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Abstract

An impressive aspect of human language is its ability to maintain consistent meaning
and grammatical correctness across different sensory modalities. Elucidating the modality-
invariant internal representation of language in the brain has major implications for cognitive
science, brain disorders, and artificial intelligence. A pillar of linguistic studies is the notion
that words have defined functions, often referred to as parts of speech, such as nouns and ad-
jectives. This dissertation tries to answer two questions: how can we find a multimodal and
generalizable representation for language processing? Is there a representation for parts of
speech in the brain?
To address these questions, I recorded neural responses from 1,801 electrodes in 20 partic-

ipants with epilepsy while they were presented with two-word minimal phrases consisting of
an adjective and a noun, in both auditory and visual presentations. I observed neural signals
that distinguished between these two parts of speech (POS), localized within a small region
in the left lateral orbitofrontal cortex. The representation of POS showed invariance across
several criteria: visual and auditory presentation modalities, and robustness to word properties
like length, order, frequency, and semantics. The results also generalized across two different
languages in a bilingual participant. I found that these selective signals provide key elements
for the compositional processes of language, highlighting a localized and invariant represen-
tation of POS. Furthermore, I extended these ideas by evaluating how parts of speech are pro-
cessed within full sentences. Recording activity from 1,593 electrodes in 17 participants, I
found neural signals that separated nouns from verbs in sentences. This selective, invariant,
and localized representation of parts of speech provides key elements for the representation
of language. Going beyond POS, I also found multimodal representations for grammar and
syntax processing in sentences, a first with neurophysiological signals.
In conclusion, I collected and analyzed a dataset of over 60 hours of stimuli, 40,000 two-

word phrases, and 15,000 sentences by recording neural responses to audiovisual stimuli from
3,394 stereo-electroencephalography electrode contacts across 37 participants. My findings
report neural representations of language that are both robust and adaptable, contributing to
a deeper understanding of core linguistic processes within the human brain. This work lays a
foundation for more nuanced studies of language processing. To the best of my knowledge,
this is the first study to rigorously and systematically evaluate the invariant representation of
parts of speech and multimodal representations for semantic and grammatical processing of
sentences at the invasive neurophysiological level from the human brain.
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0
Introduction

An undergraduate class on the “Theory of Computation” introduced me to formal

proofs for algorithms and compositional computations. The course material over-

lapped with frameworks from linguistic theory that classify speech patterns based on

their complexity, like the famous Chomsky Hierarchy, and naturally brought me to

the question, “Can human language be described by an algorithm?”
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After extensive review and deep contemplation, I realized that human language was

too complex and undefined to be called an algorithm*. Unlike computer algorithms,

which are designed for specific outcomes, language emerges from the human brain

within social interactions, serving many functions like communication, reasoning, and

planning. While we might create algorithms for different parts of language and solve

the individual puzzle pieces, understanding the whole system remains a larger chal-

lenge. The success of Large Language Models (LLMs) in predicting the next word

in a sentence demonstrates that modeling even one salient aspect of language can be

very effective, leading to the creation of “foundation models” repurposable for vari-

ous downstream tasks (OpenAI, 2023).

But for my thesis, I took a different more experimental approach and want to fo-

cus on how language processes might be implemented in the brain. After I started my

Ph.D. in Biophysics in 2018, I developed an appreciation for techniques within the

neurobiological and cognitive neuroscience community. The experimental rigor and

the gap that was needed to understand language mechanisms for clinically relevant

outcomes drew me in. I found a lack of neural evidence supporting linguistic theories

and computational models. Additionally, studies showed that animals lack complex

language-like behaviors, suggesting human uniqueness and a sense of urgency, given

the overarching role of language in our lives †. This shifted my interest toward under-

*An algorithm is a finite set of instructions carried out in a specific order to perform a particular
task.

†Many studies have tried to explore this phenomena of computability and grammars in animals
(Stobbe et al., 2012, Saffran et al., 2008, Malassis et al., 2020, Reber, 1967, Abe and Watanabe, 2011,
Gentner et al., 2006, Fitch and Hauser, 2004, Wilson et al., 2020, Heimbauer et al., 2018, Jiang et al.,
2018). While some showed similarities to humans, most revealed significant differences in generaliza-
tion, especially when simple cues like color were removed (van Heijningen et al., 2009). Additionally,
animals could not self-report their actions like humans, who could verify their logic.
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standing language processes in the brain rather than entirely creating language-like

algorithms‡ that were divorced from their organ of origin. At this point, I faced the

fundamental experimental questions: what to measure and how to measure it.

0.1 What do I measure for?

Core functions of the linguistic circuit, can be conceptualized along the following

three axes (Chomsky, 1995) §:

1. Superficial: production and perception of speech and writing

2. Syntax: grammatical roles and correctness, and phrase composition

3. Semantics: word meaning, and phrase meaning

Many neurophysiological experiments have begun to investigate neural signals

associated with the presentation of individual words or short phrases (Woolnough,

2021, Nourski, 2022, Forseth, 2018, Forseth et al., 2021, Murphy, 2022, Ding et al.,

2016, Cometa, 2023, Artoni, 2020, Keshishian, 2023, Khanna et al., 2024). Research

has examined orthographic features of real versus pseudowords (Woolnough, 2021,

Vigliocco et al., 2011, Castellucci et al., 2022), phonetic features of word comprehen-

sion (Forseth, 2018, Woolnough, 2021, Yi et al., 2021, Gwilliams et al., 2022) and

production (Forseth et al., 2021, 2020, Bhaya-Grossman and Chang, 2022, Hamil-

ton et al., 2021) and the retrieval of semantic information in audio-visual naming-
‡For algorithms modeling language in the brain, one would require them to predict neural data and

share similarities with neural responses and perhaps neural architectures, mechanisms, etc.
§These axes are not necessarily orthogonal to each other in a strict sense, and often overlap and

intersect. E.g., the tone (superficial) of a particular phrase, (such as “Did you eat your lunch?”) can
modulate whether it was said sarcastically or not (semantic).
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to-definition tasks (Forseth, 2018). These studies have shed light on the early pro-

cesses associated with detecting, comprehending, and producing words. However,

beyond individual words, the heart of linguistic structures lies in the notion that words

serve specific functions within a sentence, including articles, nouns, adjectives, and

verbs. These parts of speech (POS) are building blocks for generative syntax mech-

anisms, facilitating the creation of infinitely many phrases and sentences. POS are

widely shared across languages, combined according to defined grammatical rules,

and play critical roles in natural language processing (NLP) algorithms (Chomsky,

1995, Chomsky et al., 2019, Murphy, 2022, OpenAI, 2023, Hagoort and Indefrey,

2014, Calinescu et al., 2023, Goldstein et al., 2022, Jamali et al., 2024, Cai et al.,

2023). Despite the emphasis from NLP algorithms and linguistic theory on POS, their

neural representations remain ambiguous. We did not know if there is a POS repre-

sentation in the brain.

Many studies in patients with brain lesions have focused on deficits in the retrieval

of individual nouns and verbs (Vigliocco et al., 2011, Rapp and Caramazza, 2002,

Caramazza and Hillis, 1991, Woolnough, 2021, Aflalo et al., 2020, Damasio and

Tranel, 1993, Crepaldi et al., 2011); however, previous studies, including neuroimag-

ing and non-invasive magnetic and electrophysiology experiments, could not resolve

the explicit neural processes in POS processing due to insufficient signal-to-noise ra-

tio, spatial or temporal resolution¶. Furthermore, recent work has suggested that parts-

of-speech may be implicitly learned and represented in modern large language models
¶Note: In word retrieval studies, the brain can possibly make use of semantic memories associated

with a given word, in addition or in the extreme case entirely separate from its POS and grammatical
roles. While these approaches remain important for benchmarking neuro-rehabilitation for speech and
language production, they obfuscate the study of grammatical processes for language perception.
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(Tenney et al., 2019, Elazar et al., 2021).

A remarkable hallmark of language is its universality. We can interpret the word

‘cat’ when uttering it, writing it, listening to it, reading it, and even when examining

a photograph of a cat. This universality tempts us to speculate that there may be an

invariant representation of language concepts in the brain. Several studies have ex-

amined potential correlates of language processing using only unimodal signals (Mur-

phy, 2022, Keshishian, 2023, Cai et al., 2023, Jamali et al., 2024, Sinai, 2005, Ding

et al., 2016, Cometa, 2023, Woolnough, 2021, Forseth et al., 2020, Chomsky et al.,

2019, Goldstein et al., 2022). Noticing this gap, I decided to study language using an

intersectional approach, incorporating both auditory and visual stimuli. Within this

paradigm, I made the foundational elements of grammar, namely POS, the focus of

my initial study.

Following initial successes from the first study, I aimed to build a more complex

understanding of language processing and designed an experiment for full sentences.

To the best of my knowledge, there is no existing dataset with human intracranial sig-

nals for language in both auditory and visual modalities with full sentences. In this

study design, I incorporated elements of both syntax and meaning processing.

During my rotation before joining the Kreiman Lab, I also conducted extensive ex-

periments in participants with intracranial electrodes with naturalistic stimuli from

movies, eventually collecting a dataset of 43 hours of movies with 36,000 sentences

(205,000 words) across 10 participants. This is the largest dataset of intracranial record-

ings featuring grounded naturalistic language, one of the largest English universal de-

pendencies (UD) treebanks in general, and one of only a few UD treebanks aligned to
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multimodal vision-language features.

Ultimately, I created unique datasets of over 2 terabytes from 5,064 electrode con-

tacts implanted within 47 participants to study the neural representation of language,

and conducted extensive analysis, leading to foundational results. I will expand upon

the methods and challenges in the next subsection.

0.2 How I chose to do it - my approach and challenges

Experimental design, statistical power, reported effect sizes, and time-to-conclude-

study are widely dependent upon the choice of the measurement technique (Waldert,

2016). There are three main axes along which current techniques of measuring brain

function fall into :

1. invasive versus non-invasive,

2. spatial resolution, and

3. temporal resolution.

The most salient among these axes is the invasive versus non-invasive because it

translates to a number of advantages and challenges. The invasive methods, namely

single-unit recording (32 Khz, gives action potentials from single neurons) (Dubey

and Ray, 2019, Johnson and Knight, 2015, Mukamel and Fried, 2012a), stereoelec-

troencephalography (sEEG, up to 2 KHz), and Electrocorticography (ECoG, up to

2 KHz), exhibit the highest spatiotemporal resolution and signal-to-noise ratio that

are the keys to the study of human cognition. SEEG and ECoG were originally de-

veloped for localizing epileptogenic foci for pharmacologically-intractable epilepsy
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patients and are currently widely used for addressing neuroscience questions. The

challenges with invasive methods are the low rate of participant recruitment, which

is solely guided by clinical needs, high costs, high expertise and a high risk clinical

environment that is required to facilitate its use.

Non-invasive methods, namely magnetoencephalography (MEG), electroencephalo-

gram (EEG), positron emission tomography (PET) or functional magnetic resonance

imaging (fMRI), either lack the spatial resolution, temporal resolution or both depend-

ing on the choice of measurement. Additionally, all the non-invasive techniques have

minimal signal-to-noise ratio. The advantage with these techniques is a higher rate of

participant recruitment, and the possibility of using these methods in non-clinical and

lower stakes settings.

Finally, it is worth mentioning cognitive studies of patients with lesions or neuro-

degenerative disorders, that fall into a separate kind of non-invasive technique. These

methods give unique insights into what and how brain functions are lost (aphasia)

and recovered over time due loss of or injury to brain tissue (Caramazza and Hillis,

1991, Mesulam et al., 2015, 2014, 2022). However for these methods, the partici-

pant throughput and brain area coverage is unreliable, requiring long range research

planning that is often focused on rehabilitation. Moreover, the spatial and temporal

resolution are severely lacking compared to other methods. One noteworthy area of

research with this approach is the study of Primary Progressive Aphasia (PPA), a neu-

rodegerative disease, that has sometimes been called “the Alzheimer’s of the Lan-

guage Circuit”. In the upcoming sections, I will discuss how my findings compare

with research on PPA.
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Given the limitations of non-invasive methods, which lack the signal quality and

resolution to confirm or deny hypotheses derived from decades of linguistic theory, I

realized the critical position of invasive methods in providing answers about core lan-

guage processes. The opportunity at the Kreiman Lab at Boston Children’s Hospital

and several other collaborating hospitals had the opportunity to study language in the

brain with high spatiotemporal resolution via sEEG recordings, providing the hope of

filling the knowledge gaps mentioned earlier. After quick and focused review of lan-

guage representations in the brain, I found two major gaps which helped me design a

more focused and exciting research plan :

1. data from non-invasive methods lacked the resolution to confirm or deny the

hypothesis derived from decades of linguistic theory (Crepaldi et al., 2011).

2. the existing literature from invasive methods mostly focused on speech produc-

tion, detection or word orthography. There were a few notable invasive studies

of language that relied on unimodal stimuli to study the phrase composition,

but lacked the conclusive evidence for multimodal language processes (Wool-

nough, 2021, Nourski, 2022, Forseth, 2018, Forseth et al., 2021, Murphy, 2022,

Ding et al., 2016, Cometa, 2023, Artoni, 2020, Keshishian, 2023, Khanna et al.,

2024), and audiovisual semantic retrieval (Forseth, 2018). �

Cognitive research using SEEG and ECoG requires long-range planning and over-

coming high stakes challenges due to
�Semantic processing is considered orthogonal and complementary to syntax processing and POS

representations (Chomsky et al., 2019).
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1. significant costs: $ 120,000 per procedure (Salehi et al., 2022) **,

2. limited participant availability: one participant every two months, 2-3 years of

data collection cycles, and

3. strict clinical environment constraints: I typically had a narrow 2-hour window

with no guarantees for repetition.

These challenges required me to meticulously plan an experiment, design and tailor

it with sufficient statistical power to support the key research questions I wanted to

tackle. Eventually, I designed an audiovisual minimal phrase task that encapsulated

the ability to answer hypotheses for POS processing for my first study††. In parallel,

I also collected data for BrainTreeBank (Wang et al., 2024), which is a large-scale

dataset of electrophysiological neural responses, recorded from intracranial probes

while 10 subjects watched one or more Hollywood movies. Subjects watched on aver-

age 2.6 Hollywood movies, for an average viewing time of 4.3 hours, and a total of 43

hours.

After these two studies, I designed an audiovisual sentences-picture matching task

to reveal interactions between grammar and meaning. All three experiments com-

bined, I collected and analyzed over 2 terabytes (Tb) of neural data from 5,064 elec-

trode contacts across 47 participants during my graduate program‡‡.

**Adding monthly salaries of all the staff facilitating sEEG surgeries, for a 1 patient per month rate
the cost of supporting these experiments go up to $ 250,000 per procedure.

††Both tasks detailed in the upcoming sections
‡‡I started working on BrainTreeBank as a rotation project and soon realized both the advantages

and challenges of using naturalistic, movie-like stimuli to study language, especially with invasive
methods and limited time per participant. The advantage is the engaging nature of movie-like stim-
uli, which can facilitate large-scale recordings. The challenge is that many other cues, such as visual
elements, narrative, tone, pitch, or musicality, get correlated with linguistic or grammatical stimuli.
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0.3 Why do we need intracranial evidence for language?

Compared to non-invasive methods like fMRI that offer a general activation map, in-

tracranial experiments provide a much more precise picture. By placing electrodes

directly within the brain, these experiments can pinpoint the specific areas involved

in various aspects of language processing, such as word and grammar comprehen-

sion. Additionally, intracranial recordings directly measure the electrical activity of

neurons, offering a deeper understanding of how language is encoded and processed

within the brain.

The remarkable precision offered by intracranial studies opens doors to new possi-

bilities in preventing and treating language impairments in:

1. Epilepsy: For epilepsy patients with language centers located near seizure zones,

intracranial recordings can help identify these areas more precisely. This allows

for targeted surgical intervention to minimize the risk of language impairment

after surgery.

2. Stroke: Stroke can damage language areas (Caramazza and Hillis, 1991). In-

tracranial studies can help map the extent of damage and residual language

function. This information is crucial for guiding rehabilitation efforts and pre-

dicting potential recovery.

Given the success of LLMs, which require more data and are less concerned with the ’cleanliness’ of
the data, neural recordings with movie-like stimuli can be very useful for creating foundational models
for language and narrative perception. When I started my PhD project in 2019, ChatGPT had not yet
been released, and there were no available foundational language models that could be repurposed for
the small amounts of experimental neural data available per participant. I identified critical gaps that
could be studied with invasive recordings, which led me in the direction of this thesis.
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3. Neurodegenerative Disorders: Diseases like Alzheimer’s and Pick’s Disease can

affect language abilities leading to Primary Progressive Aphasia (PPA) (Mesu-

lam et al., 2022). By pinpointing the specific brain regions and linguistic pro-

cesses affected, intracranial studies can aid in developing targeted therapies to

slow or prevent language decline.

0.4 Summary of Thesis

This thesis is split into five chapters, and one appendix.

Chapter 1 goes directly into the results of the minimal phrase study.

Chapter 2 contains the discussion of the minimal phrase study.

Chapter 3 details the methods of analysis used in the minimal phrase study.

Chapter 4 summarizes my findings with the audiovisual sentence-meaning task. I

started this work in June 2023, and am close to completing it with exciting results.

Chapter 5 contains the conclusions about my experience with human invasive neu-

roscience and the goals that I had set for myself to understand language from within

the brain.

This thesis also contains one Appendix. Appendix A details the findings of the

BrainTreeBank effort that was done in collaboration with Andrei Barbu, Adam Yaari

and Christopher Wang at MIT.
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“Words can travel where pictures cannot reach.

While a picture may capture a fleeting moment,

words can explore the endless nuances of that

moment, giving it life, context, and meaning.”

“Opposite of a picture is worth a thousand words”,

GPT4

1
Results

Imagine yourself to be a caveperson right after the advent of language. You are telling

your fellow caveperson whether the animal you found lurking by the watering hole

was a “big animal” or a “small animal”, or if the “red berry” or the “blue berry” was

eatable. Would it not help to know all of this in just a few words? Imagine the multi-
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tude of simple adjective-noun word combinations that you could tell your friend that

would help them avoid danger or find food. Such is the beauty of language: limitless

possibilities with only a few words.

Here in my initial experiment, I investigated how POS are processed in the brain in

minimal phrases, where an adjective is followed by a noun. What would a representa-

tion for POS, like nouns and adjectives, in the brain look like? Consider the adjective

“green” and the noun “apple”, combined to create the simple phrase “green apple.”

Fundamental constraints for such a representation should include the basic invariances

underlying the cognitive understanding of this phrase. The basic desiderata for the

representation of parts of speech in language includes invariance to:

1. Presentation modality (e.g., auditory versus visual),

2. Specific noun or adjective (e.g., green or red)

3. Position within a phrase (e.g., “green apple” versus “apple green”),

4. Specific language in bilingual speakers (e.g., “green apple” in English versus

“manzana verde” in Spanish)

5. Superficial statistical word properties (e.g., written length, number of syllables,

and phoneme composition)

With the guidance and collaboration of clinicians, I conducted experiments and

recorded intracranial field potential responses with high spatiotemporal resolution

and high signal-to-noise ratio from 1,801 electrodes implanted in 20 participants with
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pharmacologically-resistant epilepsy. I found neural signals, especially in the left lat-

eral orbitofrontal cortex, that selectively distinguish between nouns and adjectives.

These POS selective signals are robust when words are matched for orthography (e.g.,

word length), acoustic features (e.g., number of syllables), word sequence (e.g., noun

or adjective at first or second position within a phrase), and frequency of occurrence.

Interestingly, the representation of nouns versus adjectives generalizes across audio

and visual modalities, across different semantic categories within each part of speech,

and across different languages.

1.1 Experiment Design and Data for Parts of Speech (POS)

I recorded intracranial field potentials from 1,801 electrodes (840 in gray matter, 961

in white matter) implanted in 20 participants. Participants heard (auditory modality)

or read (visual modality) two words that were sequentially presented and were asked

to indicate whether the words were the same or not (Figure 1.1a,Methods). Partic-

ipants performed the task correctly on 93.6±7.7% of the trials (here and throughout,

mean±std, unless stated otherwise). All electrode locations are shown in Figure 1.1b-

g (see also Tables S1 S2 andMethods). I use a bipolar reference, and I focus on the

intracranial field potential signals filtered in the high gamma frequency band, referred

to as neural responses throughout and reported in the plots as gamma power (65-150

Hz,Methods).
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Figure 1.1: Task design, electrode locations and multimodal responses.
a. Task schematic. Two words were sequentially presented either in visual modality or
auditory modality. Participants indicated whether the two words were the same (e.g.,
“apple apple” or “green green”, 8% of trials of each type) or different (e.g., “green apple”
or “apple green”: 42% of trials of each type, Methods). In the 84% of trials where the
two-words were different, there was an adjective followed by a noun or a noun follower by
an adjective.
b-g. Location of all electrodes overlayed on the Desikan-Killiany Atlas shown with different
views. Each white circle shows one electrode. b. Left lateral view (n=693), c. Left medial
view (n=693), d. Superior, whole brain view (n=1,801), e. Inferior, whole brain view
(n=1,801), f. Right lateral view (n=1108) g. Right medial
h. Trial-averaged (± SEM) gamma power for responses to auditory (light grey) or visual
(black) presentations for an example electrode in the left rostral middle frontal gyrus
(electrode location shown in k). Responses are aligned to word onset (vertical dashed
line). The arrows indicate the half-maximum time.
i,j. Raster plots showing each individual trial for the same electrode for each of the 1,496
words for auditor (i) and visual (j) presentations (see color scale on right).
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1.1.1 Neural signals reflect visual, auditory and multimodal inputs

I observed 565 electrodes (31.4% of the total) that responded to auditory stimuli (Figure

1.2 a-c, g-i) and 532 electrodes (29.5% of the total) that responded to visual stimuli

(Figure 1.2 d-f, g-i). The overall proportions and dynamics of visual and auditory re-

sponsive signals are consistent with previous work (Bansal et al., 2014, Forseth, 2018,

Woolnough, 2021). Of these electrodes, there were 293 electrodes that responded

to both auditory and visual stimuli (Figure 1.2 g-i). These 293 electrodes represent

16.3% of the total, 51.9% of the auditory responsive electrodes, and 55.0% of the vi-

sually responsive electrodes. This number of audiovisual electrodes is highly unlikely

to arise by chance from the number of auditory and visual electrodes (p<10-4, permu-

tation test, n=106 iterations). Of these 293 electrodes, 147 (50.2%) were in the left

hemisphere and 146 (49.8%) were in the right. Of the 41 the regions in the Desikan-

Killiani Atlas where I had sampling (34 defined regions and 7 extra regions represent-

ing deep gray matter structures,Methods, Figure 1.1, Tables S1 S2), 13 regions had

a significantly higher number of multimodal electrodes than from the number of au-

dio or visual electrodes (p<0.01, permutation test, n=106 iterations). These regions are

indicated in bold in Table S2 . Figure 1.1 h-j shows the responses of an example au-

diovisual responsive electrode located in the left rostral middle-frontal gyrus (Figure

1.1k). This electrode showed strong evoked responses evident in the trial-average re-

sponses (Figure 1.1h), and even in individual trials for both auditory stimuli (Figure

1.1i) and visual stimuli (Figure 1.1j). To compare the response dynamics of auditory

and visual responses, I calculated the time at which the neural signals reached half of
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the max amplitude (half-maximum time, arrows in Figure 1h, Methods) and the av-

erage area under the curve (AUC) for neural responses such as those in Figure 1.1h.

Figure 1.3a shows the half-maximum time for auditory-only electrodes (left), visual-

only electrodes (middle), and audiovisual electrodes on audio trials (right light-gray

half) or visual trials (right black half). There was no significant difference between

the half- maximum time for auditory-only electrodes (329±187 ms) and visual only

electrodes (336±174 ms) (p>0.05, ranksum test). Similarly, there was no significant

difference between the half- maximum time for the audio and visual responses of au-

diovisual electrodes (379±193 ms versus 341±174 ms, p>0.05, ranksum test). How-

ever, there was a small but significant difference between the half-maximum time

for audio only electrodes and auditory responses of audiovisual electrodes (p<0.01,

ranksum test). As expected, for the audio-only electrodes, the average response AUC

to auditory stimuli (108±100 μV2/Hz-ms) was larger than the average AUC response

to visual stimuli (44±16 μV2/Hz- ms) (p<10-4, ranksum test, Figure 1.3b). Simi-

larly, for the visual-only electrodes, the average response AUC to auditory stimuli

(40±23 μV2/Hz-ms) was smaller than the average AUC response to visual stimuli

(53±43 μV2/Hz-ms) (p<10-4, ranksum test, Figure 1.3c). For the audiovisual elec-

trodes, the average response AUC to auditory stimuli (71±72 μV2/Hz-ms) was slightly

larger than the AUC of their responses to visual stimuli (54±39 μV2/Hz-ms) (p<0.01,

ranksum test, Figure 1.3d).
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Figure 1.2: a-c. Only audio responsive electrodes (a: left hemisphere lateral view,
n= 102; b: inferior view (n=272); c: right hemisphere lateral view, n= 170). d-f. Only
visually responsive electrodes (d: n= 85; e: n=239; f n= 154).g-i. Audiovisual responsive
electrodes (g: n= 147; h: n=293; i: n= 146). The same color scheme is followed throughout
the paper to indicate vision-only, audio-only or audiovisual electrodes. iELVis pullout
factor=20, opaqueness=0.6.
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Figure 1.3: Half-maximum time and area under the curve for responsive electrodes.
a. Half-maximum time for audio-only electrodes (left, light-gray: 329±187 ms), visual-only
electrodes (middle, black: 336±174 ms), and audiovisual electrodes (right; auditory stimuli
in light-gray: 379±193 ms, visual stimuli in black: 341±174 ms). There was a small but
significant difference between the half-maximum time for auditory-only electrodes and for
auditory responses of audiovisual electrodes (p<0.01, ranksum test). Horizontal red bars
indicate mean. Horizontal black bars indicate significant differences.
b-d. Area under the curve for the trial averaged response to auditory stimuli (light-gray
violin plots) and visual stimuli (black violin plots) for audio-only electrodes (b, auditory
stimuli: 108±100 μV2/Hz-ms, visual stimuli: 44±16 μV2/Hz-ms; p<10-4, ranksum test),
visual-only electrodes (c, auditory stimuli: 40±23 μV2/Hz-ms, visual stimuli: 53±43
μV2/Hz-ms; p<10-4, ranksum test), and audiovisual electrodes (d, auditory stimuli: 71±72
μV2/Hz-ms, visual stimuli: 54±39 μV2/Hz-ms; p<0.01, ranksum test). Horizontal red bars
indicate mean. Horizontal black bars indicate significant differences.
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1.2 POS Encoding: Invariant and Localized

1.2.1 Multimodal neural signals distinguish different parts of speech

I evaluated whether the neural signals differentiated between nouns and adjectives.

Nouns and adjectives were matched for their number of syllables, word length to con-

trol for potential confounds not specific to parts of speech (Table S3,Methods). Fig-

ure 1.4 shows the responses of an example electrode located in the orbital H-shaped

sulcus within the left lateral orbitofrontal cortex (Figure 1.4i depicts the electrode

location). The orbital H-shaped sulcus lies above the bone of the eye socket where

a butterfly-like gyrus can be seen, formed along H-shaped recessions of the sulcus.

The neural responses are aligned to the word onset (vertical dashed line) for audi-

tory presentation (Figure 1.4 a, b) or visual presentation (Figure 1.4 c, d), for the

first (Figure 1.4 a, c), or second (Figure 1.4 b, d) word in each trial. This electrode

showed multimodal responses triggered by both auditory and visual stimuli. The re-

sponses to nouns (blue) were stronger than adjectives (red) across all four conditions,

including both word 1 and word 2, and both for visual and auditory stimuli. The dif-

ferences between nouns and adjectives can be readily appreciated even in individual

trials (Figure 1.4 e-h). These differences became significant at approximately 430 ms

after word onset for visual presentation and about 610 ms for auditory presentation.

In all, there were 89 electrodes, 97 electrodes, and 48 electrodes that showed a differ-

ence between nouns and adjectives for auditory stimuli only, visual stimuli only, or

both modalities, respectively. The 48 electrodes cannot be ascribed to randomly sam-
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pling from the total of audio and visual electrodes (p<10-4, permutation test, n=106

iterations).

Figure 1.4: Neural signals distinguish between different parts of speech.
a-d. Trial-averaged normalized gamma-band power of responses from an example
electrode in the left lateral orbitofrontal cortex (see location in i) to nouns (blue) or
adjectives (red) during presentation of auditory stimuli (a, b, n=435 grammatical and 432
ungrammatical trials) or visual stimuli (c, d, n=435 grammatical and 432 ungrammatical
trials) aligned to the onset (vertical dashed line) of the first word (a, c) or second word
(b, d). Shaded areas denote s.e.m. Horizontal gray lines denote windows of statistically
significant differences between responses to nouns versus adjectives (t-test p<0.05,
Benjamini-Hochberg false detection rate, q<0.05).
(e-h) e-h. Raster plots showing the responses in each individual trial (see color scale on
bottom right). The red and blue curves in a-d correspond to the averages of noun and
adjective trials, respectively, in e- h. (i) Location of the example electrode in the left lateral
orbitofrontal cortex.
j. Z-scored β coefficients for Generalized Linear Model used to predict area under
the curve between 200 ms and 800 ms post word onset, using four task predictors:
Noun versus Adjectives, Grammatically correct versus incorrect, number of syllables
(auditory presentation) and word length (visual presentation). Asterisks denote statistically
significant coefficients, corrected for multiple comparisons (Methods). k. Inferior axial view
of both hemispheres showing electrodes that revealed statistically significant differences
between nouns and adjectives for both audio and visual presentation (orange circles, n=13
electrodes). Electrodes whose responses were significantly explained only by the Nouns
versus Adjective task predictor in the GLM are included in this plot.
l, m. All electrodes from k projected onto the left hemisphere are shown on the frontal
plane (l) and the axial plane (m, same plane as k). All the electrodes that respond more
strongly to nouns, i.e., Nouns versus Adjectives β>0 (n=10 electrodes), are shown in
blue and electrodes that responded more strongly to adjectives (β<0, n=3 electrodes),
are shown in red. All units are in MNI305 coordinates. Kernel density curves (bandwidth
2) outline the marginal distributions of noun-preferring (blue) and adjective-preferring
(red) electrodes along the lateral-medial axis (l,m: x-axis, zero being more medial),
ventral-dorsal axis (l: right z-axis) and anterior-posterior axis (m: right y-axis). P-values
indicate significant differences between the coordinates for noun- and adjective-preferring
electrodes (ranksum test).Raster plots showing each individual trial for the same electrode
for each of the 1,496 words for auditor (i) and visual (j) presentations (see color scale on
right).
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Figure 1.4: (continued)
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1.2.2 Neural selectivity for nouns versus adjectives was robust to word properties, phrase

grammar, usage frequency, and word subcategory

Robustness to early sensory word presentation

Even though nouns and adjectives were matched in their average number of syllables

and word length, I asked whether these variables could still contribute to the neural

responses differentiating nouns and adjectives. Additionally, each trial could be gram-

matically correct (e.g., “green apple”), or incorrect (e.g., “apple green”) (Methods);

therefore, I asked whether grammar could contribute to the neural differences between

nouns and adjectives. To address these questions, I built a generalized linear model

(GLM) for each electrode to predict its response AUC between 200 ms and 800 ms

after word onset using four predictors: nouns versus adjectives, grammatically cor-

rect or not, and word length (vision) or number of syllables (audition) (Methods). The

predictor coefficients in the GLM model for the example electrode in Figure 1.4 a-

d show that only the nouns versus adjectives label significantly explained the neural

responses for both auditory and visual presentation (Figure 1.4 j). A total of 14 elec-

trodes showed nouns versus adjectives as the only statistically significant predictor in

the GLM analysis; 13/14 (93%) of these electrodes distinguished nouns versus adjec-

tives for both auditory and visual inputs, such as the example electrode in Figure 1.4

a-j.

The locations of these electrodes that robustly distinguished nouns and adjectives

(orange in Figure 1.4 k) and reveal a cluster enriched in the left lateral orbitofrontal
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cortex (LOF). Within the left LOF, 8 out of the 8 (100%) electrodes were in the pos-

terior part of the orbital H-shaped sulcus. I recorded from a total of 113 electrodes

in the lateral orbitofrontal region, 38 electrodes in the left hemisphere and 75 elec-

trodes in the right hemisphere (Figure 1.4 b-g, Table S1 . Of the 38 left hemisphere

electrodes, 21% distinguished nouns from adjectives during both audio and visual pre-

sentation. In stark contrast, only 1.3% of the 75 electrodes in the right hemisphere

distinguished nouns from adjectives in both audio and vision (these hemispheric dif-

ferences were statistically significant: p<10-4, permutation test, n=106 iterations). Ta-

ble S4 shows the distribution of electrodes distinguishing part of speech between the

left and right hemispheres for all brain regions and Table S5 shows the distribution of

electrodes separating nouns versus adjectives in different participants.

I had initially assumed that distinguishing parts of speech constitutes a core com-

ponent of language and would therefore be reflected exclusively in both visual and

auditory modalities. Indeed, 13/14 (93%) of electrodes differentiating nouns from ad-

jectives in the GLM did so in both modalities. In addition to these 13 electrodes there

was a small number of electrodes (2 auditory only and 1 visual only) that showed dif-

ferences between nouns and adjectives in one modality but not the other. Unlike the

electrodes in Figure 1.4 k, for the 2 auditory-only electrodes, the number of syllables

also significantly contributed towards explaining the neural responses. Figure 1.5

shows the responses of an example electrode located in the right insula that showed

a difference between nouns and adjectives during auditory presentation but not dur-

ing visual presentation. Conversely, Figure 1.6 shows the responses of an example

electrode located in the left lateral orbitofrontal cortex that showed a clear difference
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between nouns and adjectives during visual presentation but not during auditory pre-

sentation. Figure 1.6 k,l shows the locations of auditory only (white circles) and vi-

sual only electrodes (black circle) in the left and the right hemispheres, respectively.

Figure 1.5: Example electrode distinguishing parts of speech only for auditory
stimuli.
a-d. Trial averaged γ- power of neural responses to Taiwanese words, separated by nouns
(blue) and adjectives (red). Neural responses are shown for auditory presentation (a, b),
and visual presentation (c, d), aligned to word1 onset (a, c) or word2 onset (b, d). The
vertical dashed lines show word onsets. Shaded areas represent s.e.m. Horizontal lines
indicate time periods of statistically significant differences between nouns and adjectives
(t- test, p<0.05, Benjamini-Hochberg false detection rate, q<0.05). There was a significant
differences between noun and adjectives for auditory presentations shown with a gray
horizontal line but no difference for visual presentations.
e-h. Raster plots showing the responses in individual trials (see color scale on bottom
right). (i) Electrode location in the right insula.
j. Z-scored β coefficients for Generalized Linear Model used to predict area under the
curve between 200 ms and 800 ms post word onset using four task predictors: Noun
versus Adjectives, Grammatically Correct versus Ungrammatical, number of syllables
(auditory presentation) and word length (visual presentation). Asterisks denote statistically
significant coefficients.
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Figure 1.6: Example electrode distinguishing parts of speech only for auditory
stimuli.
a-d. Trial averaged γ- power of neural responses to Taiwanese words, separated by nouns
(blue) and adjectives (red). Neural responses are shown for auditory presentation (a, b),
and visual presentation (c, d), aligned to word 1 onset (a, c) or word 2 onset (b, d). The
vertical dashed lines show word onsets. Shaded areas represent s.e.m. Horizontal lines
indicate time periods of statistically significant differences between nouns and adjectives
(t- test, p<0.05, Benjamini-Hochberg false detection rate, q<0.05). There was a significant
differences between noun and adjectives for visual presentations shown with a gray
horizontal line but no difference for auditory presentations.
e-h. Raster plots showing the responses in individual trials (see color scale on bottom
right). (i) Electrode location in the left lateral orbitofrontal.
j. Z-scored β coefficients for Generalized Linear Model used to predict area under the
curve between 200 ms and 800 ms post word onset using four task predictors: Noun
versus Adjectives, Grammatically Correct versus Ungrammatical, number of syllables
(auditory presentation) and word length (visual presentation). Asterisks denote statistically
significant coefficients.
k,l. Electrodes in the left (k) and right (l) hemispheres that showed significant differences
between nouns and adjectives either only for auditory trials (white circles) or visual trials
(black circles).
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Robustness to frequency of occurence

Nouns and adjectives differ in their usage frequency. I asked whether the differences

in the neural responses to nouns versus adjectives depended on usage frequency. To

address this question, I randomly subsampled the trials to match the distribution of

Google Ngram frequency (Methods). Figure 1.7 a shows matched noun and adjec-

tive distributions for the example electrode shown in Figure 1.7 a-k. This electrode

showed differential responses between parts of speech for auditory (Figure 1.7 b,c)

and visual (Figure 1.7 d,e) stimuli during word1 (Figure 1.7 b,d) and word2 (Figure

1.7 c,e), even after nouns and adjectives were matched for their frequency of occur-

rence. Of the 13 audiovisual electrodes where nouns versus adjectives was the only

significant predictor in the GLM analysis, 6 electrodes (43%, 4 in the left-LOF, and 2

in left superior temporal gyrus) robustly distinguished nouns and adjectives matched

for their frequency of occurrence, like the example electrode in Figure 1.4 and Fig-

ure 1.7 whereas the other electrodes maintained their selectivity in most but not all

conditions.
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Figure 1.7:
Example electrode distinguishes parts-of-speech for nouns and adjectives matched
for their frequency of occurrence.
a. Google Ngrams frequency distribution of nouns (blue) and adjectives (red) that were
matched for their median (p>0.05, ranksum test) and mean (p>0.05, t-test).
b-e. Trial averaged γ-power of neural responses to word onsets, separated by nouns
(blue) and adjectives (red). Neural responses are shown for auditory presentation (b, c),
and visual presentation (d, e), aligned to word 1 onset (a, c) or word 2 onset (c, e). The
vertical dashed lines show word onsets. Shaded areas represent s.e.m. Horizontal lines
indicate time periods of statistically significant differences between noun subcategories
and adjective subcategories (t-test, p<0.05, Benjamini-Hochberg false detection rate,
q<0.05).
f-i. Raster plots showing the responses in individual trials (see color scale on bottom right).
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Robustness to semantic subcategories

Within my stimulus set, there were two subcategories of nouns, animals and food, and

there were two subcategories of adjectives, concrete and abstract (Table S3). I asked

whether the electrodes that showed differential responses generalized across different

word subcategories. The example electrode in Figure 1.4 a-j did not show differences

between the two noun or adjective subcategories for either auditory stimuli (Figure

1.8 a, b, f, g), visual stimuli (Figure 1.8 c,d,h,i), word1 (Figure 1.8 a,c,f,h), or word2

(Figure 1.8 b,d,g,i). Of the13 audiovisual electrodes where nouns versus adjectives

was the only significant predictor in the GLM analysis, 8 electrodes (62%) showed

generalization across different noun or adjective subcategories. The remaining 6 elec-

trodes (38%) showed a significant difference between the two noun subcategories or

between the two adjective subcategories (Table S5). Figure S7 shows one of the ex-

ceptions, i.e., an electrode in the left LOF which showed a significant response only

for food nouns. This selectivity was particularly pronounced for the visual stimuli

(Figure 1.9 c, d, h, i), but was also apparent for auditory stimuli (Figure 1.9 a, b, f,

g), and was evident both for word 1 and word 2. In sum, differences in selective re-

sponses to nouns versus adjectives were particularly prominent and clustered in the

left lateral orbitofrontal cortex, persisted across different word lengths, whether the

word was used in a grammatically correct phrase or not, after equalizing word occur-

rence frequency, and generalized across different noun or adjective subcategories.
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Figure 1.8:
Selective responses to nouns versus adjectives across different noun and adjective
categories.
a-d. Trial averaged γ-power of neural responses to words, separated by animal nouns
(dark blue), food nouns (light blue), concrete adjectives (light red), and abstract adjectives
(dark red). Neural responses are shown for auditory presentation (a, b), and visual
presentation (c, d), aligned to word 1 onset (a, c) or word 2 onset (b, d). The vertical
dashed lines show word onsets. Shaded areas represent s.e.m. Horizontal lines indicate
time periods of statistically significant differences between noun subcategories and
adjective subcategories (t-test, p<0.05, Benjamini-Hochberg false detection rate, q<0.05).
There were no significant differences between noun sub-categories or between adjective
sub-categories.
e. Electrode location in left lateral orbitofrontal. f-i. Raster plots showing the responses in
individual trials (see color scale on bottom right).
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Figure 1.9:
Example electrode distinguishing different types of nouns.
a-d. Trial averaged γ-power of neural responses to words, separated by animal nouns
(dark blue), food nouns (light blue), concrete adjectives (light red), and abstract adjectives
(dark red). Neural responses are shown for auditory presentation (a, b), and visual
presentation (c, d), aligned to word 1 onset (a, c) or word 2 onset (b, d). The vertical
dashed lines show word onsets. Shaded areas represent s.e.m. Horizontal lines indicate
time periods of statistically significant differences between noun subcategories and
adjective subcategories (t-test, p<0.05, Benjamini-Hochberg false detection rate, q<0.05).
There was a significant differences between noun sub-categories shown with a black
horizontal line but no difference between adjective sub-categories.
e. Electrode location in left lateral orbitofrontal. f-i. Raster plots showing the responses in
individual trials (see color scale on bottom right).
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1.2.3 Neural signals enhanced for nouns versus adjectives were anatomically segregated

Of those electrodes uniquely selective for part of speech, 77% showed responses that

were significantly stronger for nouns compared to adjectives (βNvsA > 0) as illus-

trated by the example in Figure 1.4a-j. The remaining 23% showed responses that

were stronger for adjectives compared to nouns (βNvsA < 0) as illustrated by the ex-

ample in Figure 1.10 a-i (Table S5). For auditory stimuli, the difference in the onset

time between nouns and adjectives was larger for noun-preferring electrodes (550 ±

107 ms) than adjective-preferring electrodes (312 ± 94 ms, ranksum test, p<0.05). For

visual stimuli, the difference in the onset time between nouns and adjectives was not

different between noun-preferring electrodes (425 ± 107 ms) and adjective- prefer-

ring electrodes (437 ± 134 ms, ranksum test, p>0.05). There was a significant correla-

tion between auditory and visual difference onset times for noun-preferring electrodes

(Pearson R2 = 0.80, p<0.01) but not for adjective preferring electrodes (Pearson R2 =

-0.70, p>0.05).

When I displayed the electrode locations on the brain, I observed an anatomical

separation between these two groups of responses (Figure 1.4 l,m). I compared noun-

versus adjective- preferring electrodes along 3 axes of Montreal Neurological Insti-

tute 305 Coordinates (MNI305, units abbreviated as m.u.(Bansal et al., 2014)). Along

the lateral to medial axis (x-axis in Figure 1.4 l,m, zero being more medial), noun-

preferring electrodes had a mean of 25.3±6.2 m.u. and adjective- preferring electrodes

had a mean of 47.3±7.7 m.u. (p<0.01, ranksum test). Along the ventral- dorsal axis

(z-axis in Figure 1.4 l), noun electrodes had a mean of -12.17±5.3 m.u. and adjective

electrodes had a mean of -3.7±1.7 m.u. (p<0.05, ranksum test). Along the posterior-
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anterior axis (y-axis in Figure 1.4 m), noun electrodes had a mean of 21.4±18.9 m.u.

and adjective electrodes had a mean of -2.7±25.8 m.u. (p<0.05, ranksum test). Table

S6 summarizes the locations of noun- vs adjective- preferring electrodes across brain

regions. A permutation test combining all brain regions for these electrodes showed

that that electrodes in the LOF tended to show stronger responses to nouns ( 90% βN-

vsA > 0, p<10-4, permutation test, n=106 iterations, Methods).
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Figure 1.10:
Example electrode distinguishing nouns from adjectives with a preference for
adjectives.
a-d.Trial averaged γ-power of neural responses to English words, separated by nouns
(blue), and adjectives (red). Neural responses are shown for auditory presentation (a,
b, , n=442 grammatical and 438 ungrammatical trials), and visual presentation (c, d,
n=432 grammatical and 434 ungrammatical trials), aligned to word 1 onset (a, c) or word 2
onset (b, d). The vertical dashed lines show word onsets. Shaded areas represent s.e.m.
Horizontal lines indicate time periods of statistically significant differences between nouns
and adjectives (t-test, p<0.05, Benjamini-Hochberg false detection rate, q<0.05).
(e-h) Raster plots showing the responses in individual trials (see color scale on bottom
right).
i. Electrode location in the left superior temporal gyrus.
j-k. Z-scored β coefficients for Generalized Linear Model used to predict area under
the curve between 200 ms and 800 ms post word using four task predictors: Noun
versus Adjectives, Grammatical versus Ungrammatical, number of syllables (auditory
presentation) and word length (visual presentation). Asterisks denote statistically
significant coefficients. Only the Nouns vs Adjective task predictor was significant and
showed a preference for adjectives (p<0.01, corrected for multiple comparisons and
βNvsA < 0)
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1.3 POS Decoding: Generalized and Robust

1.3.1 Electrodes in the left lateral orbitofrontal cortex can distinguish POS categories

in individual trials and generalizes across words and modalities

To assess whether information about part of speech was available in individual tri-

als, I used a machine learning pseudopopulation approach by combining electrodes

within anatomically defined brain regions in the Desikan-Killiany Atlas. I binned the

response in 100 ms time bins and used the top-N principal components that explained

more than 70% of the variance in the training data for all the electrodes. I trained an

SVM classifier with a linear kernel to distinguish between nouns and adjectives and

tested the classifier on held-out data (Methods). Figure 1.11 shows decoding accu-

racy for the left (Figure 1.11 a,d,g) and the right (Figure 1.11 b,e,h) LOF as a func-

tion of time from word onset. When trained using data from both word1 and word2

with combined auditory and visual features, there was a statistically significant de-

coding performance starting approximately at 300 ms after word onset and reaching a

peak of 63.6±1.1% at 500 ms after word onset in the left LOF (Figure 1.11 a). Statis-

tical significance was assessed by comparing with a control where noun and adjective

labels were randomly shuffled (Methods). Even though there were almost twice as

many electrodes in the right LOF compared to the left LOF (Table S2, Figure 1.1

b-g), decoding performance was much higher for the left LOF compared to the right

LOF (compare Figure 1.11 a versus Figure 1.11 b). The differences between the left

and right LOF persisted after randomly subsampling to equalize the number of elec-

trodes across hemispheres for all regions (Figure 1.12 a,b).
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In Figure 1.11 a,b, word 1 and word 2 are combined. Decoding performance in

the left LOF was also high when separately considering word 1 (Figure 1.13 a-c) and

word 2 (Figure 1.13 d- f). Furthermore, the machine learning classifier was able to

generalize across words, as evidenced by the decoding performance when training

on word 1 and testing on word 2 (Figure 1.11 d,e), and vice versa (Figure 1.11 g,h).

Similarly, auditory and visual trials are combined in Figure 1.11 a,b. Decoding per-

formance in the left LOF was also high when separately considering auditory trials

(Figure 1.13 g-i) and visual trials (Figure 1.13 j-l). Furthermore, the machine learn-

ing classifier was able to generalize across modalities as evidenced by the decoding

performance when training on auditory trials and testing on vision trials (Figure 1.13

m-o) and vice versa (Figure 1.13 p-r).

I extended the analyses in Figure 1.11 a,b,d,e,g,h to all other regions in the Desikan-

Killiany atlas. In addition to the left LOF, the left superior temporal cortex and the

left fusiform cortex also showed statistically significant decoding performance (Figure

1.11 c). However, in contrast to the results for the left LOF, the decoding results for

other regions were less robust (Figure 1.12 c) and did not generalize across words

(Figure 1.11 f,i) or across modalities (Figure 1.13 o,r).
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Figure 1.11: Neural signals from left-LOF distinguish nouns and adjectives when
number of electrodes were normalized across all regions and both hemispheres.
a, b, d, e, g, h. Average cross-validated performance of a support vector machine
classifier (SVM, 80% training/20% test) decoding nouns versus adjectives for all
electrodes in the left lateral orbitofrontal cortex (LOF) (a, d, g) or the right LOF (b, e,
h). The dotted horizontal black line shows the chance level. Shaded areas denote s.e.m.
Solid horizontal black bar shows time points where performance significantly differed from
chance (100 random shuffles, ranksum test, p<0.01). The inputs to the SVM included
the top-N principal components of the electrode response that explained >70% variance
for the training data at each time bin (Methods). a, b: Features from auditory and visual
responses were combined and used for training and testing on a dataset of both Word1
and Word2 trials. c, d: Generalization across word order was evaluated on a dataset
where Word1 trials were used for training and word2 trials were used for testing. g, h:
Training on Word2 and testing on Word1. Black: original labels; Gray: shuffled labels. (see
Figure S9 for decoding performance when the number of electrodes was same across all
regions and both hemispheres)
c, f, i. Summary of average of max-decoding performance for distinguishing nouns versus
adjectives in each hemisphere (dark: left; white: right) for different brain regions. Bottom
asterisks denote regions with significant decoding performance with respect to chance
and performance from the real and null distribution do not overlap within 3 standard
deviations of each other (p<0.01, ranksum test, corrected for multiple comparisons,
Methods). Shaded box: maximum of the mean ± SD. for the null distribution across all
regions. Top asterisks with a U-bracket denote significant differences between decoding
accuracy of the left versus the right hemisphere (p<0.01, ranksum test, corrected for
multiple comparisons). Regions are sorted in descending order of performance in panel c.
c: Classifiers were trained and tested with features from both Word1 and Word2 trials.
f: Classifiers were trained on Word1 trials and tested on Word2 trials. i: Classifiers
were trained on Word2 trials and tested on Word1 trials. (see Figure S10 for controls
on word1-only, word2-only, audio-only, visual-only, audio-to- vision and vision-to-audio
performance.)c.
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Figure 1.12: Neural signals from left-LOF distinguish nouns and adjectives when
number of electrodes were normalized across all regions and both hemispheres.
a-b. Average cross-validated performance of a support vector machine classifier (SVM,
80% training/20% test) decoding nouns versus adjectives for 8 randomly subsampled
electrodes in the left lateral orbitofrontal cortex (LOF) (a), and in the right LOF (b).
Black: original labels; Gray: shuffled labels. The dotted horizontal black line shows the
chance level. Solid horizontal gray bar shows time points where decoding from correct
labels significantly differed from that of shuffled labels (100 random shuffles of the data,
ranksum test, p<0.01). The inputs to the SVM were 100 ms time bins from word onset
containing the top-N principal components of the electrode response at each bin that
explained >70% variance for the training data (Methods).
(c). Summary of average of max-decoding performance for distinguishing nouns versus
adjectives across both hemispheres (left hemisphere: dark gray bars; right hemisphere:
white bars) for different brain regions when a total of 8 electrodes was taken from each
hemisphere in each region for the decoding. Regions with less than 8 electrodes in either
hemisphere were omitted. Asterisk: significant hemisphere within a Desikan-Killiani
defined brain region (p<0.01, ranksum test, corrected for multiple comparisons, and
performance from the real and null distribution do not overlap within 3 standard deviations
of each other) (Methods). Gray box: maximum mean ± s.t.d. for the null distribution
across all regions. Asterisk with a U-bracket: significant difference between decoding
accuracy of the left versus the right hemisphere (p<0.01, ranksum test, corrected for
multiple comparisons). Regions are sorted in descending order of performance in panel c.
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Figure 1.13: Neural signals distinguish nouns and adjectives in single trials for
word1-only, word2-only, audio-only features, vision-only features, and generaliza-
tion from audio to vision or vice versa.
a, b, d, e, g, h, m, n, p, q. Average cross-validated performance of a support vector
machine classifier (SVM, 80% training/20% test) decoding nouns versus adjectives for
all electrodes in the left lateral orbitofrontal cortex (LOF) (a,d,g,j,m,p), and in the right
LOF (b,e,h,k,n,q). The dotted horizontal black line shows the chance level. Shaded areas
denote s.e.m. Solid horizontal black bar shows time points where performance significantly
differed from chance (100 random shuffles, ranksum test, p<0.01). The inputs to the SVM
included the top-N principal components of the electrode response that explained >70%
variance for the training data at each time bin (Methods). Features from auditory and
visual responses were combined and used for training and testing on datasets of word1
(a,b) and word2 trials (d,e). Using a combined dataset of word1 and word2 trials, the
decoding performance was evaluated for audio-only (g,h) and vision-only features (j,k).
The decoding performance generalized for audio to vision (m,n) and vice versa (p,q).
(c). Summary of average of max-decoding performance for distinguishing nouns versus
adjectives across both hemispheres (left hemisphere: dark gray bars; right hemisphere:
white bars) for different brain regions when a total of 8 electrodes was taken from each
hemisphere in each region for the decoding. Regions with less than 8 electrodes in either
hemisphere were omitted. Asterisk: significant hemisphere within a Desikan-Killiani
defined brain region (p<0.01, ranksum test, corrected for multiple comparisons, and
performance from the real and null distribution do not overlap within 3 standard deviations
of each other) (Methods). Gray box: maximum mean ± s.t.d. for the null distribution
across all regions. Asterisk with a U-bracket: significant difference between decoding
accuracy of the left versus the right hemisphere (p<0.01, ranksum test, corrected for
multiple comparisons). Regions are sorted in descending order of performance in panel c.
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1.3.2 Multimodal neural signals distinguishing different parts of speech are conserved

across languages

One of the participants was fluent in two languages, English and Spanish. Therefore,

this patient provided an opportunity to ask whether the neural signals discriminating

between different parts of speech were language-specific or showed invariance across

languages. All the words were translated into Spanish by a native Spanish speaker

and the task was repeated in both languages. Figure 1.14 a-h shows the responses of

an example electrode located in the left LOF (Figure 1.14 k). This electrode showed

a stronger response to nouns compared to adjectives for auditory stimuli (Figure 1.14

a, b, e, f), for visual stimuli (Figure 1.14 c, d, g, h), for Word 1 (Figure 1.14 a, c,

e, g), and for Word 2 (Figure 1.14 b, d, f, h). Interestingly, the separation between

nouns and adjectives was evident both when the words were presented in English

(Figure 4a-d) and when the words were presented in Spanish (Figure 1.14 e-h). The

GLM analysis showed that nouns versus adjectives was the only significant predictor

in English trials (Figure 1.14 i), and Spanish trials (Figure 1.14 j). All in all, there

were three electrodes in this participant that showed a multimodal response selective

for part of speech. All three of these electrodes were in the left orbital H-shaped sul-

cus within the LOF (Figure 1.14 k, green).

In addition to this bilingual participant, the task was run in monolingual partici-

pants who spoke English (n=16 participants) and monolingual participants who spoke

Taiwanese (n=3 participants, Table S1). In Figure 1.14 k, I show all electrodes from

the left LOF that showed part-of-speech encoding from different participants (Table
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S7). I also indicate the language in which this difference was observed whether it

be English (pink), Taiwanese (brown) or bilingual English/Spanish (green). All par-

ticipants in Figure 1.14 k were right-handed. Electrodes separating parts of speech

from monolingual participants were also clustered in the same region. Thus, the left

LOF distinguished between parts of speech for both auditory and visual presentations

of stimuli across participants speaking different languages. The proportion of POS-

selective electrodes in the left LOF in my study is consistent with previous studies

analyzing selective electrodes for visual object processing in the human fusiform and

inferotemporal cortex.

44



45



Figure 1.14: Neural signals in left LOF generalize across languages in a bilingual
subject and in monolingual subjects.
a-h. Trial averaged responses of an electrode in the left lateral orbitofrontal cortex
from a bilingual patient. The format follows Fig. 2a-d. (a-d) English words (audio:
n=190 grammatical and 185 ungrammatical trials; vision: n=189 grammatical and 191
ungrammatical trials). (e- h) Spanish words (audio: n=184 grammatical and ungrammatical
trials; vision: 184 grammatical and 186 ungrammatical trials). Auditory responses (a, b, e,
f) . Visual responses (c, d, g, h) . Word 1 (a, c, e, g) and Word 2 (b, d, f, h) .
i,j. Z-scored β coefficients for Generalized Linear Model to predict area under the curve
(AUC) for the English experiment (i) and for the Spanish experiment (j). The AUC
computed between 200 ms and 800 ms post word onset using four task predictors:
Noun versus Adjectives, Grammatical versus Ungrammatical, number of syllables
(auditory presentation) and word length (visual presentation). Asterisks denote statistically
significant coefficients corrected for multiple comparisons (Methods). The word order for
grammatically correct trials in English is an adjective followed by a noun, such as “green
apple”. This word order gets flipped in grammatically correct Spanish trials.
k. Inferior view of all the 9 out of 38 electrodes (8 audiovisual: Figure 2k, 1 visual-only:
Figure S4, see Table S4 and S7) in the left lateral orbitofrontal cortex that showed
noun versus adjective differences across different languages in which the experiment
was conducted (significant Nouns versus Adjectives β, p<0.01 corrected for multiple
comparisons). These electrodes come from 4 different subjects. Electrodes from the
bilingual patient are in green with a black arrow indicating the example electrode.
Electrodes from one monolingual English patient are in pink and those from 2 monolingual
Taiwanese patients are in brown.

1.3.3 Electrodes distinguish parts-of-speech for nouns and adjectives matched for their

frequency of occurrence in a bilingual participant.
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Figure 1.15: Example electrode distinguishes parts-of-speech for nouns and adjec-
tives matched for their frequency of occurrence in a bilingual participant.
a-e Same format as Figure 1.7 a-e for English phrases.
a. Sub-sampled distribution of English with nouns and adjectives matched for their
frequency of occurrence (both mean and median were matched with ttest and ranksum
test, respectively).
b-e., Trial-averaged gamma power for auditory phrases (b,c) and visual phrases (d,e).
Gray bars indicate time periods of significant differences between nouns and adjectives.
(Methods)
f-j Same format as above for Spanish phrases.
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1.4 POS in Full Sentences

1.4.1 Multimodal neural signals distinguishing nouns and verbs in sentences

The experiment presented thus far concerned the responses to nouns and adjectives

within minimal phrases. I extended these results in two ways: (1) by evaluating whether

there are multimodal signals that distinguish between nouns and verbs; (2) by evalu-

ating the neural signals to words embedded within full sentences. I recorded intracra-

nial field potentials from 1,563 electrodes (844 in gray matter, 719 in white matter)

implanted in 17 patients via stereoelectroencephalography. Participants heard (audi-

tory modality) or read (visual modality) four-word sentences that were sequentially

presented (Figure 1.17 a,Methods). To assess comprehension, participants were

asked to indicate whether the sentence adequately described an image that followed

the last word after a 1,000 ms interval. Participants performed the task correctly on

85.7±14.3% of the trials. I considered two types of sentences, semantic (e.g., “the

girls ate cakes”) or non-semantic (e.g., “the cakes ate girls”). All electrode locations

are shown in Figure 1.16 (see also Table S11,Methods).

Following the procedures described in the analyses of neural responses to nouns

versus adjectives, I evaluated whether neural signals differentiated between nouns and

verbs. Figure 1.17 shows the responses of an example electrode located in the pars

triangularis (1.17 f denotes the electrode location). The neural responses are aligned

to word onset for auditory presentation (Figure 1.17 b) or visual presentation (Figure

1.17 c). The responses to nouns (blue) were stronger than verbs (black) for auditory
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and visual stimuli. The differences between nouns and verbs can be readily appreci-

ated even in individual trials (Figure 1.17 d,e). These differences became significant

at approximately 140 ms after word onset for auditory presentation and about 320

ms for visual presentation. In all, there were 121 electrodes that showed selective re-

sponses distinguishing nouns from verbs both for auditory and visual presentation.

Even though I tested these electrodes for nouns versus verbs differences, it is pos-

sible that auditory features (like number of syllables) or orthographic features (like

word length) could contribute to the neural responses. Further, each sentence could

either be semantic (S: “the girls ate cakes”) or not (NS: “the cakes ate girls). To ad-

dress evaluate whether word features and semantic features contributed to the neural

signals underlying parts of speech, I built a GLM for each electrode to predicts its

response AUC between 200 ms and 800 ms after word onset using four predictors:

nouns versus verbs, semantic or not, number of syllables, and word length (Methods).

The predictor coefficients in the GLM model for the example electrode in Figure 1.17

b-e show that only the nouns versus verbs label significantly explained the neural re-

sponses (Figure 1.17 g). A total of 41 audiovisual electrodes showed nouns versus

verbs as the only statistically significant predictor in the GLM analysis, such as the

example electrode Figure 1.17 b-g. The locations of these electrodes are shown in

Figure 1.17 h,i. The electrode locations reveal two clusters enriched in the left pars

triangularis and precentral regions. The difference in the number of significant elec-

trodes between the right and left hemispheres was statistically significant: p<10-4,

permutation test, n=106 iterations, see Table S12).

Many electrodes (63%) showed responses that were significantly stronger for nouns
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compared to adjectives (βNvsV > 0), as illustrated by the example in Figure 1.17

b-e. I observed an anatomical separation between these two groups of responses

(Figure 1.17 j,k). I compared noun- versus verb- preferring electrodes along 3 axes

of Montreal Neurological Institute 305 Coordinates (MNI305, units abbreviated as

m.u. (Quian Quiroga et al., 2005)). Along the anterior-posterior axis (y-axis in Figure

1.17 j,k), noun electrodes had a mean of -11.8±21.8 m.u. and verb electrodes had a

mean of 10.1±26.4 m.u. (p<0.01, ranksum test). Along the ventral-dorsal axis (z-axis

in Figure 1.17 j), noun electrodes had a mean of -5.1±29.5 m.u. and verb electrodes

had a mean of 15.9±27.0 m.u. (p<0.05, ranksum test). Along the lateral to medial axis

(x-axis in Figure 1.17 k, zero being more medial), noun-preferring electrodes had a

mean of 38.3±16 m.u. and adjective-preferring electrodes had a mean of 40.3±11.6

m.u. (not significant, p>0.05, ranksum test).
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Figure 1.16: Electrode locations for sentence task.
a-f. Location of all electrodes overlayed on the Desikan-Killiany Atlas shown with different
views. Each white circle shows one electrode. a. Left lateral view (n=760), b. Left medial
view (n=760), c. Superior, whole brain view (n=1593), d. Inferior, whole brain view (n=
1593), e. Right lateral view (n=833) f. Right medial view (n=833).
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Figure 1.17: Neural signals distinguish between different parts of speech in sen-
tences.
a. Task Schematic. Sentences comprising four words sequentially presented either
in visual or auditory modality were followed by an image. The sentences were either
semantic (50% S sentences, e.g., “the girls ate cakes”) or non-semantic (50% NS
sentences, e.g., “the cakes ate girls”). Participant were instructed to indicate via a button
press whether the sentence described the image accurately or not (Methods).
b,c. Trial-averaged normalized gamma-band power of responses from an example
electrode in the pars triangularis (see eletrode location in f) to nouns (blue) or verbs (black)
during presentation of auditory stimuli (b, n=628 nouns and 314 verbs) or visual stimuli
(c, n=628 nouns and 314 verbs) aligned to word onset (vertical dashed line). Shaded
areas denote s.e.m. Horizontal gray lines denote windows of statistically significant
differences between responses to nouns versus verb (t-test p<0.05, Benjamini-Hochberg
false detection rate, q<0.05).
d,e. Raster plots showing the responses in each individual trial (see color scale on bottom
right). The blue and black curves in b,c correspond to the averages of noun and verb trials,
respectively, in d,e.
f. Location of the example electrode in the pars triangularis.
g. Z-scored β coefficients for Generalized Linear Model used to predict area under the
curve between 200 ms and 800 ms post word onset, using four task predictors: Noun
versus Verbs, Semantically correct versus incorrect, number of syllables (auditory
presentation) and word length (visual presentation). Asterisks denote statistically
significant coefficients, corrected for multiple comparisons (Methods).
h,i. Lateral view of left (h) and right (i) hemispheres showing electrodes that revealed
statistically significant differences between nouns and verbs for both audio and visual
presentation (orange circles, n=41 electrodes, 27 left). Electrodes whose responses were
significantly explained only by the Nouns versus Verbs task predictor in the GLM are
included in this plot.
j,k. All electrodes from h,i projected onto the left hemisphere are shown on the lateral
plane (j) and the axial plane (k). All the electrodes that respond more strongly to nouns,
i.e., Nouns versus Verbs β>0 (n=23 electrodes), are shown in blue and electrodes that
responded more strongly to verbs (β<0, n=18 electrodes), are shown in black. All units
are in MNI305 coordinates. Kernel density curves (bandwidth 2) outline the marginal
distributions of noun-preferring (blue) and verb-preferring (black) electrodes along the
anterior-posterior axis (j,k: y-axis), ventral-dorsal axis (j: left z-axis) and lateral- medial axis
(k: left x-axis, zero being more medial). P-values indicate significant differences between
the coordinates for noun- and verb-preferring electrodes (ranksum test).
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1.5 Grammatical Versus Ungrammatical Phrases

1.5.1 Multimodal Neural Signals Distinguish Grammatical and Ungrammatical in Min-

imal Phrases

I evaluated whether the neural signals differentiated between grammatical and un-

grammatical trials. Figure 1.18 shows the responses of an example electrode located

in the postcentral cortex (Figure 1.18 i). The responses of this electrode are aligned

to the word onset (vertical dashed line) for auditory presentation (Figure 1.18 a,b),

and visual presentation (Figure 1.18 c,d), for the first word in each trial (Figure 1.18

a,c), or the second word in each trial (Figure 1.18 b,d). This electrode showed mul-

timodal responses triggered by both auditory and visual stimuli. There was a stronger

response to grammatical trials (word1-red and word2-blue) compared to ungram-

matical trials (word1-blue and word2-red) for all four conditions for both visual and

auditory stimuli (horizontal gray bars denote periods with a statistically significant

difference between nouns and adjectives). The differences between grammatical and

ungrammatical trials for this electrode became significant at approximately 530 ms

after word onset for visual presentation and at about 565 ms for auditory presentation.

Figure 1.18 e-h shows the raster plot with individual trials for auditory presentation

in the top row and for visual presentation in the bottom row.

Even though each this electrode could separate grammatically correct and incorrect

trials, I asked whether trial-to-trial level responses could also be modulated by parts-

of-speech (nouns vs adjectives), number of syllables in the word in auditory stimuli
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or word length for visual stimuli. To address this, I built a GLM similar to Figure 1.4

j (Methods). The predictor coefficients for the example electrode in Figure 1.18 a-d

show that (Figure 1.18 j) only the grammatically correct versus ungrammatical label

significantly explained the neural responses. A total of 16 electrodes showed gram-

matically correct versus ungrammatical as the only statistically significant predictor in

the GLM analysis. 5 of these 16 electrodes distinguished grammatically correct versus

ungrammatical trials for both visual and auditory inputs, such as the example elec-

trode shown in Figure 1.18 a-d (10.42% of the multimodal electrodes). The locations

of these electrodes are shown in orange in Figure 1.18 k,l.

As a null hypothesis, I had assumed that distinguishing grammatically correct phrases

from ungrammatical phrases constitutes a core component of language and would

therefore be reflected in both modalities. However, this was not the case. Differential

responses between nouns and adjectives were observed in 8 electrodes only during

visual presentation (50% of the grammar separating electrodes, their locations are

shown in black in Figure 1.18 k,l) and 3 electrodes only during auditory presentation

(18.75% of the grammar separating, their locations are shown in white in Figure 1.18

k,l).
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Figure 1.18: Neural signals distinguish correct from incorrect syntax.
a-d. Normalized gamma-band power of responses from an example electrode in
the right posterior parietal cortex (i). The format is the same as Fig. 2 a-d (audio:
n=214 grammatical and 224 ungrammatical trials; vision: 219 grammatical and 221
ungrammatical trials).
e-h. Raster plots showing the responses in each individual trial (see color scale on bottom
right).
i. Location of the example electrode in the right precentral gyrus.
j. Z-scored β coefficients for Generalized Linear Model used to predict area under the
curve between 200 ms and 800 ms post word onset. (Methods)
k,l. Lateral view of electrodes in the left [l, n=9 electrodes] or right [m, n=7 electrodes]
hemisphere that showed significant activation for both words during audio presentation
only (white circles , nLeft = 2, nRight = 1 electrodes). visual presentation only (black
circles, nLeft = 4, nRight = 4 electrodes) or both audio and visual presentations (orange
circles, nLeft = 3, nRight = 3 electrodes). Only electrodes whose responses were
significantly explained by the Grammatical vs Ungrammatical label in the GLM are
included in this plot. (see Table S13 for distribution of electrodes across regions)
m. Distribution of electrodes with signals enhanced either by grammatically correct (green)
or incorrect (magenta) phrases, projected on to the left lateral view.
(see Table S13)

1.6 Supplementary Tables
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Subject Age Gender Language Handedness #Trials %Correct #Electrodes

1 9 M EN R 1178 98.5 142
2 14 F EN R 1332 94.7 100
3 22 M EN R 1520 97.5 212
4 49 F EN L 760 83.3 44
5 18 F EN R 3573 99.6 100
6 20 M EN R 760 99.3 139

7 16 F EN L

          
760       
760   

          
67.5       
97.9   88

8 12 F EN R 760 92.9 131
9 37 F EN R 1900 89.3 51

10 47 F EN R 1895 98.3 75
11 12 M EN R 950 95.5 135
12 13 F EN R 950 99.3 121
13 25 M EN L write, R throw 1520 99.3 84
14 26 F EN L write, R other 1900 97.4 32
15 32 F EN R 1521 98.4 29

16 22 M EN & SP R

          
EN:950       
SP:950   97.3 77

17 42 M TW R 1068 89 57
18 36 M TW R 2429 87.1 59
19 53 F EN R 950 90.5 73
20 44 M TW R 1900 NA 52

TOTAL 1801

Table S1 | Information about each participant including age, gender, language 
(ENglish, SPanish, TaiWanese), handedness, number of trials, behavioral 
performance and number of electrodes.
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Region\nElecs Total GMLeft WMLeft Left GMRight WMRight Right rAud rVis rAV
Amygdala 52 21 0 21 31 0 31 9 7 1

Cerebellum-Cortex 4 3 0 3 1 0 1 2 1 1
Hippocampus 59 33 0 33 26 0 26 15 14 5
Inf-Lat-Vent 1 1 0 1 0 0 0 0 1 0

Lateral-Ventricle 4 0 0 0 4 0 4 0 1 0
Putamen 2 1 0 1 1 0 1 1 0 0
VentralDC 1 1 0 1 0 0 0 0 0 0
bankssts 24 2 4 6 9 9 18 20 11 9

caudalanteriorcingulate 17 3 1 4 3 10 13 0 0 0
caudalmiddlefrontal 52 2 12 14 21 17 38 11 14 7

cuneus 16 0 3 3 10 3 13 6 8 5
entorhinal 6 1 1 2 2 2 4 0 1 0
frontalpole 1 0 0 0 1 0 1 1 1 1

fusiform 108 19 32 51 27 30 57 40 41 21
inferiorparietal 73 3 17 20 31 22 53 14 35 11

inferiortemporal 119 14 38 52 31 36 67 22 26 15
insula 109 18 29 47 29 33 62 45 24 12

isthmuscingulate 32 7 4 11 11 10 21 6 4 1
lateraloccipital 41 2 8 10 13 18 31 16 26 9

lateralorbitofrontal 113 7 31 38 38 37 75 45 40 29
lingual 45 6 13 19 8 18 26 21 33 17

medialorbitofrontal 47 10 8 18 14 15 29 6 9 5
middletemporal 117 27 39 66 24 27 51 28 20 8

paracentral 4 0 0 0 2 2 4 0 0 0
parahippocampal 27 12 4 16 6 5 11 3 3 1
parsopercularis 18 5 4 9 4 5 9 10 7 5

parsorbitalis 20 2 5 7 7 6 13 4 7 4
parstriangularis 34 3 4 7 16 11 27 9 10 7

pericalcarine 13 3 2 5 3 5 8 8 8 6
postcentral 37 2 6 8 10 19 29 13 12 7

posteriorcingulate 16 4 3 7 1 8 9 6 4 4
precentral 87 10 10 20 33 34 67 47 40 29
precuneus 80 12 24 36 14 30 44 6 15 3

rostralanteriorcingulate 16 3 4 7 5 4 9 0 0 0
rostralmiddlefrontal 94 16 22 38 24 32 56 27 28 18

superiorfrontal 85 17 16 33 19 33 52 18 18 9
superiorparietal 49 4 6 10 15 24 39 13 16 7

superiortemporal 108 20 38 58 15 35 50 69 28 26
supramarginal 56 0 0 0 30 26 56 15 12 5
temporalpole 4 3 1 4 0 0 0 1 2 0

transversetemporal 10 2 5 7 2 1 3 8 5 5
TOTAL 1801 299 394 693 541 567 1108 565 532 293

Table S2 | Distribution of electrodes over the Desikan-Killiany Atlas 
The number of electrodes for different brain regions of the DK atlas (rows) for different conditions 
(columns). From the left to right the columns represent the following: (1) Total electrodes, (2) Gray 
Matter Left, (3) White Matter Left, (4) Total Left, (5) Gray Matter Right, (6) White Matter Right, (7) 
Total Right, (8) Responsive Audio, (9) Responsive Visual, (10) Responsive Audiovisual. The regions 
that showed a significant percent of audiovisual electrodes that was statistically unlikely to get from 
a random intersection of audio or visual electrodes are highlighted in bold (p<0.01, permutation test, 
n=106 iterations, total electrodes >=20)



Table S2 | Distribution of electrodes over the Desikan-Killiany Atlas 
The number of electrodes for different brain regions of the DK atlas (rows) for different conditions 
(columns). From the left to right the columns represent the following: (1) Total electrodes, (2) Gray 
Matter Left, (3) White Matter Left, (4) Total Left, (5) Gray Matter Right, (6) White Matter Right, (7) 
Total Right, (8) Responsive Audio, (9) Responsive Visual, (10) Responsive Audiovisual. The regions 
that showed a significant percent of audiovisual electrodes that was statistically unlikely to get from 
a random intersection of audio or visual electrodes are highlighted in bold (p<0.01, permutation test, 
n=106 iterations, total electrodes >=20)



(a) ENGLISH
Noun Animal Length Syll. Ngram Freq Noun food Length Syll. Ngram Freq
'fish' 4 1 6.42E-05 'water' 5 2 3.39E-04
'horse' 5 1 6.07E-05 'oil' 3 1 8.64E-05
'bear' 4 1 5.56E-05 'coffee' 6 2 3.94E-05
'dog' 3 1 5.33E-05 'salt' 4 1 3.70E-05
'bird' 4 1 3.20E-05 'fruit' 5 1 3.59E-05
'cat' 3 1 2.91E-05 'milk' 4 1 3.58E-05
'mouse' 5 1 2.31E-05 'sugar' 5 2 3.40E-05
'sheep' 5 1 1.95E-05 'tea' 3 1 3.33E-05
'turkey' 6 2 1.92E-05 'rice' 4 1 3.13E-05
'fox' 3 1 1.84E-05 'bread' 5 1 3.07E-05
'bull' 4 1 1.63E-05 'eggs' 4 1 2.13E-05
'rat' 3 1 1.49E-05 'corn' 4 1 2.00E-05
'wolf' 4 1 1.47E-05 'apple' 5 1 1.65E-05
'seal' 4 1 1.40E-05 'cheese' 6 1 1.53E-05
'lion' 4 2 1.36E-05 'butter' 6 2 1.51E-05
'deer' 4 1 1.24E-05 'pepper' 6 2 1.26E-05
'cow' 3 1 1.14E-05 'olive' 5 1 1.14E-05
'snake' 5 1 1.12E-05 'bean' 4 1 9.08E-06
'penguin' 7 2 1.05E-05 'garlic' 6 2 8.59E-06
'eagle' 5 2 9.73E-06 'salad' 5 2 8.55E-06
'dragon' 6 2 9.54E-06 'lemon' 5 2 8.49E-06
'pig' 3 1 9.35E-06 'onion' 5 2 6.42E-06
'bat' 3 1 9.28E-06 'berry' 5 1 6.39E-06
'tiger' 5 2 8.53E-06 'cherry' 6 1 6.27E-06
'rabbit' 6 2 8.41E-06 'pizza' 5 2 5.60E-06
'monkey' 6 2 6.86E-06 'nut' 3 1 5.20E-06
'duck' 4 1 6.70E-06 'pasta' 5 2 4.50E-06
'goat' 4 1 6.34E-06 'grape' 5 1 3.86E-06
'whale' 5 1 5.77E-06 'peas' 4 1 3.61E-06
'hawk' 4 1 5.56E-06 'peach' 5 1 3.22E-06
'spider' 6 2 5.46E-06 'plum' 4 1 2.78E-06
'ant' 3 1 5.33E-06 'lettuce' 7 2 2.68E-06
Adj concrete Length Syll. Ngram Freq Adj abstract Length Syll. Ngram Freq
'long' 4 1 5.04E-04 'good' 4 1 5.76E-04
'small' 5 1 3.48E-04 'best' 4 1 2.69E-04
'large' 5 1 3.21E-04 'better' 6 2 2.63E-04
'low' 3 1 2.09E-04 'free' 4 1 2.17E-04
'short' 5 1 1.80E-04 'real' 4 1 2.10E-04
'clear' 5 1 1.74E-04 'poor' 4 1 1.42E-04
'hard' 4 1 1.59E-04 'bad' 3 1 1.09E-04
'strong' 6 1 1.47E-04 'serious' 7 2 8.12E-05
'big' 3 1 1.40E-04 'happy' 5 2 7.47E-05
'deep' 4 1 1.07E-04 'rich' 4 1 6.90E-05



'dark' 4 1 1.00E-04 'holy' 4 2 6.65E-05
'cold' 4 1 9.21E-05 'pretty' 6 2 5.84E-05
'round' 5 1 8.84E-05 'evil' 4 2 5.71E-05
'heavy' 5 2 6.79E-05 'wild' 4 1 5.37E-05
'hot' 3 1 6.75E-05 'pure' 4 1 4.79E-05
'fast' 4 1 6.44E-05 'sick' 4 1 3.45E-05
'dry' 3 1 5.33E-05 'busy' 4 2 2.96E-05
'soft' 4 1 5.22E-05 'sad' 3 1 2.54E-05
'slow' 4 1 4.84E-05 'proud' 5 1 2.53E-05
'solid' 5 2 4.74E-05 'calm' 4 1 2.47E-05
'huge' 4 1 4.71E-05 'gentle' 6 1 2.04E-05
'warm' 4 1 4.71E-05 'strict' 6 1 2.02E-05
'fat' 3 1 4.18E-05 'mad' 3 1 2.02E-05
'bright' 6 1 4.17E-05 'smart' 5 1 2.01E-05
'weak' 4 1 4.16E-05 'crazy' 5 2 1.70E-05
'thin' 4 1 4.10E-05 'brave' 5 1 1.55E-05
'sweet' 5 1 4.08E-05 'cheap' 5 1 1.49E-05
'silent' 6 1 3.65E-05 'ugly' 4 2 1.12E-05
'oval' 4 2 5.71E-06 'clever' 6 1 1.10E-05
'tiny' 4 2 2.93E-05 'jealous' 7 2 7.70E-06
'dirty' 5 2 1.58E-05 'shy' 3 1 7.70E-06
'massive' 7 2 2.52E-05 'lazy' 4 2 6.09E-06

(b) SPANISH
Noun Animal Length Syll. Ngram Freq Noun food Length Syll. Ngram Freq
buho 4 2 6.00E-08 ajo 3 2 5.00E-06
burro 5 2 3.50E-06 arroz 5 2 1.30E-05
dragon 6 2 8.00E-08 café 4 2 5.00E-05
gallo 5 2 6.00E-06 coco 4 2 3.00E-06
gato 4 2 1.40E-05 frijol 6 2 4.50E-06
leon 4 1 2.20E-07 huevo 5 2 1.00E-05
lobo 4 2 7.80E-06 jamon 5 2 2.50E-08
mono 4 2 6.00E-06 jugo 4 2 5.90E-06
oso 3 2 4.80E-06 limon 5 2 6.40E-08
pato 4 2 2.50E-06 maiz 4 1 1.70E-06
pavo 4 2 3.00E-06 mango 5 2 4.50E-06
perro 5 2 3.70E-05 melon 5 2 3.00E-08
pez 3 1 8.00E-06 pan 3 1 3.70E-05
pulpo 5 2 1.00E-06 pastel 6 2 4.80E-06
raton 5 2 2.50E-08 postre 6 2 7.60E-06
tigre 5 2 5.00E-06 queso 5 2 1.10E-05
topo 4 2 1.60E-06 vino 4 2 8.00E-05
toro 4 2 9.30E-06 yogur 5 2 1.98E-06
Adj concrete Length Syll. Ngram Freq Adj abstract Length Syll. Ngram Freq



alto 4 2 1.20E-04 bello 5 2 1.40E-05
ancho 5 2 2.50E-05 bueno 5 2 7.57E-05
bajo 4 2 2.88E-04 cruel 5 2 1.40E-05
claro 5 2 1.35E-04 feliz 5 2 4.84E-05
debil 5 2 1.20E-07 feo 3 2 5.56E-06
dulce 5 2 3.00E-05 guapo 5 2 7.44E-06
duro 4 2 3.30E-05 lindo 5 2 4.53E-06
fino 4 2 1.00E-05 listo 5 2 1.25E-05
frio 4 2 6.00E-07 loco 4 2 2.44E-05
fuerte 6 2 1.10E-05 malo 4 2 3.00E-05
grande 6 2 1.00E-04 pobre 5 2 5.00E-05
largo 5 2 2.22E-04 puro 4 2 2.50E-05
lento 5 2 1.70E-05 rico 4 2 2.32E-05
rojo 4 2 3.77E-05 sabio 5 2 1.38E-05
seco 4 2 1.80E-05 serio 5 2 3.96E-05
suave 5 1 3.00E-05 tonto 5 2 7.94E-06
sucio 5 2 6.78E-06 triste 5 2 3.36E-05
verde 5 2 3.78E-05 vago 4 2 5.00E-06

(c) TAIWANESE
Noun Animal Length Syll. Ngram Freq Noun food Length Syll. Ngram Freq
乳牛-cow 2 2 1.00E-07 咖啡-coffee 2 2 4.60E-05
企鵝-penguin 2 2 1.40E-06 大蒜-garlic 2 2 8.00E-07
兔子-rabbit 2 2 3.30E-06 奶油-butter 2 2 7.60E-07
海豹-seal 2 2 5.10E-07 桃子-peach 2 2 4.60E-07
熊-bear 1 1 4.00E-06 水-water 1 1 2.00E-04
狐狸-fox 2 2 1.60E-06 沙拉-salad 2 2 3.80E-06
狗-dog 1 1 2.20E-05 洋蔥-onion 2 2 1.50E-06
狼-wolf 1 1 1.00E-05 牛奶-milk 1 1 7.80E-06
猴子-monkey 2 2 9.00E-06 玉米-corn 1 1 1.40E-05
獅子-lion 2 2 6.20E-06 米-rice 1 1 6.00E-05
綿羊-sheep 2 2 1.80E-06 糖-sugar 1 1 8.40E-06
老虎-tiger 2 2 7.00E-06 茶-tea 1 1 2.20E-05
老鼠-mouse 2 2 8.60E-06 葡萄-grape 2 2 3.70E-06
蜘蛛-spider 2 2 5.00E-06 蘋果-apple 2 2 2.30E-05
螞蟻-ant 2 2 4.60E-06 蛋-eggs 1 1 7.70E-06
貓-cat 1 1 9.10E-06 豆子-bean 2 2 4.70E-07
馬-horse 1 1 8.20E-05 辣椒-chili 2 2 9.00E-07
鯨魚-whale 2 2 1.80E-06 鳳梨-pineapple 2 2 4.50E-07
鳥-bird 1 1 1.30E-05 鹽-salt 1 1 1.20E-05
龍-dragon 1 1 2.00E-05 麵包-bread 2 2 2.50E-05
Adj concrete Length Syll. Ngram Freq Adj abstract Length Syll. Ngram Freq
乾的-dry 2 2 1.00E-04 假的-fake 2 2 4.00E-05
低的-low 2 2 2.00E-04 傻的-silly 2 2 4.00E-06



冷的-cold 2 2 1.50E-05 壞的-bad 2 2 4.30E-05
大的-large 2 2 1.40E-03 好的-good 2 2 6.00E-04
小的-small 2 2 4.50E-04 帥的-handsome 2 2 2.50E-06
快的-fast 2 2 9.60E-05 忙的-busy 2 2 1.50E-05
慢的-slow 2 2 3.00E-05 怒的-angry 2 2 5.50E-06
濕的-wet 2 2 8.10E-06 懶的-lazy 2 2 3.80E-06
熱的-hot 2 2 5.50E-05 新的-new 2 2 1.40E-03
甜的-sweet 2 2 5.00E-06 病的-sick 2 2 4.30E-04
瘦的-thin 2 2 4.00E-06 瘋的-mad 2 2 4.50E-06
短的-short 2 2 5.00E-05 真的-real 2 2 1.40E-04
硬的-hard 2 2 2.00E-05 窮的-poor 2 2 1.80E-05
胖的-fat 2 2 6.30E-06 笨的-stupid 2 2 2.20E-06
軟的-soft 2 2 2.60E-05 累的-tired 2 2 1.70E-05
輕的-light 2 2 3.00E-05 美的-beautiful 2 2 2.00E-04
酸的-sour 2 2 3.80E-06 舊的-old 2 2 8.00E-05
重的-heavy 2 2 2.20E-04 貴的-expensive 2 2 2.70E-05
長的-long 2 2 3.00E-04 醜的-ugly 2 2 6.30E-06
高的-tall 2 2 5.00E-04 難的-difficult 2 2 1.40E-04

Table S3 | List of all the words used in the experiment, their lengths, number of syllables, 
and occurrence frequency. (a) English. (b) Spanish. (c) Taiwanese



Region Total Left Right
hippocampus 1 1 0

fusiform 1 1 0
lateralorbitofrontal 10 9 1
superiortemporal 2 2 0

TOTAL 14 13 1

Table S4 | Distribution of electrodes that showed modulation by part of
speech across brain regions. Significant regions showing lateralization
shown in bold. (p<10-5, permutation test, n=106 iterations, regions with
less than 4 electrodes were excluded).



subject# #Total NounEnhanced 
(β>0)

AdjEnhanced 
(β<0) 

Generalize SubCategory 
(=Total-

Generalized)

5 2 2 0 0 2
14 3 2 1 1 2
16 3 3 0 3 0
18 2 2 0 2 0
20 4 2 2 2 2

TOTAL 14 11 3 8 6

Table S5 | Distribution of nouns- versus adjective-preferring electrodes and 
electrodes that generalize for parts-of-speech versus those that do not.
Distribution across different subjects of electrodes that are more noun 
enhanced (column 3) versus more adjective enhanced (column 4), and that of 
electrodes that generalize to nouns and adjectives (column 5) versus those 
that showed differences between noun subcategories or adjective 
subcategories (column 6).
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Region RegionTotal Noun Adjective
hippocampus 1 1 0

fusiform 1 1 0
lateralorbitofrontal 10 9 1
superiortemporal 2 0 2

TOTAL 14 11 3

Table S6 | Distribution of nouns- versus adjective-preferring
electrodes across brain regions. A permutation test combining all
brain regions for these electrodes showed that that LOF was
significantly noun preferring. (p<10-5, permutation test, n=106 

iterations, regions with less than 4 electrodes were excluded).
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subject# nLeftLOF nPOS %POS
6 6 0 0
9 3 0 0

13 6 0 0
14 4 3 75
15 4 0 0
16 5 3 60 26.9
18 5 2 40 30.8
20 5 2 40

Total 38 10 Mean%All = 27 ± 31

53.75
17.0171

 

Table S7 | Distribution of part of speech encoding electrodes in the 
left lateralorbitofrontal cortex across subjects

Mean%POSsubjects = 54 ± 17

69



Noun 
Animal #N #A #V

(#N+1)/
(#A+1)

(#N+1)/
(#V+1)

Noun 
food #N #A #V

(#N+1)/
(#A+1)

(#N+1)
/(#V+1)

'fish' 105 0 11 106.0 8.8 'water' 372 0 0 373 373
'horse' 126 0 0 127.0 127.0 'oil' 110 0 0 111 111
'bear' 11 0 93 12.0 0.1 'coffee' 68 0 0 69 69
'dog' 124 0 0 125.0 125.0 'salt' 33 0 0 34 34
'bird' 93 0 0 94.0 94.0 'fruit' 51 0 0 52 52
'cat' 55 0 0 56.0 56.0 'milk' 48 0 0 49 49

'mouse' 28 0 0 29.0 29.0 'sugar' 38 0 0 39 39
'sheep' 30 0 0 31.0 31.0 'tea' 88 0 0 89 89
'turkey' 0 0 0 - - 'rice' 16 0 0 17 17

'fox' 13 0 0 14.0 14.0 'bread' 38 0 0 39 39
'bull' 12 0 0 13.0 13.0 'eggs' 62 0 0 63 63
'rat' 24 0 0 25.0 25.0 'corn' 12 0 0 13 13

'wolf' 12 0 0 13.0 13.0 'apple' 35 0 0 36 36
'seal' 15 0 15 16.0 1.0 'cheese' 30 0 0 31 31
'lion' 21 0 0 22.0 22.0 'butter' 21 0 0 22 22
'deer' 0 0 0 - - 'pepper' 11 0 0 12 12
'cow' 26 0 0 27.0 27.0 'olive' 0 0 0 - -

'snake' 12 0 0 13.0 13.0 'bean' 18 0 0 19 19
'penguin' 0 0 0 - - 'garlic' 0 0 0 1 1

'eagle' 18 0 0 19.0 19.0 'salad' 14 0 0 15 15
'dragon' 13 0 0 14.0 14.0 'lemon' 14 0 0 15 15

'pig' 25 0 0 26.0 26.0 'onion' 12 0 0 13 13
'bat' 13 0 0 14.0 14.0 'berry' 0 0 0 - -

'tiger' 13 0 0 14.0 14.0 'cherry' 0 0 0 - -
'rabbit' 25 0 0 26.0 26.0 'pizza' 0 0 0 - -

'monkey' 11 0 0 12.0 12.0 'nut' 15 0 0 16 16
'duck' 19 0 0 20.0 20.0 'pasta' 0 0 0 - -
'goat' 12 0 0 13.0 13.0 'grape' 0 0 0 - -

'whale' 13 0 0 14.0 14.0 'peas' 33 0 0 34 34
'hawk' 0 0 0 - - 'peach' 0 0 0 - -
'spider' 10 0 0 11.0 11.0 'plum' 0 0 0 - -

'ant' 10 0 0 11.0 11.0 'lettuce' 0 0 0 - -

Adj 
concrete #A #N #V

(#A+1)/
(#N+1)

(#A+1)/
(#V+1)

Adj 
abstract #A #N #V

(#A+1)/
(#N+1)

(#A+1)/
(#V+1)

'long' 392 0 0 393.0 393.0 'good' 1276 25 0 49.1 1277.0
'small' 518 0 0 519.0 519.0 'best' 0 0 0 - -
'large' 471 0 0 472.0 472.0 'better' 0 0 0 - -
'low' 286 0 0 287.0 287.0 'free' 200 0 23 201.0 8.4

'short' 198 0 0 199.0 199.0 'real' 227 0 0 228.0 228.0



'clear' 239 0 55 240.0 4.3 'poor' 166 0 0 167.0 167.0
'hard' 176 0 0 177.0 177.0 'bad' 264 0 0 265.0 265.0

'strong' 196 0 0 197.0 197.0 'serious' 124 0 0 125.0 125.0
'big' 338 0 0 339.0 339.0 'happy' 129 0 0 130.0 130.0

'deep' 97 0 0 98.0 98.0 'rich' 79 0 0 80.0 80.0
'dark' 104 31 0 3.3 105.0 'holy' 30 0 0 31.0 31.0
'cold' 103 25 0 4.0 104.0 'pretty' 30 0 0 31.0 31.0

'round' 28 47 0 0.6 29.0 'evil' 15 16 0 0.9 16.0
'heavy' 105 0 0 106.0 106.0 'wild' 55 0 0 56.0 56.0

'hot' 94 0 0 95.0 95.0 'pure' 36 0 0 37.0 37.0
'fast' 50 0 0 51.0 51.0 'sick' 44 0 0 45.0 45.0
'dry' 56 0 28 57.0 2.0 'busy' 53 0 0 54.0 54.0
'soft' 66 0 0 67.0 67.0 'sad' 36 0 0 37.0 37.0
'slow' 56 0 23 57.0 2.4 'proud' 32 0 0 33.0 33.0
'solid' 35 0 0 36.0 36.0 'calm' 14 0 0 15.0 15.0
'huge' 79 0 0 80.0 80.0 'gentle' 29 0 0 30.0 30.0
'warm' 70 0 0 71.0 71.0 'strict' 24 0 0 25.0 25.0

'fat' 20 28 0 0.7 21.0 'mad' 32 0 0 33.0 33.0
'bright' 62 0 0 63.0 63.0 'smart' 16 0 0 17.0 17.0
'weak' 45 0 0 46.0 46.0 'crazy' 18 0 0 19.0 19.0
'thin' 56 0 0 57.0 57.0 'brave' 18 0 0 19.0 19.0

'sweet' 36 0 0 37.0 37.0 'cheap' 68 0 0 69.0 69.0
'silent' 38 0 0 39.0 39.0 'ugly' 14 0 0 15.0 15.0
'oval' 0 0 0 - - 'clever' 25 0 0 26.0 26.0

'tiny' 56 0 0 57.0 57.0 'jealous' 0 0 0 - -
'dirty' 27 0 0 28.0 28.0 'shy' 11 0 0 12.0 12.0

'massive' 44 0 0 45.0 45.0 'lazy' 0 0 0 - -

Table S8 | List of all the words used in the experiment, the number of times they occurred in 
the British National Corpus as a noun (#N), as an adjective (#A), or a verb (#V), and the ratios 
of their frequency of occurence in their assigned part of speech versus their usage in other 
parts of speech. Dashes indicate words that were missing in the corpus.



Subject Age Gender Language Handedness #Trials %Correct #Electrodes
1 13 M HI R 786 54% 134
2 15 F TW R 627 69% 35
3 19 M EN R 587 96% 174
4 37 F EN R 603 97% 78
5 40 M EN R 604 99% 73
6 21 M TW L 621 71% 64
7 30 M TW R 625 59% 78
8 42 F EN R 601 87% 154
9 27 F EN R 589 96% 62

10 32 F EN R 600 92% 141
11 20 F EN L 600 96% 72
12 25 M EN L 597 77% 92
13 33 F EN R 594 96% 65
14 50 F EN R 588 96% 117
15 20 M EN R 578 94% 65
16 20 F EN R 604 84% 81
17 20 F EN R 600 94% 78

TOTAL 1563

Table S9 | Information about each participant for the sentence task including age, 
gender, language (ENglish, HIndi, TaiWanese), handedness, number of trials, behavioral 
performance and number of electrodes.
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(a) English

W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4
the boys caughtballs the girls openedcans the balls caughtboys the cans openedgirls
the girls ate pies the womenwrote poems the pies ate girls the poemswrote women
the kids drank milk the men read stories the milk drank kids the storiesread men
the men cut cakes the dogs waggedtails the cakes cut men the tails waggeddogs
the girls read books the men postedletters the books read girls the letterspostedmen
the cows ate grass the kids lockeddoors the grass ate cows the doors lockedkids
the bees flappedwings the kids playeddice the wings flappedbees the dice playedkids
the horsesate grass the boys grew plants the grass ate horses the plants grew boys
the kids broke plates the guardsheld guns the plates broke kids the guns held guards
the boys playedsoccer the dogs shed hair the soccerplayedboys the hair shed dogs
the girls playedhockey the bankersloanedmoney the hockeyplayedgirls the moneyloanedbankers
the men ate bread the kids spilledwater the bread ate men the water spilledkids
the womenpluckedfruits the womencleanedrooms the fruits pluckedwomen the roomscleanedwomen
the men tried shirts the womenplayedsongs the shirts tried men the songs playedwomen
the dogs bit shoes the boys made noises the shoes bit dogs the noisesmade boys
the birds lay eggs the friendsran races the eggs lay birds the races ran friends
the snakesate eggs the ants carriedleaves the eggs ate snakes the leavescarriedants
the cows gave milk the horsesmade sounds the milk gave cows the soundsmade horses
the chefs made pizza the peopleloved books the pizza made chefs the books loved people
the kids playedmusic the kids closeddoors the music playedkids the doors closedkids
the girls baked cakes the sistersboardedplanes the cakes baked girls the planesboardedsisters
the kids broke windowsthe teachershandedpapers the windowsbroke kids the papershandedteachers
the boys pouredwater the artists paintedtrees the water pouredboys the trees paintedartists
the girls dug holes the studentsraised questions the holes dug girls the questionsraised students
the girls fried eggs the grandmasgrew chickens the eggs fried girls the chickensgrew grandmas
the men kickedballs the unclesplantedseeds the balls kicked men the seeds planteduncles
the boys heard music the fatherspaid bills the music heard boys the bills paid fathers
the men rode bikes the mothersraised babies the bikes rode men the babiesraised mothers
the kids rang bells the fairies gave gifts the bells rang kids the gifts gave fairies
the womenstored food the girls playedguitar the food stored women the guitar playedgirls
the girls carriedbooks the grandmasgrew lettuce the books carriedgirls the lettucegrew grandmas
the girls stored money the teachersansweredquestions the moneystored girls the questionsansweredteachers
the boys watchedmovies the mothersfoldedclothes the movieswatchedboys the clothesfoldedmothers
the momsbaked cakes the thievesstole food the cakes baked moms the food stole thieves
the birds ate seeds the men movedchairs the seeds ate birds the chairs movedmen
the cats drank milk the rocks broke windows the milk drank cats the windowsbroke rocks
the men sippedwine the monkeysshowedteeth the wine sipped men the teeth showedmonkeys
the kids cleanedtables the chefs crackedeggs the tables cleanedkids the eggs crackedchefs
the kids wore hats the boys pushedrocks the hats wore kids the rocks pushedboys
the boys wore pants the girls finishedhomework the pants wore boys the homeworkfinishedgirls
the womenboiled eggs the studentswrote notes the eggs boiled women the notes wrote students
the men clickedpictures the friendsgraspedhands the picturesclickedmen the hands graspedfriends
the men choppedtrees the playersheadedballs the trees choppedmen the balls headedplayers
the boys wrote letters the teachershelpedstudents the letterswrote boys the studentshelpedteachers
the girls drove cars the kids enjoyedparties the cars drove girls the partiesenjoyedkids
the dogs fetchedbones the salesmenknockeddoors the bones fetcheddogs the doors knockedsalesmen
the bears ate honey the men loadedtrucks the honey ate bears the trucks loadedmen
the dogs drank milk the womenloved shoes the milk drank dogs the shoes loved women
the cats climbedtrees the womenordereddinner the trees climbedcats the dinnerorderedwomen
the ducks laid eggs the men placedbets the eggs laid ducks the bets placedmen
the monkeysstole mangoesthe girls ran races the mangoesstole monkeys the races ran girls
the robbersstole money the parentsscoldedchildren the moneystole robbers the childrenscoldedparents
the cloudsbroughtrain the girls smelledflowers the rain broughtclouds the flowerssmelledgirls
the girls cut pizza the soldiersspreadflags the pizza cut girls the flags spreadsoldiers
the girls wrote stories the womentried shoes the storieswrote girls the shoes tried women
the boys read books the grandpastaughtlessons the books read boys the lessonstaughtgrandpas
the men build walls the chefs toastedbread the walls build men the bread toastedchefs
the girls drove trucks the monkeysgrabbedbranches the trucks drove girls the branchesgrabbedmonkeys
the girls rode bikes the touriststossedcoins the bikes rode girls the coins tossedtourists
the womensippedtea the parrotsused tools the tea sipped women the tools used parrots
the guardskept guns the girls untiedknots the guns kept guards the knots untiedgirls
the kids wore masks the girls wantedicecream the maskswore kids the icecreamwantedgirls
the boys watchedsoccer the womenwarmedfood the soccerwatchedboys the food warmedwomen
the girls watchedbaseball the womenwashedclothes the baseballwatchedgirls the clotheswashedwomen
the womenwatchedmovies the championwon games the movieswatchedwomen the gameswon champion
the horsesdrank milk the shopperswrappedpresents the milk drank horses the presentswrappedshoppers
the kids wore shirts the dogs watchedtrees the shirts wore kids the trees watcheddogs
the boys carriedrocks the cats chasedlasers the rocks carriedboys the lasers chasedcats
the boys broke eggs the teachersspelledwords the eggs broke boys the words spelledteachers
the womenboughtclothes the dragonsspat fire the clothesboughtwomen the fire spat dragons
the girls boughtfruits the girls flickedpages the fruits boughtgirls the pages flickedgirls
the boys boughtfood the turtlesate food the food boughtboys the food ate turtles
the birds made nests the kids carriedbackpacks the nests made birds the backpackscarriedkids
the birds hid eggs the men sang songs the eggs hid birds the songs sang men
the boys threw stones the boys openeddoors the stonesthrew boys the doors openedboys
the girls playedbasketball the basketballplayedgirls

(b) Taiwanese

W1 W2 W3 W4 Translation W1 W2 W3 W4
男孩 正在 接 球 the,boys,are,catching,balls 球 正在 接 男孩
女孩 正在 吃 派 the,girls,are,eating,pies 派 正在 吃 女孩

Semantically Correct Semantically Incorrect/Odd

Semantically Correct Semantically Incorrect/Odd



小孩 正在 喝 牛奶 the,kids,are,drinking,milk 牛奶 正在 喝 小孩
男人 正在 切 蛋糕 the,men,are,cutting,cakes 蛋糕 正在 切 男人
女孩 正在 看 書 the,girls,are,reading,books 書 正在 看 女孩
牛 正在 吃 草 the,cows,are,eating,grass 草 正在 吃 牛
蜜蜂 正在 拍 翅膀 the,bees,are,flapping,wings 翅膀 正在 拍 蜜蜂
馬 正在 吃 草 the,horses,are,eating,grass 草 正在 吃 馬
小孩 正在 打破 盤子 the,kids,are,breaking,plates 盤子 正在 打破 小孩
男孩 正在 玩 足球 the,boys,are,playing,soccer 足球 正在 玩 男孩
女孩 正在 玩 棒球 the,girls,are,playing,baseball 棒球 正在 玩 女孩
男人 正在 吃 麵包 the,men,are,eating,bread 麵包 正在 吃 男人
女人 正在 採集 水果 the,women,are,plucking,fruits 水果 正在 採集 女人
男人 正在 試穿 襯衫 the,man,is,trying,shirts 襯衫 正在 試穿 男人
狗 正在 咬 鞋子 the,dogs,are,biting,shoes 鞋子 正在 咬 狗
鳥 正在 下 蛋 the,birds,are,laying,eggs 蛋 正在 下 鳥
蛇 正在 吃 蛋 the,snakes,are,eating,eggs 蛋 正在 吃 蛇
乳牛 正在 產 乳 the,cows,are,giving,milk 乳 正在 產 乳牛
廚師 正在 做 披薩 the,chefs,are,making,pizza 披薩 正在 做 廚師
小孩 正在 播 音樂 the,kids,are,playing,music 音樂 正在 播 小孩
女孩 正在 烘培 蛋糕 the,girls,are,baking,cakes 蛋糕 正在 烘培 女孩
小孩 正在 打破 窗戶 the,kids,are,breaking,windows 窗戶 正在 打破 小孩
男孩 正在 倒 水 the,boys,are,pouring,water 水 正在 倒 男孩
女孩 正在 挖 洞 the,girls,are,dugging,holes 洞 正在 挖 女孩
女孩 正在 煎 蛋 the,girls,are,frying,eggs 蛋 正在 煎 女孩
男人 正在 踢 球 the,men,are,kicking,balls 球 正在 踢 男人
男孩 正在 聽 音樂 the,boys,are,hearing,music 音樂 正在 聽 男孩
男人 正在 騎 單車 the,men,are,riding,bikes 單車 正在 騎 男人
小孩 正在 搖 鈴 the,kids,are,ringing,bells 鈴 正在 搖 小孩
女人 正在 擺放 食物 the,women,are,storing,food 食物 正在 擺放 女人
女孩 正在 搬 書 the,girls,are,carrying,books 書 正在 搬 女孩
女孩 正在 存 錢 the,girls,are,storing,money 錢 正在 存 女孩
男孩 正在 看 電影 the,boys,are,watching,movies 電影 正在 看 男孩
媽媽 正在 烘培 蛋糕 the,mom,is,baking,cakes 蛋糕 正在 烘培 媽媽
鳥 正在 吃 種子 the,bird,is,eating,seeds 種子 正在 吃 鳥
貓 正在 喝 牛奶 the,cat,is,drinking,milk 牛奶 正在 喝 貓
男人 正在 喝 酒 the,man,is,sipping,wine 酒 正在 喝 男人
小孩 正在 清理 桌子 kid,is,cleaning,tables 桌子 正在 清理 小孩
小孩 正在 戴 帽子 the,kid,is,wearing,a,hat 帽子 正在 戴 小孩
男人 正在 搬 磚頭 the,man,is,moving,bricks 磚頭 正在 搬 男人
男孩 正在 穿 長褲 the,boy,is,wearing,pants 長褲 正在 穿 男孩
女人 正在 水煮 雞蛋 the,woman,is,boiling,eggs 雞蛋 正在 水煮 女人
男人 正在 拍 照片 the,man,is,clicking,pictures 照片 正在 拍 男人
男人 正在 砍 樹 the,man,is,chopping,trees 樹 正在 砍 男人
男孩 正在 寫 字 the,boy,is,writing,words 字 正在 寫 男孩
女孩 正在 開 車 the,girl,is,driving,a,car 車 正在 開 女孩
狗 正在 接 骨頭 the,dog,is,fetching,bones 骨頭 正在 接 狗
熊 正在 吃 蜂蜜 the,bear,is,eating,honey 蜂蜜 正在 吃 熊
狗 正在 喝 牛奶 the,dog,is,drinking,milk 牛奶 正在 喝 狗
貓 正在 爬 樹 the,cat,is,climbing,a,tree 樹 正在 爬 貓
鴨子 正在 下 蛋 the,duck,is,laying,eggs 蛋 正在 下 鴨子
猴子 正在 偷 芒果 the,monkey,is,stealing,mangoes 芒果 正在 偷 猴子
強盜 正在 偷 錢 the,robber,is,stealing,money 錢 正在 偷 強盜
雲 正在 帶來 雨水 the,cloud,is,bringing,rain 雨水 正在 帶來 雲
女孩 正在 切 披薩 the,girl,is,cutting,pizza 披薩 正在 切 女孩
女孩 正在 寫 故事 the,girl,is,writing,a,story 故事 正在 寫 女孩
男孩 正在 看 書 the,boy,is,reading,books 書 正在 看 男孩
男人 正在 築 牆 the,man,is,building,walls 牆 正在 築 男人
女孩 正在 開 卡車 the,girl,is,driving,a,truck 卡車 正在 開 女孩
女孩 正在 騎 單車 the,girls,are,riding,bikes 單車 正在 騎 女孩
女人 正在 喝 茶 the,women,are,sipping,tea 茶 正在 喝 女人
警衛 正在 持 槍 the,guards,are,keeping,guns 槍 正在 持 警衛
小孩 正在 戴 口罩 the,kids,are,wearing,masks 口罩 正在 戴 小孩
男孩 正在 看 足球 the,boy,is,watching,soccer 足球 正在 看 男孩
女孩 正在 看 棒球 the,girl,is,watching,baseball 棒球 正在 看 女孩
女人 正在 看 電影 the,woman,is,watching,movies 電影 正在 看 女人
馬 正在 喝 奶 the,horse,is,drinking,milk 奶 正在 喝 馬
小孩 正在 穿 襯衫 the,kid,is,wearing,shirts 襯衫 正在 穿 小孩
男孩 正在 搬 石頭 the,boy,is,moving,rocks 石頭 正在 搬 男孩
男孩 正在 打破 雞蛋 the,boy,is,breaking,eggs 雞蛋 正在 打破 男孩
女人 正在 買 衣服 the,woman,is,buying,clothes 衣服 正在 買 女人
女孩 正在 買 水果 the,girl,is,buying,fruits 水果 正在 買 女孩
男孩 正在 買 食物 the,boy,is,buying,food 食物 正在 買 男孩
鳥 正在 築 巢 the,bird,is,making,nests 巢 正在 築 鳥
鳥 正在 藏 蛋 the,bird,is,hiding,eggs 蛋 正在 藏 鳥
男孩 正在 丟 石頭 the,boy,is,throwing,stones 石頭 正在 丟 男孩
女孩 正在 打 籃球 the,girl,is,playing,basketball 籃球 正在 打 女孩
男人 正在 寄 信 the,man,is,posting,letter 信 正在 寄 男人
小孩 正在 鎖 門 the,kid,is,locking,a,door 門 正在 鎖 小孩
男孩 正在 種 樹 the,boy,is,growing,a,tree 樹 正在 種 男孩
衛兵 正在 持 槍 the,guard,is,holding,a,gun 槍 正在 持 衛兵
狗 正在 脫 毛 the,dog,is,sheding,hairs 毛 正在 脫 狗
行員 正在 借出 錢 the-bankers-loaned-money 錢 正在 借出 行員
小孩 正在 打翻 水 the,kid,is,spilling,the,water 水 正在 打翻 小孩
女人 正在 打掃 房間 the,woman,is,cleaning,rooms 房間 正在 打掃 女人
女人 正在 播放 歌曲 the,woman,is,playing,songs 歌曲 正在 播放 女人
男孩 正在 製造 噪音 the,boy,is,making,noise 噪音 正在 製造 男孩



朋友 正在 比賽 跑步 friends,are,running,races 跑步 正在 比賽 朋友
螞蟻 正在 搬 樹葉 the-ants-moved-leaves 樹葉 正在 搬 螞蟻
馬 正在 製造 聲音 the,horse,is,making,sounds 聲音 正在 製造 馬
人們 正在 買 書 people,are,buying,books 書 正在 買 人們
小孩 正在 關 門 the,kid,is,closing,a,door 門 正在 關 小孩
老虎 正在 走 路 the,tiger,is,taking,a,walk 路 正在 走 老虎
姐妹 正在 搭 飛機 the,sisters,are,boarding,a,plane 飛機 正在 搭 姐妹
老師 正在 發 紙 the,teacher,is,handing,papers 紙 正在 發 老師
畫家 正在 畫 樹 the,artists,painted,trees 樹 正在 畫 畫家
學生 正在 提出 問題 the,student,is,raising,questions 問題 正在 提出 學生
奶奶 正在 養 雞 the,grandma,is,growing,chickens 雞 正在 養 奶奶
叔叔 正在 種 菜 the,uncle,is,growing,vegetables 菜 正在 種 叔叔
爸爸 正在 付 帳 the,father,is,paying,bills 帳 正在 付 爸爸
媽媽 正在 抱 小孩 the,mother,is,holding,babies 小孩 正在 抱 媽媽
仙女 正在 送 禮物 fairies,are,giving,gifts 禮物 正在 送 仙女
女孩 正在 彈 吉他 the,girl,is,playing,guitar 吉他 正在 彈 女孩
奶奶 正在 種 萵苣 grandma,is,growing,lettuce 萵苣 正在 種 奶奶
老師 正在 回答 問題 the,teacher,is,ansering,quesetions 問題 正在 回答 老師
小偷 正在 偷 食物 the,thieve,is,stealing,food 食物 正在 偷 小偷
男人 正在 搬 椅子 the,man,is,moving,chairs 椅子 正在 搬 男人
石頭 正在 撞擊 窗戶 the,rock,is,hitting,the,window 窗戶 正在 撞擊 石頭
廚師 正在 打 蛋 the,chef,is,cracking,eggs 蛋 正在 打 廚師
男孩 正在 推 石頭 the,boy,is,pushing,rocks 石頭 正在 推 男孩
女孩 正在 完成 作業 the,girl,is,finishing,homework 作業 正在 完成 女孩
學生 正在 寫 筆記 the,student,is,writing,notes 筆記 正在 寫 學生
朋友 正在 牽 手 friends,are,grasping,hands 手 正在 牽 朋友
球員 正在 踢 球 the,players,are,kicking,balls 球 正在 踢 球員
老師 正在 幫助 學生 the,teacher,is,helping,students 學生 正在 幫助 老師
小孩 正在 參加 派對 the,kid,is,joining,the,party 派對 正在 參加 小孩
郵差 正在 敲 門 the,mailman,is,knocking,the,door 門 正在 敲 郵差
男人 正在 開 卡車 the,man,is,driving,trucks 卡車 正在 開 男人
女人 正在 試穿 鞋子 the,woman,is,trying,shoes 鞋子 正在 試穿 女人
女人 正在 訂 晚餐 the,woman,is,ordering,dinner 晚餐 正在 訂 女人
男人 正在 下 注 the,man,is,placing,bets 注 正在 下 男人
女孩 正在 比賽 跑步 the,girl,is,running,race 跑步 正在 比賽 女孩
家長 正在 罵 小孩 the,parent,is,scolding,the,child 小孩 正在 罵 家長
女孩 正在 聞 花香 the,girl,is,smelling,flowers 花香 正在 聞 女孩
士兵 正在 拿 國旗 the,soldiers,are,holding,a,flag 國旗 正在 拿 士兵
女人 正在 丟 鞋子 the,woman,is,throwing,shoes 鞋子 正在 丟 女人
朋友 正在 交換 禮物 friends,are,exchanging,gifts 禮物 正在 交換 朋友
爺爺 正在 教 課 grandpa,is,teaching,lessons 課 正在 教 爺爺
廚師 正在 烤 麵包 the,chef,is,toasting,bread 麵包 正在 烤 廚師
猴子 正在 抓 樹枝 the,monkey,is,grabbing,branches 樹枝 正在 抓 猴子
遊客 正在 擲 銅板 tourists,are,tossing,coins 銅板 正在 擲 遊客
鸚鵡 正在 使用 工具 the,parrot,is,using,tools 工具 正在 使用 鸚鵡
女孩 正在 解開 繩結 the,girl,is,untiing,knots 繩結 正在 解開 女孩
女孩 正在 吃 冰棒 the,girl,is,eating,an,ice,bar 冰棒 正在 吃 女孩
女人 正在 加熱 食物 the,woman,is,heating,food 食物 正在 加熱 女人
女人 正在 洗 衣服 the,woman,is,washing,clothes 衣服 正在 洗 女人
選手 正在 爭奪 冠軍 the,player,is,competing,for,the,first,place冠軍 正在 爭奪 選手
店員 正在 包裝 禮物 the,shoopper,is,wrapping,the,present禮物 正在 包裝 店員
狗 正在 爬 樹 the,dog,is,climbing,the,tree 樹 正在 爬 狗
貓 正在 追 球 the,cat,is,chasing,the,ball 球 正在 追 貓
老師 正在 教 單字 the,teacher,is,teaching,words 單字 正在 教 老師
龍 正在 噴 火 dragon,is,spatting,fire 火 正在 噴 龍
女孩 正在 翻 書 the,girl,is,flicking,pages 書 正在 翻 女孩
烏龜 正在 吃 食物 the,turtle,is,eating,food 食物 正在 吃 烏龜
小孩 正在 背 背包 the,kid,is,carrying,a,backpack 背包 正在 背 小孩
奶奶 正在 烘培 餅乾 grandma,is,baking,cookies 餅乾 正在 烘培 奶奶
護士 正在 照顧 病人 the,nurse,is,taking,care,of,patients 病人 正在 照顧 護士
技師 正在 修理 煞車 the,mechanics,is,fixsing,brakes 煞車 正在 修理 技師
蛇 正在 下 蛋 the,snake,is,laying,eggs 蛋 正在 下 蛇
女孩 正在 彈 鋼琴 the,girl,is,playing,piano 鋼琴 正在 彈 女孩
男孩 正在 吹 長笛 the,boy,is,playing,flute 長笛 正在 吹 男孩
男人 正在 唱 歌 the,man,is,singing,a,song 歌 正在 唱 男人
男孩 正在 開 門 the,boy,is,opening,a,door 門 正在 開 男孩
女孩 正在 開 罐頭 the,girl,is,opening,a,can 罐頭 正在 開 女孩
女人 正在 寫 詩 the,woman,is,writing,a,poem 詩 正在 寫 女人
男人 正在 讀 詩 the,man,is,reading,a,poem 詩 正在 讀 男人
狗 正在 搖 尾巴 the,dog,is,wagging,its,tail 尾巴 正在 搖 狗

(c) Hindi

W1 W2 W3 W4 Translation W1 W2 W3 W4
लड़की ने गेंद पकड़ी the girl caught the ball गेंद ने लड़की पकड़ी 
लड़की ने किताबपढ़ी the girl read the book किताबने लड़की पढ़ी 
गाय ने घास खाई the cow ate the grass घास ने गाय खाई 
बच्ची ने प्लेट तोड़ी the youngGirl broke the plate प्लेट ने बच्ची तोड़ी 
आदमी ने फ़ल बेचा the man sold the fruit फ़ल ने आदमी बेचा 
गाय ने रोटी खाई the cow ate the bread रोटी ने गाय खाई 
नारी ने रोटी बेली the woman rolled the bread रोटी ने नारी बेली 
बकरी ने रस्सी काटी the goat cut the rope (with its teeth)रस्सी ने बकरी काटी 
टीचर ने किताबलिखी the teacher wrote the book किताबने टीचर लिखी
घोड़ी ने लात मारी the horse hit the kick लात ने घोड़ी मारी 
लड़की ने लस्सी पी the girl drank the lassi लस्सी ने लड़की पी 

Semantically Correct Semantically Incorrect/Odd



बच्ची ने फिल्मदेखी the youngGirl watched the film फिल्मने बच्ची देखी 
बिल्लीने ड्रेस फाड़ी the cat tore the dress ड्रेस ने बिल्ली फाड़ी 
टीचर ने कवितालिखी the teacher wrote the poem कविताने टीचर लिखी
दीदी ने साड़ी पहनी sister wore the saree साड़ी ने दीदी पहनी 
दादी ने खीर बनायी grandma made the kheer खीर ने दादी बनायी 
रानी ने चाय पी the queen drank tea चाय ने रानी पी 
लड़की ने शर्ट सिली the girl stitched the shirt शर्ट ने लड़की सिली
भालू ने शहद खाया the bear ate the honey शहद ने भालू खाया 
आदमी ने आलू बेचा the man sold the potato आलू ने आदमी बेचा 
भाई ने कद्दू काटा brother cut the pumpkin कद्दू ने भाई काटा 
बंदर ने शोर किया the monkey made noise शोर ने बंदर किया
बंदर ने फूल तोड़ा the monkey plucked the flower फूल ने बंदर तोड़ा 
जानवर ने दूध पीया the animal drank milk दूध ने जानवर पीया 
गार्ड ने गेट खोला the guard opened the gate गेट ने गार्ड खोला 
लड़की ने फिल्मबनायी the girl made the film फिल्मने लड़की बनायी 
बच्ची ने गेंद फेंकी the youngGirl threw the ball गेंद ने बच्ची फेंकी 
लड़की ने गाड़ी चलायी the girl drove the car गाड़ी ने लड़की चलायी 
हाथी ने पेड़ तोड़ा the elephant broke the tree पेड़ ने हाथी तोड़ा 
माली ने पेड़ तोड़ा the gardner cut the tree पेड़ ने माली तोड़ा 
माली ने पानी डाला the gardner gave water (to the garden)पानी ने माली डाला 
आदमी ने गाना गया the man sang the song गाना ने आदमी गया 
दादा ने गाना बजाया grandpa played the song गाना ने दादा बजाया 
आदमी ने सितार बजाया the man played sitar सितारने आदमी बजाया 
बिल्लीने आवाज़ लगायी the cat made the call (meow) आवाज़ ने बिल्ली लगायी 
दादी ने दवा दी grandma gave medicine दवा ने दादी दी 
डॉक्टर ने इलाज करा the doctor did the treatment इलाज ने डॉक्टर करा 
नारी ने पढ़ाई करी the woman did the study पढ़ाई ने नारी करी 
बिल्लीने घंटी बजायी the cat rang the bell घंटी ने बिल्ली बजायी 
दादी ने खिड़कीखोली grandma opened the window खिड़कीने दादी खोली 
भालू ने गड्ढा खोदा the bear dug the hole गड्ढा ने भालू खोदा 
लड़की ने ट्रक चलायी the girl drove the truck ट्रक ने लड़की चलायी 
शेर ने आराम करा the lion did rest (noun) आराम ने शेर करा 
बच्ची ने हॉकी खेली the youngGirl played hockey हॉकी ने बच्ची खेली 
आदमी ने जूता पहना the man wore the shoe जूता ने आदमी पहना 
बाबा ने सूट पहना old-man wore a suit सूट ने बाबा पहना 
लड़की ने चटनी खाई the girl ate the chutney चटनी ने लड़की खाई 
लड़की ने फ़ोटो खींची the girl clicked the photograph फ़ोटो ने लड़की खींची 
दादी ने घड़ी पहनी grandma wore the watch घड़ी ने दादी पहनी 
शेरनी ने चाय पी the lioness drank tea चाय ने शेरनी पी 
बकरी ने शराब पी the goat drank wine शराब ने बकरी पी 
लड़की ने चाय पी the girl drank tea चाय ने लड़की पी 
लड़की ने खीर खाई the girl ate the pudding खीर ने लड़की खाई 
बकरी ने रोटी खाई the goat ate bread रोटी ने बकरी खाई 
घोड़ी ने आवाज़ करी the horse made sound (neigh) आवाज़ ने घोड़ी करी 
भालू ने फल खाया the bear ate the fruit फल ने भालू खाया 
बंदर ने आम चूसा the monkey sucked a mango आम ने बंदर चूसा 
बकरी ने घास चबाई the goat chewed grass घास ने बकरी चबाई 
बकरी ने जीभ दिखायीthe goat showed the tougue जीभ ने बकरी दिखायी
घोड़ी ने जीभ दिखायीthe horse showed the tongue जीभ ने घोड़ी दिखायी
बच्ची ने जीभ दिखायीthe youngGirl showed the tongue जीभ ने बच्ची दिखायी
बंदर ने आम तोड़ा the monkey plucked the mango आम ने बंदर तोड़ा 
बच्ची को चोट लगी the youngGirl got hurt चोट को बच्ची लगी 
बिल्लीको ठंड लगी the cat felt the cold ठंड को बिल्ली लगी 
नारी को गर्मी लगी the woman felt the heat गर्मी को नारी लगी 
बच्ची ने नाव चलायी the youngGirl rowed the boat नाव ने बच्ची चलायी 
लड़की ने बंदूक़ चलायी the girl operated the gun बंदूक़ ने लड़की चलायी 
आदमी ने पानी डाला the man put water (on the plants) पानी ने आदमी डाला 
आदमी ने केक बनाया the man made the cake केक ने आदमी बनाया 
आदमी ने मास्क पहना the man wore a mask मास्क ने आदमी पहना 
आदमी ने फ़ोन किया the man dialed the phone फ़ोन ने आदमी किया
आदमी ने अख़बार पढ़ा the man read the newspaper अख़बार ने आदमी पढ़ा 
आदमी ने ख़त पढ़ा the man read the letter ख़त ने आदमी पढ़ा 
आदमी ने ख़त लिखा the man wrote the letter ख़त ने आदमी लिखा
नर्स ने जीभ देखी the nurse checked the tongue जीभ ने नर्स देखी 
नर्स ने दवा दी the nurse gave the medicine दवा ने नर्स दी 
लड़की ने दवा खाई the girl ate the medicine दवा ने लड़की खाई 
बाबा ने जूस पीया the oldMan drank the juice जूस ने बाबा पीया 
बंदर ने जूस पीया the monkey drank the juice जूस ने बंदर पीया 
भालू ने जूस पीया the bear drank the juice जूस ने भालू पीया 
बंदर ने दूध पीया the monkey drank the milk दूध ने बंदर पीया 
नारी ने खीर बनायी the woman made the pudding खीर ने नारी बनायी 
नारी ने सब्ज़ी बनायी the woman made the vegetableCurryसब्ज़ी ने नारी बनायी 
नारी ने आग लगायी the woman put the fire आग ने नारी लगायी 
नारी ने आग बुझायी the woman extinguished the fire आग ने नारी बुझायी 
नारी ने रोटी खाई the woman ate bread रोटी ने नारी खाई 
नारी ने ड्रेस पहनी the woman wore the dress ड्रेस ने नारी पहनी 
नर्स ने जान बचायी the nurse saved life जान ने नर्स बचायी 
लड़की ने पढ़ाई करी the girl did the study पढ़ाई ने लड़की करी 
आदमी ने पहाड़ चढ़ा the man climbed the hill पहाड़ ने आदमी चढ़ा 
लोमड़ी ने गेंद फेंकी the fox threw the ball गेंद ने लोमड़ी फेंकी 
लोमड़ी ने ब्रेड खाई the fox ate the bread ब्रेड ने लोमड़ी खाई 
आदमी ने शीशा तोड़ा the man broke the windowGlass शीशा ने आदमी तोड़ा 
सचिन को ईनाम दिया the player got the prize ईनाम को सचिन दिया
बत्तख़ ने डुबकी मारी the duck took the dip डुबकी ने बत्तख़ मारी 
लड़की ने डुबकी मारी the girl took the dip डुबकी ने लड़की मारी 



लड़की ने आँख मारी the girl winked the eye आँख ने लड़की मारी 
बिल्लीने आँख मारी the cat winked the eye आँख ने बिल्ली मारी 
नारी ने ग़ुस्सा किया the woman made anger ग़ुस्सा ने नारी किया
आदमी ने ग़ुस्सा किया the man made anger ग़ुस्सा ने आदमी किया
आदमी ने सेब खाया the man ate the apple सेब ने आदमी खाया 
टीचर ने सवाल पूछा the teacher asked the question सवाल ने टीचर पूछा 
स्टूडंेट ने जवाब दिया the student answered the question जवाब ने स्टूडंेट दिया
नर्स ने दवा लगायी the nurse applied the medicine दवा ने नर्स लगायी 
नर्स ने इलाज करा the nurse did the treatment इलाज ने नर्स करा 
नर्स ने सुई लगायी the nurse gave the injection सुई ने नर्स लगायी 
लड़की ने फ़ुट्बॉल खेली the girl played soccer फ़ुट्बॉल ने लड़की खेली 
आदमी ने क्रिकेटखेला the man played cricket क्रिकेटने आदमी खेला 
बंदर ने क्रिकेटखेला the monkey played cricket क्रिकेटने बंदर खेला 
बंदर ने ईनाम जीता the monkey won the prize ईनाम ने बंदर जीता 
शेर ने पहाड़ चढ़ा the lion climbed the hill पहाड़ ने शेर चढ़ा 
बंदर ने पेड़ चढ़ा the monkey climbed the tree पेड़ ने बंदर चढ़ा 
बंदर ने मास्क पहना the monkey wore the mask मास्क ने बंदर पहना 
बंदर ने फ़ोन किया the monkey called the phone फ़ोन ने बंदर किया
लड़की ने प्लेट तोड़ी the girl broke the plate प्लेट ने लड़की तोड़ी 
लड़की ने खिड़कीतोड़ी the girl broke the window खिड़कीने लड़की तोड़ी 
लड़की ने गलती करी the girl made the mistake गलती ने लड़की करी 
टीचर ने डाँट लगायी the teacher gave the scolding डाँट ने टीचर लगायी 
बच्ची ने खीर खाई the youngGirl ate the pudding खीर ने बच्ची खाई
बंदर ने सूट पहना the monkey wore the suit सूट ने बंदर पहना 
बंदर ने गिलासपकड़ा the monkey held the glass गिलासने बंदर पकड़ा 
भालू ने गिलासपकड़ा the bear held the glass गिलासने भालू पकड़ा 
भालू ने दूध पीया the bear drank the milk दूध ने भालू पीया 
बकरी ने टोपी पहनी the goat wore the hat टोपी ने बकरी पहनी 
गाय ने शर्ट पहनी the cow wore the shirt शर्ट ने गाय पहनी 
गाय ने घास खाई the cow ate grass घास ने गाय खाई 
गाय ने पत्ती खाई the cow ate the leaf पत्ती ने गाय खाई 
बकरी ने पत्ती खाई the goat ate the leaf पत्ती ने बकरी खाई 
गाय ने साड़ी पहनी the cow wore the saree साड़ी ने गाय पहनी 
लड़की ने साड़ी पहनी the girl wore the saree साड़ी ने लड़की पहनी 
माली ने पेड़ लगाया the gardner planted the tree पेड़ ने माली लगाया 

Table S10 | List of all sentences used in the experiment. (a) English, (b) Taiwanese, and (c) Hindi. The 
semantically incorrect/odd sentences were formed by swapping the nouns of the correct sentences, 
without changing the grammatical correctness of the sentence. 



Region\nElecs Total GMLeft WMLeft Left GMRight WMRight Right
'Amygdala' 44 22 0 22 22 0 22

'Hippocampus' 65 29 0 29 36 0 36
'Inf-Lat-Vent' 7 3 0 3 4 0 4

'Lateral-Ventricle' 3 2 0 2 1 0 1
'Putamen' 6 3 0 3 3 0 3

'VentralDC' 1 0 0 0 1 0 1
'bankssts' 17 4 0 4 8 5 13

'caudalanteriorcingulate' 27 8 4 12 7 8 15
'caudalmiddlefrontal' 54 7 23 30 3 21 24

'entorhinal' 14 8 1 9 4 1 5
'fusiform' 44 7 9 16 14 14 28

'inferiorparietal' 57 10 7 17 24 16 40
'inferiortemporal' 75 16 10 26 23 26 49

'insula' 82 14 7 21 29 32 61
'isthmuscingulate' 14 2 3 5 1 8 9
'lateraloccipital' 13 2 0 2 6 5 11

'lateralorbitofrontal' 79 20 21 41 12 26 38
'lingual' 3 0 0 0 3 0 3

'medialorbitofrontal' 57 15 22 37 9 11 20
'middletemporal' 175 54 30 84 61 30 91

'paracentral' 4 0 0 0 1 3 4
'parahippocampal' 9 2 1 3 5 1 6
'parsopercularis' 39 8 7 15 13 11 24

'parsorbitalis' 23 12 4 16 1 6 7
'parstriangularis' 66 21 19 40 8 18 26

'pericalcarine' 4 0 0 0 1 3 4
'postcentral' 24 9 3 12 3 9 12

'posteriorcingulate' 27 4 10 14 2 11 13
'precentral' 59 23 21 44 3 12 15
'precuneus' 19 1 8 9 4 6 10

'rostralanteriorcingulate' 29 4 16 20 4 5 9
'rostralmiddlefrontal' 87 24 33 57 14 16 30

'superiorfrontal' 74 20 20 40 8 26 34
'superiorparietal' 15 1 1 2 4 9 13

'superiortemporal' 128 43 15 58 37 33 70
'supramarginal' 70 24 9 33 7 30 37
'temporalpole' 38 21 5 26 11 1 12

'transversetemporal' 11 3 5 8 1 2 3
TOTAL 1563 446 314 760 398 405 803

Table S11 | Distribution of electrodes for sentence task over the Desikan-Killiany Atlas
The number of electrodes for different brain regions of the DK atlas (rows) for different 
conditions (columns). From the left to right the columns represent the following: (1) 
Total electrodes, (2) Gray Matter Left, (3) White Matter Left, (4) Total Left, (5) Gray 
Matter Right, (6) White Matter Right, (7) Total Right.



Table S11 | Distribution of electrodes for sentence task over the Desikan-Killiany Atlas
The number of electrodes for different brain regions of the DK atlas (rows) for different 
conditions (columns). From the left to right the columns represent the following: (1) 
Total electrodes, (2) Gray Matter Left, (3) White Matter Left, (4) Total Left, (5) Gray 
Matter Right, (6) White Matter Right, (7) Total Right.



Total Left Right Noun Verb
'caudalmiddlefrontal' 2 2 0 2 0

'fusiform' 2 0 2 1 1
'inferiorparietal' 1 1 0 1 0

'inferiortemporal' 2 2 0 2 0
'insula' 2 1 1 1 1

'middletemporal' 4 1 3 4 0
'parahippocampal' 1 0 1 1 0
'parsopercularis' 3 2 1 1 2

'parsorbitalis' 1 1 0 1 0
'parstriangularis' 6 4 2 5 1

'postcentral' 1 1 0 1 0
'precentral' 7 7 0 1 6

'rostralmiddlefrontal' 2 1 1 1 1
'superiorfrontal' 1 1 0 0 1

'superiortemporal' 3 2 1 2 1
'supramarginal' 1 1 0 0 1
'Hippocampus' 2 0 2 2 0

TOTAL 41 27 14 26 15

Table S12 | Electrode locations of all the  electrodes on the Desikan-Kiliany Atlas, that 
had a  significant contribution of the Nouns versus Verbs predictor in the GLM. From 
the left to right the columns represent the following: (1) Total electrodes, (2) left or, 
(3) right hemisphere, (4) noun- or, (5) verb-preferring.Significant regions showing 
lateralization shown in bold. (p<10-5, permutation test, n=106 iterations, regions with 
less than 4 electrodes were excluded).



Region Total Left Right G> UG>
'caudalmiddlefrontal' 1 1 0 0 1

'cuneus' 1 1 0 0 1
'inferiorparietal' 1 0 1 0 1

'inferiortemporal' 2 2 0 2 0
'lingual' 1 1 0 0 1

'medialorbitofrontal' 2 1 1 2 0
'parahippocampal' 1 0 1 0 1

'precentral' 2 0 2 2 0
precuneus' 1 0 1 0 1

'rostralmiddlefrontal' 2 2 0 1 1
'superiortemporal' 1 1 0 0 1

'supramarginal' 1 0 1 0 1
TOTAL 16 9 7 7 9

Table S13 | Distribution of grammatical versus ungrammatical 
phrase enhanced electrodes across the Desikan-Killiany Atlas. 
Bolded regions had audiovisual electrodes.
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“What we observe is not nature itself, but nature

exposed to our method of questioning.”

Werner Heisenberg

2
Discussion

I described neurophysiological signals that selectively discriminate between two parts

of speech, nouns and adjectives (Figure 1.4). This selectivity was robust to ortho-

graphic variables such as word length, phonetic features such as number of syllables,

and word occurrence statistics (Figure 1.4). This selectivity for part of speech gen-

eralized across sensory modalities (Figure 1.4, 1.11, 1.14), word positions, grammat-
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ical correctness and motor outputs (Figure 1.4, 1.11, 1.14), and semantic groups of

nouns and adjectives (Figure S6). These neurophysiological signals enable discrim-

ination between parts of speech even in single trials (Figure 1.4, 1.11). Electrodes

that uniquely distinguished nouns from adjectives were particularly clustered within

a small, circumscribed region of the lateral orbitofrontal cortex, lateralized to the

left hemisphere (Figure 1.4, 1.14). Neural discrimination of nouns from adjectives

was apparent in the LOF in English-speaking and Taiwanese-speaking participants

(Figure 1.4). Interestingly, in a bilingual participant, the same electrodes within the

left LOF distinguished nouns and adjectives in both English and in Spanish (Figure

1.4). Extending the study of minimal phrases to the full sentences data, I conducted

an additional experiment where I showed neural signals that distinguished nouns from

verbs within full sentences (Figure 1.17 and 1.16).

2.1 Effect of Task Design on Findings

In English and other languages, some words can be used both as a noun or as an ad-

jective (e.g., long race versus race horse). In most instances, one usage is more fre-

quent than the other. In particular, the nouns and adjectives in this study are highly

overrepresented in their labeled part of speech (Table S8). Similarly, some words

can be used both as a noun or as a verb (e.g., long race versus race you to the top); all

the nouns in this study are highly overrepresented in their usage as nouns (Table S8).

Thus, the words used in this study had a prototypical interpretation as either a noun or

an adjective. The distinction between POS includes their grammatical roles but also

their associated semantic connotations (e.g., nouns typically refer to things and adjec-
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tives to the attributes of those things).

In languages like English, nouns and adjectives follow a specific grammatical or-

der (i.e., adjectives precede nouns). Other languages reverse this order. In Spanish,

adjectives typically follow nouns, though the English order can also be used. It is thus

interesting to observe that many electrodes demonstrated strong selectivity for nouns

versus adjectives, irrespective of their position within the two-word phrases. Further-

more, in the bilingual participant, the neural responses separated nouns and adjectives

in both languages despite the fact that the grammatical order is typically reversed be-

tween English and Spanish. It is conceivable that the strong part-of-speech selectivity

independent of grammar shown here could be linked to the two-word phrase struc-

tures. Another possibility is that the representation of nouns versus adjectives is in-

variant to grammatical usage rules. The experiment in Figure 1.17 demonstrates a

selective representation of parts of speech that extends to full sentences, invariant to

changes in semantics.

2.2 Relation with previous MEG and EEG studies

Non-invasive scalp electroencephalography and magnetoencephalography signals

have revealed correlates of language processing with a wide range of onset times from

approximately 100 ms all the way to well over 600 ms (for a review, see (Quian Quiroga

et al., 2005)). The earliest onset signals commencing between 100 and 300 ms after

stimulus onset, sometimes referred to as early left anterior negativity, have been as-

sociated with grammatical violations, but previous studies have not documented any

invariance in the representation of parts of speech and there is disagreement about
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whether these early signals are even associated with language (Quian Quiroga et al.,

2005). Our work reports an invariant distinction between nouns and adjectives in the

LOF commencing at approximately 400 ms after stimulus onset, which is consistent

with part-of-speech being represented well after the onset of modality-specific purely

visual and auditory signals.

2.3 Unimodal versus Multimodal Approach

A remarkable hallmark of language is its universality. We can interpret the word cat

when uttering the word, writing it, listening to it, reading it, and even when exam-

ining a photograph of a cat. It is therefore tempting to speculate that there may be

an invariant representation of language concepts in the brain. Several studies have

examined putative correlates of language processing using only unimodal signals

(e.g.,Keshishian (2023), Sinai (2005), Ding et al. (2016), Cometa (2023), Artoni

(2020), Gwilliams et al. (2022), OpenAI (2023), Calinescu et al. (2023), Woolnough

(2021), Aflalo et al. (2020)). While I observed electrodes that distinguished between

parts of speech only in the auditory stimuli or only in the visual stimuli, the responses

of those electrodes could be partly explained by other variables including number

of syllables, word frequency, or grammar. Using strict criteria and after controlling

for confounding variables, most electrodes that distinguished nouns from adjectives

showed selectivity during both auditory and visual presentation. Future work should

evaluate whether the same electrodes also distinguish parts of speech when partici-

pants utter words, write them, or when examining images. An intriguing study de-

scribed neurons in the human medial temporal lobe that respond selectively to images
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and their corresponding text and sound descriptions47,48. However, these medial

temporal lobe neurons do not seem to distinguish between different parts of speech

and their responses seem to be connected with the formation of memories rather than

the internal representation of language (Geva-Sagiv et al., 2023). Indeed, there exist

strong anatomical and functional connections between the medial temporal lobe and

frontal regions that could link language and memory formation (Xiao et al., 2023).

2.4 The Lateral Orbitofrontal Cortex

The lateral orbitofrontal (LOF) cortex constitutes a large expanse of neocortex within

the frontal lobe, spanning Brodmann areas (BA) 10, 11, 12 (called BA47 in humans

due to cytoarchitectural differences from monkeys) and 13 (Kringelbach, 2005, Ongur

and Price, 2000, Wojtasik et al., 2020). Neurobiological tracings from rats, mice, and

macaques have identified LOF as a nexus of many inputs53 conveying olfactory, gus-

tatory, visual, auditory, somatosensory, and visceral-sensory information. The LOF

has been associated with many cognitive functions, including multisensory integra-

tion, working memory, long-term memory consolidation, reward processing, social

interactions, memory, decision making, and emotion processing (Ongur and Price,

2000, Xiao et al., 2023, Hunt et al., 2018, Noonan et al., 2010, de Araujo et al., 2003,

Dronkers et al., 2004, Mesulam et al., 2014). This heterogeneity might be partly as-

cribed to investigations probing different cognitive tasks, as in the case of the prover-

bial blind men sampling different parts of an elephant. Given the prominent role of

language in cognition, it is conceivable that previous studies that describe other roles

of the LOF did not probe its possible associations with language. However, it is even
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more likely that descriptors like LOF that refer to such large brain areas would in-

evitably fail to uncover specific functionality. The current results point to a rather

well circumscribed location within LOF, the posterior part of the H-shaped sulcus in

the left hemisphere. In humans, this location overlaps with BA13-lateral and BA 47-

medial and has been shown to have a strong convergence of auditory and visual inputs

(Hunt et al., 2018, Xiao et al., 2023, Mesulam et al., 2022). Interestingly, work on

Primary Progressive Aphasia, and frontotemporal lesions implicate the orbitofrontal

cortex in word and sentence comprehension deficits (Warrington and Shallice, 1984,

Mesulam et al., 2014, Fried et al., 2014, Mukamel and Fried, 2012b). In these studies,

the orbitofrontal cortex, dorsal premotor cortex, temporoparietal junction (canonical

Wernicke’s area), and pars opercularis were associated with sentence comprehension

and grammatical production aphasias (evaluated with complex grammatical output re-

quiring planning and motor production). Word comprehension and naming deficits

were assessed using binary perceptual choice tasks, implicating the orbitofrontal

cortex and the anterior temporal lobe (ATL). However, no single region was found

to necessary or sufficient for either grammatical, word or sentence comprehension

deficits suggesting a distributed network for linguistic representations. In addition,

single neuron studies within the dorsomedial prefrontal cortex (dmPFC) reveal signals

for semantic clusters of words within semantically related and grammatically correct

sentences. I found significant and invariant electrodes in the ATL and the LOF for the

minimal phrase task, but not in other regions, likely due to the task’s simplicity, which

does not require grammatical production or because the task lacked the necessary con-

text required to activate the representations in the dorsal frontal cortex. Overlapping
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with the PPA studies, the ATL and pars opercularis also showed selective and con-

sistent responses for the sentence task, but there weren’t enough electrodes to form

a significant cluster for either task. However, I found significant clusters in the pars

triangularis and precentral gyrus activations for the sentence task that were associated

with grammatical and sentence production deficits in previous studies. Consistent

with extensive work documenting the lateralization of language functions, the results

presented here also show a strong predominance of the left hemisphere in the repre-

sentation of part of speech, despite the fact that there were more electrodes sampling

signals from the right hemisphere.

2.5 Limitations of sEEG Recordings

Several limitations in the current work are worth noting. First, all the results reported

here are derived from patients with epilepsy. The invasive study of epilepsy patients

constitutes the predominant way to access neurophysiological signals from the human

brain (Dale et al., 1999, Joshi et al., 2011). Neurophysiological studies in other patient

populations (e.g., paraplegic patients, Parkinson’s patients, brain tumor patients), typ-

ically target specific regions that are not known to be associated with language pro-

cessing. Caution should be exercised in the interpretation of results from patient pop-

ulations. To the best of our knowledge, all patients used language fluently and had no

language impediments, but one should be aware of the possibility that epilepsy could

potentially impact the representation of language. Second, the electrode locations are

strictly dictated by clinical criteria. Our sampling of brain activity is extensive but not

exhaustive (Figure 1.1, Tables S1-S2). It is quite possible that other areas not exam-
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ined here may also reveal neural correlates of parts of speech and that the regions I

found interact with other relevant brain areas. A critical goal of cortical resections in

epilepsy patients is to cure seizures without interfering with cognitive function. As

such, given the strong lateralization and ubiquitous role for language in cognition, it

is extremely important to precisely understand the neural structures that support lan-

guage in these patients and the current results could help guide surgical approaches

for epilepsy. Third, the current work focuses on three parts of speech. Nouns, adjec-

tives, and verbs do not constitute an exhaustive list of parts of speech and future work

should examine the representation of pronouns, adverbs, prepositions, and conjunc-

tions. Finally, our work provides a correlate of the representation of POS, but future

work should evaluate whether any such signals are causally required for online lan-

guage interpretation.

These results provide initial glimpses into highly localized structures that represent

a fundamental component of language that has been extensively studied by linguists

for decades, the functional role of different words within a sentence. The represen-

tation of nouns versus adjectives in the human brain is invariant to the presentation

modality, word properties, grammar, and semantics. Furthermore, the representation

even generalizes across different languages. These observations open the doors to be-

gin to elucidate the neural representation of more complex language concepts and to

bridge the extensive work in language and linguistics to their underlying neural repre-

sentations.
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“You make experiments and I make theories. Do

you know the difference? A theory is something

nobody believes, except the person who made it. An

experiment is something everybody believes, except

the person who made it.”

Albert Einstein

3
Methods

3.1 Preregistration

When one preregisters their research, they are simply specifying their research plan

in advance of their study and submitting it to a registry. Preregistration separates

hypothesis-generating (exploratory) from hypothesis-testing (confirmatory) re-
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search. Both are important. But the same data cannot be used to generate and test

a hypothesis, which can happen unintentionally and reduce the credibility of your

results. Addressing this problem through planning improves the quality and trans-

parency of your research. This helps you clearly report your study and helps others

who may wish to build on it.

Pre-registered Hypotheses:

1. There exists a common neural representation of words presented via visual cues

or auditory cues

2. Neural responses to nouns are different from neural responses to adjectives (ir-

respective of presentation modality)

3. Presentation order matters. The neural representation of a noun followed by an

adjective is different from the neural representation of an adjective followed by

a noun (irrespective of presentation modality)

4. The neural representation of nouns is category-specific

5. The neural representation of adjectives is category-specific

This study was preregistered on the Open Science Framework (OSF) website. The

preregistration DOI is: https://doi.org/10.17605/OSF.IO/8TU2G. To the best of my

knowledge, this is the first pre-registered study in human neurophysiology. I found

neural correlates for all five hypotheses in the preregistration. The pre-registration is

included in the thesis as-is, so the findings can be compared directly with the goals

outlined in the pre-registration.
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Analysis Plan 
 
Transformations 
 
Data pre-processing 
 
Intracranial field potentials (IFP) are pre-processed according to the following steps (Liu et al 
2009, Madhavan et al 2019):  
 

1. We use a notch filter at 60 Hz and harmonics in each channel to remove line noise with a 
2nd order Butterworth filter. 

2. We use a 5th order Butterworth filter to lowpass the data at 200 Hz with steepness 0.995. 
[edit here: not sure if it is butterworth filter àusing MATLAB 2019a’s lowpass function] 

3. We use a global reference or bipolar montage reference 
4. For each electrode and each trial i, we compute the amplitude of the IFP in the window 

[50,500] ms with respect to word onset: Ai = max(Vi(t)) – min(Vi(t)) with 50≤t≤500 ms. We 
compute the distribution of amplitudes Ai across all the trials for each electrode 
(irrespective of the condition of each trial). We exclude from analyses trials where: Ai > 
 µ-4s where µ and s are the mean and standard deviation of Ai, respectively. This 
procedure typically amounts to removing 1% of the trials. 

 
Neural features  
 
We consider two types of neural features 

(1) raw broadband IFP signals  
(2) signals in the gamma frequency band (Madhavan et al 2019). The gamma frequency band 

is defined by band-pass filtering the data with a 5th-order Butterworth filter between 30 
and 100 Hz. 

 
Time windows 
 
We evaluate the responses in the window [50,800] ms with respect to stimulus onset.  
We define the baseline as the interval [-350,0] ms with respect to first stimulus onset. 
 
Statistical models* 
 
We perform analyses at the level of individual electrodes and at the level of electrode 
populations. These two types of analyses are separately discussed next. 
 
Single electrode analyses 
 
In all cases, we use a two-tailed non-parametric permutation test to assess statistical significance 
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at the p<0.01 level. For example, consider the definition of visually responsive electrode below. 
We consider the neural responses during visual stimulus presentation s1, s2, …, sn and the neural 
responses during baseline b1, b2, …, bn. We define the visual responsivity index: 
v = (µs - µb) / (sqrt(ss

2 + sb
2)).  

We next compute the distribution of the visual responsivity index v’ under the null hypothesis 
obtained by shuffling the labels s, b. This procedure is repeated 10,000 times. The probability 
that the actual index v comes from the shuffled distribution v’ is given by:  
p = {# iterations | |v’|>v}  
A similar procedure is followed for all the other statistical tests. 
 
Visually responsive electrodes 
An electrode is visually responsive if the neural response during visual stimulus presentation is 
different from baseline (e.g., Liu et al 2009). 
 
Auditory responsive electrodes 
An electrode is auditory responsive if the neural response during auditory stimulus presentation 
is different from baseline. 
 
Audiovisual responsive electrodes 
An audiovisual responsive electrode is a visually responsive and an auditory responsive electrode. 
 
Hypothesis 1. There exists a common neural representation of words presented via visual cues or 
auditory cues. 
A common representation is defined by:  

1. Audiovisual responsive electrodes 
2. A statistically significant correlation between the responses to the same stimuli when 

presented in an audio format versus visual format. (how to do this? What about time 
offsets?) 

 
Hypothesis 2. Neural responses to nouns are different from neural responses to adjectives 
(irrespective of presentation modality) 
 
An electrode is selective for part-of-speech (noun / adjective) if the responses to nouns and 
adjectives are different.  
An electrode could be selective for part-of-speech during visual presentation, audio presentation, 
or both. 
An electrode that is selective for part-of-speech and which is involved in language representation 
should show selectivity during both visual and auditory presentation. 
 
Hypothesis 3. Presentation order matters. The neural representation of noun followed by 
adjective is different from the neural representation of adjective followed by noun (irrespective of 
presentation modality) 
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An electrode is modulated by the presentation order if the neural response to noun-adjective is 
different from the neural response to adjective-noun.  
An electrode can be modulated by the presentation order during visual presentation, auditory 
presentation, or both.  
An electrode that is modulated by the presentation order and which is involved in language 
representation should show modulation by presentation order during both visual and auditory 
presentation. 
 
Hypothesis 4: The neural representation of nouns is category specific. 
 
An electrode is category-selective for nouns if the neural responses differ between the 3 possible 
noun categories. Note that this question requires a non-parametric analysis of variance (instead 
of all the previous comparisons that depend on comparing only 2 groups).  
An electrode can show category specificity for nouns during visual presentation, during auditory 
presentation or during both.  
An electrode that shows category-specificity for nouns and which is involved in language 
representation should show category-specificity for nouns during both visual and auditory 
presentation. 
Furthermore, the selectivity for nouns during visual presentation should correlate with that 
during auditory presentation. 
 
Hypothesis 5: The neural representation of adjectives is category specific. 
 
An electrode is category-selective for adjectives if the neural responses differ between the 3 
possible adjective categories. Note that this question requires a non-parametric analysis of 
variance (instead of all the previous comparisons that depend on comparing only 2 groups).  
An electrode can show category specificity for adjectives during visual presentation, during 
auditory presentation or during both.  
An electrode shows category-specificity for adjectives and which is involved in language 
representation should show category-specificity for adjectives during both visual and auditory 
presentation. 
Furthermore, the selectivity for adjectives during visual presentation should correlate with that 
during auditory presentation. 
 
Electrode population analyses 
 
The analyses presented so far examine each electrode separately. In addition, we build “pseudo-
populations” of electrodes for different electrode locations. We use the term “pseudo-
population” to refer to merging electrodes from different subjects and to distinguish this type of 
analyses from a population where all the signals are simultaneously recorded (discussed in Hung 
et al 2005, Liu et al 2009).  
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Populations are built based on the electrode locations to assess the spatial specificity of the 
findings. We only consider regions where we have at least 10 electrodes. 
The population analyses are based on using a machine learning classifier. Activity from all the 
electrodes in the population are concatenated into a vector for each trial. We use a support 
vector machine classifier with a linear kernel. In all cases, we use cross-validation by randomly 
selecting 70% of the trials for training the classifier and reporting test performance on the 
remaining 30% of the trials. More details about the use of machine learning classifiers can be 
found in Hung et al 2005, Liu et al 2009, Kriegeskorte and Kreiman 2011. We illustrate the process 
by considering hypothesis 2, but the same procedure is used for the other hypotheses. 
 
Consider hypothesis 2: Neural responses to nouns are different from neural responses to 
adjectives (irrespective of presentation modality).  
We build a machine learning classifier to evaluate whether we can distinguish whether a given 
presentation is a noun or an adjective in single trials.  
Condition 1: train classifier on visual responses, test on visual responses 
Condition 2: train classifier on auditory responses, test on auditory responses 
Condition 3: same classifier as condition 1, test on auditory responses 
Condition 4: same classifier as condition 2, test on visual responses 
Null hypothesis: shuffle the trial labels (noun or adjective), repeat 10,000 iterations. Show 
distribution of classification performance (which we expect to be centered around 50%).  
 
A population (brain area) shows selectivity for nouns versus adjectives if the classifier is above 
chance in condition 1 or condition 2.  
A population (brain area) shows selectivity for nouns versus adjectives and invariance to the 
presentation modality if the classifier is above chance in all four conditions.  
 
Similar steps are followed for all the other hypothesis. 
We note that in hypothesis 4 and 5, there are 3 possible labels, and hence we expect chance to 
be centered around 33.3%.  
 
Inference criteria 
 
Inference will be drawn based on p<0.01.  
All tests are two-tailed. 
In the population-level analyses the comparisons are based on the performance of the classifier 
under the null hypothesis. This is converted into a p value by assessing the proportion of 
iterations where the null distribution reaches a classification performance above the actual 
population. 
All tests are non-parametric. 
Control for multiple comparisons is performed by ensuring an experiment wide false discovery 
rate < 0.01.  
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Data exclusion 
 
The criteria for detecting potential artifacts and excluding trials for analyses was described above 
(see Transformations) 
 
The behavioral task is very easy and is mostly used to ensure that the subject pays attention to 
the stimuli. If a subject’s performance is below 20%, we will exclude that subject from analyses.  
 
Whenever possible, we will collect eye movements during the task. Trial in which subjects deviate 
by more than 2 degrees from the fixation center will be excluded from analyses. 
 
Interictal discharges and seizure events will also be excluded from analyses. The epileptogenic 
focus is defined by clinical criteria by a teach of experts. Electrodes from the epileptogenic focus 
are not considered for analyses. Data within a window of 30 minutes before the onset of a seizure 
to 30 minutes after the offset of a seizure will not be considered for analyses. 
 
Missing data 
 
We do not expect to have any missing data.  
Patients may not finish the entire experiment in one session. In these cases, we will run additional 
sessions as needed. To a reasonable first approximation, invasive neurophysiological recordings 
are stable over periods of days (Bansal et al 2012). Therefore, we will merge data from multiple 
sessions for a given patient unless we detect any non-stationarities in the recordings. 
Occasionally, it is possible that some subjects may not finish all the trials. As long as we have a 
minimum of 200 trials, we will include those incomplete datasets in the analyses. 
Whenever the number of trials is a potential confound in the analyses, we will randomly 
subsample the data to assess the impact of number of trials on the results. 
 
Additional analyses 
 
Electrode localization 
Electrode locations are computed by co-registering the preoperative magnetic resonance 
imaging with the post-operative computed tomography scans. For each subject, the 3D brain 
surface is reconstructed and then an automatic parcellation is performed using Freesurfer 
(Destrieux et al., 2010). The electrode positions ae mapped onto 74 brain areas (Destrieux et al., 
2010). For examples of the electrode localization maps, see Madhavan et al 2019. 
 
Response latencies 
In addition to the single electrode and population level responses discussed above, we are also 
especially interested in the dynamics of the neural responses. We will use methods developed in 
our previous work (Tang et al 2014) to evaluate the response latencies. We will compare the 
response latencies for: 
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(1) Visual versus auditory presentation 
(2) Nouns versus adjectives 
(3) Noun-adjective versus adjective-noun 

Brain interactions 
In addition to evaluating single electrode responses, and population-level responses assuming 
independent electrodes, we will also quantify pairwise brain interactions as described in the 
study of Madhavan et al 2019. The analyses will follow the ones outlined above for the single 
electrode case, except that here we will use neural interactions between areas as the neural 
response metric. 
 
Exploratory analysis 
 
Additional analyses will be reported as exploratory results 
 



3.2 Data and Recordings

3.2.1 Data availability

All data and code will be made publicly available through the following link: https:

//klab.tch.harvard.edu/resources/Misraetal_POS.html The pseudocode can be found

within the Readme.docx file in the above link. There is a script for each figure and

sub-figure. The README.docx file details how to run those scripts to plot each of

them and also redo the analysis for the entire study.

3.2.2 Participants

Minimal Phrase Task: We recorded data from 20 participants (9 male, 9-60 years old,

2 left-handed, 2 ambidextrous, Table S1) with pharmacologically resistant epilepsy.

All experiments were conducted while participants stayed at Children’s Hospital

Boston (CHB), Brigham and Women’s Hospital (BWH), or Taipei Veterans General

Hospital (TVGH). All studies were approved by each hospital’s institutional review

boards and were carried out with the participants’ informed consent.

Sentence Task: We recorded data from 17 participants (7 male, 13-50 years old, 3 left-

handed, Table S9) with pharmacologically resistant epilepsy. All experiments were

conducted while participants stayed at Children’s Hospital Boston (CHB), Cleveland

Clinic, Ohio, or Taipei Veterans General Hospital (TVGH). All studies were approved

by each hospital’s institutional review boards and were carried out with the partici-

pants’ informed consent.
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3.2.3 Recordings and Electrode Locations

Participants were implanted with intracranial depth electrodes (Ad-Tech, Racine,

WI, USA). Neurophysiological data were recorded using XLTEK (Oakville, ON,

Canada), Bio-Logic (Knoxville, TN, USA), Nihon Kohden (Tokyo, Japan), and Na-

tus (Pleasanton, CA, USA). The sampling rate was 2048 Hz at BCH and TVGH, and

1024 Hz or 512 Hz at BWH. All data were referenced in a bipolar montage. There

were no seizure events in any of the sessions. Electrode locations were decided based

on clinical criteria for each participant. Electrodes in the epileptogenic foci, as well as

pathological areas, were removed from analyses. The total number of electrodes after

bipolar referencing and removing electrodes with no signal, line noise or recording

artifacts was 1,801.

Following implantation, electrodes were localized by co-registration of pre-operative

T1 MRI and post-operative CT scans using the iELVis software (Groppe et al., 2017).

We used FreeSurfer to segment MRI images, upon which post implant CT was rigidly

registered (Desikan et al., 2006). Electrodes were marked in the CT aligned to pre-

operative MRI using the Bioimage Suite (Joshi et al., 2011, Dale et al., 1999). The

Desikan-Killiany (DK) atlas was used to assign the electrodes locations. Figure 1.1

b-g and Table S2 show the locations of all the electrodes.

3.3 Experiment Design

All visual stimuli were displayed on a 15.4 inch 2,880 × 1,800 pixel LCD screen us-

ing the Psychtoolbox in MATLAB (Natick, MA) and a MacBook Pro laptop (Cuper-
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tino, CA). The stimuli were positioned at eye level at about 80 cm from the partici-

pant and each word subtended approximately 3 degrees of visual angle. Sounds were

played from the speakers of a MacBook Pro 15.4 at 80% loudness using the Psych-

toolbox in MATLAB (Brainard, 1997). We used the USB-1208FS-Plus device from

Measurement Computing Corporation (Norton, Massachusetts) to send trigger pulses

that enabled us to align stimuli onsets and behavioral responses to neural recordings.

Minimal Phrase Task: A schematic of the task is shown in Figure 1.1. Participants

were presented two words, 875 ms presentation time, with a 400 ms blank screen be-

tween them. At the end of each trial, participants were asked to indicate via a button

press whether the two words were same or different. Word presentation was either

visual or auditory. On average, we presented 1500 ± 710 trials (Table S1 shows the

number of trials per participant).

There were three types of trials: Noun followed by Adjective (42% of trials, e.g.,

“apple green”), Adjective followed by Noun (42% of trials, e.g., “green apple”), Re-

peated Noun (8% of trials, e.g., “apple apple”), and Repeated Adjective (8% of trials,

e.g., “green green”). The order of trials (stimulus presentation modality and noun/adjective

structure) was randomly interleaved. Each word combination was presented in a ran-

domized manner 5 times in the audio modality and 5 times in the visual modality.

The nouns belonged to two categories, animals (e.g., “cat”) and food (e.g., “apple”).

The adjectives belonged to two categories, concrete adjectives (e.g., “big”) and ab-

stract adjectives (e.g., “good”). A list of all the nouns and adjectives is included in

Table S3. We selected only high frequency English words that were more frequent

than 10−6 in Google Ngram and were shorter than 7 letters and had no more than 1 or
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2 syllables. We used the max frequency of a word between 2006 and 2019. Finally,

we created a balanced selection of nouns and adjectives such that noun and adjec-

tives were indistinguishable from each other using word length or number of sylla-

bles (p>0.05 ranksum test). We conducted the experiment in 3 languages, English (16

monolingual and 1 bilingual participants), Spanish (1 bilingual participant) and Tai-

wanese (3 monolingual participants). Two bilingual international scholars whose na-

tive language was Spanish (MAG) and Taiwanese (YLK) translated the words in the

task. For non-English languages, we also kept nouns and adjectives indistinguishable

based on word-length and number of syllables.

Participants had to indicate whether the two words in a trial were the same or not.

The motor responses were the same for nouns or adjectives. The motor responses

were also the same for noun followed by adjective or adjective followed by noun tri-

als. Thus, the motor responses were orthogonal to parts of speech and grammar and

differences between nouns and adjectives cannot be attributed to motor signals.

Sentence Task: A schematic of the task is shown in Figure 1.17 a. Participants

were presented four-word sentences. There was a 600 ms fixation, followed by four

words with 875 ms presentation time. After the last word there was a 1s delay with

gray screen and then an image was presented.

There were two types of trials: semantically correct (50% of trials, e.g., “the girls

ate cakes”), and semantically incorrect (50% of trials, e.g., “the cakes ate girls”).

Thus, the semantically incorrect/odd sentences were formed by swapping the nouns of

the correct sentences, without changing the grammatical correctness of the sentence.

The order of trials (stimulus presentation modality and semantically correct/incorrect
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structure) was randomly interleaved. The subjects were instructed to indicate via a

button-press whether the sentence described the image (green button) or not (red but-

ton), ignoring notions of singular or plural. Note, an accurately described image was

only possible for semantically correct sentences when an image corresponding to the

sentence was presented on the screen (60% trials of the semantically correct sentences

with related images that were described by the sentence, 40% unrelated images which

were not described by the sentence). For the semantically incorrect/odd sentences,

there was no image that the sentence described accurately (i.e., the response was al-

ways the red button). However, for incorrect sentences, 60% sentences were followed

by images that were related to the sentence but not accurately described by it (e.g.,

the sentence “the cakes ate girls” followed by an image of a girl eating a cake). The

remaining 40% sentences were followed by unrelated images (e.g., the sentence “the

cakes ate girls” followed by an image of a dog chasing a ball). We conducted the ex-

periment in 3 languages, English (14 monolingual), Spanish (3 bilingual participants)

and Hindi (1 monolingual participant). See Table S10 for example sentences.

3.4 Data Analyses

Preprocessing

A total of 2,428 electrode contacts were implanted, 627 of which were excluded from

analysis due to bipolar referencing, presence of line noise or recording artifacts (Wang

et al., 2021). We removed 60 Hz line noise and its harmonics using a fifth-order But-

terworth filter. We focus on the high-gamma band of the intracranial field poten-

tial signals obtained by bandpass filtering raw data of each electrode in the 65–150
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Hz range (fifth-order Butterworth filter). The high gamma band (65-150 Hz) power

was computed using the Chronux toolbox (Mitra and Bokil, 2008). We used a time-

bandwidth product of 3 and 4 leading tapers, a moving window size of 200 ms, and a

step size of 5 ms. For every trial, we computed the normalized high gamma activity

by subtracting the mean activity from -150 to 50 ms from the onset of the first fixation

and then dividing by the standard deviation. This normalized response is reported as

“gamma power” on the y-axis when showing electrode responses.

Responsive Electrodes

We evaluated whether an electrode was responsive to visual or auditory stimuli by

comparing the 100 to 400 ms post stimulus onset to the -400 to -100 ms before stim-

ulus onset (e.g., Figure 1.2). The responsiveness threshold was set using Cohen’s

d prime coefficient and based on the number of trials for a statistical power of 80%

and p<0.01 (one-tailed z-test). We also computed the time at which the neural signals

reach half of the maximum amplitude.

Part-of-speech selectivity

We compared the neural responses to nouns versus adjectives. Periods of significant

selective activation were tested using a one-tailed t-test with p<0.05 at each time point

to differentiate between nouns and adjectives and were corrected for multiple com-

parisons with a Benjamini-Hochberg false detection rate (FDR) corrected threshold of

q<0.05, separately for auditory and visual trials. After fixing the FDR with q<0.05, an

electrode was considered to be selective for part of speech if there was a significant
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difference between nouns and adjectives for a minimum contiguous window of 65 ms.

General Linear Model (GLM)

Minimal Phrase Task: We created a GLM to tease out the experiment variables that

significantly contribute for explaining the responses of a given channel. The equation

for a GLM is as follows:

AUC = β0 + βNvsANvsA+βGvsUGGvsUG+ βNumberOfSyllablesNumberOfSyllables

+ βWordLengthWordLength
(3.1)

where AUC is the area under the response curve (e.g., Figure 1.4 a) from 200 ms to

800 ms after the onset of word1 and word2, β0 is a constant additive term, NvsA is

1 for Nouns and -1 for Adjectives, GvsUG is 1 for Grammatical trials and -1 for Un-

grammatical trials, NumberOfSyllables is 1 or 2 (and 0 for visual trials), or WordLength

goes from 3 to 7 (and 0 for auditory trials) as the task predictors. We fit this GLM

model for each electrode separately using the MATLAB function fitglm and report the

corresponding β coefficients (e.g., Figure 1.4 j). We assessed whether each coeffi-

cient was significantly different from zero when compared to β coefficients generated

from shuffled labels (p<0.01, corrected for multiple comparisons).

Sentence Task: The equation for a GLM is as follows:

AUC = β0 + βNvsVNvsV+ βSvsNSSvsNS+ βNumberOfSyllablesNumberOfSyllables

+βWordLengthWordLength
(3.2)

where AUC is the area under the response curve (e.g., Figure 1.17 b) from 200 ms to

800 ms after the onset of word1 and word2, β0 is a constant additive term, NvsV is 1
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for Nouns and -1 for Verbs, SvsNS is 1 for Semantically correct trials and -1 for in-

correct trials, NumberOfSyllables is 1, 2 or 3 (and 0 for visual trials), or WordLength

goes from 3 to 10 (and 0 for auditory trials) as the task predictors.

Anatomical comparisons

To assess the degree of anatomical specificity in the neural responses, we compared

the percentage of significant electrodes in each brain region to the null distribution ex-

pected given the number of electrodes in each area using a permutation test (p<0.01,

106 iterations). A similar approach was followed to compare the same region between

the left and right hemispheres.

Decoding Analysis

We performed a machine learning decoding analysis (Bansal et al., 2014) to decode

parts of speech in individual words combining all the electrodes in each brain region

as defined by the Desikan-Killiany atlas (Desikan et al., 2006) (Figure 1.12). The

top-N principal components of all electrodes that explained more than 70% of the

variance in the training data for the area under curve of non-overlapping 100 ms time-

windows of the signal following word onset were used for decoding. The signal for

decoding comprised of features from different frequency bands (beta: 12-30 Hz, low

gamma: 30-65 Hz, and high gamma power: 65-150 Hz). The analysis was repeated

for 30 random splits of the data with 80% of the data used for training a Support Vec-

tor Machine with a linear kernel. Significant decoding performance was found by

comparing performance from the original data at each time-window with a null distri-
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bution obtained by shuffling labels (p<0.01, ranksum test). Regions with statistically

significant decoding performance were found by comparing the average of the maxi-

mum decoding performance across time for 30 random iterations of the original data

with that of the null distribution, separately for both hemispheres (p<0.01, ranksum

test corrected for multiple comparisons) (Figure 1.11 c,f,i, Figure 1.12 c, Figure 1.13

c,f,i,l,o,r). We also applied a threshold such that for a given region R

[μR − 3σR]OriginalData > [μR − 3σR]NullData (3.3)

where μ and σ represent the average and standard deviation in region R. For the sig-

nificant regions, the average max-performance between the left and right hemispheres

was compared to find if decoding performance was lateralized (p<0.01, ranksum test,

corrected for multiple comparisons).
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“A preposition is a word you mustn’t end a sentence

with!”

Berton Braley

4
Audiovisual Sentences

A remarkable hallmark of language is its universality. This universality goes beyond

the comprehension of individual words and facilitates a robust interpretation of sen-

tence meaning and grammar. We can comprehend the sentence the boys play soccer

when uttering it, writing it, listening to it, reading it and even when examining a pic-

ture. In previous experiments, I demonstrated multimodal and invariant representa-
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tions for parts of speech (POS) – the building blocks of grammar (Misra et al., 2024).

There have been invasive neurophysiological studies examining other aspects of mul-

timodal and invariant representations for memories (Quian Quiroga et al., 2005) and

semantic word retrieval (Forseth, 2018). Recent, neurophysiological have examined

grammatical processing (Ding et al., 2016), and single neuron responses reflecting the

word meaning based on their specific sentence context and independent of their pho-

netic form. (Jamali et al., 2024). However, multimodal representations for grammar

and semantics processing of sentences remain unknown.

4.1 Results

To address these gaps, I designed a task where I presented sentences to patient partic-

ipants in both auditory and visual modalities. These sentences were composed of four

words and belonged to three categories:

1. Grammatically and Semantically Correct (GS): the girls ate cakes,

2. Semantically Incorrect (NS): the cakes ate girls,

3. Grammatically Incorrect (NG): the ate girls cakes

A schematic of the task is shown in Figure 4.1. Participants were presented four-

word sentences. There was a 600 ms fixation, followed by four words with 875 ms

presentation time for each word. After the last word there was a 1s delay with gray

screen and then an image was presented. The participants were asked to indicate via a

button press whether the sentence accurately described the image or not.
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I recorded intracranial field potentials from 1,563 electrodes (844 in gray matter,

719 in white matter) implanted in 17 patients via stereoelectroencephalography. Par-

ticipants heard (auditory modality) or read (visual modality) four-word sentences that

were sequentially presented (Figure 4.1,Methods). To assess comprehension, partic-

ipants were asked to indicate whether the sentence adequately described an image that

followed the last word after a 1,000 ms interval. Participants performed the task cor-

rectly on 86±13% of the trials. I considered three types of sentences, semantic (e.g.,

“the girls ate cakes”, called GS sentences), non-semantic (e.g., “the cakes ate girls”,

called NS sentences) and ungrammatical (e.g. “the are girls cake”, called NG sen-

tences). All electrode locations are shown in Figure 1.16 (see also Table S11,Meth-

ods).

Figure 4.1: Sentence Task Design. Sentences comprising four words sequentially
presented either in visual or auditory modality were followed by an image. The sentences
were semantically correct (1/3rd GS sentences, e.g., “the girls ate cakes”), non-semantic
(1/3rd NS sentences, e.g., “the cakes ate girls”) or non-grammatical (1/3rd NG sentences,
e.g., “the ate girls cakes”). Participant were instructed to indicate via a button press
whether the sentence described the image accurately or not (Methods 4.4.1).
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4.1.1 Multimodal Neural Signals Distinguish Semantic and Non-semantic sentences

I evaluated whether neural signals differentiated between semantically correct and in-

correct sentences. Figure 4.2 shows the responses of an example electrode located in

the left lateral orbitofrontal cortex (Figure 4.2 h depicts the electrode location). The

neural responses are aligned to the word onset (vertical dashed line) for auditory pre-

sentation (Figure 4.2 a) or visual presentation (Figure 4.2 b) for each trial. This elec-

trode showed multimodal responses triggered by both auditory and visual stimuli. The

responses to semantically correct sentences (blue) were stronger than incorrect (red)

and ungrammatical (black) sentences for visual and auditory stimuli. A total of 125

electrodes showed a difference across any of the 8 conditions word2 onset onwards.

Out of them 37 were multimodal, 46 were audio only and 42 were visual only. The 37

electrodes cannot be ascribed to randomly sampling from the total of audio and visual

electrodes (p<10-4, permutation test, n=106 iterations).

4.1.2 Neural selectivity for semantically distinguishable sentences was robust to word

properties and phrase grammar

I asked whether grammar, auditory properties (like number of phonemes) and ortho-

graphic properties (like word length) could contribute to the neural differences be-

tween semantically correct and incorrect sentences. To address these questions, I built

a generalized linear model (GLM) for each electrode to predict its response AUC be-

tween 200 ms and 800 ms after each word onset using the following predictors: se-

mantically correct or not, grammatically correct or not, and word length (vision) or

number of syllables (audition) (Methods 4.4.1). I did not include the semantically
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correct or incorrect label as a predictor during word2 and included it after the onset

of word3 because the semantically correct versus incorrect meaning of NS sentences

becomes obvious only after the onset of word3 and cannot be distinguished at word2.

The predictor coefficients in the GLM model for the example electrode in Figure

4.2 a,b show that only the semantically correct versus incorrect label significantly

explained the neural responses for both auditory and visual presentation (Figure 4.2

c-f). A total of 13 electrodes showed semantically correct versus incorrect as the only

statistically significant predictor in the GLM analysis (Methods 4.4.1); 13/13 (100%)

of these electrodes distinguished semantically correct versus incorrect for both audi-

tory and visual inputs, such as the example electrode in Figure 4.2 a,b.

Figure 4.2 g-i shows the locations of these 13 electrodes (see also Table S15 S16).
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Figure 4.2: a,b. Trial-averaged normalized gamma-band power of responses from an
example electrode in the left lateral orbitofrontal cortex (see location in h) to semantically
correct (GS: blue; one example sentence of each kind is shown in a), incorrect (NS:
red) or ungrammatical (NG: black) sentences during presentation of auditory stimuli
(a, n=440 trials) or visual stimuli (b, n=446 trials) aligned to the onset (vertical dashed
line) of each word and the wait period before image onset. Shaded areas denote s.e.m.
Horizontal colored lines denote windows of statistically significant differences between
responses to nouns versus adjectives (t-test p<0.05, Benjamini-Hochberg false detection
rate, q<0.05). There is a significant difference between the semantically correct (GS) and
incorrect (NS) conditions (red horizontal bars), and between semantically correct (GS)
and ungrammatical (NG) sentences (blue horizonal bars) following word3, word4, and
wait-time onset in auditory (a) and visual (b) presentations of stimuli.
c-f. Z-scored β coefficients for Generalized Linear Model used to predict area under the
curve between 200 ms and 800 ms post word onset for word2 (c), word3 (d), word4 (e),
or wait-time (f). I used the following labels for prediction: Grammatically correct versus
incorrect (GvsNG), Semantically correct versus incorrect (SvsNS), number of syllables
and word length. Note that the semantically incorrect meaning of NS sentences becomes
obvious after the onset of word3. Thus, I included SvsNS as a predictor word3 onwards.
This electrode showed SvsNS as the only significant predictor (d-f) (Methods 4.4.1).
g-i. All electrodes that showed audiovisual differences between GS and NS, or GS and
NG and had SvsNS as the only significant predictor during word2, word3, word4 or wait
time (Methods, p<0.01, Bonferroni corrected). The electrodes are shown on the lateral
view (g,i) for the left (g, n=7) and right hemispheres (i, n=6). The example electrode is
shown on the inferior view for both hemispheres with an arrow (h, n=13, see also Table
S15 16). This electrode was in the left lateral orbitofrontal cortex.
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4.1.3 Multimodal Neural Signals Distinguish Grammatically Correct and Incorrect sen-

tences

I evaluated whether neural signals differentiated between grammatically correct and

incorrect sentences. Figure 4.3 shows the responses of an example electrode located

in the left pars opercularis (Figure 4.3 h depicts the electrode location). The neural

responses are aligned to the word onset (vertical dashed line) for auditory presenta-

tion (Figure 4.3 a) or visual presentation (Figure 4.3 b) for each trial. This electrode

showed multimodal responses triggered by both auditory and visual stimuli. The re-

sponses to grammatically incorrect sentences (black) were stronger than semantically

correct (blue) and semantically incorrect but grammatically correct (red) sentences for

visual and auditory stimuli.

4.1.4 Neural selectivity for grammatically distinguishable sentences was robust to word

properties and semantics

I asked whether semantic coherence, auditory properties (like number of phonemes)

and orthographic properties (like word length) could contribute to the neural differ-

ences between grammatically correct and incorrect sentences. To address these ques-

tions, I built a generalized linear model (GLM) for each electrode to predict its re-

sponse AUC between 200 ms and 800 ms after each word onset using the following

predictors: semantically correct or not, grammatically correct or not, and word length

(vision) or number of syllables (audition) (Methods 4.4.1). I included semantically

correct or not as a predictor following the onset of word3 because the semantically
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correct versus incorrect meaning of NS sentences becomes obvious after the onset of

word3.

The predictor coefficients in the GLM model for the example electrode in Figure

4.3 a,b show that only the grammatically correct versus incorrect label significantly

explained the neural responses for both auditory and visual presentation (Figure 4.3

c). A total of 10 electrodes showed grammatically correct versus incorrect as the only

statistically significant predictor in the GLM analysis (Methods 4.4.1); 10/10 (100%)

of these electrodes distinguished grammatically correct versus incorrect for both audi-

tory and visual inputs, such as the example electrode in Figure 4.3 a,b.

Figure 4.3 g,h shows the locations of these 10 electrodes (see also Table S17 S18).
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Figure 4.3:
a,b. Trial-averaged normalized gamma-band power of responses from an example
electrode in the left pars opercularis (see location in g) to semantically correct (GS: blue;
one example sentence of each kind is shown in a), incorrect (NS: red) or ungrammatical
(NG: black) sentences during presentation of auditory stimuli (a, n=438 trials) or visual
stimuli (b, n=432 trials) aligned to the onset (vertical dashed line) of each word and
the wait period before image onset. Shaded areas denote s.e.m. Horizontal colored
lines denote windows of statistically significant differences between responses to nouns
versus adjectives (t-test p<0.05, Benjamini-Hochberg false detection rate, q<0.05). There
is a significant difference between the semantically correct (GS) and ungrammatical
(NG) sentences (blue horizontal bars), and between semantically incorrect (NS) and
ungrammatical (NG) sentences (black horizonal bars) at word2 in auditory (a) and visual
(b) presentations of stimuli. There is a significant difference between the semantically
correct (GS) and incorrect (NS) conditions (red horizontal bars) following word3 for
auditory stimuli only (a).
c-f. Z-scored β coefficients for Generalized Linear Model used to predict area under the
curve between 200 ms and 800 ms post word onset for word2 (c), word3 (d), word4 (e),
or wait-time (f). I used the following labels for prediction: Grammatically correct versus
incorrect (GvsNG), Semantically correct versus incorrect (SvsNS), number of syllables
and word length. Note that the semantically incorrect meaning of NS sentences becomes
obvious after the onset of word3. Thus, I included SvsNS as a predictor word3 onwards.
This electrode showed GvsNG as the only significant predictor (c) (Methods).
g-h. All electrodes that showed audiovisual differences between GS and NS, or GS and
NG and had GvsNG as the only significant predictor during word2, word3, word4 or wait
time (Methods, p<0.01, Bonferroni corrected). The electrodes are shown on the lateral
view for the left (g, n=8) and right hemispheres (h, n=2) (see also Table S17 S18). This
electrode was in the left pars opercularis.

4.2 Supplementary Tables
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Subject Age Gender Language Handedness #Trials %Correct #Electrodes
1 13 M HI R 457 50% 134
2 15 F TW R 942 79% 35
3 19 M EN R 901 97% 174
4 37 F EN R 913 97% 78
5 40 M EN R 906 99% 73
6 21 M TW L 904 80% 64
7 30 M TW R 952 70% 78
8 42 F EN R 909 78% 154
9 27 F EN R 882 94% 62

10 32 F EN R 900 84% 141
11 30 F EN L 906 97% 72
12 25 M EN L 900 84% 92
13 33 F EN R 900 97% 65
14 50 F EN R 972 96% 117
15 20 M EN R 862 86% 65
16 20 F EN R 909 78% 81
17 20 F EN R 907 95% 78

TOTAL 1563

Table S14 | Information about each participant for the sentence task including age, 
gender, language (ENglish, HIndi, TaiWanese), handedness, number of trials, behavioral 
performance and number of electrodes.
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subject# #SvsNS
3 2
4 2
5 2
7 1

14 6
TOTAL 13

Region Total Left Right
'parstriangularis' 2 2 0

'medialorbitofrontal' 3 0 3
'insula' 1 0 1

'entorhinal' 1 1 0
'inferiortemporal' 1 1 0

'rostralmiddlefrontal' 1 1 0
'lateralorbitofrontal' 3 1 2

'inferiorparietal' 1 1 0
TOTAL 13 7 6

Table S15 | Distribution of multimodal electrodes that 
showed the SvsNS label as the only significant predictor 
following onset of word2, word3, word4 or wait time, across 
participants.

Table S16 | Distribution of multimodal electrodes on the 
Desikan-Killiany Atlas that showed the SvsNS label as the only 
significant predictor following onset of word2, word3, word4 
or wait time.



subject# #GvsNG
3 1
4 1
6 1

12 3
14 4

TOTAL 10

Region Total Left Right
'parstriangularis' 1 1 0
'middletemporal' 2 1 1

'superiortemporal' 2 1 1
'precentral' 4 4 0

'parsopercularis' 1 1 0
TOTAL 10 8 2

Table S18 | Distribution of multimodal electrodes on the 
Desikan-Killiany Atlas that showed the GvsNG label as the only 
significant predictor following onset of word2, word3, word4 
or wait time.

Table S17 | Distribution of multimodal electrodes 
that showed the GvsNG label as the only 
significant predictor following onset of word2, 
word3, word4 or wait time, across participants.



4.3 Discussion

To the best of my knowledge, these are the first invasive results showing multimodal

signals reflecting semantics (Figure 4.2) and grammar processing (Figure 4.3) for

sentences.

In addition, this is the first study to demonstrate a role for the frontal orbital cor-

tex in tracking the semantic content of sentences. Combining the medial and lateral

orbitofrontal cortices, 46% of the electrodes distinguishing semantically correct ver-

sus incorrect sentences were in the orbital regions (see Table S16). Previous works

on PPA (Mesulam et al., 2014, 2022, 2015) have shown the orbital regions (espe-

cially the left LOF and frontal pole) and the left LATL to be linked with word and

sentence comprehension deficits. However, I tread carefully in interpreting the re-

sults for this brain region because the orbital region captures a vast real estate within

the brain. It has been shown to be involved in a variety of functions such as working

memory (Kringelbach, 2005), cognitive control (Xiao et al., 2023), memory consol-

idation (Geva-Sagiv et al., 2023), and reward expectation encoding (Kringelbach,

2005). Given the design of my task, it is possible that the subjects’ neural responses

reflect the future uncertainty in classifying the impeding image for semantically cor-

rect sentences (60% accurately described images and 40% unrelated images,Methods

4.4.1). This uncertainty is not present for semantically incorrect or ungrammatical
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sentences. Despite 60% related images and 40% unrelated images for these sentences,

the answer is always the same, i.e. “not accurately described”, indicated via a but-

ton press (Methods 4.4.1). However, if such is this future uncertainty was indeed

involved then one would expect to see differences between grammatically correct and

incorrect stimuli at Word2 for the SvsNS encoding electrodes in Figure 4.2 g-i (for

this to be true the blue and red curves should be elevated compared to the black curve

at Word2 reflective of future uncertainty, which is not observed). This is because for

both grammatically correct sentence types future uncertainty in equally likely when

compared to ungrammatical sentences. But, I did not observe any such differences

and the electrode responeses resembled the example electrode in Figure 4.2.

On the contrary, the ambiguity I face in interpreting my findings for semantically

correct versus incorrect are absent for grammatically correct versus ungrammatical

comparisons. Thus making the findings more compelling. The motor and anticipatory

responses between NS (semantically incorrect) and NG (grammatically incorrect)

sentences are the same. Still, I observed elevated and distinguishable responses only

for the grammatically incorrect sentences (see Figure 4.3).

In summary, these findings are the first demonstration of multimodal and robust

representations for multimodal semantics and grammar. The results I present are very

new, and they require further ironing out before making further claims.
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4.4 Methods

4.4.1 Design

There were three types of trials: semantically correct (GS, 1/3rd of trials, e.g., “the

girls ate cakes”), semantically incorrect (NS, 1/3rd of trials, e.g., “the cakes ate girls”)

or ungrammatical (NG, 1/3rd of trials, e.g., “the ate girls cakes”). Thus, the semanti-

cally incorrect/odd sentences were formed by swapping the nouns of the correct sen-

tences, without changing the grammatical correctness of the sentence. The order of

trials (stimulus presentation modality, and the semantically and grammatically cor-

rect/incorrect structure) was randomly interleaved. The subjects were instructed to

indicate via a button-press whether the sentence described the image (green button)

or not (red button), ignoring notions of singular or plural. Note, an accurately de-

scribed image was only possible for semantically correct sentences when an image

corresponding to the sentence was presented on the screen (60% trials of the semanti-

cally correct sentences with related images that were described by the sentence, 40%

unrelated images which were not described by the sentence). For the semantically

incorrect/odd sentences, there was no image that the sentence described accurately

(i.e., the response was always the red button). However, for incorrect sentences, 60%

sentences were followed by images that were related to the sentence but not accu-

rately described by it (e.g., the sentence “the cakes ate girls” followed by an image of

a girl eating a cake). The remaining 40% sentences were followed by unrelated im-

ages (e.g., the sentence “the cakes ate girls” followed by an image of a dog chasing a

ball). I conducted the experiment in 3 languages, English (14 monolingual), Spanish
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(3 bilingual participants) and Hindi (1 monolingual participant). See Table S10 for

example sentences.

4.4.2 Participants

I recorded data from 17 participants (7 male, 13-50 years old, 3 left-handed, Table

S9) with pharmacologically resistant epilepsy. All experiments were conducted while

participants stayed at Children’s Hospital Boston (CHB), Cleveland Clinic, Ohio, or

Taipei Veterans General Hospital (TVGH). All studies were approved by each hospi-

tal’s institutional review boards and were carried out with the participants’ informed

consent.

4.4.3 Recordings and Electrode Locations

Participants were implanted with intracranial depth electrodes (Ad-Tech, Racine,

WI, USA). Neurophysiological data were recorded using XLTEK (Oakville, ON,

Canada), Bio-Logic (Knoxville, TN, USA), Nihon Kohden (Tokyo, Japan), and Na-

tus (Pleasanton, CA, USA). The sampling rate was 2048 Hz at BCH and TVGH, and

1024 Hz or 512 Hz at BWH. All data were referenced in a bipolar montage. There

were no seizure events in any of the sessions. Electrode locations were decided based

on clinical criteria for each participant. Electrodes in the epileptogenic foci, as well as

pathological areas, were removed from analyses. The total number of electrodes after

bipolar referencing and removing electrodes with no signal, line noise or recording

artifacts was 1,801.

Following implantation, electrodes were localized by co-registration of pre-operative
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T1 MRI and post-operative CT scans using the iELVis software (Groppe et al., 2017).

I used FreeSurfer to segment MRI images, upon which post implant CT was rigidly

registered (Desikan et al., 2006). Electrodes were marked in the CT aligned to pre-

operative MRI using the Bioimage Suite (Joshi et al., 2011, Dale et al., 1999). The

Desikan-Killiany (DK) atlas was used to assign the electrodes locations. Figure 1.16

a-f and Table S11 show the locations of all the electrodes.

4.4.4 Experiment Presentation

All visual stimuli were displayed on a 15.4 inch 2,880 × 1,800 pixel LCD screen us-

ing the Psychtoolbox in MATLAB (Natick, MA) and a MacBook Pro laptop (Cuper-

tino, CA). The stimuli were positioned at eye level at about 80 cm from the partici-

pant and each word subtended approximately 3 degrees of visual angle. Sounds were

played from the speakers of a MacBook Pro 15.4 at 80% loudness using the Psych-

toolbox in MATLAB (Brainard, 1997). I used the USB-1208FS-Plus device from

Measurement Computing Corporation (Norton, Massachusetts) to send trigger pulses

that enabled us to align stimuli onsets and behavioral responses to neural recordings.

4.4.5 Data Analysis

Grammar & Semantic Selectivity

I compared the neural responses to the three sentence categories. Periods of signifi-

cant selective activation were tested at each word using a one-tailed t-test with p<0.05

at each time point to differentiate between GS, NS and NG were corrected for mul-

tiple comparisons with a Benjamini-Hochberg false detection rate (FDR) corrected
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threshold of q<0.05, separately for auditory and visual trials. After fixing the FDR

with q<0.05, an electrode was considered to be selective for sentence category if there

was a significant difference between GS, NS and NG for a minimum contiguous win-

dow of 100 ms.

General Linear Model (GLM)

The equation for a GLM was defined for each word as follows. At Word2 of English

sentences it was :

AUC = β0+βGvsNGGvsNG+ βNumberOfSyllablesNumberOfSyllables

+ βWordLengthWordLength
(4.1)

where AUC is the area under the response curve (e.g., Figure 4.2 c) from 200 ms to

800 ms after the onset of word2, β0 is a constant additive term, GvsNG is 1 for gram-

matically correct trials and -1 for non-grammatical trials, NumberOfSyllables is 1, 2

or 3 (and 0 for visual trials), or WordLength goes from 3 to 10 (and 0 for auditory tri-

als) as the task predictors. I include SvsNS as a predictor word3 onwards because the

semantically incorrect meaning of NS sentences becomes obvious after the onset of

word3.

For Word3 and Word4 in English sentences, the GLM was defined as :

AUC =β0 + βSvsNSSvsNS+ βGvsNGGvsNG

+ βNumberOfSyllablesNumberOfSyllables

+ βWordLengthWordLength

(4.2)
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where AUC is the area under the response curve (e.g., Figure 4.2 d,e) from 200 ms

to 800 ms after the onset of word3 and word4, β0 is a constant additive term, SvsNS

is 1 for semantically correct trials and -1 for semantically incorrect trials and 0 for

ungrammatical trials, GvsNG is 1 for grammatically correct trials and -1 for non-

grammatical trials, NumberOfSyllables is 1, 2 or 3 (and 0 for visual trials), or WordLength

goes from 3 to 10 (and 0 for auditory trials) as the task predictors.

For wait time period before picture onset, the GLM was defined as :

AUC =β0 + βSvsNSSvsNS+ βGvsNGGvsNG (4.3)

where AUC is the area under the response curve (e.g., Figure 4.2 f) from 200 ms to

800 ms after the onset of wait time, β0 is a constant additive term, SvsNS is 1 for se-

mantically correct trials and -1 for semantically incorrect trials and 0 for ungrammat-

ical trials, GvsNG is 1 for grammatically correct trials and -1 for non-grammatical

trials, as the task predictors.

Semantic versus non-semantic encoding electrodes

An electrode was defined as encoding for semantic versus non-semantic information

if it satisfied:

1. It showed a selectivity between GS versus NS, or GS versus NG sentences.

2. In addition, it must show a significant contribution of only the SvsNS predictor

at word3, word4, or wait time, but not for other predictors (p<0.01, corrected,

Bonferroni corrected for the number of selective electrodes and across the three
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words).

Grammatically correct versus incorrect encoding electrodes

An electrode was defined as encoding for grammatically correct versus incorrect in-

formation if it satisfied:

1. It showed a selectivity between GS versus NS, or GS versus NG sentences.

2. In addition, it must show a significant contribution of only the GvsNG predictor

at word3, word4, or wait time, but not for other predictors (p<0.01, corrected,

Bonferroni corrected for the number of selective electrodes and across the three

words).
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5
Conclusion

My ultimate aim was to understand how the very organ that created language actually

accomplishes this feat. I wanted to piece together the internal code with which the

brain communicates with itself—through neural firing and voltage—to gain a clearer

picture of language representations within the brain.
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5.1 Audiovisual Language Processes with Intracranial recordings

During my rotations, I realized that questions about language processes in the brain

required controlled experiments that had the necessary statistical power to contrast

key theories about linguistic processes across a variety of controls (Chomsky et al.,

2019, Misra et al., 2024). Prof. Kreiman’s lab had expertise in analyzing and inter-

preting the neural code with which the brain talks to itself. I wanted to utilize this

opportunity to unravel the mysteries of language processing in the brain.

Thus, I created an audiovisual experiment that had the necessary controls to study

minimal phrase processing across a variety of critical controls. This work led to the

evidence for an invariant POS representation in the human brain (Misra et al., 2024).

The also results of my initial work became the bulk of my thesis. I also extended this

work my by designing another experiment to study multimodal grammar and meaning

processing in sentences.

5.2 Technical Summary of Thesis

5.2.1 Chapter 1

Here, I describe the results of my work on minimal phrases. I found evidence for a

multimodal, robust and invariant representation for parts-of-speech in the left lat-

eralorbitofronal cortex. For millennia (Panini 500 BC, Sakatạyana 814–760 BCE,

Nirukta Texts, 2nd millenium B.C. (Mondal, 2020)) *, linguists have decomposed lan-

guage into words with defined functions called parts-of-speech, like nouns, verbs, and

*Panini refers to other grammarians older by 5 centuries. Only glimpses of their works are known
and the bodies remain lost.
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adjectives. Several theories have proposed that these concepts are represented in the

brain (Chomsky, 1995). Our work provides rigorous neurobiological evidence from

invasive neural recordings in support of Parts-of-Speech in the brain.

5.2.2 Chapter 2

I discuss how to interpret the results for POS and how my findings complement pre-

vious studies of language. In addition, I provide lots of details about the LOF and de-

scribe how LOF is related to a variety of multimodal processes and diseases that can

result in language aphasias. I also discuss the shortcomings of my experiment design,

and electrode coverage.

5.2.3 Chapter 3

I provide the pre-registration document and detail the methods used in this thesis.

5.2.4 Chapter 4

This part of the thesis describes the recent work to study multimodal grammar and

sentence processing in sentences. I collected data from 1,563 electrode contacts from

17 participants in a record time of 6 months. I learned how to forge and lead collab-

orations with neurosurgeons to advance human cognitive neuroscience. Finally, I

showed neurophysiological evidence for multimodal semantic and grammar process-

ing in sentences.
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5.2.5 Appendix A

This section describes the findings from the BrainTreeBank dataset.

I completed a rotation with Prof. Boris Katz and Prof. Kreiman, in collaboration

with Dr. Andrei Barbu and Adam Yaari, at MIT, which led to the creation of the

BrainTreeBank (see Appendix A). The primary objective was to acquire neural data

while patients watched movies to study naturalistic language stimuli. The BrainTree-

Bank is a large-scale dataset of electrophysiological neural responses recorded from

intracranial probes while 10 subjects watched one or more Hollywood movies. On av-

erage, subjects watched 2.6 Hollywood movies, with a total viewing time of 4.3 hours

and an aggregate of 43 hours. The audio track for each movie was transcribed with

manual corrections. Word onsets were manually annotated on spectrograms of the au-

dio track for each movie. Each transcript was automatically parsed and manually cor-

rected into the Universal Dependencies (UD) formalism, assigning a part of speech to

every word and a dependency parse to every sentence. In total, subjects heard 36,000

sentences (205,000 words), while they had an average of 1,670 electrodes implanted.

I collected data from 6 out of 10 participants for this study, performed the preliminary

preprocessing, and created an outline for the analysis in collaboration with Andrei and

Adam. Eventually, Chris Wang took over the project and brought it to completion.

5.3 Reflection: Methods Advancement for Human Neuroscience

Across the three projects that I worked on, involving intracranial recordings (1. Min-

imal Phrases, 2. Audiovisual Sentence Task, and 3. BrainTreeBank), I interacted ex-
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tensively with the clinical environment. I recognized different players that make elec-

trophysiological studies of human cognition possible: patient participants, doctors,

nurses, research collaborators (such as the Kreiman Lab), regulatory staff, research

programs, and funding bodies. This extended interaction brought me into contact with

the goals of the different people involved, especially the patients and doctors.

The goals of researchers and clinicians are complementary. The study of human

cognition has the potential to inform diagnoses and treatment. A recent review article

(Lee et al., 2024) discusses the potential use of ex-vivo brain tissue from epilepsy and

stroke surgeries to link function and cell types, especially for single neuron studies.

I think a better solution would be to design electrodes with microtubules embedded

within them †. These microtubules can be used to extract brain tissue in the form of

extracellular or intracellular fluid via capillary action, circumventing the need for sur-

gical resections to be the “rate-determining step” for downstream sequencing studies.

Another advantage of using microtubules with electrode contacts to sequence brain

tissue is that it will preserve the neural composition within the vicinity of the elec-

trode contacts, which can get mixed with other brain tissues during removal ‡

The neural fluid extracted from the microtubules can then be used with modern se-

quencing technologies to create cell type identities that contain not only the anatom-

ical and sequencing coordinates but also the functional coordinates, as identified by

cognitive tasks. This can pave the way towards identifying proteins and genes that are

involved in the cellular or tissue identities associated with particular brain functions.
†These novel ideas were discussed with my colleagues in the Kreiman Lab, especially with Elisa

Pavarino. I am grateful for the inspiring discussions.
‡The number of sEEG surgeries is greater than the number of single neuron recordings for patients,

and one could always extend the microtubules to single cells.
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Such information can be used to design neuro-pharmacological or neurogenetic ther-

apies for a variety of neurodegenerative disorders. These functional coordinates can

be combined with cell atlases to identify upstream and downstream regions connected

with the functional cell and anatomical identities.
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A
Brain TreeBank

This work done in collaboration with Andrei Barbu, Chris Wang and Adam Yaari at

MIT over a rotation project.
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Abstract

We present the Brain Treebank, a large-scale dataset of electrophysiological neural1

responses, recorded from intracranial probes while 10 subjects watched one or2

more Hollywood movies. Subjects watched on average 2.6 Hollywood movies, for3

an average viewing time of 4.3 hours, and a total of 43 hours. The audio track for4

each movie was transcribed with manual corrections. Word onsets were manually5

annotated on spectrograms of the audio track for each movie. Each transcript6

was automatically parsed and manually corrected into the universal dependencies7

(UD) formalism, assigning a part of speech to every word and a dependency parse8

to every sentence. In total, subjects heard 36,000 sentences (205,000 words),9

while they had on average 167 electrodes implanted. This is the largest dataset of10

intracranial recordings featuring grounded naturalistic language, one of the largest11

English UD treebanks in general, and one of only a few UD treebanks aligned to12

multimodal features. We hope that this dataset serves as a bridge between linguistic13

concepts, perception, and their neural representations. To that end, we present an14

analysis of which electrodes are sensitive to language features while also mapping15

out a rough time course of language processing across these electrodes. The Brain16

Treebank is available at https://BrainTreebank.dev/17

1 Introduction18

A single theory of language understanding that encompasses how our brains process language,19

how linguists understand language, and how machines process language is still beyond our reach.20

Despite numerous attempts to understand how the brain processes language through investigations of21

compositionality [1–4], semantic categories [5–7], and surprisal [8–12], a mechanistic understanding22

of language processing the brain is also lacking. Our hypothesis is that this is in part because studies23

of language processing in the brain often focus on small data regimes, since gathering large-scale24

neural recordings can be extremely laborious. Yet NLP and ML research in general has shown that25

scale matters. In particular, even probing experiments on artificial networks require fairly large26

scale to produce reliable results, certainly larger than a few hundred sentences [13, 14]. NLP would27

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
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Data Quantity Data Quantity
Total subjects 10 Total sentences 36,433
Total hours 43.5 Unique sentences 27,988
Total electrodes 1,688 Avg. words per sentence 6.5
Avg. electrodes per subject 167 Total words 205,670
Total movies 21 Unique words 12,069
Unique movies 26 Unique speakers 937
Number of scenes 46,935 Unique part of speech labels 17

Table 1: Quantitative overview of Brain Treebank

not have progressed without large-scale resources, so to enable the same kind of progress and new28

discoveries we collect a new large-scale neuroscience dataset, which has naturalistic stimuli, is29

multimodal, and uses intracranial recordings — a high-spatial and high-temporal resolution recording30

method.31

The Brain Treebank is foremost a treebank, like the Penn Treebank, annotated in the universal32

dependencies (UD) format. What distinguishes it, is that it is accompanied by both multimodal33

annotations and by neural recordings collected from 10 subjects who heard 205,670 annotated words34

while they watched Hollywood films. Subjects watched a total of 26 films (55 hours) as data was35

recorded from a total of 1,688 electrodes. To this, we add manual and automated annotations.36

Scene labels: every scene in the movie was labeled according to the Places365 schema, [15],37

resulting in 46,935 scenes total. Word onsets and offset: while automatic speech recognition38

performs acceptably, errors are common which were manually corrected. In addition, automated39

systems are simply not trained to offer extreme accuracy, at the millisecond level, when determining40

the start and end of words. Word onsets had to be manually annotated on spectrograms for every41

word to ensure alignment with the neural recordings. Part of speech tags and parses: Sentences42

were automatically parsed into the Universal Dependencies framework and then each part of speech43

tag and dependency relationship was manually corrected. While POS tagging is fairly accurate,44

numerous parser errors existed. Speaker identity: A unique identifier, which can be traced back to a45

given character, was given to every speaker in every movie. This was done manually as no automated46

system exists to do so with any reasonable accuracy. Finally, we also curated a list of 16 automated47

video, audio, and language features that we provide to save computing time (see table 4). We release48

all our data with a Creative Commons Attribution 4.0 International (CC BY 4.0) license.49

Large scale stimuli for the neuroscience of language and multimodal understanding can enable natural50

experiments: the kind of post-hoc analysis of large-scale datasets that has propelled NLP and machine51

learning in general forward. In the long term we hope that treebanks such as ours coupled with52

neural recordings will help the creation of theories of language understanding that span linguistics,53

neuroscience, and NLP. To demonstrate the utility of the dataset, in addition to providing the raw54

data, we also take new steps toward understanding language in the brain; our contributions are:55

1. A dataset of intracranial recordings across 26 different movie viewings (43 hours total).56

2. Localization of electrode positions and alignment with common brain atlases.57

3. Multiple layers of manual annotations to enable numerous experiments: scene labels, word58

onsets and offsets, part of speech tags, parses in universal dependencies format, and speaker59

identity.60

4. Multiple automated annotations for 16 other language, audio, and visual features.61

5. Quantitative results that show neural responsiveness to word onset and differential activation62

based on the position of a word within a sentence.63

2 Related work64

Previous works have studied language processing in the context of Magnetoencephalography (MEG)65

[17, 18], Electroencephalography (EEG) [19, 20], and functional magnetic resonance imaging (fMRI)66

[21–26]. In this work, we present data with both high temporal resolution and naturalistic stimuli.67
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Figure 1: Schematic of the approach. Top: A film (a-b) was presented as visual and audio stimulus
to the subject. Invasive neural recordings were performed while subjects watched the movie. A
transcript of speech in the film is aligned to both the audio (b) and neural (c) signals. Shown here
is a short signal segment from an exemplar electrode in the left superior temporal gyrus aligned
to sentence onset at t = 0 ms. Word locations are shown as shaded regions between dashed lines.
Bottom: Schematic overview of selected visual (d), audio (e), and language (f-g) features used for
the General Linear Model (GLM) for each word. See Table 4 for a full list and description of features.
Visual features (d) include the number of faces (yellow boxes), and the magnitude and angle of optical
flow (green arrows). Audio features (e) include the average pitch (top) and volume (bottom) during
each word (shaded gray regions between dashed lines). Word features (f) include part-of-speech and
the position of each word’s dependency head. A surprisal feature, (g), computed using GPT-2 [16], a
large language model, is the negative log probability of the word given its sentence context.

Recording the brain’s response to naturalistic stimuli is critical to neuroscientific progress [27]. There68

exist fMRI datasets for naturalistic speech [28–30], vision [31, 32], and movies [33, 34]. And similar69

data has been collected for the EEG modality: speech [35], vision [36], and movies [37]. There70

are also movie datasets that cover both modalities [38]. However, when it comes to intracranial71

recordings, which provide better temporal resolution, but require invasive surgery to implant probes,72

data is much more sparse. There exist intracranial datasets for pose [39], speech production [40], and73

parts of speech [41], but none of these involve the complex natural language and concomitant visual74

inputs available from movie stimuli. The most similar work to our dataset, Berezutskaya et al. [42],75

presents participants with vastly less stimuli: a 6.5 minute short movie, compared to our average of76

5.5 hours of movie per patient.77

Already, the brain-recordings themselves, without annotation have proven useful for representation78

learning, as we show in Wang et al. [43]. And combined with the transcribed audio tracks, these have79
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allowed for successful study of multimodal integration in the brain, as we show in Subramaniam et al.80

[44]. Now, for the first time, we release the complete annotated recordings for all subjects, as well as81

the accompanying Universal Dependency parse trees.82

3 Data83

Dataset construction Stereoelectroencephalography (SEEG) neural recordings were collected from84

10 subjects (5 male, 5 female), aged 4-19 years (µ ≈ 11.9, σ ≈ 4.6), under treatment for epilepsy at85

Boston Children’s Hospital (BCH); see supplementary table 2 for per-subject statistics. All subjects86

were implanted with intracranial electrodes to localize seizure foci for potential surgical resection. All87

experiments were approved by BCH/Harvard IRB and were carried out with the subjects’ informed88

consent. IRB documents are available upon request, but are otherwise sensitive. Electrode types,89

number, and position were driven solely by clinical considerations. Recorded data was anonymized,90

and identifying patient information was redacted.91

Task and stimuli Stimuli consisted of 21 recent animated/action Hollywood movies; see supple-92

mentary table 3 for per-movie statistics. On average, movies were 2.07 hours long (σ ≈0.68) and93

contained 1,322 sentences (σ ≈303), 8,927 total words (σ ≈2104), 1,769 unique words (σ ≈324),94

1,358 unique lemmas (σ ≈259), 1,219 nouns (σ ≈282), 615 unique nouns (σ ≈133), 1,334 verbs95

(σ ≈299), and 504 unique verbs (σ ≈100). Each subject was given a choice of which movies to96

watch, viewing an average of 2.6 movies (σ ≈1.7) corresponding to 4.3 hours (σ ≈3.6). For further97

details, see appendix A.3.98

Data acquisition and signal processing Clinicians implanted subjects with intracranial stereo-99

electroencephalographic (sEEG) depth probes containing 6-16 0.8 mm diameter 2 mm long contact100

electrodes recording Intracranial Field Potentials (IFPs). Each subject had multiple (12 to 18) such101

probes implanted in locations determined by clinical concerns entirely unrelated to the experiment,102

informed by a functional analysis [45]. The number of electrodes per subject ranged between 106103

and 246 (µ ≈167, σ ≈40) for a total of 1,688 total electrodes; see Extended Figures table 2 for104

a per-subject breakdown. Data collected during periods of seizures or immediately following a105

seizure was discarded. For each electrode, a notch filter was applied at 60 Hz and harmonics. No106

other processing (downsampling, filtering specific frequency bands, etc.) was performed on the107

neural recordings. For further details, see appendix A.4. Finally, the location of all electrodes was108

identified and mapped to the common brain atlases Desikan et al. [46] and Destrieux et al. [47]. See109

appendix A.5 for further details.110

Audio transcription and alignment For each movie, the timestamps for all words in the audio111

were transcribed and timestamps for each word were found programmatically and then manually112

corrected by trained annotators (see appendix A.1 for further details). The pipeline developed for113

this audio transcription and alignment effort is an independently useful source of annotated stimuli,114

which can now be used for further experiments. We described this pipeline more completely in a115

separate technical paper: Yaari et al. [48]. Part of speech tags and dependency parses were manually116

corrected and speaker identity and scene labels were manually annotated from scratch by an in-house117

expert hired at MIT.118

Feature annotation To model the neural responses during the complex movies, we considered a119

series of 16 features (table 4). These features include 6 visual attributes (pixel brightness, global120

optical flow magnitude, global optical flow angle, optical flow magnitude, optical flow angle, and121

number of faces, fig. 1d), 4 auditory attributes (volume, mean pitch, delta volume, and delta pitch,122

fig. 1e), and 6 language attributes (GPT-2 surprisal, word time length, word time difference, index123

in sentence, word head, and part of speech tag, fig. 1f-g). All of these features were aligned to and124

computed for each word. Table 4 provides a brief description of each feature, and their calculation is125

described in appendix A.2. Additionally, scenes and speakers were labeled for each movie. Scenes126

were extracted based on camera cuts using PySceneDetect [49]. Each scene was labeled based on127

the corresponding image environment and labels were extracted from the Places365 dataset [15].128
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Finally, for each sentence in the audio transcript, the speaker identity was manually annotated (see129

appendix A.2).130

4 Quantitative analyses of language function with the dataset131

Word onsets triggered strong neural responses After aligning the neurophysiological data to the132

occurrence of words (fig. 1a-c), we assessed whether the neural responses were modulated by word133

onset by comparing the mean activity in 5 consecutive windows of 100ms duration before (-500 ms134

to 0 ms) versus after (500 to 1000ms) word onset. We defined an electrode to be word-responsive if it135

yielded a statistically significant difference in at least one of the 5 windows (paired t-test, p<0.05,136

Bonferroni corrected, see appendix A.6). Figure 2a shows the neural responses of an example137

electrode located in the left superior temporal sulcus (fig. 2a inset). The raster plot (top) and average138

activity (bottom) show strong activation triggered by the onset of each word. This activity can be139

readily appreciated for almost every word in the more than 6,000 words (raster plot) of a single movie.140

Interestingly, the activity of this electrode begins to show a slight deviation from baseline before the141

onset of words at time 0.142

The complex nature of natural stimuli like the movie implies that multiple variables could in principle143

drive the neural responses. Indeed, the responses to individual words in fig. 2a show a strong degree144

of heterogeneity. To gain insight into what could drive these diverse responses, we considered a145

set of 16 visual, auditory, and language features (table 4, fig. 1d-g). We built a Generalized Linear146

Model (GLM) that included all 16 features. The coefficients for each feature indicated how much147

each annotation contributes to explaining the neural responses (fig. 2b). For this example electrode,148

visual, auditory, and language features all showed a statistically significant contribution to explaining149

the neural response. The strongest contributors were the four language features shown in fig. 2d-g.150

The average of all coefficients across the 339 electrodes in the temporal lobe is shown in fig. 2c, for151

which we note that the features with the highest averaged coefficients were the index in sentence, part152

of speech, and delta volume (further regions shown in fig. 8).153

To better understand the contribution of the four language features with the largest coefficients for154

the example electrodes, we plotted the neural responses for words that had different values for those155

coefficients. In fig. 2d, we separated the words of a movie into those that appeared early in a sentence156

(quartile with lowest index in sentence, light gray) and those that appeared late in a sentence (quartile157

with highest index in sentence, dark gray). The average neural responses for this example electrode158

revealed notable differences between these two groups of words. Common to both groups, there was159

a deflection from baseline well before t=0. Words with high indices led to reduced voltages and words160

with low indices led to high voltages after t=0. In a similar fashion, we observed responses separated161

by nouns versus verbs (fig. 2e), high and low word length (fig. 2f), and high and low GPT-2 surprisal162

(fig. 2g). In all of these cases, words elicited neural responses across different features even as the163

neural responses were modulated by those features. Similar conclusions for this electrode can be164

drawn when considering auditory features (supplementary fig. 4a) or visual features (supplementary165

fig. 4b).166

Next, we asked whether the neural responses are due purely to language, or whether an audio and/or167

visual explanation can be ruled out. Across all electrodes, we found that there exist 251 (≈ 16%)168

electrodes for which there was a significant (p < 0.05, Bonferroni corrected) word response, after169

controlling for all audio and visual features. The fraction of such electrodes per region is shown in170

fig. 2h and the locations of these electrodes are shown in fig. 2i.171

Sentence position modulates neural activity The results for the example electrode in fig. 2d suggest172

that the position of a word within a sentence can have a strong impact on the neural responses. To173

systematically evaluate whether neural signals are dependent on word position, we first categorized174

words according to their linear position (fig. 3a), separating them into sentence onsets, sentence175

offsets, and sentence midsets, which are the words that occur in between. Figure 3a shows the neural176

responses from an example electrode located in left superior temporal gyrus. This electrode showed177

stronger responses to sentence onsets (left) compared to midsets (middle) and offsets (right). These178
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Figure 2: Alignment to word onsets reveals strong neural responses. a. Raster (top) and mean
(bottom) plots of neural activity aligned to word onsets (t = 0 ms) for an exemplar electrode (inset;
shown in red) in the left superior temporal sulcus. Each line in the raster is a separate word (> 6,000
words) in the movie. Shading in the mean plot indicates standard error. Asterisks indicate the
significance (double-tailed paired t-test) of the response, measured by comparing mean activity in pre-
and post- word-onset intervals (see section 4). A GLM was fitted to predict the average response in
the 500ms window after word onset (section 4). The magnitude of the beta coefficients for all features
is shown for the same example electrode (b) and averaged across all electrodes in the temporal lobe
(c). Features are shown colored by category (blue: language, orange: audio, purple: visual). Asterisks
indicate statistical significance of the beta coefficient for the example electrode (see section 4). Neural
responses are shown from the same example electrode separated by (d) index in sentence, (e) part of
speech, (f) word length, (g) GPT-2 surprisal. Asterisks on horizontal brackets indicate the significance
of the neural response, i.e., the difference between pre- and post- word-onset activity, as in (a).
Vertical brackets show the differences in mean sub-sampled activity (see section 4). In h, the fraction
of electrodes per regions for which a significant word-onset response can be observed even after
sub-sampling for visual and audio features is shown. The precise location of these electrodes is
shown in i.
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Figure 3: Neural signals distinguish between different positions within the sentence. a. Raster
(top) and mean (bottom) neural responses for an example electrode in the left superior temporal
gyrus (see electrode location on right) for words occurring at sentence onset (left), offset (right), or
in between (midset, middle). The format and conventions follow fig. 2a. The box-plots (b) show
the mean activity in a 100ms window. Asterisks show the significance of the difference between
activities (f-test, Bonferroni corrected). c. Neural responses from the same electrode separated by
trials with high volume (dark grey) or low volume (light grey). Vertical brackets and asterisks show
the difference between the two conditions (two-tailed t-test). In both cases, the difference due to
sentence position persists (shown by horizontal brackets and asterisks in d). e. Beta coefficients from
a fitted GLM for all features, colored by category (format as in fig. 2b). Coefficients shown here
are for the same electrode as in (a). f. Per region, the fraction of electrodes (shown as blue bars)
in each region for which there is a significant (p < 0.05, Bonferroni corrected) beta coefficient for
position in sentence and the fraction of electrodes (white bars) which exhibit a significant (p < 0.05,
f-test, Bonferroni corrected) difference in activity due to sentence position after controlling for all
confounds. g. The exact location of the electrodes from f, shown as blue and white points respectively,
projected onto the surface of the brain.
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differences were evident even in single words (raster plots, top), as well as in the average responses179

(bottom) and are summarized in fig. 3b, which shows the mean neural activity for onsets, midsets, and180

offsets in a 100ms window. Similar to our analysis in the previous section, we evaluated mean neural181

activity at five evenly spaced 100ms windows, starting from the word onset. The activity shown in182

fig. 3b was taken from the window with the most significant difference between onset, midset, and183

offset activity (f-test, p < 0.05, Bonferroni corrected). Asterisks in fig. 3b denote the significance of184

this difference.185

It might be the case that sentence onsets could be associated with a confounding feature, such as186

increased volume. We therefore separately plotted the responses to words in different sentence187

positions for cases with high and low volume. The strong modulation by part of sentence persisted188

across different volume levels (fig. 3c-d). Next, in addition to volume, we considered all the 16189

features that we annotated in the movie, using a GLM model as illustrated in the previous section. The190

feature with the highest coefficient in the GLM model was the index in sentence (fig. 3e). Running191

the GLM analysis for all electrodes revealed 242 electrodes (15.3% of total electrodes) for which the192

sentence position feature has a significant (p < 0.05, Bonferroni corrected) beta coefficient in the193

fitted GLMs (fig. 3f, fig. 3g blue dots).194

Among these electrodes which we identified to be modulated by position in sentence, we also used a195

different, more stringent test to determine the influence that the position in sentence has on mean196

activity. For each of these electrodes, the analysis that was discussed previously with respect to197

fig. 3c-d was repeated for all features. Across these electrodes, controlling for all co-occurring198

features, revealed 117 electrodes (6.5% of total electrodes) that showed a significant modulation199

by sentence position (f-test, p < 0.05, Bonferroni corrected). These electrodes were predominantly200

located in the transverse temporal cortex and the banks of the superior temporal sulcus (fig. 3f, fig. 3g201

white dots).202

The temporal-course of speech decodability reveals the dynamics of language processing We203

also used a linear decoder to answer questions about when and where certain language induced204

activity is available in the neural signal. To that end, we trained a decoder for every 250ms interval205

in a [-1000ms,1000ms] window. As discussed in the previous sections, we had observed language206

responses to be stronger at sentence onsets, so we first considered the case of trying to decode whether207

or not a sentence onset was occurring. However, the case for generic word onsets was also considered208

(see supplementary fig. 2), and is discussed below as well.209

For each electrode, we created a training dataset of neural activity (see appendix A.8). Positive210

examples consisted of sentence onsets and negative examples were taken from portions of the movie211

where no dialogue is occurring. We train our model per electrode, and evaluate using 10-fold cross212

validation. Decoding performance for a given electrode is then the average ROC-AUC, where the213

mean has been taken across cross validation folds. Figure 4a. shows the peak decoding performance214

per electrode. Here, the peak performance is the maximum performance achieved over the course of215

the entire considered time interval. Figure 4c shows the decoding per time interval in the temporal216

and frontal lobe, averaged across the 10 electrodes with the highest peak decoding performance on217

the train set. In the frontal region, decoding peaked later than in the temporal region (300ms vs218

100ms). We performed the same decoding for generic word onsets (see fig. 2). Here we found a219

similar pattern as in figure fig. 4. Decoding in the temporal lobe reached a peak at 100ms, compared220

to 400ms in the frontal lobe.221

5 Conclusion222

The Brain Treebank has a unique combination of large scale, high temporal resolution, high spatial223

resolution, naturalistic stimuli, and may layers of manual annotation. Because naturalistic stimuli224

contain many uncontrolled co-occurring features, scale is critical in order to find natural experiments225

with controls post-hoc. We demonstrate two such an experiments: first, how response to words and226

sentences can be identified, even after controlling for co-occurring features, and second, how linear227

decoding reveal the time course of word and sentence processing. This only begins to explore what228
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Figure 4: Sentence onsets are linearly decodable. A linear decoder is trained to classify portions
of the movies according to whether or not a sentence onset is occurring, based on the corresponding
neural activity. This decoding is done for activity in 0.25s windows, shifted in 0.1s increments, from
-1s before the sentence onset to 1s after the sentence onset. The peak decoding performance for an
electrode is the max ROC-AUC achieved across all increments. a. The spatial distribution of peak
decoding scores. b. Decodability, as a function of time for an electrode in the banks of the superior
temporal sulcus on the right hemisphere. c. The time course of decodability on the test set, for the
top 10 electrodes that had the highest peak ROC-AUC score on the train set, in the temporal lobe
and the frontal lobe. The test set is balanced between positive and negative examples so that chance
performance is 0.5. Together, these curves reveal that for sentence onsets, information is processed
before word onset enters the decoding window (dashed grey line). Error bars show a 95% confidence
interval over performance per electrode. Comparing the curves reveals the mirrored time course of
language processing in the frontal and temporal lobes. See supplementary fig. 2 for the same analysis,
performed for word-onsets.

can be done with these data and annotations, and it remains to be seen what is detectable if more229

powerful decoding tools are applied.230

Limitations Subjects only watched each movie once, thus one cannot simply average over repetitions231

of exactly the same stimulus. Although, each movie does repeat the same words and often shows the232

same characters, naturalistic stimuli are harder to work with than controlled experiments. Subjects all233

saw different movies making the cross-subject analysis more difficult. At the same time, this means234

that there are more opportunities to find interesting phenomena because of the diversity of the movies235

that subjects saw. As with all studies that involve naturalistic stimuli, controlling for confounds236

can be difficult. Intracranial recordings are only possible because subjects require neurosurgery for237

some condition, in this case epilepsy; it is possible that this could result in some sampling bias.238

Additionally, the corpus includes only movies in English, although we are adding Spanish movies239

and subjects shortly. In this vein, we are actively working on collecting more data and hope that240

others who intend to collect data can collect it for the movies we have annotated here. Tools and241

techniques to run experiments on naturalistic data are much newer and more limited at the moment.242

We have not begun to scratch the surface of the kinds of analyses possible with the Brain Treebank,243

for example, we have never used the speaker identities and hardly exploited multimodality, nor have244

we made use of the parses aside from the POS tags. We hope that the Brain Treebank will enable the245

development of new tools and new kinds of neuroscientific experiments at scale with natural stimuli.246

As well as bring the neuroscience, NLP, and linguistics communities closer together with a shared247

resource that has components from each.248
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6 Checklist515

1. For all authors...516

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s517

contributions and scope? [Yes] We release our full dataset of intracranial recordings.518

(b) Did you describe the limitations of your work? [Yes] See conclusion.519

(c) Did you discuss any potential negative societal impacts of your work? [N/A]520

(d) Have you read the ethics review guidelines and ensured that your paper conforms to521

them? [Yes]522

2. If you are including theoretical results...523

(a) Did you state the full set of assumptions of all theoretical results? [N/A] This work524

focuses on specification of the released data.525

(b) Did you include complete proofs of all theoretical results? [N/A] See above.526

3. If you ran experiments (e.g. for benchmarks)...527

(a) Did you include the code, data, and instructions needed to reproduce the main experi-528

mental results (either in the supplemental material or as a URL)? [Yes] A quickstart529

guide is available at the URL530

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they531

were chosen)? [Yes] See appendix A.8.532

(c) Did you report error bars (e.g., with respect to the random seed after running exper-533

iments multiple times)? [Yes] Statistical significance is reported with respect to our534

GLM and error is reported to reflect variance between individual words (see figs. 2535

to 4).536

(d) Did you include the total amount of compute and the type of resources used (e.g., type537

of GPUs, internal cluster, or cloud provider)? [Yes] See appendix A.8538

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...539

(a) If your work uses existing assets, did you cite the creators? [N/A] This is a novel540

dataset collected by the authors.541

(b) Did you mention the license of the assets? [Yes] See section 1.542

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]543

The URL is given in the abstract.544

(d) Did you discuss whether and how consent was obtained from people whose data you’re545

using/curating? [Yes] See Section 3.546

(e) Did you discuss whether the data you are using/curating contains personally identifiable547

information or offensive content? [Yes] See section 3.548

5. If you used crowdsourcing or conducted research with human subjects...549

(a) Did you include the full text of instructions given to participants and screenshots, if550

applicable? [N/A]551

(b) Did you describe any potential participant risks, with links to Institutional Review552

Board (IRB) approvals, if applicable? [Yes] See section 3.553

(c) Did you include the estimated hourly wage paid to participants and the total amount554

spent on participant compensation? [N/A] Per the IRB, participation in research was555

voluntary, and compensation was not permitted.556
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A Appendix557

A.1 Audio transcription and alignment558

The audio track of each movie was first annotated by commercial services (Rev.com and559

HappyScribe.com depending on the movie) and manually corrected by trained annotators. A560

custom tool was developed to refine the alignment via an auditory spectrogram of 4 seconds at a561

time and slowed-down audio track. Annotators were instructed to adjust the onset and offset of every562

word to align with the spectrogram and their perception of when the word started and ended. The563

audio annotation tool automatically played the audio segment corresponding to each word to allow564

annotators to verify their work. As the audio was played a line marked the location of the audio565

sample in the spectrogram in real time.566

Since speech recognizers often misused or missed critical punctuation marks, these were inserted567

by annotators manually. Sentences were then manually segmented. Annotators were instructed not568

to use abbreviations, even if they are common. Annotators marked audio segments that consisted569

of overlapping speech or signing. These were removed from the dataset. All foreign language570

was marked and removed from the dataset. Annotators were instructed to transcribe literally, i.e,571

contractions were used in the transcript only when spoken as such. Similarly, foreshortened words,572

e.g., goin’ vs going, were transcribed as such when used by speakers. Cardinal numbers were spelled573

out. Longer numbers were spelled out as spoken, including conjunctions such as “and”. All overheard574

words were transcribed, even when they could not easily be localized on the spectrogram, for example,575

short words such as “to” can sometimes be heard but no specific segment of the spectrogram seems576

to correspond uniquely to such words. In this case annotators were asked to mark their onset and577

offset as they heard the words. Transcripts are as spoken, without correction, even when the speaker578

erred omitting a word or using a word inappropriately.579

A.2 Feature annotation580

We extract 16 features that were included in the analyses (see Extended Figures table 4).581

Visual features The visual scene scalar features were extracted from the middle frame presented582

during a word utterance via OpenCV 4.4.0 [50]. Brightness was quantified as the average pixel HSV583

value channel. Flow vectors were computed as dense optical flow over grey-scale frames via the584

OpenCV calcOpticalFlowFarneback function (pyramid scale 0.5, 5 levels, window size 11, 5585

iterations, pixel neighborhood of 5, and smoothing of 1.1). Number of faces per-frame was estimated586

via the OpenCV CascadeClassifier function with the Haar cascade frontal face default classifiers587

over gray-scale frames (scale factor: 1.1, minimum neighbours: 4). The first frame of every word588

utterance was mean-normalized and than passed through a pretrained ResNet-50 object detector589

(Torchvision 0.6.1) to compute a visual vector image embedding (size 2,048) as the last feature layer590

of the model.591

Auditory features The auditory scalar features were collected with the Python Librosa package592

(0.7.2) [51], an open source audio analysis library. Sound intensity and mean frequency of the audio593

track during word utterance were estimated, as well as their change relatively to the preceding 500ms594

window. The average intensity of the audio segment was computed as the root-mean-square (RMS)595

(rms function, frame and hop lengths 2048 and 512 respectively) of that segment. Pitch was extracted596

using Librosa’s piptrack function over a Mel-spectrogram (sampling rate 48,000 Hz, FFT window597

length of 2048, hop length of 512, and 128 mel filters). Auditory vector embeddings were computed598

as the flattened log-Mel-spectrogram of the 500ms word utterance window (size 128×47 = 6016).599

Language features We used a state-of-the-art syntactic parser, Stanford NLP Group’s Stanza [52],600

to parse every sentence. POS tags were recorded for every word. Surprisal was quantified as the601

negative-log word probability. Word probabilities were estimated by a transformer model. GPT-2602
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probabilities were computed via GPT-2 large using the Hugging Face Transformers 3.0.0 library [53].603

Word particle surprisal were combined by summation.604

All Universal Dependency features were inferred using the standard English model of the Stanza605

Natural Language Processing toolkit [52] and then manually corrected via a single trained annotator606

over the course of a year.607

Speaker annotation Annotators doing speaker identification were instructed to use the characters’608

full names, insofar as they are known. If a character is unnamed, the annotator may identify them609

with a brief description of their role.610

Occasionally, a character had another identity that they went by. In Spider-Man: Homecoming, the611

AI in Peter’s suit is known for more than half the movie as “suit lady,” until Peter finally decides to612

give her the name “Karen.” In such situations, the annotator marked both identities, with whichever613

identity they decide is primary listed first, and the secondary identity in parentheses. So, in the above614

example, Peter’s AI is annotated as “Karen (suit lady)”615

Because of our data set, we deal with quite a lot of super heroes with secret identities. If a super616

hero was in costume, annotators identified them by their super hero name. Out of costume, they617

were identified by their birth name. When they are partially in costume (say, they’re in costume, but618

they’ve taken off their mask), annotators identified them by their super hero name, followed by their619

birth name, separated by a forward slash: e.g. Spider-Man / Peter Parker620

In situations where one character is pretending to be another, the guidelines bear some resemblance621

to the guidelines for heroes that are partially in costume. Annotators identified them by the person622

being imitated, followed by the true identity of the character, separated by a percent symbol. So,623

for a good part of the movie Megamind, the titular character is pretending to be a museum curator624

named Bernard. Dialog spoken by him during these moments should be annotated as “Bernard %625

Megamind.”626

Lines that had problems and therefore that need special attention can be identified using an asterisk.627

Two of the most common situations where this cropped up were when multiple characters were628

speaking in unison, or when a “sentence” actually contains utterances from multiple characters. In629

the former situation, these were identified with the line with * multiple speakers. In the latter630

situation, both speakers were annotated, with an asterisk between them e.g. “Peter Parker * Tony631

Stark,” and an asterisk was added to the line of dialog at the point where one of them stops speaking632

and the other begins.633

A.3 Task and stimuli634

Movies were extracted from DVDs and are unchanged other than being re-encoded to a fixed frame635

rate (23.976 fps). Transcripts, and all annotations described in this work will be made publicly636

available. Due to copyrights prohibiting the release of the raw stimuli (movies) source material,637

multiple audio-visual sample clips and tools allowing users to verify alignment of their own movie638

copies will be publicly provided.639

Movies were shown in full to each subject. Movies were displayed via a custom video player created640

in Matlab 2018b. The player ensured that the presentation was at a fixed frame rate to keep the audio641

and video synchronized. The presentation of movies was accompanied by regular electrical triggers642

sent to the neural recording system to enable accurate temporal alignment between the movie and the643

neural data. A 15.4 inch (resolution 2880×1800) Apple MacBook Pro Retina was placed 60-100cm644

in front of the subject. Subjects adjusted the volume and paused/resumed the movie as needed. The645

movie was paused by the experimenter any time someone entered the room or when subjects were646

distracted and was resumed when subjects could direct their full attention back to the movie. Subjects647

could freely change position, but were instructed by the experimenter, who watched the movies with648

the subjects, to remain focused on the stimulus or pause the movie. Subjects did not speak during the649

presentation of the movie nor did they overhear any other speech other than that found in the movie.650
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A.4 Data acquisition and signal processing651

Clinicians implanted subjects with intracranial stereo-electroencephalographic (SEEG) depth probes652

containing 6-16 0.8 mm diameter 2 mm long contact electrodes (Ad-Tech, Racine, WI, USA)653

recording Intracranial Field Potentials (IFPs) with 1.5 mm separation. Each subject had multiple (12654

to 18) such probes implanted in locations determined by clinical concerns entirely unrelated to the655

experiment. Data was recorded using XLTEK (Oakville, ON, Canada) and BioLogic (Knoxville, TN,656

USA) hardware with a sampling rate of 2048 Hz.657

During movie presentation, triggers were sent to a separate channel on the neural recording device658

via a USB connection to a dedicated trigger box (Measurement Computing USB-1208FS) using the659

Psychtoolbox 3 Matlab package. Each pulse was logged with both its wall-lock timestamp and its660

movie timestamp. Individual triggers were sent every 100ms. Specific events (movie start, pause,661

resume, and end) were marked by bursts of triggers (10, 8, 9, and 11 respectively) separated by 15ms.662

All triggers consisted of a 15ms electrical burst at a magnitude of 80mV. An automated tool found663

triggers and aligned the movie and neural data.664

A.5 Cortical surface extraction and electrode visualization665

For each subject, pre-operative T1 MRI scans without contrast were processed with FreeSurfer’s666

recon-all function with -localGI, which performed skull stripping, white matter segmentation,667

surface generation, and cortical parcellation [54–73]. iELVis [74] was used to co-register a post-668

operative fluoroscopy scan to the preoperative MRI. Electrodes were manually identified using669

BioImageSuite [75], and then assigned to one of 68 regions (according to the Desikan-Killiany atlas670

[46]) using FreeSurfer’s automatic parcellation. The alignment to the atlas was manually verified for671

each subject. One subject had a large frontal lesion in the right hemisphere that prevented alignment672

to an atlas. Electrodes from this subject were included in all analyses except for region analyses and673

they were not plotted on the brain.674

Corrupted signal electrodes (n = 114) with extensive durations of static signal recordings were675

manually removed from consideration prior to any downstream analysis. For depth electrodes in the676

white matter, if they were within 1.5 mm of the gray-white matter boundary, they were projected to677

the nearest point on that boundary, and were labeled as coming from that region (for the purposes678

of region significance analyses). Of the 1,688 total electrodes, 1,414 of the electrodes were able679

to placed in this way into a particular region. The relevant region analyses are shown in fig. 2h-i,680

fig. 3f-h, fig. 12e-f, fig. 4b, fig. 2b, fig. 3b, fig. 5e.681

This procedure is very similar to the post brain-shift correction methods used for electrocorticography682

electrodes [76]. For solely visualization purposes, all electrodes identified to lie in the gray matter or683

on the gray-white matter boundary were first projected to the pial surface (using nearest neighbors),684

and then mapped to an average brain (using Freesurfer’s fsaverage atlas) for the visualizations shown685

in the main text.686

A.6 Word responsiveness687

To determine the word responsiveness of an electrode, we compared pre-onset windows to post-688

onset windows (fig. 10). Precisely, we compared the mean activity in a 100ms window before689

word onset to the activity in a 100ms window after word onset with a two-tailed paired t-test.690

The windows were separated by an interval of 1s. This test was performed for absolute offsets of691

[−0.5s,−0.4s,−.3s,−.2s,−.1s] (fig. 10). This is done to account for the fact that any one offset may692

“miss” the neural response by chance. An electrode is word responsive if at least one of the tests693

shows a significant (after correction for multiple comparisons) difference between pre- and post-694

onset activity. In such cases, we report the significance of the t-test with the lowest p-value.695
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A.7 Testing difference between conditions696

When determining the significance of the difference between two conditions (fig. 2c, fig. 3b,697

fig. 12a,c,d), we used a two-tailed t-test to compare the mean activity in a 100ms window for698

the two conditions. Five t-tests are performed, at absolute offsets of [0s,0.1s,0.2s,0.3s,0.4s] and we699

say that the two conditions result in different neural responses if there exists a test for which there700

is a significant difference, after correction for multiple comparisons. In such cases, we report the701

significance of the tests with the lowest p-value. As in the above section, this is done to account for702

the fact that any one of the tests may miss the difference between the two conditions by chance.703

A.8 Linear decoding704

Model The model is a logistic regression.705

Data pre-processing Neural is decimated by a factor of 10. Data is normalized to 0 mean and unit706

standard deviation. Normalization is done such that no data-leakage occurs (see below).707

Dataset The sentence-onset decoding task requires the model to distinguish between neural activity708

from an interval in the movie during which a sentence is beginning versus an interval during which709

no speech is occurring. To obtain positive examples, for every sentence onset, we extract 2s of neural710

activity, centered on the sentence onset. To obtain negative examples, we divide the movies into 3s711

segments, and filter for segments that do not overlap with any speech time-stamps. The size of 3s712

guarantees that there is at least a 500ms buffer between every positive example and every negative713

example (see below). The dataset is balanced so that an equal number of negative and positive714

examples occur. Data is drawn from all recorded movies per subject.715

Training We are interested in answering the question, how does decodability vary across time?716

To this end, we divide each example into 250ms intervals. Per each time interval, per electrode, we717

train our model. Training was done on a single NVIDIA Titan RTXs (24GB GPU Ram) with 80 CPU718

cores.719

Evaluation Per electrode, we create an 80/20 train/test split. The model performance is reported on720

the test set. Train/test splits are shared between electrodes in the same subject. In fig. 4b,d, and e, we721

select the top 10 electrodes with the highest score on the train-set (5-fold cross-validation) per region,722

and report the performance of these electrodes on the test set. The same is done in fig. 2b,d-e and723

fig. 3b,d-e.724

A.9 Part of speech modulates activity725

Parts of speech are of particular importance for their fundamental role in linguistics and natural726

language processing (NLP). Indeed, the two word classes, nouns and verbs, are widely recognized727

to be among the few linguistic universals [77, 78]. Part-of-speech was a significant predictor in728

the example electrodes shown in fig. 2 and fig. 3. Given their importance in language, we directly729

compared the responses to nouns versus verbs (fig. 12). fig. 12a shows the responses of an example730

electrode located in the left superior temporal gyrus (inset) which showed stronger responses to verbs731

compared to nouns.732

The GLM analysis showed that there were no electrodes which exhibited activity exclusively modu-733

lated by part-of-speech. Instead, the neural activity was captured by multiple features as shown in the734

previous examples. fig. 12b shows that the main feature for this electrode is the index in sentence,735

followed by the part-of-speech and volume. Indeed, after separating the responses according to the736

position in the sentence, there was a small but significant difference between nouns and verbs for737

sentence midsets and offsets but not for sentence offsets (fig. 12c). The differences between nouns738

and verbs persisted across high and low volumes (fig. 12d). There were no electrodes for which a739

difference in part-of-speech was observed across all sub-samplings for all features. But there were 83740
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electrodes for which part of speech has a significant (p < 0.05, Bonferroni corrected) beta coefficient741

in the GLM analysis. fig. 12e shows the exact location of these electrodes and fig. 12f shows the742

fraction, per region, of the part of speech significant electrodes. We also found that the noun-verb743

distinction is linearly decodable fig. 3, with significant decoding performance distributed across the744

brain fig. 3a, and with the highest decoding performance observed in the frontal lobe and cingulate745

(fig. 3b-e).746

Finally, we observed a difference in the magnitude and timing of the peak neural response between747

nouns and verbs (fig. 13). For each electrode, we computed the mean of the neural response, averaged748

across all words. Restricting our attention to those electrodes which show at least a moderate neural749

response (Cohen’s d > 0.1, see section 3), we can compute the peak of that mean response (fig. 13b)750

and observe that it is lower in the case of verbs at sentence onsets. (µ ≈ 32.6,σ = 27.7 µV for verbs,751

µ ≈ 35.5,σ = 29.7 µV for nouns), but higher in the case of verb midsets (µ = 34.1,σ = 25.9 µV752

for verbs, µ = 30.5,σ = 26.4 µV for nouns). We also find the timing (fig. 13c) of the sentence753

midset peaks and observe that it is earlier in the case of verbs (µ ≈ 293,σ = 255 ms for verbs,754

µ ≈ 426,σ = 315 ms for nouns).755
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Subj. Age Sex Movies Time (h) # Sentences # Words # Lemmas # Electrodes # Probes
1 19 M 7, 18, 19 6.14 4054 29468 5908 154 13
2 12 M 2, 3, 4, 8, 9, 17, 21 15.49 9092 60958 12243 162 47
3 18 F 5, 11, 12 9.50 4845 32959 6156 134 12
4 12 F 10, 13, 15 5.06 3758 25394 5300 188 15
5 6 M 7 1.45 1162 8457 1892 156 12
6 9 F 6, 13, 20 8.02 3524 21455 4544 164 12
7 11 F 5, 13 3.36 3152 20237 3808 246 18
8 4 M 14 0.96 718 4218 804 162 13
9 16 F 1 1.95 1412 9846 1956 106 12

10 12 M 5, 16 3.93 3506 23408 4048 216 17
Table 2: All subjects language, electrodes and personal statistics. Columns from left to right are the
subject’s ID and information (age and gender), the the IDs of the movies they watched (corresponding
to Extended Figures table 3), the cumulative movie time (hours), number of sentences, number of
words (tokens) and number of unique lemmas (canonical word forms), as well as the number of
probes the subject had and their corresponding number of electrodes..

B Supplementary figures756

Figure 1: Decodability of sentence onsets per region. After decoding sentence onsets per electrodes
(see fig. 4), we find distribution of the peak test ROC-AUC scores in each region, for the 10 electrodes
in each region with the highest cross-validation (kfolds = 5) ROC-AUC on the train set. Boxes show
quartiles and whiskers show 1.5× the interquartile range. Outliers shown as points beyond the
whiskers.

22



Figure 2: Word onsets are linearly decodable and reveal the time course of language processes
in the brain. We perform the same analysis as shown in fig. 4, but for word-onsets, instead of
sentence-onsets only. A linear decoder is trained to classify portions of the movies according to
whether or not speech is occurring, based on the corresponding neural activity. This decoding is
done for activity in a 0.25s window, which shifts in 0.1s increments from -1s before word-onset to
1s after word-onset. The spatial distribution of decoding scores, shown in (a) and (b), after a max
has been taken over all windows, shows that word onsets are most decodable in the temporal and
frontal lobes. Decodability, as a function of time, shown in (c), (d), and (e), reveal that some word
onset information is processed before word onset enters the decoding window (dashed grey line).
Averaging over time across the top 10 electrodes per region, as in (d) and (e), reveals the mirrored
time course of language processing.
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Figure 3: Part of speech information is linearly decodable. We perform the same analysis as shown
in fig. 4 for nouns and verbs. A linear decoder is trained to classify words as either nouns or verbs,
based on the corresponding neural activity. This decoding is done for activity in a 0.25s window in
0.1s increments. The spatial distribution of decoding scores, shown in (a) and (b), after a max has
been taken over all windows, shows that part of speech is most decodable in the frontal, cingulate,
insula, and temporal regions. Decodability, as a function of time, shown in (c, for an electrode in the
superior temporal lobe), (d), and (e), reveal that some part of speech information is processed before
word onset enters the decoding window (dashed grey line). Averaging over time across the top 10
electrodes per region, as in (c) and (d), reveals the time course of processing.
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Figure 4: Neural responses to word onsets are observable, even after controlling for visual
and audio features. a. Mean response to word onsets, after controlling for audio features for the
same example electrode as shown in fig. 2. The same conventions as fig. 2c are followed. Vertical
brackets and corresponding asterisks show the difference between conditions. Horizontal brackets
and asterisks show the significance of the word onset response. b. Mean response to word onsets,
after controlling for visual features. In both (a) and (b), significant response to word onset can be
observed, even after controlling for audio and visual features respectively.
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Figure 5: Neural responses distinguish high and low surprisal. a. Raster and mean plots aligned
to word onsets for an example electrode in the right superior temporal gyrus (see inset in d; this is
the same electrode as shown in fig. 12) separated by high and low surprisal. The difference between
high and low surprisal words remains even after controlling for other features, such as volume (b)
and position in sentence (c). GLM analysis reveals that activity in this electrode is modulated in part
by surprisal, as well as by other features (d). There are 10 electrodes where part of speech has a
significant beta-coefficient; these are all located in the superior temporal lobe (e).
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Figure 6: The other factors which influence activity in part-of-speech-sensitive electrodes. An
electrode is said to be sensitive to part-of-speech, if a GLM fitted to mean neural activity has a
significant beta coefficient (p < 0.05, after corrections for multiple comparisons) for the part-of-
speech feature. Among all such part-of-speech sensitive electrodes (n= 83) , the number of electrodes
that have other significant beta coefficients is shown.

Figure 7: The (absolute value) of Pearson’s r between input features, averaged across movies.
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Figure 8: Magnitude of beta coefficients, averaged per region.

Figure 9: Neural response decreases as a function of position in the sentence. Making a more
fine-grained examination of sentence position, we observed a trend in which mean activity decreased
monotonically with the index in the sentence. (a) The neural response per index in sentence is shown
for the first eight sentence positions for an electrode in the left temporal lobe (same electrode as
shown in fig. 12). (b) The mean activity for this same electrode (location shown in inset) is taken for
a [0ms,500ms] window after word onset. The box shows the quartiles, while the whiskers show 1.5
× the interquartile range, over all words at a given position. (c) Taking the mean of the magnitude
over this same window for all word responsive electrodes shows the same trend. Error bars show a
95% confidence interval over electrodes. A word-responsive electrode is defined, as in fig. 2, as an
electrode that shows a significant difference between pre- and post- onset activity. Here we restrict
our attention to those electrodes (n = 111, locations shown in inset) for which this difference has
at least a moderate effect size (Cohen’s d > 0.1). Note that we do not believe this result stands in
opposition to previous findings, such as in [79], foremost because we consider a much different
distribution of sentences in our work. The sentences shown to subjects in this work cover a wide
variety of forms, and importantly, are usually part of a longer dialogue. To make a direct comparison
with previous studies of sentence processing, a more fine-grained inventory of sentence types should
be made over the movie transcripts.

28



Figure 10: Schematic of word-responsiveness testing procedure. We test for word responsiveness
at five different points (i-v). The grey line shows mean neural response, averaged across a movie.
Shading shows standard error. At each point, a two-tailed paired t-test is performed between the
mean activity in a pre-onset (green) and a post-onset (red) window of 100ms. We use multiple tests
to account for the fact that sometimes the difference in activity may be 0 simply due to the absolute
offset of the windows (this is the case for iii). We say that an electrode is word-responsive, if there is
at least one test for which there is a significant difference between pre- and post- onset activity, after
correcting for multiple comparisons.

Figure 11: Unimodal responsive electrodes. We categorize features as either visual, audio, or
language. For each electrode, we use the GLM analysis to determine whether a given electrode’s
activity has a significant (after Bonferroni correction) response for features from a single category, to
the exclusion of the other categories.
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Figure 12: Neural responses distinguish nouns and verbs. a. Raster and mean plots aligned to
word onsets for an example electrode in the left superior temporal gyrus (see inset ) separated by
nouns (bottom in raster plot, light grey in mean plot) and verbs (top in raster plot, dark grey in mean
plot). b. GLM analysis reveals that activity in this electrode is modulated by part of speech, as well
as by other features. c. For this electrode, a significant difference between nouns and verbs does
not remain for the sentence onsets condition, after sub-sampling over sentence position. d. But, a
difference does remain for all sub-sampled conditions, when controlling for other features, such as
volume. Using the GLM analysis, allows us to judge the influence of part-of-speech on a per-word
basis. e. The fraction of electrodes, per region, of electrodes where part of speech has a significant
beta-coefficient (total n = 83); these are mainly located in the temporal and frontal lobes. f. The
exact location of these electrodes (blue) projected onto the surface of the brain.
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Figure 13: Noun vs. verb peak amplitude and timing.. For each electrode, we consider the mean
signal. See, for example, (a) which shows the mean activity for an electrode in the STG (the same
electrode shown in fig. 12). For an electrode, we find the amplitude (horizontal lines) of the peak
mean activity and the timing of the peak (vertical lines). Across many electrodes, we observe a
difference in the peak amplitudes such that nouns induce a higher response than verbs for sentence
onsets, while verbs induce a higher response for offsets and midsets. The electrodes in (b) and (c)
are those electrodes which respond to language (see fig. 2d), with the additional condition that the
language response have at least moderate effect size (Cohen’s d > 0.1).
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Unique Unique Unique
# Movie Year Time (s) # Sentences # Words words Nouns nouns Verbs verbs
1 Antman 2015 7027 1412 9846 1956 1370 712 1538 581
2 Aquaman 2018 8601 1003 7218 1563 1066 517 1094 508
3 Avengers: Infinity

War
2018 8961 1372 8479 1780 1081 608 1294 485

4 Black Panther 2018 8073 1139 7571 1628 1084 544 1199 506
5 Cars 2 2011 6377 1801 11404 2060 1576 737 1649 563
6 Coraline 2009 6036 933 5428 1251 759 407 817 353
7 Fantastic Mr. Fox 2009 5205 1162 8457 1892 1240 690 1240 490
8 Guardians of the

Galaxy 1
2014 7251 1104 8241 1799 1101 615 1235 521

9 Guardians of the
Galaxy 2

2017 8146 1180 9332 1839 1210 623 1368 533

10 Incredibles 2003 6926 1408 9369 1966 1234 659 1545 582
11 Lord of the Rings 1 2001 13699 1424 10538 2011 1470 681 1480 595
12 Lord of the Rings 2 2002 14131 1620 11017 2085 1593 760 1587 631
13 Megamind 2010 5735 1351 8833 1748 1183 610 1340 496
14 Sesame Street Ep.

3990
2016 3440 718 4218 804 716 233 674 211

15 Shrek the Third 2007 5568 999 7192 1586 989 568 1072 418
16 Spiderman: Far From

Home
2019 7764 1705 12004 1988 1442 660 1755 555

17 Spiderman: Home-
coming

2017 8008 1993 12258 2107 1591 795 1794 569

18 The Martian 2015 9081 1421 11360 2210 1781 826 1686 630
19 Thor: Ragnarok 2017 7831 1471 9651 1806 1183 604 1440 546
20 Toy Story 1 1995 4863 1240 7194 1545 1039 561 1015 388
21 Venom 2018 6727 1301 7859 1527 892 509 1200 427
Table 3: Language statistics for all movies. Columns from left to right are the movie’s ID, name, year
of production, length (seconds), number of sentences, number of words (tokens), number of unique
words (types), number of nouns, number of unique nouns, number of verbs and number of unique
verbs.
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# Feature Category Description
1 Pixel brightness Visual The mean brightness computed as the average HSV value

over all pixels
2 Global optical flow magnitude Visual A camera motion proxy. The maximal average dense

optical flow vector magnitude
4 Optical flow magnitude Visual A large displacement proxy. The maximal optical flow

vector magnitude
5 Optical flow angle Visual The orientation (degrees) of the above flow vector
6 Number of faces Visual The maximal number of faces per frame
7 Volume Auditory Average root mean squared watts of the audio
8 Mean pitch Auditory Average pitch of the audio
9 Delta volume Auditory The difference in average RMS of the 500ms windows

pre and post word onset
10 Delta pitch Auditory The difference in average pitch of the 500ms windows

pre and post word onset
11 GPT-2 surprisal Language Negative-log transformed GPT-2 word probability (given

sentence preceding context)
12 Word time length Language Word length (ms)
13 Word time difference Language Difference between previous word offset and current

word onset (ms)
14 Index in sentence Language The word index in its context sentence
15 Word head Language The relative position (left/right) of the word’s dependency

tree head
16 Part of speech tag Language The word Universal Part-of-Speech (UPOS) tag

Table 4: Extracted visual, auditory, and language features used to model the neural responses.
All scalar type features were used as regressors in the GLM analysis and all scalar and vector features
were used as test set balancing features in the multi-confounds CNN analysis. The difference between
2 and 4 is that 2 is the magnitude of the averaged optical flow vector, with the average being taken
over all optical flow vectors on the screen, whereas 4 is the magnitude of the largest individual optical
flow vector on the screen.
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C Data documentation757

The brain recordings and annotations and annotations are released at the subject level, and can be758

thought of as the raw source, from which derivative machine learning datasets may be created, and759

for this reason we do not include any croissant meta-data. An example of a dataset derivation could760

be: segmenting the audio track by word boundaries and then training a decoding model to map for761

neural recordings to word identity. Another example could involve segmenting the recording into762

uniform intervals and then training a decoding model to predict average color on screen. We release763

the recordings in their entirety to allow for this flexibility.764

The website contains the following assets:765

1. quickstart.ipynb A quickstart IPython notebook766

2. localization.zip Spatial position of electrodes767

3. subject_timings.zip Wall clock time of triggers used for synchronization with movie768

4. subject_metadata.zip Movie metadata769

5. electrode_labels.zip Semantic ID for electrodes770

6. speaker_annotations.zip Speaker IDs for movie audio771

7. scene_annotations.zip Scene cut annotations for movies772

8. transcripts.zip Pre-computed features for movies773

9. trees.zip Universal Dependency parse trees for movie dialogue774

10. sub_<sub_id>_trial<trial_id>.h5.zip Neural recordings in HDF5 format775

D Responsibility, License, Hosting Plan776

Authors bear all responsibility in case of privacy violations. Authors release the data under a CC BY777

4.0 license.778

Data will be hosted on MIT CSAIL servers and will be accessible at the url https://779

braintreebank.dev/. Backups will be kept across multiple machines. Hardware will be main-780

tained by the MIT CSAIL Infrastructure Group: https://tig.csail.mit.edu/.781
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tional Journal of Sanskrit Research, 6(6):154–158, 2020.

R. Mukamel and I. Fried. Human intracranial recordings and cognitive neuroscience.
Annual Review of Psychology, 63:511–537, 2012a.

R. Mukamel and I. Fried. Human intracranial recordings and cognitive neu-
roscience. Annual review of psychology, 63:511–537, 2012b. doi: 10.1146/
annurev-psych-120709-145401.

E. e. a. Murphy. Minimal phrase composition revealed by intracranial recordings. J
Neurosci, 42:3216–3227, 2022. doi: 10.1523/JNEUROSCI.1575-21.2022.

M. P. Noonan et al. Separate value comparison and learning mechanisms in macaque
medial and lateral orbitofrontal cortex. Proc Natl Acad Sci U S A, 107:20547–20552,
2010. doi: 10.1073/pnas.1012246107.

K. V. e. a. Nourski. Gamma activation and alpha suppression within human auditory
cortex during a speech classification task. J Neurosci, 42:5034–5046, 2022. doi:
10.1523/JNEUROSCI.2187-21.2022.

200



D. Ongur and J. L. Price. The organization of networks within the orbital and medial
prefrontal cortex of rats, monkeys and humans. Cereb Cortex, 10:206–219, 2000.
doi: 10.1093/cercor/10.3.206.

OpenAI. GPT-4 Technical Report. arXiv, (2303.08774), 2023.

R. Quian Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried. Invariant visual
representation by single neurons in the human brain. Nature, 435:1102–1107, 2005.
doi: 10.1038/nature03687.

B. Rapp and A. Caramazza. Selective difficulties with spoken nouns and written
verbs: A single case study. Journal of neurolinguistics, 15:373–402, 2002.

A. S. Reber. Implicit learning of artificial grammars. Journal of Verbal Learning and
Verbal Behavior, 6(6):855–863, 1967. doi: 10.1016/S0022-5371(67)80149-X. URL
https://doi.org/10.1016/S0022-5371(67)80149-X.

J. Saffran, M. Hauser, R. Seibel, J. Kapfhamer, F. Tsao, and F. Cushman. Grammat-
ical pattern learning by human infants and cotton-top tamarin monkeys. Cognition,
107(2):479–500, 2008. doi: 10.1016/j.cognition.2007.10.010. Author manuscript;
available in PMC 2009 May 1. Published in final edited form as: Cognition. 2008
May; 107(2): 479–500. Published online 2007 Dec 20.

A. Salehi, P. H. Yang, and M. D. Smyth. Single-center cost comparison analysis of
stereoelectroencephalography with subdural grid and strip implantation. Journal of
Neurosurgery: Pediatrics, 29:568–574, 2022.

A. e. a. Sinai. Electrocorticographic high gamma activity versus electrical cortical
stimulation mapping of naming. Brain, 128:1556–1570, 2005. doi: 10.1093/brain/
awh491.

N. Stobbe, G. Westphal-Fitch, U. Aust, and W. T. Fitch. Visual artificial gram-
mar learning: comparative research on humans, kea (nestor notabilis) and pi-
geons (columba livia). Philosophical Transactions of the Royal Society B: Bi-
ological Sciences, 367:1995–2006, 2012. doi: 10.1098/rstb.2012.0096. URL
http://doi.org/10.1098/rstb.2012.0096.

I. Tenney, D. Dipanjan, and E. Pavlick. Bert rediscovers the classical nlp pipeline.
arXiv, (1905.05950), 2019.

C. A. A. van Heijningen, J. de Visser, W. Zuidema, and C. ten Cate. Simple rules
can explain discrimination of putative recursive syntactic structures by a songbird

201

https://doi.org/10.1016/S0022-5371(67)80149-X
http://doi.org/10.1098/rstb.2012.0096


species. Proceedings of the National Academy of Sciences of the United States of
America, 106(48):20538–20543, 2009. doi: 10.1073/pnas.0908113106. URL https:
//doi.org/10.1073/pnas.0908113106. Epub 2009 Nov 16.

G. Vigliocco, D. P. Vinson, J. Druks, H. Barber, and S. F. Cappa. Nouns and
verbs in the brain: a review of behavioural, electrophysiological, neuropsycho-
logical and imaging studies. Neurosci Biobehav Rev, 35:407–426, 2011. doi:
10.1016/j.neubiorev.2010.04.007.

S. Waldert. Invasive vs. non-invasive neuronal signals for brain-machine interfaces:
Will one prevail? Frontiers in Neuroscience, 10:295, 2016. doi: 10.3389/fnins.2016.
00295. URL https://doi.org/10.3389/fnins.2016.00295.

C. Wang, A. Yaari, A. K. Singh, V. Subramaniam, D. Rosenfarb, J. DeWitt, P. Misra,
J. R. Madsen, S. Stone, G. Kreiman, B. Katz, I. Cases, and A. Barbu. Brain treebank:
Large-scale intracranial recordings from naturalistic language stimuli. Unpublished,
2024. � denotes equal contribution.

J. Wang, A. Tao, W. S. Anderson, J. R. Madsen, and G. Kreiman. Mesoscopic physi-
ological interactions in the human brain reveal small-world properties. Cell Rep, 36:
109585, 2021. doi: 10.1016/j.celrep.2021.109585.

E. Warrington and T. Shallice. Category specific semantic impairments. Brain, 107:
829–854, 1984.

B. Wilson, H. Slater, Y. Kikuchi, A. E. Milne, W. D. Marslen-Wilson, K. Smith,
and C. I. Petkov. Auditory artificial grammar learning in macaque and marmoset
monkeys. Journal of Neuroscience, 40(34):6510–6520, 2020. doi: 10.1523/
JNEUROSCI.0152-20.2020.

M. Wojtasik et al. Cytoarchitectonic characterization and functional decoding of four
new areas in the human lateral orbitofrontal cortex. Front Neuroanat, 14:2, 2020.
doi: 10.3389/fnana.2020.00002.

O. e. a. Woolnough. Spatiotemporal dynamics of orthographic and lexical processing
in the ventral visual pathway. Nat Hum Behav, 5:389–398, 2021. doi: 10.1038/
s41562-020-00982-w.

Y. Xiao et al. Integration of recognition, episodic, and associative memories during
complex human behavior. Biorxiv, 2023. doi: 10.1101/2023.03.27.534384.

202

https://doi.org/10.1073/pnas.0908113106
https://doi.org/10.1073/pnas.0908113106
https://doi.org/10.3389/fnins.2016.00295


H. G. Yi et al. Learning nonnative speech sounds changes local encoding in the adult
human cortex. Proc Natl Acad Sci U S A, 118, 2021. doi: 10.1073/pnas.2101777118.

203



204



This thesis was typeset using LATEX,
originally developed by Leslie
Lamport and based on Donald

Knuth’s TEX. The body text is set in
11 point Egenolff-Berner Garamond, a
revival of Claude Garamont’s humanist
typeface. The above illustration, “Sci-
ence Experiment 02”, was created by
Ben Schlitter and released under cc by-
nc-nd 3.0. A template that can be used
to format a PhD thesis with this look and
feel has been released under the permis-
sive mit (x11) license, and can be found
online at github.com/suchow/Dissertate
or from its author, Jordan Suchow, at
suchow@post.harvard.edu.205

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://github.com/suchow/Dissertate
mailto:suchow@post.harvard.edu


206



207


	Introduction
	What do I measure for?
	 How I chose to do it - my approach and challenges
	Why do we need intracranial evidence for language?
	Summary of Thesis

	Results
	Experiment Design and Data for Parts of Speech (POS)
	POS Encoding: Invariant and Localized
	POS Decoding: Generalized and Robust
	POS in Full Sentences
	Grammatical Versus Ungrammatical Phrases
	Supplementary Tables

	Discussion
	Effect of Task Design on Findings
	Relation with previous MEG and EEG studies
	Unimodal versus Multimodal Approach
	The Lateral Orbitofrontal Cortex
	Limitations of sEEG Recordings

	Methods
	Preregistration
	Data and Recordings
	Experiment Design
	Data Analyses

	Audiovisual Sentences
	Results
	Supplementary Tables
	Discussion
	Methods

	Conclusion
	Audiovisual Language Processes with Intracranial recordings
	Technical Summary of Thesis
	Reflection: Methods Advancement for Human Neuroscience

	Appendix Brain TreeBank
	References

