t

Ra
nd

om
 li

gh
t

Light on
Light o�

Starting position
Target

b

C
lo

se
st

 d
is

ta
nc

e 
to

 ta
rg

et
 (c

m
)

n = 10 for all
conditions

With agent

No agent

Random light

Line 1 Line 2 Line 3 Line 4 Line 5 Line 6

Line 1 Line 2 Line 3 Line 4 Line 5 Line 6

0

0.5

1.0

1.5

2.0

****

a

Pnpr-4::Arch

***

*

PanArch
200 µm

Pacr-2::ChR2

2 mm

4 mm 4 mm

***
***

Pttx-3::ChR2
50 µm

AIY

Pstr-2::ChR2 

50
 µ

m

***
**

AWCON All
neurons

** *

Pflp-3::ChR2
200 µm

IL1
PQR

4 mm

4 mm

c

d

e

f

g h

i With agent
With agent No agent Random

light

Random light

No agent

l n o p q

m

No agentkRandom light

4 mm

j

Line 2

Line 4 Line 5 Line 6

Line 3

Cholinergic ventral
cord motor neurons

20
0 

µm

BAG
RMD

AVA
AVK

AIY
SIASIB

50 µm

2 mm

Fig. 3 | The system could successfully navigate different optogenetic lines 
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agent; P = 0.4841, random light. c–e, Following the format in Fig. 2c–f, example 
tracks for line 2 with positions of light activation along the trajectory highlighted 
in blue for animals with the agent (c), without any optogenetic activation (d) 
and with randomly flashing light (e). f–q, Example tracks for lines 3–6 for each 
experimental condition in c: line 3 with agent (f), without agent (g), random 
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movement in the time between placing animals on the plate and starting the 
experiment, approximately 1 min.
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The agent successfully interacted with lines 3–5, which all involved 
multiple neurons (Fig. 3b), including line 4, which used the entire nerv-
ous system56. In this instance, the agents took advantage of increased 
movement after a period of freezing, in contrast to the line 3 policy that 
relied on slowing or turning during neuron inhibition. However, the 
agent failed to find an effective policy for line 6, where it was coupled 
to cholinergic muscle excitation in the ventral cord57. The standard 
deviation in the learned policy between agents in the ensembles was 
noticeably greater for lines 4–6 (Fig. 4a,b), which had poorer perfor-
mance than lines 1–3 (Fig. 3b). Together these results show that the 
choice of sites of integration impact the performance of the animal–
agent system.

We visualized policies using the metrics from Fig. 2i,j to under-
stand how interfaced neurons were involved in target navigation. 
For reference, Fig. 4c shows animal postures used in mapping agent 
policies. Policies are plotted in Fig. 4d. Ensemble action certainty 
is also visible in Fig. 4d,e, in which lines 1–3 have probability values 
with a wider range than lines 4–6. This indicates agents are more 
certain about when to turn the light on or off in lines 1–3. For com-
parison, we show an agent trained on wild type animals (Fig. 4d) 
with no response to optogenetic modulation. The policies in Fig. 4d 
show that agents learned strategies tailored to the neurons they 
interfaced.

Agents predicted similarities between neural 
circuits
Broadly, there were three strategies represented by lines 1 and 4, lines 2 
and 3 and line 5 (Fig. 4d). To understand how agent policies interacted 
with the nervous system, we focused on the most successful lines: 1, 
2 and 3. Although the behaviour of line 1 in response to blue light is 
mostly to move forward and line 2 is mostly to reverse, policies were 
not merely inverses of each other. Rather, agents learned that line 1 
control was dependent on the animal’s head angle relative to the target, 
whereas Line 2 and 3 control depended on specific head and body angle 
combinations. Despite large differences in lines 2 and 3 (excitation 
of a single neuron in line 2 versus inhibition of multiple neurons in  
line 3), training on line 3 resulted in an action probability matrix that 
was remarkably similar to line 2.

To quantify these similarities in learned actions and to assess 
generalization across different sites of integration, we ran experiments 
where each agent was tested on each line (Fig. 5a). Sample tracks from 
combinations of agents and animals are shown in Fig. 5b with average 
results in Fig. 5c. To evaluate whether agent policies were predictive of 
cross-evaluation performance, we measured L2 norm differences of the 
action probability matrices (Fig. 5d). As intuitively observed in Fig. 5d, 
the policies from lines 2 and 3 are most similar. The corresponding plot 
using experimental data from Fig. 5c is shown in Fig. 5e. As expected, 
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similar agent policies. e, Probabilities in d plotted as a histogram. Lines 1–3 had 
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diagonal entries have low distances to targets; line 3 animals tested 
with line 2 agents also showed low distances.

Results in Fig. 5e correlated well with predictions based on the 
similarity of the action probability matrices in Fig. 5d (r2 = 0.8578, 
P = 0.000334). As expected from the contrast in action probabilities in 
Fig. 4d, line 1 versus lines 2 and 3, line 1 did not respond well to agents 
trained on line 2 or 3. For example, when the agent trained on line 1 
was tested with an animal from line 2, the closest distance reached 
from the target was about 1.477 ± 0.102 cm, much larger than when 
tested on line 1, 0.280 ± 0.104 cm (Fig. 5e). The closest distance was 
also comparable to or greater than the control conditions for line 2 
(Fig. 3b), as the line 1 agent tended to drive line 2 animals away from 
rather than towards targets (P value < 0.08, no agent; P value < 0.009, 
random light; one-sided Mann–Whitney U-test). Likewise, neither 
line 2 nor 3 animals performed well on the task when paired with the 
line 1 agent. In summary, by comparing action probabilities learned 
by agents that were trained to couple to specific sets of neurons, we 
could make accurate predictions about the behaviour of these lines 
under optogenetic control in the target-finding task.

Another interesting finding was that line 2 and 3 animals were 
most successful when paired with the line 2 agent, even though the 
line 3 agent was trained on data from the line itself (P < 0.002, line 2 
line with line 2 versus line 3 agent; P < 0.04, line 3 line with line 2 versus 
line 3 agent, one-sided Mann–Whitney U-test, n = 10). These results 
may be explained by higher data quality from the stronger response 
of line 2 to optogenetic stimulation (Supplementary Videos 1, 2, 5 and 
6), reflected in greater action certainties in line 2 compared to line 3 
(Fig. 4d). This suggests that training RL agents with less action noise 
could improve performance in noisy biological environments58. Over-
all, we demonstrate that our system can generate hypotheses about 
learning in biological environments, with greater access to internal 
mechanisms (through the artificial network) than an animal’s nervous 
system alone can provide.

Animals corrected errors made by agents during 
food search
We aimed to see whether agents and animals could achieve tasks in a 
general way, integrating information flexibly just as animals can on 
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their own, so we next evaluated whether agents and animals could 
transfer abilities from the target-finding task to food search. Using 
the three best-performing lines, we tested whether animals could cor-
rect errors made by agents about the location of food. Targets for the 
artificial intelligence agent were placed at increasing distances from 
the edge of a 5 µl patch of food (OP50 Escherichia coli (E. coli) bacteria) 
to mimic errors made by the agent (Fig. 6a and Methods). Agents were 
on throughout the experiment, including after animals had reached 
the target. Animals were tested on whether they could reach food in 
20 min trials with or without agents. Agents were identical to those 
used in Figs. 2–5, and each line was tested with its own agent. For lines 
1 and 2, when targets were 0.5 cm away from food, animals could leave 
an agent’s target region (a circle of radius 0.0625 cm; Methods) and 
moved to the food in eight of ten trials (P < 0.0004) (Fig. 6b,c). This was 
significantly different from trials without agent assistance, in which 
zero animals reached food in ten trials for both lines. Line 3 was not 
as successful with agent assistance (Fig. 6d), likely due to less reliable 
control (Fig. 3b). This suggests that simultaneous modulation of the 
neurons in this line is not as strongly linked to directed movement as 
in lines 1 and 2. In contrast, line 1 and 2 animals could switch between 

making decisions based on their own sensory systems or the agents, 
which were trained to keep animals at targets. Sample tracks for all 
experimental conditions are in Fig. 6e–g.

RL agents with animals could navigate new 
environments
We next tested whether the animal and agent could navigate an environ-
ment with obstacles to reach food, which represents a novel condition 
with a biologically relevant goal. We designed trials where 12 paper 
quadrilaterals with 1–3 mm edges (comparable to the 1 mm body length 
of C. elegans) were scattered randomly on the plate (Fig. 6h; Meth-
ods). Animals cannot cross these obstacles. We again tested animals on 
whether they could reach food during a 20 min trial, with and without 
agents. This was a challenging task because animals had to use their 
sensory and motor systems to navigate around obstacles, whereas 
agents had to navigate animals to food despite noisier movements.

Line 1 and 2 animals performed well in this new environment 
(Fig. 6i,j, P value < 0.0001, line 1; P value < 0.0004, line 2; permutation 
tests). Line 3 was not as successful (Fig. 6k); overall, agents could navi-
gate line 3 animals closer to targets but could not achieve more difficult 
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food-search tasks. For lines 1 and 2, however, these data provide evi-
dence that our system displays cooperative computation between 
artificial and biological neural networks to improve C. elegans food 
search in a zero-shot fashion in new environments.

Discussion
We presented a hybrid system that used deep RL to interact with an 
animal’s nervous system to achieve a task following a reward signal. 
Agents customized themselves to specific and diverse sites of neural 
integration, and the combined system retained the animal’s ability to 
flexibly integrate information in new environments. Importantly, we 
could use the same architecture and training process in all lines. Our 
results did not depend on the number of neurons that agents were 
interfaced with, nor whether interactions were excitatory or inhibi-
tory, although a failure to learn (as in line 6) shows the importance of 
the particular neural circuit under control.

In previous work, brain–machine interfaces have allowed ani-
mals to control machines through neural recordings2,59,60. Conversely, 
supervised optogenetic manipulations have taken control of C. elegans 
neurons or muscles to turn the animal into a passive robot26,61,62. In con-
trast to both of these types of artificial–biological neural interactions, 
our work integrated a living nervous system with an artificial neural 
network, automatically discovered tailored neural activation patterns 
and did so in a way that allowed computations from both networks to 
drive animal behaviour.

We could then map out patterns of neural activity that were suf-
ficient to drive specific behaviours, enabling us to learn about and 
compare the roles of different sets of neurons in producing the same 
behavioural outcome. Mapping out neural policies was possible not 
only for sets of neurons that were previously well-understood but also 
for sets that were not. We focused here on navigational tasks, which 
constitute a central aspect of worm behaviour, but our method for 
learning and visualizing agent policies can broadly be used to learn 
information about animal behaviour using other biologically relevant 
features besides the particular state space we chose.

It would be interesting for future work to test our method in larger 
state and action spaces, as one would find in animals with larger nerv-
ous systems than C. elegans. Deep RL has already solved complex 
simulated tasks in high-dimensional spaces with large numbers of 
parameters31,33,35. That, in addition to our work showing that deep RL 
is flexible to the site of integration, suggests its potential for use with 
larger animals whose nervous systems are more variable between 
individuals. Also, due to broad applicability of the RL framework, the 
algorithm can be applied to any other behavioural task with a measur-
able reward function. Overall, our study opens new avenues for using 
deep RL to understand neural circuits, train in biologically relevant 
real-world environments and modulate animal behaviour.

Methods
Animal genetics and care
Genetic lines. Strains are listed in Supplementary Table 1, available 
upon request. All animals had lite-1 mutant backgrounds to reduce 
light sensitivity. Lines were chosen after an initial screen for response 
to optogenetic activation or inhibition.

Animal maintenance. C. elegans strains were cultured at 20 °C (room 
temperature) on nematode growth media (NGM) plates seeded with 
E. coli strain OP50. Animals used in optogenetic experiments were 
cultured at 20 °C on NGM plates seeded with E. coli strain OP50 with 
1 mM all-trans-retinal (ATR) at a 9:1 volume ratio for at least 12 h before 
experiments. (ATR is a cofactor required for rhodopsin activity.)

Experimental setup
Experimental system hardware. Experiments were conducted at 
20 °C. Two setups were built as in the diagram in Fig. 1b. The first used 

an Edmund Optics 5012 LE Monochrome USB 3.0 Lite Edition camera. 
The assay plate was lit with an Advanced Illumination RL1660 ring 
light. For the second rig, the camera was a USB-connected ThorLabs 
DCC1545M. Both cameras were run at 3 fps, which was a rate slow 
enough for image capture, image processing, action decision and 
action transmission to occur.

Lights for optogenetic illumination were Kessil PR160L LEDs at 
wavelengths of 467 nm for blue and 525 nm for green. The plate was 
illuminated with a Grandview COB Angel Eyes 110 mm Halo ring light. 
Kessil LEDs for optogenetic activation were controlled by a National 
Instruments DAQmx that was in turn managed through a Python library.

Animal tracking. For all experiments, animals were moved from food 
plates to a 10-cm-diameter NGM tracking plate. Tracking-plate setups 
depended on the experiment, but all plates had a filter paper ring to 
confine the animal to a 4-cm-diameter circle. We soaked the paper in 
20 mM copper (II) chloride solution, an aversive substance to C. elegans, 
before placing it on the plates. Obstacles used in Fig. 6h–k were not 
soaked in copper solution. If food patches were used in the experiment, 
as in Fig. 6, 5 µl of OP50 E. coli bacteria were deposited on the plate and 
allowed to grow at room temperature (20 °C) for roughly 24 hours.

Collecting training data
Five hours of data were collected for each genetic line in 20 min epi-
sodes. In every episode, a single nematode cultured with ATR was placed 
on an NGM plate. As in the animal tracking setup, a filter paper barrier of 
diameter 4 cm was placed on the plate. A camera then recorded images 
at 3 fps while a blue or green LED flashed randomly on the plate. Blue 
light was used for animals modified with channelrhodopsin, and green 
light was used for animals modified with archaerhodopsin. A decision 
to turn the light on or off was made every 1 s with a probability of 10% 
on. If on, the light duration was also 1 s. Animals were switched out for 
new ones after each episode. Light decisions and images were stored 
for agent training in separate datasets for each line.

RL details
RL is a framework in which an agent interacts with an environment and 
attempts to maximize a reward signal. The agent receives observations 
from the environment, giving it an idea of the environment’s current 
state, and learns what actions to take that will be most likely to maxi-
mize the reward signal received from the environment. The RL agent 
learns through experience an action probability distribution, π(at|st), 
where at is the action taken at time t, st is the state received from the 
environment corresponding to time t, and the maximized reward rt is 
received at time t. Each of these variables is defined below.

We used a discrete SAC algorithm for all agents41,48. For each 
genetic line, 20 SAC agents were independently trained offline on the 
same data pool.

Variable definitions. Observations. Every camera image was preproc-
essed into features known to be relevant in C. elegans behaviour26. We 
used pixel coordinates (x,y) of the animal’s centroid location in the 
image, with target coordinates subtracted from the centroid. During 
training, the target was always assumed to be (0,0), with coverage 
over the plate provided by random translations and rotations. Body 
angles were measured relative to the +x axis and head angles relative 
to the body angle. Body angles were computed by fitting a line to a 
skeletonized worm image, and head angles were computed through 
template matching.

We performed head/tail identification by assigning the head label 
to the endpoint that was closest to the head endpoint in a previous 
frame. To handle reversals, a common behaviour in freely moving 
animals, the overall movement vector over 10 s was compared to 
tail-to-head vectors during the same window of time. If the vectors 
pointed in different directions, head and tail labels were switched. 
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Before each evaluation episode, 5 s of frames were collected to 
assign the first head label again by comparing movement vectors to 
tail-to-head vectors.

Angles were converted to sine and cosine pairs to avoid angle 
wraparound issues. Fifteen frames (5 s at 3 fps) were concatenated 
together for a single observation. Coordinates were normalized so their 
mean in each 15-frame observation was within [−0.5, 0.5]. An observa-
tion st corresponding to time t thus comprised 6 × 15 = 90 variables:

ft = (sinθbody
t , cosθbody

t , sinθhead
t , cosθhead

t , xt, yt)

st = ( ft−14, ft−13,… , ft)

Above, ft denotes the tuple of variables for the frame at time t. See 
Fig. 1d for a diagram defining the head and body angles.

Actions. An action at time t, at, was defined as a choice between the 
options ‘light on’ or ‘light off’, denoted by a binary 0 or 1 signal:

at ∈ {0, 1}

We did not place any constraints on actions, as all ensembles 
learned policies with overall light exposure that was under 50% of the 
time (‘Standard evaluation’).

Rewards. Reward rt was based on the target-finding task and defined as 
the distance moved towards the target between the time of the action 
t and 15 frames (5 s) after the action (Fig. 1c):

rt = √(xt − xtarget)
2 + (yt − ytarget)

2 −√(xt+15 − xtarget)
2 + (yt+15 − ytarget)

2

A target region was defined as a circle of radius 30 pixels (625 µm). 
If the animal was within the target region, the calculated reward was 
replaced by a constant reward of 2. All other rewards were scaled by a 
factor of 2 to normalize values and facilitate training.

Training. As in standard RL, SAC searches for a policy π(at|st) for an 
environment with a transition distribution ρπ. π(at|st) is the probability 
of taking an action at given an observation st. Here we also make explicit 
the dependence of rt on st and at. SAC deviates from the standard goal 
of maximizing the return or expected sum of rewards over time,

∑t𝔼𝔼(st ,at)∼ρπ [γtrt (st,at)] .

Here, γ (fixed at 0.95) is a temporal discount factor that diminishes 
rewards far into the future. SAC maximizes not only the expected 
sum of rewards but also an entropy term weighted by a temperature 
parameter α:

∑t𝔼𝔼(st ,at)∼ρπ [γtrt (st,at) + αH(π (•|st))] .

The sum now contains an added entropy term H  of the policy 
π (•|st), scaled by a temperature parameter α. π (•|st) signifies the policy 
function π over all possible events. We used a discrete version of SAC 
with automatic entropy tuning (see code for implementation63,64).

Data augmentation. Once data were collected, they were stored in a 
memory buffer as tuples:

mt = (st, at, rt, st+15)

At each training step, a batch of 64 memory tuples were randomly 
drawn from the buffer and independently augmented by a random 
translation and rotation. First the tuple was centred such that the 

average of the location coordinates was at the origin, (0,0) pixels. 
Then a location within a ±900 pixel square (comparable to the size of 
the evaluation arena) was drawn from a uniform distribution and the 
coordinates recentred around that location. An angle was likewise cho-
sen from a uniform distribution [0°,360°) and added to the measured 
angles in the memory tuple.

Training details. See Supplementary Table 2 for architecture and hyper-
parameter choices. Twenty agents per genetic line for lines 1–3 were 
trained independently on the same memory buffer for 20 epochs of 
5,000 steps each. See Supplementary Fig. 5 for an example of training 
progression for individual agents on line 2. For lines 4–6, we found 
greater agent policy instability during training (Fig. 4b). In these cases, 
the animals’ responses to optogenetic modulation were less tightly 
coupled to target navigation. We therefore trained 30 agents for lines 
4–6. Each ensemble was trained for a minimum of 20 epochs of 5,000 
steps. We then inspected policies visually to check that they satisfied 
two conditions. First, the ensemble policy needed to be non-trivial, or 
not always-on or always-off. Second, the policies needed to be fairly 
symmetric about the origin when plotted with body angles relative to 
target, as they should have been given the uniform random translations 
and rotations during training.

Minibatch size for all agents was 64. Weights were initialized using 
Xavier uniform initialization, and biases were initialized at 0. We tried 
dropout and weight decay on actors, critics or both and found that 
none of these regularizers helped enough to compensate for the need 
to choose more hyperparameters (see Supplementary Figs. 2–4).

Independent agents were trained such that the randomly taken 
action at, reward rt and the associated states st and st+15 were used to 
learn a state–action value function. This is called a Q-function and was 
learned by the critic network. The actor network then learned a policy 
that was the exponential of the Q-function. See ref. 41 for details.

Ensembles. Once the 20 agents for one ensemble were trained, they 
were combined by taking the average of their action probabilities and 
setting a threshold at 0.5. That is,

πensemble (at, |, st) =
1
N

N
∑
n
πn(at|st)

where N = 20. If the average probability πensemble (at, |, st) ≥ 0.5, then the 
light was on at that timestep. Three to five random seeds were run for 
each genetic line, and the final ensemble was chosen based on inspec-
tion of visualized agent strategies.

Compute resources. All training was done on the FASRC Cannon 
cluster supported by the FAS Division of Science Research Computing 
Group at Harvard University. Every agent was trained on a compute 
node with one of the graphics processing units available on the cluster: 
Nvidia TitanX, K20m, K40m, K80, P100, A40, V100 or A100.

Agent strategy visualization. To visualize agent decisions, we simu-
lated animal states in a smaller space than the full 90-dimensional 
inputs based on input weight magnitudes. Because the final timesteps 
of all angle measurements had larger magnitudes than previous 
timesteps (Fig. 2h and Supplementary Fig. 6), we chose to keep input 
angles constant within each observation and explored the full range 
of angle possibilities [−180°,180°) in increments of 10° for θbody

t  and 
θhead
t  (36 values each). The 30 coordinate variables (xt′, yt′); t − 5 < t′ < t) 

were always fixed to 0.94 cm to the left of the target, which was exactly 
half the maximum distance used for random translations during train-
ing. In total, 36 head angle values × 36 body angle values gave rise to 
1,296 different input observations, each of which was given to an agent 
ensemble that then output the decision probabilities recorded in the 
resultant action probability matrix.
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Evaluation
All experiments involved a single animal placed on a 10-cm-diameter 
NGM plate with a 4-cm-diameter filter paper barrier soaked in copper 
(II) chloride. All animals were cultured on food with ATR and were thus 
sensitive to optogenetic perturbation. Animals were switched out for 
a new ones after each evaluation episode.

Standard evaluation. Animals were placed in the centre of the field. A 
target was randomly chosen among top, bottom, left and right options 
(Fig. 2b). The experiments with agents were run for 10 minutes each at 
3 fps. At the end of the experiment, animals were switched out.

For controls without the agent, animals freely moved on the plate 
and were recorded for 10 min. A random target was assigned to com-
pare controls to trials with agents.

For controls with random light exposure, the idea was to make 
sure that light exposure alone was not responsible for more move-
ment, which could lead to an increased rate of success. Once all trials 
with agents had been run, the proportion of time where the light was 
on was calculated for each genetic line. These proportions were 0.4647 
for line 1, 0.2896 for line 2 and 0.3844 for line 3. Animals were recorded 
while light decisions were made every 1 s, with the probability of light 
on according to the genetic lines listed.

For line 4 (Pan-Arch), due to concerns about phototoxicity, 
the evaluation was restricted to 1 s light pulses with 4 s rest periods  
between them.

Cross-agent evaluation. In Fig. 5, trained ensembles of agents were 
tested on the genetic lines they had not been trained on. The experi-
ments were conducted identically to standard target-finding evalua-
tions. Ten trials of 10 min each were performed for every agent–genetic 
line combination.

Error-handling food-search experiments. For the food-search 
experiments in Fig. 6a–g, a 10 cm NGM plate was prepared with a 
4-cm-diameter filter paper circle soaked in 20 mM copper (II) chlo-
ride. Five µl of OP50 bacteria were grown for ~24 h before experiments.

Each trial lasted 20 min. An animal was placed on one end of the 
plate with the OP50 droplet at the opposite end. During the 20 min, the 
same agents trained on random data as in the standard evaluations were 
set to navigate animals to targets at 0, 0.5, 1 or 1.5 cm from the edge of 
the OP50 droplet. For control trials, agents were left off, and the animal 
roamed freely for 20 min.

Success was defined as a binary outcome as in the obstacle experi-
ments. If an animal reached the food within the 20 min trial, it was 
counted as a success. Out of 270 trials run across all genetic lines involv-
ing OP50 droplets (obstacles and food search), only one Line 1 animal 
left food after reaching it during a food-search trial when the target 
was placed 1 cm from the food edge. This trial was counted as a success.

Obstacle food-search experiments. For the obstacle trials in Fig. 6h–k,  
a 10 cm NGM plate was prepared with a 4-cm-diameter filter paper  
ring soaked in a 20 mM copper (II) chloride solution. We cut 12 pieces 
of filter paper into quadrilaterals with side lengths 1–3 mm and scat-
tered them on the plate (they were not soaked in copper (II) chloride 
solution). Sample arrangements are shown in Fig. 6h–k. Plates were 
replaced with new obstacle arrangements every 5–10 trials. Five µl 
of OP50 bacteria were grown on one side of the plate for ~24 h before 
experiments.

Each obstacle experiment was a 20 min trial. A single animal was 
placed on one end of the plate as in Fig. 6h, with the food droplet on 
the other end and the obstacles between animal and food. Trained 
agents (the same agent ensembles used in standard evaluations) were 
run on the genetic line they were trained on for 20 min. Agents were 
not retrained to handle obstacles. Control trials had no optogenetic 
manipulation; that is, the animal was allowed to freely roam the plate 

with obstacles and food for 20 min. Success was defined as a binary 
outcome, indicating whether an animal reached food during the trial.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All processed animal tracks used to generate figures are available at 
https://github.com/ccli3896/RLWorms.git (ref. 63).

Code availability
Analysis code and training code are available at https://github.
com/ccli3896/RLWorms.git (ref. 63) and https://doi.org/10.5281/
zenodo.11002033 (ref. 65).
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