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Abstract

Recent advances in large language models (LLMs) and cognitive neuroscience
have opened up new avenues for understanding the neural basis of language pro-
cessing. Building on the observation that LLMs can effectively be used as pre-
dictors of neural activity during language tasks, we investigated the alignment
between GPT-2 XL’s inner representations and neural activity from participants
engaged in a multimodal linguistic task. Subjects were presented with sentences
containing semantic and syntactic violations through audio and visual modali-
ties. Their neural activity was recorded using stereo-encephalography (sEEG),
allowing us to explore precise spatial and temporal dynamics of brain responses
to language processing.

We identify the impact of hidden factors, such as word position, on the model
alignment score with neural activity and warn against the risk of drawing in-
correct conclusions from observed correlations. We explore spatial and temporal
dynamics of neural responses through additional paradigm control. Our findings
reveal that GPT-2 XL representations align with neural activity patterns across
sentence structures and modalities and suggest that LLM-based approaches can
provide insights into specific neural correlates of language processing, such as
syntactic violations. This study contributes to the growing body of research at
the intersection of artificial intelligence and cognitive neuroscience, extending our
understanding of the neural underpinnings of language processing.

i



Contents

[Acknowledgements| i
[Abstract] ii
1__Introductionl 1
(.1 Motivationl. . . . . . .. .o 1
[1.2  Research Objectives| . . . . . .. ... ... ... ... ...... 2

[2  Background| 3
[2.1 Language in the Brain| . . . . . .. ... ... ... ....... 3
[2.1.1  Neuroanatomy| . . . . ... ... ... ... ... ..... 3

[2.1.2  Syntax Processing| . . ... ... ... ... .. ...... 4

2.2 Language Models| . . . . . . ... ... ... ... 5
[2.2.1 Word Embeddings| . . . . ... ... ... ... .. ..., )

[2.2.2  Large Language Models| . . . . . . ... ... ... .... 6

[2.2.3  As Models of Human Languagef . . . . . . . .. ... ... 6

2.3 Neural Networks and Neurosciencel . . . . . ... ... ... ... 7
[2.4  Comparing Neural Networks and the Brain| . . . . . . ... ... 8
[2.4.1 Probingl . . . .. . ... .. 8

A2 VASIOnl - .« .+« o 9

243 Auditionl. . . . . .. ..o 11

[2.4.4 Language| . . . . . . .. ... o 11

2.4.5 Additional Modalities| . . . . . .. ... ... ... 14

[2.4.6  Future Advances and Challenges| . . . . . ... ... ... 14

3 Methods 15
3.1 Task Paradigm| . . . .. ... ... ... ... ... ..., 15
3.1.1 Design|l . . . . ..o 15

[3.1.2  Importance of the Study| . . . . . . . ... ... ... ... 16

B2 Dafal . .. ... ... . 17
3.2.1 Collectionl . . . . . . ... ... oo 17

il



CONTENTS

[3.2.2  Preprocessing| . . . . .. ... oL

3.3  Linear Probingl . . . . . ... ... .. ... ... ...

3.3.1 Glove Embeddings| . . . . . ... ... ... ... ....

[3.3.2  GPT-2 Embeddings| . . . .. ... ... ... ... ...

[3.3.3  Ridge Regression| . . . . . ... .. ... ... ..

4 Results

4.1  Combined Analysis| . . . . . . . .. .. ... L

4.1.1  Electrode 16 - Left Middle Frontal Gyrus| . . . ... ...

4.1.2  Electrode 127 - Lett Precentral Gyrus| . . ... ... ...

4.1.3  Electrode 131 - Left Precentral Gyrus| . . . ... ... ..

4.1.4  Motivation for Further Controlled Analysis| . . . . . . ..

4.2 Word 4 Analysis| . . . ... ...

4.2.1  GS and nGnS Comparison|. . . . . . . . . ... ... ...

|4.2.2  Modality Responsive Electrodes|. . . . . . ... ... ...

[4.2.3  Average Alignment Analysis|. . . . . . ... ... ... ..

5 Conclusion|

v



CHAPTER 1

Introduction

Language is a core aspect of human communication, enabling the exchange of
information and ideas. It is not only central to everyday interactions but also a
complex cognitive function that engages multiple regions of the brain. Histori-
cally, the neural basis of language processing has been thoroughly studied using
various neuroimaging techniques, such as functional magnetic resonance imaging
(fMRI) and electroencephalography (EEG). These studies have provided valuable
insights into the neural mechanisms underlying language processing, including the
involvement of specific brain regions in different aspects of language comprehen-
sion and the temporal dynamics of neural activity during language processing
tasks.

The advent of artificial intelligence, especially through the development of
advanced deep neural networks, has introduced new methodologies for explor-
ing cognitive processes. Recent research leveraging state-of-the-art models has
demonstrated the potential of comparing deep neural network activity to neu-
ral activity for studying cognitive tasks. Notably, recent large language models
(LLMs) have been used to study the neural basis of language processing, revealing
intriguing correlations between the computational processes in these models and
biological language processing in the human brain. This line of research has high-
lighted the potential of model-to-brain comparison as a powerful tool for gaining
deeper insights into the neural mechanisms that underlie language, suggesting
shared computational principles between language models and the brain.

1.1 Motivation

Building upon previous studies, this study proposes to explore the neural basis
of language processing using a novel multimodal stereoencephalography (sEEG)
dataset containing sentences with semantic and syntactic violations. Our re-
search is driven by the hypothesis that neural responses vary with changes in
sentence construction and that these variations can be observed by comparing
neural activity to large language model representations. By examining these dy-
namics under controlled experimental conditions, this work aims to enhance our
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understanding of how different linguistic modalities and sentence structures affect
brain function during language tasks.

1.2 Research Objectives

The primary objective of this study is to empirically validate existing literature
across visual and auditory modalities and different sentence structures and pro-
vide insights into the factors contributing to a high alignment between models
and the brain. Initially, our research will focus on how different combinations of
linguistic conditions from our dataset impact the alignment scores between neu-
ral signals and model predictions. Subsequently, we aim to identify electrodes
with predictable neural activity in specific modalities and analyze how variations
in sentence type may affect the temporal alignment scores associated with these
electrodes. Through this rigorous analysis, this study seeks to contribute valuable
new insights into the modulatory effects of sentence structure on neural language
processing, leveraging recent advances in using large language models in cognitive
neuroscience research.



CHAPTER 2

Background

2.1 Language in the Brain

The human brain processes language through a complex interplay of various
regions and mechanisms, each specializing in different aspects of linguistic com-
prehension and production. Central to this complex system is the role of syntax,
the set of rules, principles, and processes that govern the structure of sentences
in a given language.

2.1.1 Neuroanatomy

The neuroanatomical basis of language processing involves both distributed and
specialized brain areas. Language processing primarily engages areas in the left
hemisphere, notably Broca’s area in the left inferior frontal gyrus and Wernicke’s
area in the left superior temporal gyrus, although both hemispheres contribute
to different extents depending on the linguistic task [1].

The anterior regions are generally associated with processing the grammat-
ical structure of sentences. Within these regions, Broca’s area, which includes
Brodmann areas 44 and 45, is traditionally associated with syntactic processing
and speech production. This region plays a role in manipulating the structure of
sentences and maintaining syntactic information in working memory. Posterior
regions, including Wernicke’s area, are more involved with semantic processing
and are linked with language comprehension. These regions are connected by
a network of fibers, enabling rapid communication necessary for language pro-
cessing. These findings are supported by neuroimaging studies showing different
activation patterns when subjects process syntactic and semantic anomalies [1], 2].

The division of labor within the language network is reflected in Friederici’s
neurocognitive model of language comprehension, which posits that early stages
of sentence processing involve the rapid identification of phonological and lexical
elements by temporal regions such as the superior temporal gyrus (STG) and
middle temporal gyrus (MTG), followed by the engagement of frontal regions,
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including the inferior frontal gyrus (IFG), in syntactic structuring and seman-
tic processing. This model underscores the importance of temporal dynamics in
understanding the neurobiology of language and proposes that different types of
linguistic information are processed at different speeds and brain regions, culmi-
nating in the integration of both types of information [2] [1].

2.1.2 Syntax Processing

Syntax refers to the rules and principles that govern the structure of sentences
in a language. It includes the arrangement of words and phrases to create well-
formed sentences. Understanding syntax is crucial because it shapes language’s
meaning and communicative intent [3]. From a cognitive perspective, syntactic
processing involves the identification of word categories, their relationships, and
the application of grammatical rules.

The processing of syntax has been modeled in various ways in cognitive neu-
roscience. Syntax-first model proposes that syntactic analysis precedes semantic
interpretation during sentence comprehension [4], while interactive models sug-
gest that syntactic and semantic processes co-occur and influence each other
dynamically throughout sentence comprehension [I}, [5].

fMRI studies have shown that while lexical processing primarily engages the
left temporal lobe, syntactic processing involves both the left frontal and tem-
poral lobes, and suggest that these processes are interdependent, supporting a
model where lexical and syntactic information is integrated during language com-
prehension [6]. Stereo-electroencephalography (sEEG) research confirmed the
regions’ significance, highlighting the middle temporal gyrus, superior temporal
gyrus, inferior frontal gyrus, and the frontal part of the cingulate gyrus, as crucial
for syntactic processing [7]. However, while fMRI can capture broad syntactic
processing, it lacks the necessary temporal resolution to distinguish fine-grained
syntactic computations [§].

Electrophysiological studies using event-related potentials (ERPs) have iden-
tified specific markers associated with syntactic processing, including the early
left-anterior negativity (ELAN) and the P600 components. The ELAN, typically
observed around 250 milliseconds post-stimulus, is linked to the initial stages of
syntactic structure building and is associated with phrase structure violations.
The P600 component, which appears between 500 and 700 milliseconds, is re-
lated to syntactic reanalysis and repair, marking a second-pass parsing mech-
anism [9, 10, ]. Neuroimaging studies complement these findings by showing
that more complex syntactic structures result in greater activation in language-
related brain regions, particularly in Broca’s area and neighboring frontal regions,
highlighting the neural basis of syntactic processing complexities [3].
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2.2 Language Models

Language models are a fundamental component of natural language processing
(NLP) and understanding. They are designed to capture the statistical proper-
ties and patterns of human language, enabling machines to generate and com-
prehend text. Various architectures have been developed for language modeling,
ranging from traditional n-gram models to modern neural network-based models.
Language models have many applications, including machine translation, speech
recognition, sentiment analysis, and text generation.

In particular, neural network models, such as recurrent neural networks (RNNs)
[11], long short-term memory (LSTM) networks [12], and transformers [13], have
shown superior performance in capturing complex linguistic patterns and gener-
ating coherent text.

2.2.1 Word Embeddings

Word embeddings are dense vector representations of words, capturing semantic
meanings based on the context in which words appear. Traditional methods like
one-hot encoding represent words as sparse, high-dimensional vectors but do not
capture semantic relationships. Embeddings like those from Word2Vec [I4] and
GloVe [I5] aim to represent words in a lower-dimensional continuous vector space
where semantically similar words are close to each other.

Popular approaches to generate word embeddings include count-based meth-
ods, where word co-occurrence statistics are used to learn word vectors, and
prediction-based methods, where a model predicts a word based on its context.

GloVe

GloVe (Global Vectors for Word Representation) [I5] combines the benefits of
count-based and prediction-based methods. It begins with constructing a co-
occurrence matrix, recording the frequency of word pairings within a defined
window. By focusing on the ratios of these co-occurrence probabilities, GloVe
effectively captures significant semantic relationships.

The learning process uses gradient descent to minimize the difference between
the dot product of word vectors and the logarithm of their co-occurrence counts.
This approach allows GloVe to learn embeddings that efficiently capture broad
contextual information.

GloVe is known for its semantic coherence, computational efficiency, and ver-
satility. Due to its ability to produce rich, semantically meaningful word rep-
resentations, it is widely used in various NLP tasks, such as text classification,
machine translation, information retrieval, and sentiment analysis.
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2.2.2 Large Language Models

Large language models (LLMs) are a class of neural network models trained on
massive amounts of text data to generate coherent and contextually relevant text.
Models such as BERT [16] or the GPT models [17, [I8] have demonstrated their
ability to generate human-like text and achieve state-of-the-art performance on
complex language processing tasks.

LLMs’ extensive training allows them to capture intricate linguistic patterns
and effectively perform a wide range of NLP tasks, including text generation,
completion, question answering, translation, and summarization.

GPT-2

In particular, GPT-2 (Generative Pre-trained Transformer 2) [I7] is a large lan-
guage model (LLM) developed by OpenAl that utilizes a transformer architec-
ture [I3]. This architecture relies on self-attention mechanisms to generate text
by weighing the importance of different words in a sequence, thus capturing re-
lationships between them. GPT-2 is a decoder-only Transformer model, which
generates text autoregressively by predicting the next word in a sequence given
the previous words.

GPT-2 is pre-trained on a vast corpus of internet text using unsupervised
learning, with the objective of minimizing the negative log-likelihood of predicting
the next word. The model exists in various sizes, from small to extra-large, with
larger models having more parameters and capturing more linguistic knowledge.
GPT-2 XL is an extended version of GPT-2. It consists of 1.5 billion parameters
and leverages an increased number of transformer block layers. Its larger size
makes it notable for its ability to generate coherent and contextually relevant
text.

2.2.3 As Models of Human Language

In addition to their practical applications, LLMs have been studied as models of
human language. Some research suggests the potential for LLMs to implicitly
learn symbolic and grounded representations, aligning their internal conceptual
spaces with human cognitive models. This underscores the importance of un-
derstanding the internal representations of these models beyond their task per-
formance alone [19], and is supported by recent evidences that LLMs can learn
grounded representations such as space and time [20].

However, other studies highlight the division between formal and functional
linguistic competence in these models, suggesting the need for modular archi-
tectures to integrate both competencies effectively in a manner akin to human
cognition. [21].
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Syntax Acquisition

Researchers have explored LLMs’ syntactic processing capabilities as an impor-
tant aspect of language. Experiments on BERT revealed how the model pro-
cesses language in a structured, layered manner that mimics traditional linguis-
tic pipelines [22]. However, many aspects of BERT’s internal workings and the
reasons behind its impressive performances remain unclear [23].

Further investigations across language models and syntactic tasks found that
LLMs could capture many syntactic phenomena through learning on large text
corpora. However, their perplexity scores did not necessarily correlate with
human-like syntactic understanding [24]. Instead, LLMs often relied on heuris-
tics rather than full syntactic competence [25]. They suggest, however, that
integrating linguistic principles into LLM architectures and examining their in-
ternal processes can provide insights into both artificial and human language
understanding [25].

Notably, recent findings highlight a sudden drop in training loss in masked
language models that coincides with the acquisition of syntactic attention struc-
tures essential for grammatical capabilities [26].

The study of LLMs as models of human language not only advances our
understanding of these models but also offers insights into the nature of language
processing. The continued exploration of their internal processes and alignment
with human cognitive models offers valuable insights into the nature of language
processing.

2.3 Neural Networks and Neuroscience

Artificial neural networks (ANNs) were initially inspired by the structure and
function of the human brain. Early work by Warren McCulloch and Walter Pitts
proposed mathematical models of neurons that could perform logical operations
[27]. This foundation was further developed with the introduction of the per-
ceptron by Frank Rosenblatt [28] and the backpropagation algorithm by Rumel-
hart, Hinton, and Williams [29]. These advancements paralleled discoveries in
neuroscience, such as Hebbian learning, which describes synaptic strengthening
with use [30]. Initially deemed biologically implausible, recent research in deep
learning and neuroscience points towards backpropagation-like mechanisms in
the brain through feedback connections [31] and cortical dendrites microcircuits
132, 33].

ANNSs, inspired by the structure and function of biological neural networks,
have shown remarkable capabilities in various cognitive tasks. Recent advance-
ments in deep learning, including convolutional neural networks (CNNs), recur-
rent neural networks (RNNs), and transformer models, have achieved significant
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success in tasks such as image recognition, speech recognition, and natural lan-
guage processing. These achievements often draw comparisons to the hierarchical
processing found in the brain’s visual and auditory cortices [34]. CNNs, for ex-
ample, were greatly influenced by the receptive fields and hierarchical feature
extraction mechanisms of the visual cortex [35]. Moreover, the more recent and
highly succesful attention mechanism [36], prevalent in transformer models such
as BERT [I6] and the GPT models [17, [I8], has also found connections to the
neuroscience literature through its relation to Sparse Distributed Memory (SDM)
[37,138], a plausible model of the cerrebelum [39], and the observation that neuron-
astrocyte networks, widly present across the brain, can perform Transformer-like
operations [40)].

2.4 Comparing Neural Networks and the Brain

Drawing from these parallels, the comparison between artificial neural networks
and the human brain has long been a topic of interest in neuroscience and ar-
tificial intelligence research. The impressive successes of ANNs have led to an
ever-growing interest in understanding the similarities and differences between
artificial and biological neural systems.

Several research studies have explored the relationships between the internal
representations learned by ANNs and those occurring in biological brain systems
across different species and various tasks. It has been observed that ANNs models
can capture hierarchical processing similar to those in the human brain, leading
to insights into sensory information processing and integration. To allow compar-
ison between ANNs and the brain, neural data is collected through methods such
as functional magnetic resonance imaging (fMRI), electrocorticography (ECoG),
or magnetoencephalography (MEG), providing high-resolution measures of brain
activity. This neural activity can then be compared or predicted from the repre-
sentations learned in the artificial neural networks.

Multiple comparison metrics have been developed and widely used to as-
sess the alignment between artificial neural networks and the brain, including
Representational Similarity Analysis (RSA) [41], Canonical Correlation Analy-
sis (CCA) [42], Centered Kernel Alignment (CKA) [43], or more recently Soft
Matching Distance [44] and Sparse Positive Alignment [45].

2.4.1 Probing

In comparing artificial neural networks (ANNs) and the brain, probing neural
networks to predict neural activity has emerged as a powerful approach. Probing
is an essential field at the intersection of computational neuroscience and artificial
intelligence. Initially introduced in neuroscience, probing allows the investigation
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of the internal representations of a computational model [46] [47]. It was later
extended to the study of ANNs to understand the inner workings of trained
models and gain insight into their representations [48], 49].

Probe Design

Different probing designs, including linear probing, are employed to study both
ANNs and biological systems. Probes are evaluated based on their ability to
decode meaningful information without themselves learning the task, such as
decoding part of speech in language models [50]. This concern, often called "de-
coding from the retina" in neuroscience, underscores the importance of aligning
probing techniques with specific research goals [51].

Linear probing, in particular, is favored for its simplicity and high selectivity;
they have a reduced risk of memorizing the task rather than revealing genuine
structure [49]. It has been used to study representations of deep neural networks
in various tasks, such as image classification [49] or decoding linearly encoded
information from language models [50, 52} 53].

Probing Neural Activity

By training a linear probe on the hidden representations of a pre-trained neural
network to predict neural responses to various stimuli, researchers can evaluate
the alignment between the internal representations of the ANN and the brain.
Evaluating this alignment on novel stimuli allows to asses the model’s ability
to capture underlying neural processes. Predicting neural response to stimuli
not only provides an alignment metric but also facilitates the identification and
creation of specific stimuli for targeted control of neural activity in domains like
vision and language processing [54} [55].

The capacity to infer neural activity from ANNs is crucial for advancing
sensory and cognitive brain studies, impacting the development of neurotech-
nological applications such as brain-machine interfaces, neural prosthetics, and
brain-computer interfaces. By comparing ANNs representations to empirical neu-
ral data, researchers can uncover and refine computational principles underlying
neural processes, deepening our understanding of brain functions.

2.4.2 Vision

Initial research on the human and primate visual systems revealed that deep
convolutional neural networks (CNNs) could effectively predict neural activity
within the visual cortex. This demonstrates their capability to mirror complex
biological processes in both static and dynamic visual tasks, capturing essential
aspects of brain visual processing [56] 57, 68, 59].
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Performance-Optimized Models

Performance-optimized hierarchical models, unlike unsupervised ones [57], showed
a strong correlation between model categorization performance and neural re-
sponse predictability in the inferior temporal (IT) and V4 cortices [56] [58]. Opti-
mized for object recognition, these models presented intermediate representations
resembling those in the visual cortex, effectively capturing critical aspects of vi-
sual processing [58, [57]. Moreover, DNNs revealed a gradient in representation
complexity mirroring the hierarchical organization of the visual cortex, with lower
layers corresponding to early visual areas (V1) and higher layers to higher visual
areas (IT) [60].

Unsupervised Learning

While deep supervised models align well with human and primate IT record-
ings, highlighting the importance of task-driven learning, recent studies reveal
that novel unsupervised learning methods like SImCLR [?| also predict neural
responses effectively across the visual cortex. This challenges the necessity of su-
pervised learning and underscores the potential of unsupervised models in mim-
icking sensory learning [61].

Integrative Benchmark

The introduction of the Brain-Score benchmark in 2018 is crucial for evaluating
the brain-likeness of artificial neural networks, emphasizing the need for multiple
evaluation criteria and a standard benchmark. It also revealed that beyond a
certain accuracy threshold, model performance might diverge from brain patterns

I62].

Control of Neural Activity

Using the prediction ability of linear probing, ANN-driven methods have also
been utilized to control neural activity in the primate V4 cortex by generating
specific luminous power patterns, showcasing potential applications in neuro-
science research and therapeutic interventions [54].

Language-Vision Integration

Recent studies on multimodal training involving vision and language indicate
that while CLIP models excelled in predicting high-level visual cortex responses
[63], controlled comparisons of language-aligned models showed they did not sig-
nificantly outperform unimodal vision models in predicting ventral stream ac-
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tivity [64]. These findings suggest that, while they are beneficial for behavioral
alignment, language models are effective to the extent that they capture object
information in images [64] [65].

Findings in Vision

Overall, these studies illustrated that ANN comparison provided a comprehensive
framework for predicting neural responses and understanding visual processing
in the brain, offering valuable insights into visual perception mechanisms.

2.4.3 Audition

ANNs have also been used to predict the auditory cortex’s response. A task-
optimized neural network was able to replicate human auditory behavior and
predict cortical responses, revealing a hierarchical processing structure within the
auditory cortex [66]. Additionally, self-supervised learning models were shown to
more accurately reflect both behavioral and brain responses to speech as mea-
sured by fMRI, with layers aligning well with the cortical hierarchy of speech
processing [67].

2.4.4 Language

Research has extended deep neural networks’ success from visual and auditory to
language processing. Studies revealed that word embeddings were linearly cor-
related with brain activity [68] [69], and that models like LSTM [12] offered en-
hanced predictivity through better embeddings and contextual information [70].
The exploration has advanced into large language models (LLMs), particularly
transformer models, assessing their alignment with human brain activity across
varied tasks and measurement techniques.

Model Comparison

Research comparing 43 language models, including embedding models, recurrent
neural networks, and transformers like BERT and GPT, found that advanced
models like GPT-2 XL closely approached the noise ceiling in predictivity with
brain data from fMRI and ECoG recordings across auditory and visual language
responsive areas. These models also accurately predicted human reading times,
indicating a strong relationship between neural responses and observable behav-
iors [71].

Another comparative study involving CNNs, word embeddings, and trans-
formers with fMRI and MEG data showed peak correlations in different brain
regions, CNNs in early visual areas, word embeddings in the left temporal and
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frontal cortices, and transformers in regions associated with sentence comprehen-
sion [72].

Both groups observed a strong correlation between a model’s ability to predict
the next word in a sequence and its alignment with the brain, suggesting a shared
predictive objective |71} [72].

Insights with GPT-2

Additional research demonstrated GPT-2’s high correlation with brain responses
and its ability to uncover aspects of language processing challenging to study
in model-free approaches 73], making it a preferred model for probing language
processing in the brain [74], [75] [76, [77, [78, 55]. Studies showed that GPT-2’s
intermediate layers were particularly effective in predicting brain activity [72, [76].

Moreover, the model’s prediction score was strongly aligned with the sub-
ject’s comprehension of stimuli, particularly in areas associated with high-level
language processing and the deeper layers of the GPT-2 model [74]. Its embed-
dings could predict activity in both speakers and listeners during face-to-face
conversations, emphasizing a shared linguistic space [77].

Predictive Coding in the Brain

Goldstein et al. expanded upon predictive processing in the human language
network, suggesting that the brain processes language similarly to autoregressive
models by anticipating stimuli to minimize surprise, a concept rooted in findings
from earlier studies [79]. They utilized ECoG recordings from participants lis-
tening to spoken narratives, comparing static word embeddings like GloVe with
contextual embeddings from GPT-2, and observed distinct patterns of pre-onset
prediction and post-onset surprise, aligning closely with prediction-error signals
in LLMs [71L [74, [75]. Notably, neural activity encoded upcoming words up to 800
ms before their onset, with a marked increase in activity 400 ms after onset for
unpredictable words, particularly in the IFG, which exhibited enhanced neural
patterns when predicting linguistic information.

Caucheteux et al. further supported these findings using fMRI data from
participants listening to short stories, demonstrating that long-range predictions
enhance model correspondence with brain activity, especially in higher cognitive
regions like the frontoparietal cortex, suggesting a hierarchical predictive coding
system within the brain [78].

However, Antonello et al. challenged the centrality of predictive coding, sug-
gesting that the efficacy of LLM models might also stem from their capacity to
capture a broad array of linguistic features, not solely their predictive properties.
They argue that while predictive information might be present in the brain, it
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may not be the primary driving factor [80].

Hierarchical Similarities

In addition to the predictive coding work, Goldstein et al. suggest that the layered
hierarchy of GPT-2 XL mirrored the temporal structure of language processing
in the human brain. They observed a strong correlation between the depth of
the model layers and the timing of neural activity across language-related brain
regions, suggesting that the brain processes language hierarchically, with different
cortical areas activated at specific times during comprehension, in a similar way
to large language models [76].

Building on this observation, Mischler et al. further investigated the cor-
respondence between LLMs’ layer hierarchy and human brain structure. They
examined 12 high-performance LLMs, finding that models with better benchmark
performance showed higher activity correlation and mapped onto brain pathways
within fewer layers [81].

Control of Neural Activity

Like in vision, studies using GPT-2 XL have shown potential for modulating
neural activity in language networks through aligned model responses to diverse
linguistic stimuli, revealing the control potential over neural activity [55]. Sur-
prisal and linguistic well-formedness significantly influenced the strength of neural
responses.

Syntax and Semantics

Model-based studies, like those using recurrent neural network grammars (RN-
NGs), have shown that they can predict brain responses to syntactic and semantic
violations, featuring early and P600-like peaks [82], reflecting the brain’s process-
ing capabilities [10), [I].

Caucheteux et al. used fMRI data from narrated texts to examine how GPT-2
activations across lexical, compositional, syntactic, and semantic classes correlate
with brain activity. They discovered that compositional representations involved
a broader cortical network than lexical ones and that syntactic and semantic
processing shared common neural substrates, supporting a distributed approach
to brain syntactic processing [83].

Kauf et al. also analyzed the impact of lexical semantic content versus syn-
tactic structure on brain activity predictions using GPT2-XL, finding that lexical
semantic content, predominantly carried by content words, played a more cru-
cial role than syntactic form, underscoring the human language system’s focus
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on meaning derivation and the potential of deep learning models to mimic this
process [84].

Findings in Language

Just as in vision and audition, these studies collectively underscore the poten-
tial of LLMs in revealing local and temporal structures in the brain’s language
processing and comparing large language models’ coding mechanisms and lay-
ered hierarchy to the brain’s language processing mechanisms. This model-based
approach, allowed by the recent advances in LLMs, offers a promising approach
to understanding language processing dynamics that were challenging to explore
with traditional methods.

2.4.5 Additional Modalities

Recent studies have expanded this line of work to include proprioception in mon-
keys [85] and multimodal integration in the human brain [86], highlighting the
versatility and broad potential of ANNs in modeling diverse neural processing
aspects with high fidelity.

2.4.6 Future Advances and Challenges

The use of ANNs extends beyond machine learning and artificial intelligence,
serving as crucial tools for empirical exploration and theoretical understanding
of brain mechanisms. The ongoing development of ANN models is expected to
enhance our understanding of the brain’s complex processes, providing deeper
insights into sensory processing, cognitive functions, and advances in neurotech-
nological applications.

Han et al. note, however, that the efficacy of artificial neural networks (ANNs)
in modeling brain computational mechanisms does not necessarily mean that the
underlying brain architectures correspond to those of ANNs. By comparing var-
ious architectures, they found significant variability in performance, influenced
more by stimuli type than the model’s architecture, underscoring the need for a
refined evaluation of model alignment and a deeper investigation across architec-
tures [87].



CHAPTER 3

Methods

3.1 Task Paradigm

3.1.1 Design

The proposed task paradigm involves recording neural activity using stereoen-
cephalography (sEEG) in epileptic patients as they process short sentences either
auditorily or visually. Participants are exposed to three sentence structures, some
containing a semantic or syntactic violation through the inversion of two words.

Each sentence is four words long and exists in three different structures: GS,
GnS, and nGnS. Each category explores different manipulations of sentence com-
ponents. Each sentence under consideration is constructed from four words and
presented in all three formats to highlight distinct grammatical and semantic
characteristics.

GS (Grammatical Sentence) adheres to conventional grammar rules and se-
mantic coherence, presenting sentences that are both syntactically correct and
meaningful, typically following the Subject-Verb-Object (SVO) order. For exam-
ple, "The girls ate cakes" is a standard, coherent sentence in this format.

GnS (Grammatical Nonsensical Sentence) retains grammatical correctness
but disrupts semantic coherence by inappropriately swapping the roles of nouns
within the structure. This leads to structurally sound but semantically illogical
sentences, such as "The cakes ate girls".

nGnS (Non-Grammatical Nonsensical Sentence) breaks both grammatical
norms and semantic logic, resulting in sentences that neither conform to standard
syntax nor make logical sense. An example would be "The ate girls cakes", which
challenges comprehension and interpretation due to its scrambled structure.

There are 151 different sentences presented through audio and visual modali-
ties in a randomized order to avoid order effects. The task is divided into blocks,
each containing a set of sentences. The auditory stimuli are presented through
headphones, while the visual stimuli are displayed on a screen. Each word is
presented with an 875ms interval, and a 1000ms pause follows the sentences.

15
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time
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Figure 3.1: Task Paradigm: Example of Sentence Structures

The participants are instructed to listen to or read the sentences carefully and,
after an interval of 1s, are presented with an image. If the sentence falls under
the GS (Grammatical Sentence) category and accurately matches the image’s
content, subjects are instructed to press a green button, otherwise a red button.
This step evaluates the subjects’ comprehension of a grammatically correct and
semantically coherent sentence and its correspondence to a visual representation.

3.1.2 Importance of the Study

The proposed task paradigm is important for understanding the neural mecha-
nisms underlying language processing in the human brain. By presenting each
sentence in three different formats, the task is designed to elicit distinct neu-
ral responses, allowing the identification of specific components associated with
semantic and syntactic processing.

Employing sEEG offers high-resolution insights into the dynamics of syntac-
tic processing across different sentence structures and modalities, allowing fine
temporal and local analysis of neural activity. This information is essential for
developing models of language processing and understanding how the brain com-
prehends language.

This work uses large language models to predict neural activity recorded dur-
ing the task. Extensive literature has shown that neural activity can be predicted
from word and sentence embeddings. We aim to build on these findings by pre-
dicting neural activity in stimuli containing semantic and syntactic violations.
We hypothesize that neural activity might differ between the different sentence
structures and that a model-based approach will allow us to understand better
the interactions of semantic and syntactic processing in the brain, identifying
temporality and regions involved in semantic and syntactic processing.
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3.2 Data

3.2.1 Collection

Stereo-electroencephalography (sEEG) is an invasive neurophysiological method
that records electrical activity directly from the cerebral cortex. It is particu-
larly used for patients with intractable epilepsy, who are candidates for surgical
treatment. sEEG involves the implantation of electrodes into targeted areas of
the brain to identify the regions responsible for the onset of epileptic seizures,
helping differentiate epileptic foci from essential brain areas involved in impor-
tant functions like speech, motor skills, and sensory processing. By providing
high temporal and spatial resolution, sSEGG is highly suitable for studying neural
activity during specific cognitive tasks, such as language processing.

This study collected data from 926 electrodes in 10 English-speaking patients
performing the language processing task. The sEEG recordings provide high
temporal and spatial resolution, allowing precise brain activity mapping during
language processing. The electrodes were implanted in various brain regions ac-
cording to clinical criteria for each participant, and the signals were recorded
continuously during the task at a sampling rate of 1000 Hz. Experiments were
conducted at the Cleveland Clinic, where the study was approved by the hospi-
tal’s institutional review board and carried out with the participants’ informed
consent.

Event markers were used to synchronize the onset and offset of stimuli with
the recordings. Distinct electrical spikes were used to mark fixation, words, and
image onsets, allowing for precise alignment of neural activity with the task
events.

3.2.2 Preprocessing

Initially, electrodes positioned at locations identified with epileptic activity are
excluded to avoid biased or distorted data. Additionally, electrodes showing flat
signals and those contaminated with artifacts are removed from the dataset.

A bipolar montage is employed to enhance signal quality and minimize exter-
nal noise. This setup uses adjacent electrodes to measure potential differences,
effectively reducing common noise and enhancing the local field potential signal’s
clarity. Once these procedures are applied, the ECoG signal is cropped to the
task period to focus the analysis on relevant data.

We follow the ECoG processing procedure of Goldstein et al. [75] for the
following steps. We first remove outlier values, identified as data points lying
beyond three interquartile ranges (IQR) from the 25th to the 75th percentile, and
interpolate their values using Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP) from the Scipy library to maintain continuity in the time series.
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(a) Superior View (b) Left Lateral View

Figure 3.2: Electrode Locations in the Brain

Using MNE [88], we filter out the 60 Hz line noise and its harmonics using a
fifth-order Butterworth filter, typical interference frequencies in electrical record-
ings. This is followed by a bandpass filter between 70 and 150 Hz to isolate the
high gamma range. This frequency band has been shown to correlate positively
with local neural firing rates, suggesting active brain regions involved in the task
[89]. The signal’s power spectral density is computed using Morlet wavelets to
analyze the dynamics and amplitude of brain activity during the task. We ad-
ditionally take the logarithm of the power to stabilize the signal variance and
finally normalize the high-gamma power across the entire recording [90], [75].

3.2.3 Feature Extraction
Neural Activity

In this exploratory work, we study the recordings from a single patient in which
electrodes have been identified to be responsive to language processing from audio
and visual modalities by Misra et al. (manuscript in preparation). After bipolar
referencing and removing faulty electrodes, the dataset consists of 190 electrodes,
providing extensive coverage in the left hemisphere. Coverage encompasses the
frontal, parietal, and temporal lobes, including the amygdala and hippocampus.
It also covers the insula and cingulate cortex. (Fig. .

Electrical spikes corresponding to task event onsets are used to precisely align
the sEEG recordings and obtain event-locked neural activity. To allow for tempo-
ral analysis of the neural activity, the ECoG signal is segmented into 200 ms time
windows, shifted by 100 ms, from 200 ms before the onset of the word to 1000
ms after the onset. This results in 12 time points per sentence, which we aim
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to predict from the sentence embeddings. This integration over time windows is
consistent with previous studies, and the choice of window size and shift has been
shown to have minimal impact on the regression results [75], [86]. Through this
temporal analysis, we expect to capture the dynamics of semantic and syntactic
processing in the brain happening from word onset.

3.3 Linear Probing

Following the extensive literature on probing neural activity from language mod-
els, we adopt a linear probing approach [74} [75] 55, 84], in particular ridge re-
gression [70, [77, [55, [86, &T].

3.3.1 Glove Embeddings

Our first predictor variables are Glove embeddings, which are already trained
and available in the Glove library [I5]. Importantly, all the words in the task
have a corresponding embedding. Following Goldstein et al. [91], we use the
50-dimensional embeddings. As shown through multiple studies, the different
embedding sizes do not significantly impact the model’s performance [75] [86].

3.3.2 GPT-2 Embeddings

For the model-based analysis, we use the GPT-2 XL model from the GPT-2 model
family [17], which has shown high alignment with neural data |71, [74) [75, [55].

We use the Hugging Face Transformer library to extract the embeddings from
the GPT-2 model [92].

Following literature showing that middle layers of transformer models perform
best in predicting neural activity [74) [76, [81], we use the 22nd layer of the GPT-2
XL model [55] and extract the embeddings corresponding to the last sentence
token |71 55]. These embeddings are 1024-dimensional, which we use as our
predictor variables to regress neural activity.

From the GPT-2 XL model, we define two settings. The first consists of single
words only, where we give the model the current stimulus word. The second
consists of the sentence up to the current stimulus word, providing context. As
observed in the literature, the sentence embeddings perform better than word-
only embeddings |75, [74].

To improve computational cost, we cache the activations from the model to
avoid inferring the embeddings at each iteration. We cache the activations for
the 151 sentences in the dataset, in each of the three orders, and for each word,
allowing us to quickly access the embeddings when fitting the probe.
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3.3.3 Ridge Regression

Following widely used methods in the literature, we use ridge regression to predict
neural activity from the defined predictor embeddings [75, 86, [81]. We expect
the neural activity to be linearly related to the embeddings, and ridge regression
accounts for the high dimensionality of the sentence embeddings and the potential
multicollinearity between the features.

We predict neural activity using three types of embeddings: the Glove em-
beddings, the GPT-2 embeddings with the current word only, and the GPT-2
embeddings with the sentence context.

The response variable is the previously extracted high gamma power at each
word onset, integrated over 12 time points from 200ms before the onset to 1000ms
after the onset. This multi-time point approach means we fit 12 models per
embedding type, one for each time point. We note that correlation is individually
estimated at each time point and does not account for the correlation in time of
the signal.

Ridge regression minimizes the following loss function:

mﬁinHy—XﬂHQ+04||BH2 (3.1)

where X is the word or sentence embeddings, ¥ is the high gamma band power
at a time point, and « is the regularization parameter controlling the amount of
shrinkage applied to the coefficients. For «, we explore 8 values from 10° to 108
in a logarithmic scale.

To select an optimal value «, we use a 5-fold cross-validation procedure and
keep the value that minimizes the average mean squared error (MSE) of the
predictions before fitting the model on the whole training set and predicting the
activations on a test set.

We normalize predictor variables X and response variables y on the training
set statistics before fitting each ridge model to ensure that all variables contribute
equally to the penalty term and prevent bias towards variables with larger scales.

These procedures are implemented in Python using the PyTorch library [93]
to benefit from GPU acceleration and improve computational time on the large
number of regressions we fit.

3.3.4 Performance Metrics

In selecting the optimal « value, we use MSE as the performance metric, in line
with the ridge regression loss function.
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To evaluate the model’s performance, we use the Pearson correlation coeffi-
cient between the predicted and actual activations. This follows the literature
that has shown that the Pearson correlation is a good and comparable measure
of the alignment between a model and neural activity [62] [71], [72, [75] [86] BT].

The Pearson correlation coefficient measures the linear relationship between
two variables, ranging from -1 to 1. It is calculated as:

_ > i1 (i — 2)(yi — 9)
Vi (@i = 2)2 Y0 (i — 9)?

A value of 1 indicates a perfect positive linear relationship, -1 a perfect neg-
ative linear relationship, and 0 no linear relationship. This allows a comparable
measure of the alignment between the model and the neural activity across dif-
ferent conditions and studies.

r

(3.2)

3.3.5 Electrode Selection

Preselection of language-responsive electrodes can be approached with different
methods, such as comparing sentences to random word lists and non-word lists
[71], which we do not have access to in our dataset. However, identification
of stimulus-responsive is also employed through a comparison of neural activity
during word presentation to a fixation or silence baseline [71], [8T]. Goldstein et
al. use a different approach by preselecting electrodes that show alignment with
the Glove embeddings [75]. Despite showing a higher alignment with the GPT-2
model across electrodes, this selection method could, however, present the risk of
a biased electrode selection aligned with the Glove embeddings.

In this exploratory work with a limited number of electrodes, we follow Sub-
ramaniam et al. and avoid preselecting electrodes explicitly [86]. We aim to find
significant electrodes solely based on the model’s performance and draw conclu-
sions from the observed alignment.

3.3.6 Assessing Significance

Assessing the significance of the model performance is crucial to ensure mean-
ingful results are observed, but it is not a straightforward task.

On fMRI and MEG data, the noise ceiling, i.e., the maximum alignment
we can expect on a subject from an external predictor, is usually assessed by
predicting the neural response of a patient from the neural response of all other
patients [74] [71]. However, with ECoG or sEEG data, predicting neural response
at the electrode level from subjects is not feasible due to the fine spatial resolution
of the data and the disparity in the placement of the electrodes between subjects.
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The ceiling is usually estimated at the electrode level [71] or not assessed [75], [76),
86.

Multiple specificities in our dataset and research objectives make the com-
putation of a noise ceiling difficult. This includes limited word repetition under
each task condition. Moreover, using temporal windows instead of a single aver-
age activity value at the word level makes the computation of a noise ceiling more
complex. Additionally, we observed high variability in the model’s performance
depending on the test set, likely due to the small dataset size under certain con-
ditions. These observations motivate us to explore resampling methods instead
to estimate the significance of the model alignment, similar to Subramaniam et
al. [86].

Following Subramaniam et al., the first approach consists of resampling the
test set for each prediction. We rerun 1000 iterations of the model to get a stable
estimate of the model’s performance and a confidence interval for the perfor-
mance. For each iteration, we randomly select 80% of the data for training and
20% for testing. Following Subramaniam et al., we identify interesting electrodes
based on the mean performance across the 1000 iterations and the 95% confidence
interval, evaluating an electrode as significant if the 95% confidence interval does
not include 0 [86].

3.3.7 Train and Test Sets

For each data split, the test set contains 80% of the data for training and 20% for
testing. To offer comparable results between models, modalities, and task condi-
tions, we cache the 1000 random splits of the test set to ensure reproducibility.
Moreover, we match the sentences between the task conditions to ensure each split
contains corresponding sentences across three different structures. This allows us
to control the sentences’ effect on the regression performance. Additionally, when
training on mixed task conditions, the same sentence will not be present in both
the training and test set, which risks artificially inflating the estimate of the
model’s generalization performance.

We note that control is not done at the word level, with the same word po-
tentially present in both the training and test set. The limited dataset size and
the imbalanced representation of words in the sentences make defining represen-
tative splits at the word level challenging, potentially introducing a bias in the
model performance. This procedure, which is not found to be controlled for in the
literature [71) O1], could, however, represent a risk of overestimating the model
generalization performance.



CHAPTER 4

Results

4.1 Combined Analysis

Our first analysis aims to investigate the ability of the models to predict neural
activity based on various combinations of words and sentence types. We aim to
understand how well the models can perform depending on the data combination.
This approach echoes Schrimpf et al. work on ECoG data [71], where they pre-
dict neural activity at each word onset in the context of independent eight-word
sentences from Fedorenko et al. [94]. In our setting, given that the first sentence
word is always "The" and offers no variation in word or sentence embeddings, we
do not include it in the analysis.

Moreover, given possible differences in time display and processing for the
vision and audio stimuli and the models’ inability to differentiate between them,
we keep the two modalities separated. We aim to identify modality-specific align-
ment and offer a comparison between the two.

The explored combinations are the following:

e W2 (Word 2), W3 (Word 3), W4 (Word 4), W2 U W3 U W4
e GS, GnS, nGnS, GS U GnS U nGnS
e AUD (Audio), VIS (Visual)

This represents 32 combinations for the 190 electrodes and the three models.
Following Goldstein et al. [75] and the resampling approach from Subramaniam
et al. [86], we preselect electrodes from the Glove embeddings. In this initial
exploratory analysis, the computational needs resulting from the many combina-
tions motivate us to perform only 100 bootstrap samples. At this point, we iden-
tify multiple electrodes with significant activation for some condition according
to our definition (the 95% percentile of the predicted test sets does not intersect
with 0).

We observe that models trained on combined words often showed a very
high correlation with the neural activity, providing encouraging results in line

23
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with previous studies in the setting of fixed-length sentences [7I]. Aiming to
understand the underlying mechanisms driving the alignment, we explore some
electrodes in more detail.

4.1.1 Electrode 16 - Left Middle Frontal Gyrus

We start our analysis with electrode 16 (Fig. , located in the left middle
frontal gyrus, which plays an important role in literacy [95]. As can be seen in
the case of audio stimuli in the correlation score between the predicted and
actual activations is particularly high for the combined word condition.
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Figure 4.1: Electrode 16, correlation with neural activity on combined W2, W3,
W4 audio stimuli.

Exploring the average neural activity of the electrode at stimuli onset, we
observe a ramping up of the activation throughout the trials, both in the case
of audio and visual stimuli (Fig. 4.2). This suggests that the area integrates
information over the trial duration, coherent with the functions of the middle
frontal gyrus. This also aligns with observations in the literature, in particular,
the eight-word sentences dataset from Fedorenko et al. [94] used by Schrimpf et
al. [7I]. Comparing the average activity at each word onset, we observe a clear
difference in mean activity resulting from the ramping behavior (Fig. |4.3)).

To investigate the impact of position versus content in driving the alignment
between models and neural activity, we perform a permutation test designed to
remove the semantic and syntactic content provided to the model while keeping
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Figure 4.2: Electrode 16, mean and standard estimate of the mean at stimuli
onsets.
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Figure 4.3: Electrode 16, mean and standard estimate of the mean between
words.

consistency between the stimuli within a trial and preserving the word order. The
procedure consists of shuffling sentences between the trials, where the context for
W2, W3, and W4 of a trial is replaced by W2, W3, and W4 of another trial.

In Fig. we observe that the correlation is mostly preserved, suggesting
that word position in the sentence is a strong predictor of neural activity. How-
ever, this also means that the correlation driven by the sentence content might
be minimal. However, the minor decrease in correlation observed, particularly
in the late period, might be linked to this semantic and syntactic information or
word-level self-consistency.
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Figure 4.4: Electrode 16, correlation with neural activity on combined W2, W3,
W4 and combined GS, GnS, and nGnS audio stimuli from GPT-2 XL sentence
embeddings.

4.1.2 Electrode 127 - Left Precentral Gyrus

This ramping behavior can also impact model alignment across modalities. An-
alyzing electrode 127 (Fig. in the left precentral gyrus, we observe that
neural activity is connected to the visual modality, where spikes in activity can
be observed at visual stimuli onsets, including words and image presentation (Fig.
. Inspection also reveals an increase in activity prior to the presentation of
visual stimuli, coherent with the role of the precentral gyrus in motor planning
and execution, demonstrated to induce eye movements [96].
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Figure 4.5: Electrode 127, mean and standard estimate of the mean at stimuli
onsets.

This preparation behavior significantly increases the activity in word 4, com-
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pared to the other words, as shown in Fig. Comparing the alignment score
between the models and the neural activity, we observe a strong correspondence
between the distance in mean neural activity in each word and the correlation
score (Fig. . This correlation is again preserved in the sentence shuffling test,
suggesting the correlation derives again from the position of the words and the
observed ramping behavior, with an impact across modalities resulting from the
task design.
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Figure 4.6: Electrode 127, mean and standard estimate of the mean between
words.
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Figure 4.7: Electrode 127, correlation with neural activity on combined W2, W3,
W4 and combined GS, GnS, and nGnS audio stimuli from GPT-2 XL sentence
embeddings.

4.1.3 Electrode 131 - Left Precentral Gyrus

Present on the same sEEG strip as electrode 127, electrode 131 (Fig. is also
located in the left precentral gyrus. In addition to displaying a high alignment
score in the combined word analysis, this electrode also shows a strong correla-
tion with neural activity at the word level, implying limited importance of word
position on the alignment score. Exploring neural activity, we observe that both
modalities contain spikes in activity during word presentation but not during
image presentation (Fig. |4.8). This suggests that the precentral gyrus at this
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location might be involved in high-level language processing, which aligns with
findings that the precentral gyrus is involved in silent reading [97].
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Figure 4.8: Electrode 131, mean and standard estimate of the mean at stimuli
onsets.

Interestingly, we observe a clear difference in neural activity at W2 in the
nGnS sentences. As a reminder, the nGnS condition is the only grammatically
incorrect, where the subject noun at W2 is inverted with the verb at W3. This
difference in neural activity in both modalities, when presented with a lexical
violation in the form of a misplaced verb, bears strong similarities with the P600
effect, a positive deflection in the event-related potential (ERP) waveform typ-
ically observed in response to syntactic violations, such as an anomalous verb.
It starts around 500 ms, peaks around 600 ms, and lasts at least 500 ms [98)].
The P600 effect is thought to reflect the reanalysis of the sentence structure, sug-
gesting that the left precentral gyrus might be involved in syntactic processing
and reinforcing our hypothesis that the precentral gyrus is involved in high-level
language processing. We leave further investigation of this effect for future work.

In this electrode, we also show a significant alignment score in the single-
word, single-sentence type analysis, particularly under the GS condition (Fig.
. In this particular setting, sentence structure is identical across every trial.
Thus, correlation cannot derive from word position nor part of speech or syntax
processing, suggesting that the linguistic content itself might drive the alignment.
In this scenario, we further account for the self-correlation of neural activity at
the word level by partitioning the data to ensure that a word is not included
in both the training and test sets. Despite an observed drop in correlation (Fig
, which might be due to imbalanced word representation in the data and
variability of the split size, the alignment score remains significant.



4. RESULTS 29

This provides strong evidence that the precentral gyrus is involved in high-
level language processing and that the models can capture the variance of its
activity during language processing.
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Figure 4.9: Electrode 131, correlation with neural activity at single word level.

Additional verification with the sentence shuffling test shows that the corre-
lation drops significantly when the sentence content is shuffled across trials. This
suggests that the sentence content drives a significant part of the alignment (Fig
. We note, however, that the correlation is not entirely lost, suggesting that
the word position in the sentence still plays an important role in the alignment
score.

4.1.4 Motivation for Further Controlled Analysis

Our observations suggest that, in alignment with previous studies, the models
can capture the neural activity corresponding to the processing of the sentence
content. In particular, the alignment scores observed in electrode 131 suggest
that the models can do so using information from the word and sentence semantic
content.

Despite these encouraging results, we observe that the alignment score often
derives from factors other than linguistic content. This comes in addition to
the high number of possible combinations and the high variability in the data,
proving challenging to draw clear conclusions. The illustrated ramping dynamic
observed in electrodes 16 and 127, sometimes even impactful across modalities,
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Figure 4.10: Electrode 131, correlation with neural activity on combined W2, W3,
W4 and combined GS, GnS, and nGnS audio stimuli from GPT-2 XL sentence
embeddings.

would not be captured across models and conditions equally and could lead to
misleading conclusions. In particular, the observed ramping behavior in the vi-
sually responsive electrode 127 is critical, as it could lead us to wrongly conclude
that the electrode is language-responsive in the audio modality.

This motivates us to explore alignment in a more controlled setting, where
we can isolate hidden factors in the alignment score and draw more robust con-
clusions from the results.

4.2 'Word 4 Analysis

We focus on the fourth word of the GS and nGnS sentences to allow for better
control over our experimental conditions. Under those two conditions, the fourth
word is identical, and any observed difference in alignment can be attributed
to the impact of sentence structure and its integration on neural activity. This
setting also effectively controls for the impact of word position in the sentence that
we observed in the previous section. Moreover, as the final word in the sentence,
W4 provides the longest and most comprehensive context for the GPT model to
predict neural activity. This setting should allow for a more controlled analysis of
the impact of the predictor model and the sentence type on the alignment score.

In this section, we compare predictions from the Glove and GPT-2 XL em-
beddings, word-only and with sentence context, at W4 in separated GS and nGnS
sentences. We aim to identify local and temporal differences in the prediction of
neural activity resulting from models and sentence types.
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4.2.1 GS and nGnS Comparison

The first step in our analysis compares the prediction of the neural activity for
the fourth word for the GS and nGnS sentences separately. We again follow
Subramaniyam et al. approach to assess the significance of the correlation [86].
This allows us to identify electrodes for which models significantly predict neu-
ral activity under some conditions. This gives us 12 correlation scores for each
electrode across the two modalities, two sentence types, and three models. Un-
der this procedure, electrode 131, theorized to be involved in high-level language
processing, is detected as significant across both modalities (Fig. . We note
that the correlation scores are not identical to the previous section as we use
1000 bootstrap samples instead of 100 here to provide a more robust correlation
estimate. This allows to account for the small sample size and high variability in
the data and helps reduce the risk of false positives.

G5 AUD - glove.6B.50d G5 AUD - gpt2:xI word G5 AUD - gpt2:xl sentence

Time (ms) Time (ms) Time (ms)
NGNS AUD - glove 68.50d NGNS AUD - gpt2-xl wiord NGNS AUD - gpt2-x| sentence

(a) Pearson correlation for audio stimuli

5 VIS - glove.68.50d G5 VIS - gpt2-«l word G5 VIS - gpt2-x! sentence

sssssssss

(b) Pearson correlation for visual stimuli

Figure 4.11: Correlation for electrode 131. The shaded area represents the 90%
confidence interval. Orange indicates that more than 95% of the bootstrap sam-
ples are above zero at any timestamp.
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Fig. illustrates that in some cases, the GPT-2 XL model with sentence
embedding does not outperform the Glove or GPT-2 XL model with word em-
bedding. Correlation across timestamps seems to follow common trends across
models, but high variability in the results is expected to make fine-grained com-
parisons challenging.

4.2.2 Modality Responsive Electrodes

Based on our results, we identify modality-responsive electrodes, for which the
models significantly predict the neural activity in some conditions. This provides
us with 33 audio-only responsive electrodes, 32 visual-only responsive electrodes,
and 13 electrodes responsive to both modalities (Fig. [£.12).

(a) Superior View (b) Left Lateral View

Figure 4.12: Modality responsive electrodes. Blue indicates audio-only respon-
sive electrodes, red indicates visual-only responsive electrodes, yellow indicates
electrodes responsive to both modalities.

The location of modality-responsive electrodes is the following:

e Audio only: Amygdala, Insula, Medial Orbitofrontal Cortex, Middle Tem-
poral Gyrus, Orbital Part of the Inferior Frontal Gyrus, Precentral Gyrus,
Rostral Middle Frontal Gyrus, Supramarginal Gyrus, Temporal Pole.

e Vision only: Amygdala, Hippocampus, Fusiform Gyrus, Inferior Temporal
Gyrus, Lateral Orbitofrontal Cortex, Middle Temporal Gyrus, Orbital Part
of the Inferior Frontal Gyrus, Precentral Gyrus, Rostral Middle Frontal
Gyrus, Superior Frontal Gyrus, Superior Temporal Gyrus.

e Audio and Vision: Inferior Temporal Gyrus, Middle Temporal Gyrus, Or-
bital Part of the Inferior Frontal Gyrus, Precentral Gyrus, Rostral Middle
Frontal Gyrus.
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Again, we note that the small dataset and high variability in the results limit
our ability to conclude with certainty that every detected electrode is indeed
involved in language processing in the given modality. Our significance threshold
assessment is likely to still result in false positives and, on the contrary, fail to
detect some brain areas involved in language processing. Thus, further analysis
is required to confirm the role of individual electrodes in modality processing
during our language task and meticulously assess the coherence of our results
with the current literature.

A more robust threshold, set at 97.5% of the bootstrap samples above zero,
reduces the number of electrodes to 13, 9, and 1 for audio only, visual only, and
both modalities, respectively. With this threshold, we strongly reduce the risk
of false positives. The resulting electrodes are shown in Fig. [A4] The only
detected multimodal electrode is located in the Frontal Lobe, which is involved
in high-level language processing [99]. A visualization of the electrodes confirms
a build-up in neural activity throughout the sentence (Fig. , aligned with
previous observations [94]. This provides strong evidence of language integration
across modalities and the ability of language models to predict this multimodal
neural process.

4.2.3 Average Alignment Analysis

To investigate the overall alignment dynamic, we average the correlation scores
across modality-responsive electrodes. Averaging across electrodes is expected to
lose some fine-grained spatial and temporal information. However, it allows us to
obtain a general picture of the impact of the sentence type and predictor model
on the alignment, following standard practice in the field |71, [75] 1.

We average the correlation scores across the 46 audio-responsive and 45 visual-
responsive electrodes. We compare this mean average score across the different
models (Fig. |4.13)) and across the sentence types (Fig. 4.14)).

The small size of our data and its high variability make it difficult to draw
strong conclusions from these observations. However, we note some minor trends
observed in these comparisons. In the case of model comparison, there seems to
be an overall minor improvement in the alignment score from using the GPT-
2 XL model with sentence embedding in both modalities, in line with previous
findings |71, [75].

In the case of sentence type comparison, we observe an overall similar align-
ment score between the GS and nGnS sentences for the audio stimuli. However,
the alignment score seems to be timed differently between the two types of sen-
tences. Indeed, for the GS sentences, there appear to be spikes in activity around
the 200-400ms window and again the 600-800ms window for GPT-2 XL sentence
embeddings. We remind here that values at any time stamp correspond to the
average activity over the previous 200ms. In comparison, nGnS sentences present
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Figure 4.13: Comparison of the mean Pearson correlation for modality responsive
electrodes across models. The shaded area is the standard error of the mean.

spikes around the 0-200ms window and the 400-700ms window. This difference in
timing hints toward potential variations in temporal processing and integration
of linguistical content in the case of syntactic violation.

Given that W4 is identical in the two conditions, this potential difference can
only be attributed to the impact of the syntactic violation from the inversion of
noun and verb at W2 and W3, resulting in a lasting variation in linguistic pro-
cessing at W4 that can be observed from the language model comparison. Using
an average across electrodes makes assessing the temporal and local interactions
at play challenging. Further analysis is required to confirm the significance of
these observations and offer additional insights into the spatial and temporal
dynamics leading to the observed alignment scores.

The visual stimuli, in comparison, show a higher alignment score in the GS
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Figure 4.14: Comparison of the mean Pearson correlation for modality responsive
electrodes across sentence type. The shaded area is the standard error of the
mean.

condition compared to the nGnS one. The task paradigm might be at play as
one could hypothesize that from W2, the subject knows he will press the red
button and might be paying less attention to the visual stimuli, resulting in
poorer decoding of the neural activity. In contrast, audio stimuli might force the
subject into a more attentive state. However, the significance of these results, the
impact of electrode location, and differences in the audio and visual processing of
linguistic information should also be investigated further to offer better insights
into the observed trends.



CHAPTER 5

Conclusion

5.1 Summary of Findings

In this study, we have explored the neural correlates of language processing us-
ing advanced neural network models to predict brain activity from stereo en-
cephalography (SEEG) recordings of linguistic inputs under multiple modalities
and sentence structures. Our findings confirm the presence of robust alignment
between the models’ predictions and neural responses across audio and visual
stimuli, as well as correct and grammatically incorrect sentences. This highlights
the models’ ability to capture intricate dynamics of language processing in the
human brain across modalities and grammatical variations.

By systematically investigating factors driving alignment between the models
and neural activity, we have observed the impact of hidden variables, such as word
position, that can lead to spurious conclusions about the models’ performance.
In some cases, these variables can even lead to faulty interpretations about the
responsiveness of a brain area to specific modalities. Our results underscore
the importance of controlling for these variables to ensure accurate and reliable
assessments of model performance in predicting neural responses.

Furthermore, through statistical analyses of the models’ alignment score, we
have successfully identified language-responsive electrodes across visual and audio
modalities through statistical analyses of the models’ alignment score. Averaging
the scores of these electrodes allowed us to compare performance across mod-
els and sentence structures. Our results align with previous studies on the role
of context in improving the models’ predictions in language processing tasks,
suggesting that the complexity of the linguistic input influences the models’ per-
formance.

Finally, our results suggest that models’ predictions are sensitive to syntactic
violations in a sentence. This finding highlights the exciting potential of large
language models to provide novel insights into the neural mechanisms and tempo-
ral dynamics underlying language processing in the human brain across a broad
range of linguistic contexts, in this case, grammatical variations.

36
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5.2 Discussion

The results presented in this study underscore the potential of comparing ar-
tificial neural networks with neural data to enhance our understanding of the
brain’s language networks. The observed correlations affirm the models’ efficacy
in predicting neural responses. However, challenges such as the variability in data
and the complexity of neural processes call for cautious interpretation of these
correlations.

Following our findings on the impact of hidden factors on alignment scores,
such as word position, further research should be cautious in interpreting the
models’ performance as evidence of their ability to capture language processing
in the brain. For example, electrodes involved in audio processing may exhibit
patterns of neural activity correlated with word and sentence information without
being directly involved in language processing. Future studies should consider
these factors and the complexity of their interactions to ensure accurate and
reliable conclusions about the models’ performance.

The small data size and high variability in alignment scores presented chal-
lenges in assessing the statistical significance of the observed results. Future
research would benefit from more robust methods in evaluating the significance
of alignment scores. An approach we are exploring involves computing confidence
intervals under a null hypothesis by measuring the alignment scores on permuted
labels before assessing where the true alignment score falls within this distribu-
tion. We expect this method to offer more reliable estimates for the significance
of a model’s performance and contribute to a better identification of brain ar-
eas involved in language processing. Increasing the sample size and number of
electrodes is also expected to improve the generalizability of our results.

Finally, our investigation of single electrode activity parallel to the models’
predictions motivates a deeper look into the processes underlying alignment in
specific brain regions. A fine-grained analysis of the neural activity and align-
ment scores across electrodes would provide valuable additional insights into the
mechanisms underlying language processing in the human brain. In the case of
syntactic processing, the identification of local neural correlates of syntactic vi-
olations would be of particular interest. Future research should aim to identify
neural signatures of syntactic violations that large language models can explicitly
capture at a spatiotemporal level.
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APPENDIX A

Electrode Locations

(a) Superior View (b) Left Lateral View

Figure A.1: Electrode 16 - Left Middle Frontal Gyrus

(a) Superior View (b) Left Lateral View

Figure A.2: Electrode 127 - Left Precentral Gyrus

A-1



ELECTRODE LOCATIONS A-2

(a) Superior View (b) Left Lateral View

Figure A.3: Electrode 131 - Left Precentral Gyrus

(a) Superior View (b) Left Lateral View

Figure A.4: Modality responsive electrodes according to the 97.5% threshold.
Blue indicates audio-only responsive electrodes, red indicates visual-only respon-
sive electrodes, yellow indicates electrodes responsive to both modalities.



APPENDIX B

Neural Activities

W1 AUD W2 AuD W3 AUD W4 AuD IMAGE
—os ! !
—— GNs : :
0471 — NGNs H H
1 1 |
1 1 )
1 1
02 1 |
; 1
1 i
H 1 |
1 1 1
0.0 1 1 1
1 1 1
i 1 1
1 1 1
— T 1 1 1
02 1 i 1 1
1 i 1 1
1 i 1 1
1 | | I
-200 O 200 400 600 800 —200 O 200 400 600 800 -200 O 200 400 600 800 -200 O 200 400 600 800 -200 O 200 400 600 800
W1 VIS W2 VIS W3 VIS W4 VIS IMAGE
04
N
02 N/
£ \
00 70<i
-02 @
-200 200 400 600 800 -200 200 400 600 800 -200 200 400 600 800 -200 200 400 600 800 -200 200 400 600 800

Time from onset (ms)

Figure B.1: Electrode 186, mean and standard estimate of the mean between

words.
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APPENDIX C

Pearson Correlations
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(h) Pearson correlation with data split controlled at word level.

Figure C.1: Electrode 131, correlation with neural activity at single word level
from Glove embeddings.
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PEARSON CORRELATIONS
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(a) Pearson correlation for audio stimuli

Figure C.2: Correlation for electrode 186. The shaded area represents

(b) Pearson correlation for visual stimuli

the 90%

confidence interval. Orange indicates that more than 95% of the bootstrap sam-
ples are above zero at any timestamp.
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