
Out-of-Distribution Generalization in
Biological and Artificial Intelligence

a dissertation presented
by

Spandan Madan
to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of

Computer Science

Harvard University
Cambridge, Massachusetts

September 2024



This thesis is dedicated to my family back home in India—my father, Rakesh
Madan, my mother, Poonam Madan, my brother and sister-in-law, Mayank and
Kritika Madan, and finally, my baby niece, Parthavi Madan. Without their
endless love and support, this past decade of my life in research would never
have been possible.

2



Acknowledgments

I would like to extend my deepest gratitude to my advisors, Hanspeter Pfister
and Gabriel Kreiman. As I often tell my friends, while Hanspeter taught me to
zoom out, Gabriel taught me to zoom in.

Over nine years ago, Hanspeter took me under his wing as a young, eager
master’s student with a keen interest in research but no formal background in
Computer Science. Through the highs and lows of both research and life, he has
been a guiding force, teaching me much more than just science—he has taught
me how to live. Above all, I have always felt his commitment to my growth and
development. As a scientist, he has taught me above all to see the bigger pic-
ture, to approach problems with a broad perspective, and to value the impor-
tance of interdisciplinary thinking. One of the most valuable gifts Hanspeter
gave me was the freedom to explore. He allowed me to learn anything, ask any
question, and collaborate with anyone I needed to. This academic freedom was
essential for the interdisciplinary work I did during my PhD, allowing me to
grow as an independent thinker and a scientist.

On the other hand, over the past 5 years, Gabriel has taught me almost ev-
erything I know today about nuts and bolts of digging deeper into a question
as a scientist. I was drawn to his unbridled curiosity to answer profound ques-
tions, and his mentorship has been transformative, shaping my approach to re-
search and instilling in me a deep appreciation for the scientific method. His
rigor has been a true inspiration, and his passion for discovery and his relentless
pursuit of answers has been contagious. Working with Gabriel has taught me to
embrace challenges with enthusiasm, to think critically and creatively, and to
never shy away from asking difficult questions.

This journey would not have been possible without the invaluable mentorship
and expertise of my senior mentors. I am especially grateful to Xavier Boix,
with whom I collaborated on some of the most exhilarating and creative re-
search projects of my life. I also want to thank Mengmi Zhang, Tzu-Mao Li,
and Will Xiao whose expertise helped bring many of my ideas to life.

3



On a personal note, my nine years in Cambridge have been an unforgettable
adventure. Full of ups and downs, but these have been some of the best years
of my life thanks to my friends here. It would be impossible to name everyone,
but I want to like to especially thank Abhimanyu Dubey, Chetan Krishna, Elisa
Pavarino, Fenil Doshi, Geet Kalra, Harshika Bisht, Ishaan Grover, Jenny Zheng,
Kamakshi Patapathi, Mayank Ojha, Pranav Misra, Ravi Srinivasan, and Serena
Bono. They have been nothing less than a second family to me in Cambridge.
I would also like to thank my labmates from both VCG and from KreimanLab
who have been a constant source of knowledge, fun and support.

Finally, I owe an immense debt of gratitude to my family for their unwavering
support throughout this journey. In my master’s thesis 6 years ago, I remem-
ber writing that science is a never-ending pursuit. Only now do I fully under-
stand how true those words were. I am deeply grateful to my family for taking
the time to understand me, and why it was inevitable for me to take the path I
have taken over the past decade.

4



Thesis advisors: Hanspeter Pfister, Gabriel Kreiman Spandan Madan

Out-of-Distribution Generalization in Biological and
Artificial Intelligence

Abstract

This past decade has seen unprecedented success in Artificial Intelligence
(AI), pushing the frontiers in ways most experts could have never predicted.
However, most of this success has come in the form of performing well inside
the data distribution the models have been trained with. Out-of-distribution
(OOD) generalization still remains the achilles heel of modern AI. In contrast,
biological systems exhibit a remarkable ability to adapt to novel situations.
This thesis addresses this critical generalization gap, by studying Biological and
Artificial Intelligence in tandem. The work presented includes new mathemati-
cal frameworks designed to better formalize generalization, behavioural bench-
marks to identify the limits of both human and AI generalization capabilities,
experiments to identify the underlying mechanisms driving generalization in
both brains and neural networks, and engineering solutions to incorporate these
findings to improve AI. To this end, this thesis presents scientific contributions
made to the fields of Machine Learning, Computer Vision, Computer Graph-
ics, Computational Neuroscience, and Psychophysics. Throughout the thesis,
the goal of this work has been to advance our understanding and improve OOD
generalization by working at the intersection of biological and artificial intelli-
gence.

iii



Thesis advisors: Hanspeter Pfister, Gabriel Kreiman Spandan Madan

Out-of-Distribution Generalization in Biological and
Artificial Intelligence

Thesis Statement

Modern machine learning is driven largely by two factors—architectural ad-
vancement and dataset size. However, a large part of it is driven by accuracy on
in-distribution performance i.e. training and testing on i.i.d. data drawn from
the same distribution. Unfortunately, this approach has fallen short of achiev-
ing intelligence that can effortlessly adapt and generalize beyond the training
data distribution like biological systems can. This thesis asserts that out-of-
distribution (OOD) generalization is not just a matter of scale or architecture,
but is significantly driven by a third factor—data diversity. Diverse training
data leads to the development of invariant representations, which allow signifi-
cantly improved generalization on samples drawn from distributions never seen
during training. This thesis confirms these claims through computational, be-
havioural, and eletrophysiological experiments.

iv



Contents

I Preliminaries 2

1 Introduction 3

2 The past and the present of Out-Of-Distribution generalization 7
2.1 The past 350 years . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The present: Formalizing data and the knowledge learned . . . . 15

II Benchmarking generalization in AI 23

3 When and How do CNNs generalize to Out-Of-Distribution data? 24
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Datasets for simultaneous category-viewpoint classification . . . . 28
3.3 Factors affecting generalization behaviour . . . . . . . . . . . . . 30
3.4 Generalization through selectivity and invariance . . . . . . . . . 33
3.5 How do CNNs generalize to OOD combinations? . . . . . . . . . . 41
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Emergent representations 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Enforcing invariant representations to improve generalization. 73
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

v



5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Improving generalization in Reinforcement Learning. 99
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Are these machines even safe inside the distribution? 120
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2 Results on in-distribution robustness . . . . . . . . . . . . . . . . 126
7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

III Benchmarking and Leveraging human generlization 158

8 Contextual Reasoning in Synthetic and Natural Scenes 159
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.3 Context-aware Recognition Transformer . . . . . . . . . . . . . . 163
8.4 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9 Human or Machine? Turing tests for LLMs and Vision. 183
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
9.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
9.5 Main Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

10 Improving generalization by mimicking the human visual diet. 231
10.1 Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
10.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
10.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

vi



IV OOD Generalization capabilities of the brain 262

11 OOD generalization capabilities of the models of the cortex 263
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
11.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
11.3 MacaqueITBench . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
11.4 Constructing out-of-distribution data splits . . . . . . . . . . . . . 267
11.5 Quantifying distribution shifts . . . . . . . . . . . . . . . . . . . . 270
11.6 Model training and evaluation . . . . . . . . . . . . . . . . . . . . 272
11.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
11.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
11.9 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

12 Conclusion 279

V Appendix 285
S1 Additional details on Datasets . . . . . . . . . . . . . . . . . . . . 286
S2 Selectivity and Invariance . . . . . . . . . . . . . . . . . . . . . . 289
S3 Experimental Details and Hyper-Parameters . . . . . . . . . . . . 291
S4 Additional Experiments:“When Do CNNs generalize to OOD com-

binations?” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
S5 Additional Experiments for “How Do CNNs Generalize to OOD Com-

binations?” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
S6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
S7 Variation-base decomposition, invariance and selectivity scores . . 311
S8 Identical activity achieves the maximum value of invariance score and

complementary activity achieves the maximum value of selectivity
score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

S9 Invariance Enforcement Regularization (IER) . . . . . . . . . . . 322
S10 Details of implementation . . . . . . . . . . . . . . . . . . . . . . 327
S11 Details of datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 330
S12 Details of experiments . . . . . . . . . . . . . . . . . . . . . . . . 337
S13 Train accuracy and test accuracy on seen data . . . . . . . . . . . 339
S14 For internal use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
S15 List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
S16 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
S17 Training Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 353
S18 Additional Graphs Non-Semantic Variations . . . . . . . . . . . . 353

vii



S19 Additional Graphs Semantic variations . . . . . . . . . . . . . . . 353
S20 Additional Graphs State-Action Pairs . . . . . . . . . . . . . . . . 354
S21 Synthetic Out-of-context Dataset (OCD) . . . . . . . . . . . . . . 384
S22 Cut-and-paste Dataset . . . . . . . . . . . . . . . . . . . . . . . . 385
S23 Visualization of Attention Maps . . . . . . . . . . . . . . . . . . . 385
S24 Examples of collected conversations . . . . . . . . . . . . . . . . . 397
S25 Sample images from the HVD Dataset . . . . . . . . . . . . . . . 417
S26 Additional details for the creation of the Semantic iLab dataset . 417
S27 HDNet ablations with contrastive loss . . . . . . . . . . . . . . . 418
S28 Additional experiment for the role of context . . . . . . . . . . . . 418
S29 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

References 474

1



Part I

Preliminaries

2



Intelligence is the ability to adapt to change.

Stephen Hawking

1
Introduction

On January 15, 2009, US Airways Flight 1549 took off from New York’s La-

Guardia Airport. Shortly after, the aircraft struck a flock of geese and lost power

in both engines. No engine power, no immediate airport for an emergency land-

ing, and only a matter of seconds to decide. Despite never having trained for it,

Captain Sully Sullenberger made the split-second decision of landing the plane

3



in the Hudson river. He managed to perform a near-perfect water landing, sav-

ing all 155 people onboard. Captain Sullenberger has long admitted that the

only training he ever received for landing on water was a classroom discussion

over 40 years prior to the day he achieved the heroic feat115.

This story serves as a poignant example of the delicate interplay exhibited

in human judgment between calling on experience, and adapting to the unex-

pected. There is an elusive capability which enabled Captain Sully to adapt his

expert training to land that plane in water. And albeit at a much smaller scale,

it is intuitively the same capability we all tap into in situations like commu-

nicating with the locals on a vacation when we share no language in common.

The human experience is defined by such ability to constantly adapt and re-

spond to a situation that lie far outside the typical conditions for which one has

been trained.

This past decade has seen Artificial Intelligence (AI) evolve in ways most ex-

perts could have never predicted. But the question at the heart of this thesis,

and one I would like the reader to ask themselves is if they would rather prefer

sitting in an aircraft piloted by Captain Sully or a highly skilled AGI assum-

ing neither of the two had prior experience with landing on water. I know my

answer, and if the reader feels they’d rather trust a human to adapt to unfore-

seen circumstances better than AI, it’s likely because intuitively we all recognize

a fundamental limitation of current AI systems. While these systems excel at

tasks within their training domains, they often struggle to generalize to beyond

scenarios they have seen in their training data.

4



This lack of faith in capability of AI to adapt to unforeseen circumstances is

as well founded as can be. Take for example, Microsoft’s Tay chatbot , which

quickly became racist and offensive after interacting with users online, reflect-

ing the biases present in the training data. Or consider the numerous instances

where self-driving cars have encountered difficulties due to unexpected road con-

ditions or objects that were not present in their training data. For example, self-

driving cars have struggled to handle rare weather events such as heavy snow or

dense fog, or in construction zones /cite where the presence of temporary road

markings, equipment, and workers can confuse their sensors and algorithms.

Furthermore, self-driving cars have struggled to handle unusual pedestrian be-

havior, such as jaywalking or running across the street, which can deviate from

the patterns of pedestrian behavior that the cars were trained on .

Hopefully, the above has been sufficient to describe why to adapt beyond sce-

narios encountered before is a fundamental building block necessary for any

agent claiming to be intelligent. These failures in the real-world are well under-

stood by experts. In Artificial Intelligence terminology, this capability to gen-

eralizing beyond the training data is referred to as Out-of-Distribution (OOD)

generalization, and the gap between the generalization capabilities of humans

and machines is often referred to as the Generalization Gap. Out-of-Distribution

generalization is well studied in Machine Learning and Artificial Intelligence lit-

erature and AI models are widely understood to struggle when tested on sam-

ples out of the training distribution.

In computer vision, models trained to recognize objects in images have shown

5



significant performance drops when faced with objects under unseen viewpoints

or color . Similarly, in natural language processing (NLP), AI systems that per-

form well on specific datasets can fail to understand or generate coherent re-

sponses when faced with different linguistic styles or domain-specific jargon . In

the audio domain, speech recognition systems trained on clear, accent-neutral

speech often struggle with regional accents or background noise, highlighting

their limitations in handling audio data that is out of their training distribu-

tion . Even in domains like medical diagnosis, where AI has shown promise,

models can underperform when applied to patient populations that differ from

those seen during training, raising concerns about the applicability of these sys-

tems across diverse demographic groups .

In stark contrast, humans often adapt effortlessly. Or do they? Humans of-

ten serve as the unreachable, upper-bound for many AI models, representing

the gold standard. But, the history of when and if humans can truly general-

ize beyond what they’ve experienced was deeply contested. Even now, several

academics, including my advisor Gabriel Kreiman, question if humans truly can

generalize, and work on identifying the limits of human generalization. In the

next chapter, we turn to the history of human knowledge, and see how these

ideas in AI stem from epistemology—the branch of philosophy that examines

the nature, origin, and limits of knowledge.

6



The belief that the future will resemble the past

is a matter of instinct, not reason.

David Hume

2
The past and the present of

Out-Of-Distribution generalization

Generalizing beyond experience is not merely a modern concern born of com-

putational advancements, but rather the continuation of a philosophical inquiry

that spans centuries. This chapter is undoubtedly the most ambitious in this

7



thesis. The author hopes to walk the reader through the past 3 centuries of

philosophical ideas on how knowledge emerges from experience. Then, we’ll ex-

plore the modern era of defining these ideas mathematically through data dis-

tributions. Finally, this chapter sets the tone for the guiding principle of this

thesis—controlling data distributions with real world data to concretely study

out-of-distribution generalization in machine learning.

2.1 The past 350 years

The roots of generalization in machine learning can be traced back through cen-

turies of philosophical inquiry, highlighting humanity’s enduring quest to un-

derstand how knowledge is generated from experience and how we generalize

from known to unknown contexts. This longstanding intellectual pursuit, deeply

rooted in epistemology, has traversed the ideas of great thinkers such as John

Locke, David Hume, Immanuel Kant, and Bertrand Russell. By examining their

contributions, we can better understand how OOD generalization has evolved

from abstract philosophical questions into a concrete problem in machine learn-

ing.

John Locke, in the 17th century, laid the groundwork for understanding hu-

man cognition by positing the central argument in the empiricist view of knowl-

edge acquisition—knowledge is primarily derived from sensory experience. In his

seminal book An essay concerning human understanding in 1685, Locke posited

that the mind is a tabula rasa, or a blank slate at birth. He posited that all

knowledge is derived from sensory experience i.e. the data provided during ex-

8



perience. For Locke, the generalization challenge was to explain how the mind

can form general ideas and concepts from specific, fragmented inputs it receives

through the senses.

Locke’s theory of abstraction provides a solution, suggesting that the mind

actively abstracts general ideas from particular instances. In essence, it also sug-

gests a major theme that will become popular in this thesis—the data drives the

knowledge an intelligent agent can extract as shown in Chapters /cite. Locke

recognized that our perceptions are often shaped by the contexts in which they

occur, was skeptical about the limits of empirical knowledge. This foreshadows

the challenges faced by modern machine learning models, which often struggle

to apply learned knowledge to novel distributions. A layman way to think of it

is—how can a model understand a pattern if it is truly never shown in the data.

On the flipside, if your data shows a repeating (but not general) pattern, how is

it possible for the model to not learn it.

These questions become even more fascinating when thought in the context of

our modern understanding of biological intelligence. Firstly, it is unclear when,

how, and if biological intelligence can generalize knowledge to new and unseen

situations. As humans we often assume that we can. But some results in Chap-

ter 8 prove otherwise. There are many (and often surprising) limits to human

generalization.

George Berkeley, another empiricist philosopher, offered a critique of Locke’s

theory of abstraction. In his works ”A Treatise Concerning the Principles of Hu-

man Knowledge” (1710) and ”Three Dialogues between Hylas and Philonous”

9



(1713), Berkeley rejected the notion of abstract ideas, arguing that it is impos-

sible to conceive of a general idea that is devoid of all particular features. Ac-

cording to Berkeley, every idea in the mind is particular, and what we call gen-

eral ideas are merely particular ideas used in a general way. Berkeley’s idealism

posited that only minds and their ideas exist, and that what we perceive as the

physical world is merely a collection of ideas. Thus, generalization, for Berkeley,

does not involve abstracting general ideas from particular experiences; instead,

it involves recognizing similarities among particular ideas. For instance, the idea

of a ”tree” is not a general idea but a particular idea that stands for all trees

because of the commonalities we recognize. Berkeley’s critique highlighted the

difficulties involved in explaining generalization, pushing the problem further

into the realm of cognitive and perceptual processes. These ideas may be traced

as precursors of machine learning research conducted in 1980s-1990s, when pa-

pers often proposed that complex tasks like visual recognition involved repre-

senting new images in the form of a small number of primal templates which

best represent the object invariant to transformations like rotation and scale.

On the other hand, Gottfried Wilhelm Leibniz, in ”Monadology” (1714) intro-

duced the principle of sufficient reason, which states that nothing happens with-

out a reason. Leibniz’s principle implies that generalization is not only possible

but necessary, as the universe operates according to rational principles that can

be discovered through reason. His optimism about the power of reason to un-

cover the truths of the world provided a counterpoint to the skepticism of the

empiricists. This work laid the groundwork for the rationalist tradition, which

10



held that the mind, through reason, can grasp universal truths that go beyond

mere sensory experience. And so, on one hand we have pioneers like Locke ques-

tioning whether we can ever get to general laws from experience, while we have

stalwarts like Leibniz necessitating that we must understand general laws if we

have any hope of understanding the systems that govern us.

Soon enough, David Hume, another towering figure in empiricism, advanced

this discourse in the 18th century by directly addressing the problem of induc-

tion, which is at the very heart of the problem of OOD generalization. To put

it lightly, Hume’s problem of induction was the real killjoy. He argued that our

knowledge is based on patterns we observe, but there is no logical certainty that

future observations will follow the same patterns. He argued that there is no

logical basis for assuming that the patterns observed in the past will necessarily

hold in the future. This same skepticism about inductive reasoning underscores

the difficulty of ensuring that models trained on one set of data will perform

well on another, fundamentally different set. Any repeated experience in the

training dataset may very well be just an artefact of that dataset, as opposed to

a general truth about all data in the world, and may very well not hold true for

new data drawn from out of the training data distribution.

A good example of this is the evolution of the phrase “black swan”. Origi-

nally, the term “black swan” was used to denote something that was considered

impossible or highly improbable, based on the observation of only white swans

in Europe. The sighting of a black swan in Australia in the 17th century dras-

tically altered this perception, proving that the assumption of all swans being

11



white was incorrect. This illustrates the limits of empirical knowledge and how

assumptions are often based on the available data, which can be incomplete or

biased. Whatever system of knowledge biological systems employs, it seemed fit

to conclude black swans are a logical impossibility based on the training data

which contained only white ones.

While Hume may appear to be a real killjoy, the questions raised by skep-

tics are truly profound. While for Newton, the laws of motion distilled from

observations of the heavenly bodies were laws set in stone, for a skeptic like

Hume, these laws are something that ”can only belong to the mind that con-

siders them”.

In response to such skepticism, philosophers like Immanuel Kant sought the

middle ground. In his 1781 book, Critique of Pure Reason, Kant proposed that

the mind actively shapes experience through a priori concepts and categories.

He posited that innate knowledge (which in modern days we refer to as causal-

ity or space-time) is necessary to organize sensory input. For Kant, these cat-

egories are not derived from experience, but are preconditions for the human

experience. Thus, generalization is grounded in the very structure of the human

mind, which imposes order on the chaotic influx of sensory data.

Thus, Kant’s notion of a priori knowledge suggests that humans possess in-

herent structures that allow for the generalization of knowledge beyond direct

experience. In machine learning, this concept parallels the development of mod-

els that incorporate prior knowledge or inductive biases to better handle OOD

generalization. However, while Kant’s ideas provide a theoretical basis for gen-

12



eralization, it remains completely unclear what these a priori biases should be.

A wide range of works in computer science have proposed such biases, but the

problems still stand. An implementation of such structures in artificial systems

remains an ongoing challenge, and the very idea that they are the way forward

remains widely contested.

In an approach alternate to Kant’s, John Stuart Mill in ”A System of Logic”

(1843) developed a theory of inductive reasoning that aimed to provide a foun-

dation for scientific knowledge. Mill argued that while inductive reasoning could

not provide absolute certainty, it could yield probable knowledge by identify-

ing patterns and regularities in experience. Mill’s methods of induction, such

as the method of agreement and the method of difference, sought to establish

causal relationships based on observed correlations. While acknowledging the

limitations of induction highlighted by Hume, Mill believed that systematic ob-

servation and experimentation could provide a reliable basis for generalization.

His methods aimed to establish causal relationships based on observed corre-

lations, laying the groundwork for the scientific method. In many ways, this

theory would explain the modern day usage of the phrase “Black swan”, which

evolved to mean a low probability event as opposed to an impossible event after

the spotting of black swans by dutch philosophers in western australia.

Building on these works, Charles Sanders Peirce introduced a pragmatic ap-

proach in his essays on pragmatism, which is perhaps closest to the ideology at

the heart of modern applied machine learning. Peirce argued that the meaning

of a concept is grounded in its practical consequences. For Peirce, generaliza-

13



tion beyond data is not about abstracting universal truths but about forming

hypotheses that can guide action and inquiry, much like the modern day practi-

tioner or machine learning. He introduced the idea of abduction, or inference to

the best explanation, as a method for generating hypotheses based on observed

data. Abduction, unlike deduction or induction, involves forming a plausible hy-

pothesis that can explain the observed facts. Peirce’s pragmatic approach high-

lights the dynamic and provisional nature of generalization, emphasizing that

our generalizations are always subject to revision based on new evidence.

The 20th century saw further refinement of these ideas, with figures like Bertrand

Russell and Gottlob Frege emphasizing the role of logic and mathematics in un-

derstanding the world. Russell’s work highlighted the importance of formal sys-

tems in ensuring consistency and rigor in reasoning, which is directly relevant to

the development of machine learning algorithms. In his ”Begriffsschrift” (1879)

and later works, Frege developed a formal system of logic that aimed to cap-

ture the principles of valid reasoning. Frege’s work laid the groundwork for the

logicist program, which sought to show that mathematics could be reduced to

logic. In many ways, these works and those of their contemporaries have led

us to where we stand today, where Artificial Intelligence—learning knowledge

which would be akin to human is a discipline driven by formalisms and mathe-

matics.

However, relating these philosophical insights to out-of-distribution (OOD)

generalization provides a deeper understanding of the challenges and opportu-

nities in developing robust AI systems. Each philosophical perspective offers a

14



lens through which to view the complexities of training models that can gener-

alize well to new, unseen data distributions. At the heart of it, these theories

highlight that knowledge is highly dependent on the data used to learn it. Thus,

understanding the data and clearly defining it is of paramount importance. In

the next few sections, the author will provide a clear framework for defining and

characterizing the data. The framework will also help us clearly define Out-of-

Distribution generalization.

2.2 The present: Formalizing data and the knowledge learned

Out-of-distribution (OOD) generalization is a crucial aspect of machine learn-

ing that affects various domains, including supervised, self-supervised, and re-

inforcement learning. However, for the sake of clarity and to provide concrete

examples, we will primarily ground our exposition in the context of supervised

learning. This section introduces the mathematical and terminological frame-

work used throughout the thesis. This section is heavily inspired by recent amaz-

ing work by Martin Arjovsky .

2.2.1 The Dataset and Data Distributions

A dataset in the supervised learning setup is represented by the dataset space.

This is typically denoted as cartesian product of the input space and the output

space. Thus, D : X × Y .

Here, X typically denotes the vector space representation of input data. For

instance, pictures in the form of pixels, sentences in the form of tokenized vec-

15



tors, and audio samples in the form of spectograms (among others). We use Y

to denote the space of labels. The nature of Y depends on the specific model

being trained, for classification this would be a discrete vector, and for regres-

sion it would be continuous.

A critical consideration in characterizing the dataset is to formulate it as a

sample that has been sampled from the joint space D. This formulation allows

us to account for the fact that not all input-output samples are equally likely in

our dataset source. For instance, consider a dataset consisting of emails. Here,

X would denote all possible emails that could be constructed. Assuming the

language is englishe, this space consists of all possible bodies of texts that could

be constructed in the english language.

Each dataset is a specific sample from this space. Needless to say, the prob-

ability of sampling a dataset of completely non-grammatical emails is pretty

low. However, this formulation can be much more helpful than just rooting out

non-sensical datasets. Depending on the source of the dataset, the probability

of sampling a particular sample x can differ significantly. For instance, a dataset

sourced from personal emails is much more likely to contain emails with the

subject “Save the date! You are invited to our wedding.”, compared to a dataset

constructed from workplace emails.

This idea can be mathematically defined in the data distribution—the joint

distribution P(x, y) of sampling a particular pair (x, y) from the data space D.

This framework us to concretely define:

• Joint Distribution: The likelihood of encountering a specific input-output

16



pair (x, y) is modeled using a joint distribution P. This distribution cap-

tures which data points are likely to be encountered during training and

testing.

• Distribution Shifts: A common issue in machine learning is that the train-

ing data distribution may not reflect the true underlying distribution of

data in the real world. In principle, this could be modeled by assuming

two different data distributions for the training data and the real world

test data. Consider three such datasets sampled to follow distributions

P1,P2,P3. If the KL-divergence between P1,P2 is less than that between

P1,P3 we can claim that the shift between Datasets 1 and 2 is lesser than

that between Datasets 1 and 3. This is crucial for designing algorithms

that are robust to distribution shifts.

It is important to note that in practice this approach quickly becomes in-

tractable. It is exceptionally hard to clearly define the data distriubtion P in

real world applications, which makes it incredibly hard to identify or clearly

quantify the distribution shift. We will take a deeper look into this phenomenon

later in this chapter. But for now, let’s turn to how this formulation can be use-

ful to help evaluate models.

2.2.2 Incorporating the data into the evaluation pipeline: Loss Functions and ERM

At the heart of machine learning we always assume there exists a true under-

lying relationship between the input and output we are trying to learn. This is

often referred to as the ground-truth function and denoted by f. This function

17



maps inputs to ground-truth labels, f : X → Ŷ . The goal of supervised learn-

ing is to estimate the ground-truth f using the data. For this, we first start by

defining the space of possible functions we will be looking in to find the best

match for the ground-truth. Imagine, you have a sock in your hand, and you’re

trying to find it’s best approximating match to make the pair. First, you must

define the space of all possible socks you will search for, say your sock drawer.

Mathematically we denote to this space as H, and refer to it as the hypothesis

space. Let’s denote the function from H which best approximates f as f̂.

Perfect, now given our dataset, of course we want to learn a model (̂f) that

would perform really well on all data possible. Unfortunately, we start with

some bad news. Work has long shown that if we want to perform well on all

possible data, i.e., we make no assumptions on what data we want to perform

well on it spells disaster. This result was proved in the infamous No Free Lunch

Theorems , which roughly translate to saying that one can find data points which

will perform arbitrarily bad (i.e., as bas as you’d like) given a model.

So, we start with a data distribution P, and want the best possible approxi-

mation f̂ for data is known to be sampled from this distribution. We see that we

must first define what makes an approximation good before we can start look-

ing for the best approximation. Turning to the literature, this has been a long

standing problem in learning from data. Going by several names over the eras,

but perhaps best known as the model-selection problem. Over the years, several

works have posited a definition for the best model .

However, one that has become seminal was proposed by David Wolpert in his

18



1992 work cite, which we refer to as Empirical Risk Minimization. In practice,

we start by defining a non-negative loss function: L : Ŷ × Y → R+ measures the

difference between a predicted label ŷ ∈ Ŷ and a ground-truth label y ∈ Y .

Given P, we assume the dataset sampled from this distribution contains n

i.i.d. data points denoted by (x1, y1), ..., (xn, yn). Then, we can first define the

risk associated with the chosen approximation f∗ as the expectation of the loss

function w.r.t. the data distribution:

R(f∗) = E[L(f∗(x), y)] =
∫

L(f∗(x), y) dP(x, y). (2.1)

This risk is an estimate of the expected loss we will incur if we chose f∗ as

our model. Then, ERM defines the best model (approximation) simply as the

function in H which would minimize this risk:

f̂ = arg min
f∗∈H

R(f∗). (2.2)

Now, returning to the problem we earlier alluded to—it is virtually impossible

to know the distribution P in real world settings. And thus, the expectation can

never really be computed. Instead, we make two major assupmtions. Firstly, all

points are i.i.d., and secondly, a finite summation over a finite dataset will be a

decent approximation to this integrat. These assumptions reduce correspond to

the “Empirical” in ERM, resulting in:

f̂ = arg min
f∗∈H

1
n

n∑
i=1

L(f∗(xi), yi) (2.3)

19



In the context of out-of-distribution generalization, the idea is that we have

two different data distributions—P1 and P2. Usually, the training data (T) and

in-distribution test data (tin) are sampled from one, while the out-of-distribution

test data (tout) is sampled from the other:

T ∼ P1, tin ∼ P1, tout ∼ P2 (2.4)

2.2.3 Controlled distribution-shifts in real-world data.

Hopefully, the previous section made it clear to the reader that the real chal-

lenge in studying generalization in the real world is to clearly define these data

distributions and the shifts between them mathematically. The approach to en-

able this been central to this entire thesis, and this section is dedicated to dis-

cussing how we achieved this in the real world.

As alluded earier, defining data distributions can be exceptionally challenging

in the real world. To quote a question my advisor Gabriel Kreiman once asked

me—“Even if we wanted to, how could we ever describe the distribution of all

possible images of dogs in the real world¿‘. Certainly, that is a daunting task.

But the central idea in this thesis is to by-pass this problem by drawing inspi-

ration from the same approach taken by Charles Darwin, when studying the

underlying principles driving the evolution species.

In the wake of this problem, research in this field has split into two major

themes. On one hand, we have theoretical analysis with simple, controlled dis-

tribution shifts . While these are truly insightful, the theoretical bounds derived

20



with known distributions are hard to extend to the real world—what does the

inability to generalize from data sampled from N (0, 1) to N (0.5, 1.5) tell us

about the ability to generalize to unseen 3D viewpoints?

On the other hand, researchers have built large-scale OOD generalization

datasets with little control and no formal understanding of the distribution

shift . While these datasets are rich in complexity, it is hard to build an under-

standing of the underlying generalization capabilities due to the lack of control

over distribution shifts.

To achieve this, we rely on a path that strays between these two directions—

we first define data distributions in terms of scene attributes, and then use com-

puter graphics to convert these scene attributes into rendered image datasets.

Thus, we used computer graphics for controlled analysis of generalization with

complex data which is similar to real world datasets used in practice. We have

constructed several datasets using this approach, which will be presented in the

chapters that follow.

Darwin famously said “there is no obvious reason why the principles which

have acted so efficiently under domestication should not have acted under na-

ture”. This statement underscored his belief in the universality of evolution-

ary principles, and inspired him to study the evolution of isolated, individual

traits through controlled breeding of species in domestication. Naturalists at the

time strongly believed otherwise, but Darwin argued that the principles govern-

ing this artificial selection—where humans deliberately choose which traits to

propagate—are not fundamentally different from the natural processes shaping

21



wild species. This insight was pivotal, as it suggested that the mechanisms of

variation and selection observed in domesticated organisms could also apply to

natural populations.

This analogy provided a robust framework for understanding how species

evolve and adapt in the wild, based on principles that were already well-documented

in domesticated varieties. By bridging the gap between artificial and natural se-

lection, Darwin laid the groundwork for the modern understanding of evolution,

emphasizing that the same evolutionary forces shaping domesticated plants and

animals also sculpt the diversity of life in nature.

In a similar vein, the bedrock of this thesis has been to design datasets where

the data distributions can be clearly defined in order to study specific distribu-

tion shifts in isolation. This approach has allowed us to investigate the impact

of out-of-distribution generalization across real-world factors including light-

ing, viewpoints, materials, shapes, gravity, size, and relative spatial organiza-

tion, among others. With controlled and isolated distribution shifts in these

attributes, we have studied when and how artificial and biological intelligence

generalizes beyond the training data distribution.

22



Part II

Benchmarking generalization in AI

23



There is no obvious reason why the principles

which have acted so efficiently under domestica-

tion should not have acted under nature.

The Origin of Species, Charles Darwin

3
When and How do CNNs generalize to

Out-Of-Distribution data?

3.1 Introduction

The combination of object recognition and viewpoint estimation is essential

for effective visual understanding. In recent years, convolutional neural net-

24



works (CNNs) have offered state-of-the-art solutions for both these fundamen-

tal tasks162,361,171,356,252,104,247,9. However, recent works also suggest that CNNs

have a hard time generalizing to combinations of object categories and view-

points not seen during training, i.e., out-of-distribution (OOD) generalization is

a challenge. For object recognition, works have shown CNNs struggling to gen-

eralize across spatial transformations like 2D rotation and translation105,20,352,

and non-canonical 3D views14,24. For viewpoint estimation, previous works pro-

pose learning category specific models252,382 or feed class predictions as input to

the model413,249, as generalizing to novel categories is a challenging task.

It remains unclear when and how CNNs may generalize to OOD category-

viewpoint combinations. Fig. 3.1a presents a motivating example: would a net-

work trained on examples of a Ford Thunderbird seen only from the front, and

a Mitsubishi Lancer seen only from the side generalize to predict car model

(category) and viewpoint for a Thunderbird shown from the side? If so, what

underlying mechanisms enable such OOD generalization?

In this paper, we investigate the impact of two key factors (data diversity and

architectural choices) on the capability of generalizing to OOD combinations,

and the neural mechanisms that facilitate such generalization. Concretely, we

introduce the following discoveries:

1. Data diversity significantly improves OOD performance, but degrades

in-distribution performance: We investigate the role of data diversity by

varying the number of in-distribution category-viewpoint combinations,

keeping dataset size constant. We find that data diversity matters sig-

25



Ford Thunderbird, Front Mitsubishi Lancer, Side Ford Thunderbird, Side
(a)

iLab-2M dataset OOD Combinations (held-out) 50% in-distribution Combinations
(b) (c) (d)

Figure 3.1: Category-Viewpoint datasets. (a) Our new Biased-Cars dataset: Can a network
shown only the Ford Thunderbird from front and the Mitsubishi Lancer from side generalize
to classify the category and viewpoint for a Thunderbird seen from the side? (b) iLab-2M
dataset39: Each cell represents a unique category-viewpoint combination (categories vary
between rows, viewpoints between columns) with multiple object instances per category and
backgrounds. (c) Held-out test set of category-viewpoint combinations. Same held-out test set
is used to evaluate networks trained with different number of in-distribution combinations.
(d) Biased training set with 50% of category-viewpoint combinations. Number of categories
and viewpoints selected is always equal.

nificantly. For a constant dataset size, increasing data diversity makes

the task more challenging, as reflected in the deteriorating in-distribution

performance. Yet, increasing data diversity substantially improves perfor-

26



mance on OOD combinations.

2. Separate architectures significantly outperform shared ones on OOD com-

binations unlike in-distribution: We also analyze the performance of dif-

ferent architectures in the multi-task setting of simultaneous category and

viewpoint classification, i.e., learning category and viewpoint in Shared or

in Separate (no layers shared) architectures. Our results reveal that Sep-

arate architectures generalize substantially better to OOD combinations

compared to Shared architectures. Also, this trend is in stark contrast

with the trend for in-distribution combinations, where Shared architec-

tures perform marginally better. Thus, the belief that Shared architec-

tures outperform Separate ones when tasks are synergistic should be revis-

ited52, as their relative performance strongly depends on whether the test

sample is in-distribution or OOD.

3. Neural specialization facilitates generalization to OOD combinations: Ex-

isting works suggest that OOD generalization is facilitated by selective

and invariant representations123,310,129,8. However, this has not been pre-

viously demonstrated for deep learning, and does not extend to simulta-

neous category and viewpoint classification. To address this, we propose

the neural mechanism of specialization—the emergence of two types of

neurons, one driving OOD generalization for category, and the other for

viewpoint. This corresponds to neurons selective to a category and invari-

ant to viewpoint, and vice versa. We show that the CNN generalization

behavior trends correlates with the degree of specialization of the neurons.

27



These results are consistent across multiple CNNs and datasets including the

natural image dataset iLab-2M39, variations of MNIST214 extended with po-

sition and scale, and a challenging new dataset of car model recognition and

viewpoint estimation—the Biased-Cars dataset, which we introduce in this pa-

per. This dataset consists of 15K photo-realistic rendered images of several car

models at different positions, scales and viewpoints, and under various illumina-

tion, background, clutter and occlusion conditions. With this, we hope to pro-

vide a first milestone in understanding the underlying mechanisms which enable

OOD generalization in Multi-Task Learning for category and viewpoint classifi-

cation.

3.2 Datasets for simultaneous category-viewpoint classification

Most existing datasets with category and viewpoint labels412,47,24,257 present

two major challenges - (i) lack of control over the distribution of categories

and viewpoints, or (ii) small size. Thus, we present our results on the following

datasets which do not suffer from these challenges:

iLab-2M dataset: iLab-2M39 is a large scale (two million images), natural im-

age dataset with 3D variations in viewpoint and multiple object instances for

each category (Fig.3.1b). The dataset was created by placing toy objects on a

turntable and photographing them from six different azimuth viewpoints, each

at five different zenith angles (total 30). From the original dataset, we chose a

subset of six object categories - Bus, Car, Helicopter, Monster Truck, Plane, and

Tank. In Fig. 3.1b, each row represents images from one category, and each col-

28



umn images from one azimuth angle. All networks are trained to predict one of

six category and viewpoint (azimuth) labels each.

MNIST-Position and MNIST-Scale: Inspired by the MNIST-Rotation dataset212

which adds rotation to MNIST214 images, we created two more variants by

adding viewpoint in the form of position or scale. MNIST-Position was created

by placing MNIST images into one of nine possible locations in an empty 3-by-3

grid. For MNIST-Scale we resized images to one of nine possible sizes followed

by zero-padding. Images of the digit 9 were left out in both these datasets, en-

suring nine categories and nine viewpoints classes (total of 81 category-viewpoint

combinations). Sample images are available in the supplement S1.1.

Biased-Cars dataset: Building on other multi-view car datasets for viewpoint es-

timation203,283, we introduce a challenging new dataset for simultaneous object

category and viewpoint classification—the Biased-Cars dataset. Our dataset

features photo-realistic outdoor scene data with fine control over scene clut-

ter (trees, street furniture, and pedestrians), car colors, object occlusions, di-

verse backgrounds (building/road textures) and lighting conditions (sky maps).

Biased-Cars consists of 15K images of five different car models seen from view-

points varying between 0-90 degrees of azimuth, and 0-50 degrees of zenith

across multiple scales. Our dataset offers two main advantages: (a) complete

control over the joint distribution of categories, viewpoints, and other scene pa-

rameters, and (b) unlike most existing synthetic city datasets299,47,100 we use

physically based rendering for greater photo-realism, which has been shown to

help networks transfer to natural image data significantly better441,146. Sample

29



images are shown in Fig. 3.1a. As in412,96, we choose to focus on azimuth pre-

diction. The azimuth is divided into five bins of 18 degrees each, thus ensuring

five category (car models) and five viewpoint classes (azimuth bins), for a total

of 25 different category-viewpoint combinations.

Additional Datasets: In the supplement we provide results on two additional

standard datasets—MNIST-Rotation212 and the UIUC3D dataset320. Note that

the UIUC dataset has a skewed joint distribution of category-viewpoint combi-

nations. This makes it difficult to run controlled experiments. However, the ex-

periments which were possible on this dataset confirm that our findings extend

to it as well.

For all datasets, networks are trained to classify both category and viewpoint

simultaneously without pretraining, and the number of classes for each task

is kept equal to ensure equal treatment. More details can be found in supple-

ment S1.2. As shown in the experiments, these datasets are challenging bench-

marks for testing generalization, with a huge scope for improvement for state-of-

the-art CNNs.

3.3 Factors affecting generalization behaviour

Below we present the two factors we study for their impact on generalization to

OOD category-viewpoint combinations - (i) data diversity, and (ii) architectural

choices.

30



Generating train/test splits with desired data diversity. All our ddatasets can

be visualized as a square category-viewpoint combinations grid as shown for the

iLab dataset in Fig. 3.1b. Each row represents images from one category, and

each column a viewpoint, i.e., each cell represents all images from one category-

viewpoint combination.

For each dataset, we start by constructing an OOD test split—a set of category-

viewpoint combinations are selected and held out from the combinations grid as

shown in Fig. 3.1c. We refer to these as the OOD combinations. Images from

OOD combinations are never shown to any network during training. These im-

ages are only used to evaluate how networks generalize outside the training dis-

tribution. For a fair representation of each category and viewpoint, we ensure

that every category and viewpoint class occurs exactly once in the OOD combi-

nations, i.e., one cell each per row and column is selected.

Remaining cells in the combinations grid are used to construct multiple train-

ing splits with an increasing number of category-viewpoint combinations i.e., data

diversity. For each training split, we first sample a set of combinations as shown

in Fig. 3.1d, which we call the in-distribution combinations. Then, we build

the training data-split by sampling images from these in-distribution combi-

nations. We ensure that every category and viewpoint occurs equally in the

in-distribution combinations, i.e., equal number of cells per each row and col-

umn. Fig. 3.1d shows the 50% in-distribution training split for the iLab dataset.

To ensure that we evaluate the effect of data diversity and not that of data

amount, the number of images is kept constant across train splits as the num-

31



ber of in-distribution combinations is increased. Thus, the number of images

per combination decreases as the number of in-distribution combinations is in-

creased. Also, note that every network is trained with only one of these training

splits at a time, i.e., data diversity is kept constant during training.

Architectural choices. One central question addressed in this paper is the im-

pact of architectural choices on the capability to generalize to OOD category-

viewpoint combinations. While many separate models have been proposed for

object recognition and viewpoint estimation122,381, recent years have seen a

growing a trend of multi-task learning inspired architectures which suggest that

recognition models can benefit from an understanding of object viewpoint, and

vice versa286,443,252,356,217. These architectures often learn a shared representa-

tion for both tasks, followed by task specific branches356,443,133.

Here, we investigate the impact of learning shared representations on the net-

work’s capability to generalize to OOD category-viewpoint combinations i.e., to

extrapolate in the multi-task setting of simultaneous category and viewpoint

classification. For this, we defined two types of backbone agnostic architectures—

the Shared and the Separate architectures. Fig. 3.2 depicts these architectures

for a ResNet-18 backbone162. In the Shared case, all convolutional blocks are

shared between tasks, followed by task-specific fully connected layers, while

there are no layers shared between tasks in the Separate architecture. We also

investigated 3 additional Split architectures which represent a gradual transition

from Separate to Shared ResNet-18: the Split-1, Split-2, and Split-3 architec-

tures. These were constructed by branching ResNet-18 after 1, 2, and 3 convo-

32



CATEGORY

INPUT

SHARED

VIEWPOINT

CATEGORY

VIEWPOINT

INPUT

SEPARATE

INPUT

CATEGORY

SPLIT-2

VIEWPOINT

Figure 3.2: Architectures for Category Recognition and Viewpoint Estimation. Shared, Sep-
arate and Split-2 architectures for ResNet-18. In the Shared architecture, all layers until the
last convolutional block are shared between tasks, followed by task specific fully connected
branches. In the Separate architecture, each task is trained in a separate network with no
layer sharing. Split-2 presents a middle ground. These architectures are designed similarly for
backbones other than ResNet-18.

lutional blocks as shown in Fig. 3.2. Note that splitting at a layer leads to dou-

bling of the number of neurons in that layer. In our experiments, we show that

this increase in width does not provide an advantage.

3.4 Generalization through selectivity and invariance

Selectivity and invariance of neurons have long been hypothesized to facilitate

generalization in both biological and artificial neural networks42,310,129,8,291,276,300,315.

Neurons are commonly interpreted as image feature detectors, such that the

neuron’s activity is high only when certain features are present in the image431,342,444,28,278.

We refer to this property as selectivity to an image feature. Selectivity alone,

however, is not sufficient to generalize to OOD category-viewpoint combina-

tions. For example, a neuron may be selective to features relevant to a cate-

gory, but only so for a subset of all the viewpoints. Generalization is facilitated

by selective neurons that are also invariant to nuisance features. For instance,

in Fig. 3.1a, neurons that are selective to the Ford Thunderbird and invari-

33



ant to viewpoint would have very similar activity for the Ford Thunderbird on

in-distribution and OOD viewpoints, thus enabling generalization to category

recognition. Similarly, generalization to viewpoint estimation can be enabled by

neurons selective to viewpoint and invariant to category.

Here, we present our implementation for quantifying the amount of selectiv-

ity and invariance of an individual neuron. Let N be the number of categories

or viewpoints in the dataset. We represent the activations for a neuron across

all category-viewpoint combinations as an N × N activations grid, as shown in

Fig. 3.5a. Each cell in this activations grid represents the average activation of

a neuron for images from one category-viewpoint combination, with rows and

columns representing average activations for all images from a single category

(e.g., Ford Thunderbird) and a viewpoint (e.g., front), respectively. These acti-

vations are normalized to lie between 0 and 1 (see supplement S2.1). For neuron

k, we define akij as the entry in the activations grid for row (category) i and col-

umn (viewpoint) j. Below we introduce the evaluation of a neuron’s selectivity

score with respect to category and invariance score with respect to viewpoint.

Viewpoint selectivity score and category invariance score can be derived analo-

gously.

Selectivity score. We first identify the category that the neuron is activated

for the most on average, i.e., the category which has the maximum sum across

the rows in Fig. 3.5a. We call this category the neuron’s preferred category, and

denote it as i⋆k, such that i⋆k = argmaxi
∑

j akij. The selectivity score compares

the average activity for the preferred category (denoted as âk) with the average

34



activity of the remaining categories (āk). Let Skc be the selectivity score with

respect to category, which we define as is usual in the literature (e.g., 263,446)

with the following expression:

Skc =
âk − āk

âk + āk
, where âk = 1

N
∑
j

aki⋆kj, āk =
∑

i̸=i⋆k
∑

j akij
N(N− 1)

. (3.1)

Observe that Skc is a value between 0 and 1, and higher values of Skc indicate that

the neuron is more active for the preferred category as compared to the rest.

Selectivity with respect to viewpoint, denoted as Skv, can be derived analogously

by swapping indices (i, j).

Invariance score. A neuron’s invariance to viewpoint captures the range of its

average activity for the preferred category as the viewpoint (nuisance parame-

ter) is changed. Let Ikv be the invariance score with respect to viewpoint which

we define as the difference between the highest and lowest activity across all

viewpoints for the preferred category, i.e.,

Ikv = 1−
(
max

j
aki⋆kj −min

j
aki⋆kj

)
, (3.2)

where the range is subtracted from 1 to have the invariance score equal to 1

when there is maximal invariance. Invariance with respect to category, denoted

Ikc , can be derived analogously.

Specialization score. Generalization to category recognition may be facilitated

by neurons selective to category and invariant to viewpoint. Similarly, view-

point selective and category invariant neurons can help generalize well to view-

35



point estimation. This reveals a tension when category and viewpoint are learned

together, as a neuron which is selective to category, cannot be invariant to cat-

egory. The same is true for viewpoint. One way this contradiction may be re-

solved is the emergence of two types of neurons—category selective and view-

point invariant, and vice versa. We refer to this as specialization. This hypothe-

sis is well-aligned with the findings in425, which showed the emergence of groups

of neurons contributing exclusively to single tasks. Thus, in the context of cate-

gory recognition and viewpoint estimation, we hypothesize that neurons become

selective to either category or viewpoint at later layers as the relevant image

features for these tasks are disjoint (the category of an object cannot predict its

viewpoint, and vice-versa).

To classify neuron k as a category or viewpoint neuron, we compare its selec-

tivity for both category and viewpoint (Skc and Skv). If Skc is greater than Skv, then

neuron k is a category neuron, otherwise, it is a viewpoint neuron. Since gener-

alization capability relies on both invariance and selectivity, we introduce a new

metric for a neuron, the specialization score denoted as Γk, which is the geomet-

ric mean of its selectivity and invariance scores, i.e.,

Γk =


√
Skc Ikv if Skc > Skv (category neuron)√
SkvIkc if Skc ≤ Skv (viewpoint neuron)

. (3.3)

Below, we present results that show that the specialization score is highly in-

dicative of a network’s performance on OOD combinations.

36



25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
MNIST-Position

25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MNIST-Scale

25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

iLab

25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Biased-Cars

Network
separate
shared

TestSet
OOD
In-dist.

(a) (b) (c) (d)

Figure 3.3: Generalization performance for Shared and Separate ResNet-18 as in-distribution
combinations are increased for all datasets. The geometric mean of category recognition ac-
curacy and viewpoint estimation accuracy is reported along with confidence intervals (95%)
(a) MNIST-Position dataset. (b) MNIST-Scale dataset. (c) iLab dataset. (d) Biased-Cars
dataset.

25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

iLab

25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

Biased-Cars

sep.
sh.

densenet
inception
resnext
wideresnet

25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

iLab

25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

Biased-Cars

separate
split-1
split-2

split-3
sh.-wide
shared

(a) (b) (c) (d)

Figure 3.4: Generalization performance for different architectures and backbones as in-
distribution combinations are increased for iLab and Biased-Cars datasets. The geometric
mean between category recognition accuracy and viewpoint recognition accuracy is reported
for OOD combinations as number of in-distribution combinations is increased. (a) and (b) Ac-
curacy of Separate and Shared for backbones other than ResNet-18, for iLab and Biased-Cars
datasets, respectively. (c) and (d) Accuracy of ResNet-18 Separate, Shared and different Split
architectures made by splitting at different blocks of the network, for iLab and Biased-Cars
datasets, respectively.

When do CNNs generalize to OOD combinations?

Below, we summarize our findings from evaluating Separate and Shared archi-

tectures when tested on unseen images from in-distribution and OOD category-

37



viewpoint combinations. See supplement S3 for experimental details.

For fixed dataset size, data diversity enables better OOD generalization, but

deteriorates in-distribution performance. Fig. 3.3 presents the geometric mean

of category and viewpoint classification accuracy for Separate and Shared ar-

chitectures with the ResNet-18 backbone, for all datasets. These experiments

were repeated three times, and here we present the mean performance with

confidence intervals. For fixed dataset size, increasing in-distribution combina-

tions makes the task more challenging as images with each category and view-

point become more diverse, leading to some drop in accuracy on in-distribution

combinations. In contrast, both architectures show a significant improvement

of their performance on images from OOD combinations, as data diversity in-

creases. We ensured that this result can not be attributed to having closer view-

point angles between in-distribution and OOD combinations as data diversity

is increased (supplement S4.1). CNNs do not theoretically guarantee viewpoint

invariance291, but our result provides reassurance that CNNs can become robust

to OOD category-viewpoint combinations as long as they are shown enough di-

versity during training. Taken together, these results suggest an inherent trade-

off between getting better on in-distribution combinations and extrapolating to

OOD combinations, which is impacted by training data diversity. Also, these

results add to a growing body of works investigating the trade-offs inherent to

multi-task learning353,336.

Even though the geometric mean of category and viewpoint classification in-

creases consistently with increased in-distribution combinations, individual ac-

38



curacy for these tasks does not always increase consistently (see supplement S4.2).

We attribute this to the randomness in the selection of in-distribution and OOD

combinations. Furthermore, the relative accuracy of the two tasks varies de-

pending on the dataset, and no task is consistently harder than the other across

all datasets.

Separate architectures generalize significantly better than Shared ones in OOD

combinations, unlike in-distribution. A striking finding that emerged from our

analysis is the contrast in the trends of the in-distribution and OOD perfor-

mance. While both architectures perform well on new images from in-distribution

combinations, Separate architectures outperform Shared ones by a very large

margin on OOD combinations. For the ResNet-18 backbone, this result can be

seen consistently across all 4 datasets as shown in Fig. 3.3. Supplement S4.2

shows that Separate also outperforms Shared for category and viewpoint classi-

fication individually. Note that previous works have shown that Shared archi-

tectures are superior for synergistic tasks, as networks can share features among

tasks. These works test on the same combinations as seen during training (in-

distribution), and when we do so, we also observe that Shared architectures per-

form same or slightly better than Separate ones (Fig. 3.3 dashed lines). Thus,

our results reveal that the relative performance between Shared and Separate

depends not only on the synergy between tasks, but also whether the evaluation

is in-distribution or OOD.

We extended our analysis to Separate and Shared architectures with differ-

ent backbones, namely ResNeXt419, WideResNet429, Inception v3361 and the

39



DenseNet171, as shown in Fig. 3.4a and b. As can be seen, Separate architec-

tures outperform Shared ones by a large margin for all backbones, which con-

firms that this result is not backbone specific. Investigating further, we exper-

iment with Split architectures, and as can be seen in Fig. 3.4c and d, there is

a consistent, gradual dip in the performance as we move from the Separate to

the Shared architectures. Thus, generalization to OOD category-viewpoint com-

binations is best achieved by learning both tasks separately, with a consistent

decrease in generalization as more parameter sharing is enforced.

To make sure that Separate architectures do not perform better due to the

added number of neurons, we made the Shared-Wide architecture by doubling

the neurons in each layer of the Shared ResNet-18 network. As Fig. 3.4c and

d show, this architecture performs very similarly to the Shared one (see addi-

tional results in S4.3). This is in accordance with previous results that show

that modern CNNs may improve in performance as the width is increased but

to a limited extent270,53.

In the supplement, we provide a number of additional controls that support

the generality of our results. Concretely, we show results for different number

of training images (supplement S4.4), viewpoint estimation for 4 new car mod-

els and category prediction for new viewpoints (supplement S4.5), and the or-

der in which category and viewpoint are learned (supplement S4.6). We also

present results on additional datasets (supplement S4.7) and architectures (sup-

plement S4.8).

40



Viewpoints

selective to view. 
invariant to cat.

C
at

eg
or

ie
s

Viewpoints

selective to view. 
non invariant

C
at

eg
or

ie
s

Viewpoints

selective to cat. 
invariant to view.

C
at

eg
or

ie
s

Viewpoints

non selective 
invariant to view.

C
at

eg
or

ie
s

Viewpoints

selective to cat.-view.

C
at

eg
or

ie
s

non invariant

(a)

25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

25

50

75

100

%
 C

at
./V

ie
w.

 N
eu

ro
ns

iLab

25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

25

50

75

100

%
 C

at
./V

ie
w.

 N
eu

ro
ns

Biased-Cars

Network
separate
shared

Task
Category
Viewpoint

(b) (c)

Figure 3.5: Specialization to category recognition and viewpoint estimation. (a) Prototypical
activation grids for different types of selective and invariant neurons. (b) and (c) Percent-
age of neurons after ResNet-18 block-4 that are specialized to category and viewpoint, for
iLab and Biased-Cars datasets, respectively. ResNet-18 Separate and Shared networks are
evaluated; for Separate, only the task-relevant neurons for each branch are displayed.

3.5 How do CNNs generalize to OOD combinations?

We now analyze the role of specialized (i.e., selective and invariant) neurons in

driving generalization to OOD category-viewpoint combinations.

Specialization score correlates with generalization to OOD category-viewpoint.

We first investigate the emergence of category and viewpoint neurons in the fi-

nal convolutional layer of the networks. Fig. 3.5b and c show the percentage of

neurons of each type in Shared and Separate architectures as in-distribution

combinations are increased. As can be seen, all neurons in the category and

viewpoint branches of the Separate architecture become specialized to cate-

gory and viewpoint respectively. But in the Shared case, as the network is ex-

pected to simultaneously learn both tasks, both kinds of neurons emerge at a

ratio of about 50%. We found that this ratio depends on the relative weight of

loss terms for the two tasks. When using a different weight from the optimal in

terms of maximum geometric mean accuracy, the 50% ratio of specialized neu-

41



ron becomes unbalanced. For a small number of in-distribution combinations,

the ratio of specialized neurons may also be impacted by the relative difficulty

of two tasks, with more neurons becoming specialized for the easier task (see

supplement S5.1).

In Fig. 3.6 we present the median of specialization scores across neurons, i.e., the

median of Γk, in the final convolutional layer for Shared, Split, and Separate

architectures across multiple backbones in Biased-Cars dataset (see supple-

ment S5.2 for results in other datasets). These results are presented separately

for the category and viewpoint neurons. We show that as in-distribution com-

binations increase, there is a steady increase in the specialization score for both

category and viewpoint neurons, suggesting specialization. These trends mir-

ror the generalization trends, which suggests that specialization facilitates OOD

generalization. Invariance and selectivity scores are reported separately in sup-

plement S5.3. We also show that specialization builds up across layers (supple-

ment S5.4) as expected 129,291.

Separate networks facilitate the emergence of specialized neurons. Fig. 3.6 shows

that Separate architectures facilitate specialization, while the Shared architec-

ture makes it harder for the neurons to specialize (lower specialization scores).

This might be because unlike the Shared architecture, the branches of the Sepa-

rate architecture are not forced to preserve features relevant to both tasks. Each

branch can develop features which are selective to only one task, and invariant

to the other. This may facilitate an increase in specialization and thus enable

better performance on OOD combinations. Even though the Shared architec-

42



(a) (b) (c) (d)

Figure 3.6: Neuron specialization (selectivity to category and invariance to viewpoint, and
vice versa) in the Biased-Cars dataset. (a) and (b) Median specialization score of neurons
(Γk) in Separate and Shared architectures for category and viewpoint classification tasks re-
spectively, for backbones other than ResNet-18. Confidence intervals (95%) displayed in low
opacity. (c) and (d) Median specialization score of neurons in ResNet-18 Separate and Shared
architectures with splits made at different blocks of the network, for category and viewpoint
classification tasks respectively.

ture tries to split into two specialized parts, this specialization is much stronger

in the Separate architecture due to already having separate branches.

3.6 Conclusions

We have demonstrated that CNNs generalize better to OOD category-viewpoint

combinations as the training data diversity grows, for constant dataset size. We

have also shown that networks trained separately for category and viewpoint

classification surpass by a large margin a shared network trained on both tasks

when tested on OOD combinations. We attribute this to the branches in the

Separate architecture not being forced to preserve information about both tasks,

which facilitates an increase in specialization, i.e., selectivity to category and

invariance to viewpoint, and vice versa. These results are consistent across five

CNN backbones and six datasets, one of them introduced in this paper as a con-

43



trolled yet photo-realistic benchmark for CNN generalization.

We also found that the aforementioned impact of data diversity and Sepa-

rate architecture are the opposite for in-distribution and OOD combinations—

increased data diversity degrades in-distribution performance, and Separate net-

works perform worse than Shared ones in in-distribution combinations. This

highlights that findings from in-distribution analysis do not apply to OOD.

As a first step towards understanding generalization to OOD combinations,

our work makes certain assumptions (summarized in the supplement S6) which

present interesting directions for future work. These include understanding how

generalization is impacted by a larger number of tasks, multiple objects in the

image, object symmetries, non-rigid objects, and non-uniform ways of holding-

out the test set, among others. Finally, we are intrigued to explore what other

factors can help learn selective and invariant neural representations which can

generalize better and lead the way towards robust, trustable CNNs.

Data and Code Availability Statement

Source code, demos and data are available on Github at https://github.com/

Spandan-Madan/generalization_biased_category_pose (https://zenodo.org/

record/5636158#.YZRBKS1h1js). The paper corresponding to this work can be

accessed at https://www.nature.com/articles/s42256-021-00437-5.

44

https://github.com/Spandan-Madan/generalization_biased_category_pose
https://github.com/Spandan-Madan/generalization_biased_category_pose
https://zenodo.org/record/5636158#.YZRBKS1h1js
https://zenodo.org/record/5636158#.YZRBKS1h1js
https://www.nature.com/articles/s42256-021-00437-5


The past beats inside me like a second heart.

John Banville

4
Emergent representations

4.1 Introduction

Recognizing objects in novel orientations lies at the heart of biological and ar-

tificial intelligence, as it is a fundamental capacity to understand the visual

world344,385. However, it remains as an outstanding question.

In the realm of artificial systems, Deep Neural Networks (DNNs) have re-

45



a
Full Experience Partial Experience

Dissemination of 
Orientation Invariance

b
Per-Orientation AnalysisFully Seen Instances Partially Seen Instances

In-Distribution Out-of-Distribution

O
rie

nt
at

io
n

Instance

Figure 4.1: Learning paradigm and network’s per-orientation accuracy. (a) An intuitive
presentation of our experimental paradigm. The network is trained with images of certain
airplanes at all orientations, constituting a ‘full experience.’ The network is also trained with
images of a small subset of orientations for other airplanes, constituting a ‘partial experience.’
The out-of-distribution, or OoD, generalization capacities of the network are evaluated by
measuring the classification accuracy for partially-seen airplanes at unseen orientations. Our
results suggest that OoD generalization is facilitated by the dissemination of orientation in-
variance developed for all orientations for the fully-seen airplanes to the OoD orientations of
the partially-seen airplanes. (b) Left: The learning paradigm employed in this work. Each
column is a sample object instance (here from the airplane dataset) and each row is a sample
orientation. The training set includes all orientations for fully-seen instances, and a partial
set of orientations (outlined in red) for partially-seen instances (in this example, with the
airplanes’ nose pointing down). The orientations included in the training set are referred to
as in-distribution orientations (pink shading). Orientations of the partially-seen instances
that are not included in the training set are referred to as OoD (yellow shading). Right: A
visualization of per-orientation-analysis. The set of all orientations can be portrayed as a
square, where proximity relationships between orientations are captured in their arrangement
in the square. (Further details are provided in Fig.4.2a.) The in-distribution and OoD sets for
partially-seen airplanes are represented in their respective shadings.

cently made large strides in learning to recognize objects. However, DNNs’ gen-

eralization is often limited to the distribution of images used for training, known

46



as in-distribution data, and DNNs’ performance tends to deteriorate when con-

fronted with out-of-distribution (OoD) data. Previous studies have shown that

DNNs perform poorly when objects are presented in novel orientations, even

when learning from large datasets with millions of examples24,14,241.

An approach to understand the capabilities of DNNs is to leverage the knowl-

edge gained from studying biological intelligence158,386. In natural settings, bio-

logical intelligent agents observe instances of object categories from diverse ori-

entations. When encountering a new object instance, these agents often demon-

strate the capacity to accurately identify the object in different orientations by

drawing upon past experiences with similar instances. There has been a exten-

sive investigation dedicated to the exploration of human and mammalian per-

ceptual capabilities in the domain of object recognition in unfamiliar orienta-

tions and the neural mechanisms underlying these cognitive abilities. Studies

have revealed that recognition accuracy varies across novel orientations, with

some orientations exhibiting superior generalization compared to others235. Ad-

ditionally, compelling evidence suggests that neurons responds to their own spe-

cific set of object features when these are present in the visual field92,200. This

neural tuning has been reported to be invariant to a certain degree from the

object’s orientation236. Theoretical frameworks have proposed that such neu-

ral invariance to object orientation forms the basis for the ability to recognize

objects in novel orientations within biological systems291.

We study DNNs under conditions akin to the operating regime of biological

brains, in which some instances of an object category (e.g., a ‘Boeing 777 air-

47



liner’ is an instance of the ‘airplane’ category) are seen from all orientations

during training (fully-seen instances), while other instances are only seen in a

subset of all orientations (partially-seen instances). During test time, we evalu-

ate the generalization performance of the networks by measuring instance clas-

sification performance on OoD orientations (i.e., those orientations not included

in the training set) of partially-seen instances. This is a simple paradigm, in-

spired by the paradigm by430, that facilitates analyzing the impact of several

key factors that may influence OoD generalization, such as the number of fully-

seen instances and the in-distribution orientations of the partially-seen instances.

This paradigm allows us to more precisely characterize performance challenges

of DNNs for OoD orientations. Figure 4.1 summarizes the paradigm that we

follow in this work.

In this paper, we employ the same analytical tools utilized in the study of

biological brains, with the aim of understanding the DNNs’ generalization abil-

ities in OoD orientations. Specifically, we investigate questions that have al-

ready been investigated within the realm of biological systems, such as whether

DNNs exhibit different recognition failures across OoD orientations, and ex-

plore whether individual neurons within DNNs display feature tuning for object

recognition while also exhibiting invariance to different orientations. We aim at

explaining the generalization abilities observed in DNNs.

48



a b

Freely 
Rotating Axis

α
β
γ 0.0

0.2

0.4

0.6

0.8

1.0

Classification Accuracy

20 Fully Seen 40 Fully Seen
c

γ ≈ −π γ ≈ −1
2 π γ ≈ 0

Figure 4.2: Observed generalization patterns in per-orientation accuracy heatmaps. When
trained with a combination of fully-seen instances and partially-seen instances, DNNs demon-
strate the ability to generalize outside of their training distribution. Generalization behaviors
are demonstrated measuring per-orientation accuracy. (a) All orientations can be described
by three Euler axes (α, β, γ,) and rotations are periodic around these axes. These properties
allow for the visualization of all possible orientations with an orientation cube, shown here.
The orientations contained within the colored rectangular prism are those orientations of the
partially-seen instances included in training (i.e., are in-distribution). The in-distribution
orientations differ depending on the experiment. All other orientations are OoD. (b) Increased
network generalization for OoD orientations, with increased instance diversity (i.e., number
of fully-seen.) Each cell in the heatmap is the average classification accuracy of the network
for a given value of β and γ, across all values of α. Chance level is 0.02 (2%). (c) Different
in-distribution parameters affect the generalization behaviors. The generalization patterns for
a different span of in-distribution orientations (−0.25 ≤ α ≤ 0.1,−0.1 ≤ β ≤ 0.25,−π ≤ γ < π)
as outlined by the purple box. In this case, each cell is of a given value for α, β, γ.

49



a

Airplane SM Car Airplane

SM

SM

Airplane

0.0

0.1

0.2

0.3

0.4

OO
D 

Ac
cu

ra
cy

Airplane SM Car Airplane

SM

SM

Airplane

Airplane SM Car Airplane

SM

SM

Airplane

Airplane SM Car Airplane

SM

SM

Airplane

'
# Fully Seen

10
20

30
40

b

Airplane SM CarAirplane

SM

SM

Airplane

-.2
0.0
0.2
0.4
0.6
0.8
1.0

Airplane SM CarAirplane

SM

SM

Airplane

Airplane SM CarAirplane

SM

SM

Airplane

Airplane SM CarAirplane

SM

SM

Airplane

' Model Component
Random
Uniform
In-Distribution
Small-Angle
In-Plane
Small-Angle
+ In-Plane
All
Components

Airplane SM CarAirplane

SM

SM

Airplane

0.0
0.2
0.4
0.6
0.8
1.0

Airplane SM CarAirplane

SM

SM

Airplane

Airplane SM CarAirplane

SM

SM

Airplane

Airplane SM CarAirplane

SM

SM

Airplane

In-Plane
Component
# Fully Seen

10
20

30
40

Pe
as

on
 C

or
re

la
tio

n 
Co

ef
fic

ie
nt

Figure 4.3: Modeling generalization patterns for OoD orientations. The bar plots show sev-
eral trends related to DNN OoD classification patterns. The trends are measured under the
various controls, including in-distribution orientations conditions (α, γ, β, α′) and object cate-
gory, which is either a single object as in Airplane, SM, Car, or transfer across two categories,
when the fully-seen instances are of a different category than the partially-seen instances as
in Airplane → SM and vice versa. These transfer cases are visually separated from the other
cases. (a) Network generalization for OoD orientations increases with increasing number of
fully seen (blue shading.) This trend holds across object category and in-distribution orienta-
tions conditions. (b) Top: We introduce a predictive model for OoD orientation generalization
(black — “All Components”) which is highly predictive of experimental results, with greater
than 0.8 Pearson Correlation Coefficient for all experimental controls. (Results are shown
for experiments with 40 fully-seen instances.) Null hypothesis predictive models, including
“Random Uniform” and “In-Distribution,” have very low correlation coefficients. We also
ablate our predictive model, including only some sub-components, like only-“Small Angle”,
only-“In-Plane” or only-“Small Angle + In-Plane.” These ablated models have lower corre-
lation coefficients than “All Components,” and vary in relation to one another depending on
the experimental condition. Bottom: We isolate the predictive power of the only-“In-Plane”
component for all experiments with a range of number of fully-seen. The increasing predictive
power of the “In-Plane” component correlates with increasing OoD accuracy as the number
of fully-seen instances increases. This suggests that generalization to “In-Plane” orientations
drives OoD accuracy.

50



a
Fu

lly
 S

ee
n

Neuron 1 Neuron 2 Neuron 8 Neuron 13 Neuron 16
Pa

rti
al

ly
 S

ee
n

0.0

0.1

0.2

0.3

0.4

0.5

Norm
alized Activation

b c

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Invariance

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Instance + Orientation
Fully Seen,
Generalizable
Fully Seen,
Non-Generalizable
Partially Seen,
Generalizable
Partially Seen,
Non-Generalizable

0.4 0.5 0.6 0.7 0.8
Invariance Full

0.3

0.4

0.5

0.6

0.7

0.8

In
va

ria
nc

e 
Pa

rti
al

Orientation
Generalizable
Non-Generalizable
Parity
Full = Partial
+/- 0.1 Deviation

Figure 4.4: Neuronal analysis, Invariance and Dissemination. (a) An intuitive visualization of
neural activity. Each square is the response of a single neuron to the airplane instance that
most highly activates it portrayed in two ways: 1) the top-8 images that most highly activate
the neuron (in no particular order), 2) the heatmap of the per-orientation normalized neural
activity for the airplane instance. Neurons tend to exhibit patterns of activation related to
the patterns of generalization behavior (Figs. 4.2b for example,) and are invariant to a range
of orientations that respect the partitioning of OoD orientations. The patterns of activation
are similar between the fully-seen instance that most highly activates the neuron and the
partially-seen instance that most highly activates it due to shared visual, part and seman-
tic features between these instances. Several randomly sampled penultimate layer neurons,
arranged into columns, demonstrate that these findings apply to many neurons. (b) Aver-
aging the activations in the partitioned regions (‘seed’, generalizable, non-generalizable) and
computing the invariances (defined here: Eq.4.6) between ‘seed’ and OoD regions captures
overall generalization in the network. Plotting the generalization metrics against accuracy for
those regions demonstrates a clear correlation between increasing invariance and increasing
OoD classification accuracy (i.e., partially-seen instances in OoD orientations.) (c) Plotting
fully-seen invariance against partially-seen invariance also yields a tight correlation, suggesting
that dissemination of invariance from fully-seen to partially-seen instances enables increasing
generalization in OoD orientations of partially-seen instances.

51



4.2 Results

Overview. In exploration of the generalization capabilities of DNNs to novel

orientations, our computational experiments show that the OoD orientation

space is divided between generalizable and non-generalizable orientations, in

terms of the networks behavior. We find this division to be governed by a set of

rules which determine a partitioning of the orientation space, given a ‘seed’ of

orientations seen by the DNNs at train time. Among several partitioning rules,

we identify a rather intuitive one: small 3D perturbations around seen orienta-

tions will be included in the highly-generalizable partition. We find other rules

to be more surprising, including that the highly-generalizable partition also con-

sists of shape and silhouette preserving rotations, such as in-plane (i.e., 2D)

rotations and flips along axes of symmetry of the seen orientations. Our anal-

ysis shows that the predicted network behavior induced by these partitioning

rules is highly correlated with the measured network behavior under a variety

of training regimes. We further explore the DNNs internal representations and

identify neuronal mechanisms in the network, that allow the dissemination of

orientation-invariance from familiar objects to novel objects and orientations.

Per-orientation accuracy heatmaps. A detailed inspection of the network’s gen-

eralization capability for OoD orientations is brought forward by introducing

per-orientation accuracy heatmaps. In brief, the continuous space of object ori-

entations, represented by Euler angles, is discretized into cubelets (Fig. 4.2a).

For each cubelet the network’s performance is evaluated in terms of the classifi-

52



cation accuracy Ψ(θ), where θ is an orientation of interest. Accuracy heatmaps

are 2D projections across a specified dimension of the full accuracy orienta-

tion cube (Fig. 4.2b,c; Methods). These heatmaps reveal a reproducible pat-

tern of generalization in the form of increased classification accuracy for OoD

(i.e., novel) orientations. For example, Figure 4.2b shows that for ‘seed’ orien-

tations at the center of the heatmap (red box), the network (in this experiment

- ResNet18162; see Methods) yields the highest accuracy (brightest cubelets)

for adjacent orientations around the ‘seed’, depicting small 3D perturbations of

the ‘seed’ orientations. Further inspection of the heatmap reveals other orienta-

tions, in this example, brighter cubelets forming the figure ‘8’ (stretching ‘seed’

sideways and along the heatmap’s boundaries, enclosing two darker ‘holes’), for

which the network performs better than for the rest of the OoD orientations.

These orientation mainly depict in-plane rotations of the ‘seed’ orientations.

When considering the average classification accuracy across all OoD orien-

tations, our experiments reproduce previous results. In particular, we can re-

liably quantify the effect of data diversity on the OoD generalization, as the

amount of training examples is kept constant with our learning paradigm. Fig-

ure 4.3a clearly shows an increase in OoD accuracy as data diversity (i.e., the

number of fully-seen instances) increases, under various conditions, including

different ‘seed’ orientations, different image datasets and across datasets. The

accuracy heatmaps provide a complementary means of assessment to the overall

average accuracy measure, depicting the generalization patterns and indicating

which orientations account for the network increased performance (e.g., Fig. 4.2b).

53



The patterns of increased accuracy depict a partitioning of the orientation space,

which reappears for various ‘seed’ orientations (Fig. 4.2c), various sizes of the

training set and different object categories (e.g., Airplane, Car, Shepard & Met-

zler (SM) objects334), as shown in several experiments (Supplementary Figs.

Supp.16, Supp.17; Methods).

Modeling generalization patterns. We hypothesize a set of rules which govern

the partitioning of the orientation space into generalizable and non-generalizable

orientations. To evaluate this hypothesis we formulate a model of the partition-

ing rules, which can be used to predict the OoD generalization patterns of the

network, given a ‘seed’ of in-distribution orientations. Briefly, the model, de-

noted by fw(θ) has three components: A(θ), which captures small angle rota-

tions around θ; E(θ), which captures in-plane (2D) rotations; S(θ), which cap-

tures object silhouette projections at the orientation θ (see details in Methods).

We evaluate the model’s performance by measuring the Pearson correlation

coefficient ρ between the accuracy of the networks as measured in our exper-

iments and as predicted by the model, i.e., ρ(Ψ(θ), fw(θ)). Figure 4.3b shows

the predictive power of the model and its components in experiment with dif-

ferent ‘seed’ orientations and several object categories. The model’s component

A(θ) (‘small angle’ rotations), is the best predictor for the network’s OoD be-

haviour, for highly articulated objects such as the SM objects. On the other

hand, the model’s component E(θ) (‘in-plane’ rotations), is a better predictor

for non-articulated objects with inherent symmetries. Further analysis of this

component illustrates how generalization to ‘in-plane’ rotations emerges with

54



the increase in data diversity.

We conducted a large series of experiments under various settings, including

different ‘seed’ orientation distributions, various amounts of training examples,

different object scales, object categories with different levels of symmetry, image

datasets and DNN architectures (see Methods, Supplementary Figs. Supp.16,

Supp.17, Supp.18, Supp.19, Supp.20). In all experiments our model highly

predicts the network’s behaviour, indicating that indeed the networks general-

ization patterns for OoD orientations follow the model’s partitioning rules. (See

Supp.21 for reports of average accuracy in generalizable and non-generalizable

orientations.) This is true even across categories, when the ‘seed’ is taken from

one category (e.g., SM) and the ‘fully-seen’ instances are taken from another

(e.g., Airplane).

Individual unit neuronal analysis. In search of how generalization and dis-

semination emerge in DNN’s we turn to analyze the neurons’ activation in the

trained networks. We focus on neurons in the penultimate layer of the network,

which are attuned to the highest level features in the input stimuli, but reflect a

consolidated representation of the entire network for inferring the downstream

task (classification in our simulations).

Figure 4.4a illustrates activation of individual neurons for stimuli of fully-

seen and partially-seen instances. Each group of images depict input stimuli of

a particular instance for which a particular neuron has the highest activation,

along with the neuron’s per-orientation activation heatmap for the instance.

The patterns seen in the neurons’ activation heatmaps resemble the partitioning

55



patterns of the accuracy heatmaps shown in Figure 4.2b. Some neurons exhibit

similar activation patterns for both fully-seen and partially-seen instances, while

others do not.

A quantifiable measure of these neuronal responses can help understanding

how generalization occurs in the network, in particular for the partially-seen in-

stances observed only at the ‘seed’ orientations during training. Hence, any gen-

eralization to OoD orientations for the partially-seen instances must stem from

the ‘seed’ orientations. We define an activation invariance score in the range

[0, 1] (Eq. 4.6) between sets of orientations, in particular between the ‘seed’ ori-

entations and OoD generalizable orientations or non-generalizable orientations.

The invariance score yields higher values when a neuron fires for both sets of

orientations, and lower values when it fires only for one set (see details in Meth-

ods). We expect that generalization, reflected by the accuracy level, will corre-

late with the invariance score.

Figure 4.4b depicts a scatter plot of the invariance score against the classifi-

cation accuracy. Each dot represents an instance at an orientation set, and the

coloring indicates the respective instance set (fully-seen or partially-seen) and

orientation set (generalizable or non-generalizable). As expected, there is a clear

correlation between increasing levels of classification accuracy and increasing

invariance score for the partially-seen instances. Furthermore, the plot shows

a clear partition between generalizable and non-generalizable orientations with

respect to the invariance score, where significantly higher invariance scores are

measured for the generalizable orientations.

56



For fully-seen instances (Fig. 4.4b gray dots), all orientations are in-distribution,

including the ‘seed’, generalizable and non-generalizable. Therefore, the net-

work easily achieves accuracy at ceiling levels regardless of the neuronal invari-

ance score. Nevertheless, the fully-seen instances exhibit the same invariance

partitioning between generalizable and non-generalizable orientations as the

partially-seen instances.

Figure 4.4c depicts a direct comparison between the invariance score of the

fully-seen and partially-seen sets for both the generalizable and non-generalizable

orientations. The partition between generalizable and non-generalizable orienta-

tions is exhibited again — the non-generalizable invariances are in the bottom

left corner, while the generalizable invariances are in the top right corner. Each

point in this plot represents the joint invariance of fully-seen and partially-seen

instances at a given orientation. The plot clearly shows a tight correlation be-

tween the invariance scores of the fully-seen and partially-seen instances, as

most of the points lie within a band roughly 0.1 units away from the line of par-

ity, x = y. This correlation suggests that an increase in the invariance score of

the network at a set of orientations for the fully-seen instances will be dissemi-

nated to the partially-seen instances (see also Supp.22).

4.3 Discussion

Our results support the hypothesis that the network disseminates orientation-

invariance of fully-seen instances to partially-seen instances using brain-like

mechanism like those reported by236,291. Neurons are feature detectors and some

57



of the features that neurons are tuned are features shared between fully-seen

and partially-seen instances (Fig.4.4a), and therefore the same neuron helps de-

tecting features for several objects. Features are seen at multiple orientations

in the fully-seen object instances, which enables neurons to develop orientation

invariance. Since features detected by the neurons are shared among fully-seen

and partially-seen instances, invariance that develop for fully-seen instances are

gained “for free” for partially-seen instances in the same orientations. Note that

orientation-invariance is learned through the fully-seen instances, as increasing

the number of fully-seen instances (while keeping the number of training ex-

amples constant) results in an increase of the DNN capability of disseminating

orientation-invariance obtained from familiar objects. Our results elucidate the

intricate neural processes involved in object recognition and also underscores the

critical role of individual neuron, feature-based representations for OoD object

recognition.

Dissemination of orientation-invariance has been observed for orientations

that appear like 2D rotations (in-plane) of in-distribution orientations. In some

cases, when the network relies on the object instance’s silhouette for recognition,

the in-distribution orientations also include orientations that have the same sil-

houette as the seen orientations. For non-generalizable orientations, the network

has not developed orientation-invariance with respect to the seed orientations

(demonstrated by the lower invariance score in our results). It is worth not-

ing that despite the absence of orientation-invariance, the network is still able

to recognize fully-seen instances in such non-generalizable orientations. This is

58



due to the fact that these orientations fall within the training distribution and

the network has learned to associate them with their corresponding object in-

stances. However, in the case of non-generalizable orientations, the dissemina-

tion of orientation-invariance is not feasible. This is even the case when neurons

are tuned to features shared with partially-seen instances, as they do not exhibit

orientation-invariance for these non-generalizable orientations and the training

process does not provide any information to establish associations with the cor-

responding object instances. These findings reveal discernible patterns in the

successes and failures of DNNs across diverse orientations. Such patterns can be

effectively characterized and explained through the analysis of neural activity.

This underscores the potential for more comprehensive analyses of DNNs that

transcend the conventional approach of solely focusing on average accuracy.

A key question arising from our results is to explain why DNNs disseminate

orientation-invariance only to in-plane orientations. All object instances are

distinguishable at all orientations, as evidenced by the high in-distribution ac-

curacy achieved by the DNNs. Therefore the lack of orientation-invariance for

such non-generalizable orientations is an outcome of the DNN’s learning pro-

cess. We speculate that this may be because orientations that are not in-plane

are affected by self-occlusion, which poses a particular challenge for DNNs.

Various efforts have been made to enhance DNNs’ generalization capabilities

to OoD orientations including leveraging preconceived components for DNNs,

such as 3D models of objects16 or sophisticated sensing approaches like omnidi-

rectional imaging72. However, these approaches rely on ad-hoc approaches tai-

59



lored to specific objects and do not address the fundamental limitations of the

DNN learning process in recognizing objects in OoD orientations. Instead, novel

network architectures that extend the emergent orientation-invariance inherent

within networks might allow for further gains of OoD generalization. Biological

agents may overcome the difficulties associated with recognizing OoD orienta-

tions by leveraging the temporal dimension to associate orientations and learn

invariant representations312,183. The mechanisms that utilize temporal associa-

tion may hold fundamental significance, given that they have access to a plen-

tiful source of training data that does not rely on external guidance and task

specific labels. This data is readily available prior to any visual task and has the

potential to contribute to the emergence of orientation-invariant representations

beyond in-plane orientations.

Previous studies have extensively compared the behavioural and electrophys-

iological aspects of brains and DNNs422. However, a direct comparison between

these systems alone has limitations in providing insights into the underlying

mechanisms of object recognition in DNNs. This is due to the possibility that

while certain fundamental mechanisms may be shared across these systems,

the manifestation of these fundamental mechanisms can differ at the behavioral

and electrophysiological levels. Our study has provided compelling evidence of

brain-like neural mechanisms in DNNs that facilitate object recognition in novel

orientations, even though these mechanisms are manifested differently than in

biological systems. For instance, while humans and primates can recognize ob-

jects in orientations that are not simply 2D rotations, this capability is not fully

60



replicated in DNNs. Thus, we can conclude that the neural mechanisms that

have been observed to govern recognition in biological systems largely apply to

DNNs, albeit with distinct manifestations across these systems. It will be inter-

esting to follow this line of investigation across biological and artificial systems

to envision a general theory to explain emergent mechanisms in both brains and

machines.

4.4 Methods

4.4.1 Per-Orientation Accuracy Visualization

Previous works have typically reported average performance over all orienta-

tions. In contrast, we evaluate the network’s performance for each orientation

across the entire range of orientations. To express an orientation of an object

instance we use θ := (α, β, γ), the Euler angles with respect to the orthogonal

axes of a reference coordinate system R3 126, with the convention that α and γ

are bounded within 2π radians, and β is bounded within π radians. We define

Ψ(θ) ∈ [0, 1] to be the network’s average classification accuracy at an orientation

θ = (α, β, γ) over either the fully-seen or partially-seen instances.

To facilitate intuition of Ψ we introduce a visual representation of this func-

tion. Since orientations are continuous values and are related spatially we map

the range of bounded values of orientations (α, β, γ) onto a Cartesian coordinate

system, resulting in a cube—the basis of our visualization. We discretize the

continuous space of orientations into cubelets, which are sub-cubes with a width

of 1
#Cubelets of the full range of each respective angle. This approach preserves

61



local behavior in aggregate analysis. In addition, we outline the range of ori-

entations which are in-distribution for the partially-seen instances — the rest

are OoD orientations. To illustrate the object orientation at a given cubelet, we

sample one representative image and overlay it onto the heatmap at the location

of the cubelet.

See Fig. 4.2a, which shows this visual representation scheme, and Figs. 4.2b

and 4.2c for examples.

4.4.2 Model of DNN Per-Orientation Generalization

In Results we briefly introduce the hypothesis that DNNs are capable of gen-

eralizing to orientations which are small angle rotations of the in-distribution

orientations images and to orientations that are in-plane relative to the in-

distribution images. In this section we formalize this model.

Recall that we defined fw(θ) as the predictive model for generalization per

each orientation. To measure the goodness of our prediction, we employ the

Pearson correlation coefficient to measure how closely our model correlates with

DNN recognition accuracy, Ψ(θ). We choose this metric because it normalizes

data with respect to amplitude and variance, and therefore measures patterns of

behavior across θ and relative to other θ, rather than the exact performance for

every θ.

Our model fw(θ) is composed by three components (A(θ), E(θ) and S(θ)),

which we introduce next. These three components easily lend themselves to

formalization with Euler’s rotation theorem126. The theorem states that any

62



rotation can be uniquely described by a single axis, represented by a unit vec-

tor ê ∈ R3, and an angle of rotation, denoted as φ ∈ [0, π] around the axis ê.

We employ this representation to describe the rotation between an arbitrary ori-

entation of interest, θ, and an orientation in the set of in-distribution, denoted

θs ∈ Ωs. We use êθ,θs and φθ,θs to denote the unit vector (axis) and the angle of

this rotation, respectively.

Component 1: Small Angle Rotation, A(θ). The first component of the model

captures orientations that are small angle rotations from the orientations in the

training distribution. Visually similar orientations are those that are arrived at

by small rotations from in-distribution orientations, or small φθ,θs . We therefore

define the first component A(θ) as

A(θ) := max
θs∈Ωs

∣∣∣∣1− φθ,θs

π

∣∣∣∣ ∈ [0, 1]. (4.1)

The maxθs∈Ωs operator chooses the in-distribution orientation that is closest to θ

of interest.

Component 2: In-plane Rotation, E(θ). The second component of the model

captures orientations which appear as in-plane rotations of in-distribution im-

ages. Let c ∈ R3 be the unit vector representing the camera axis. In-plane ro-

tations are those for which the axis of rotation is parallel to the camera axis.

Thus, an orientation appear as an in-plane rotations of an in-distribution im-

ages when c ∈ R3 and êθ,θs ∈ R3 (i.e., the vector of object instance rotation)

63



are parallel. Taking their standard inner product yields the proximity to being

parallel, which is therefore the degree to which the rotation is in-plane.

Thus, we define the second component E(θ) as follows:

E(θ) := max
θs∈Ωs

∣∣c⊤êθ,θs∣∣ ∈ [0, 1], (4.2)

where c⊤ denotes the transpose of c.

Component 3: Silhouette, SA(θ), SE(θ). The third component of the model

captures orientations which project object silhouettes onto the camera that

are similar to the silhouettes of the object when in-distribution — for exam-

ple, the airplane when viewed from above, and the silhouette being the air-

plane viewed from below. These orientations are defined as a π radians rotation

around the γ axis, which results in a silhouette orientation. We transform all

the in-distribution orientations, Ωs, in this way, and we call these silhouette in-

distribution orientations Ωŝ. We then compute SA(θ) and SE(θ), substituting Ωŝ

for Ωs in A(θ) and E(θ) respectively.

Nonlinearities. The components described above capture a general trend, but

do not match the range of values given by a 0-100% accuracy metric. We there-

fore fit the components with a logistic function. The ‘S’-like shape of the logistic

function allows for the highest and lowest values of E(θ), A(θ), SA(θ) and SE(θ)

to be close to the highest and lowest values of Ψ(θ). In addition, it allows for a

smooth transition between these highest and lowest values. Most importantly,

64



the simplicity of the logistic function allows for fitting while preserving the in-

terpretability of the model components, ensuring that the models remains re-

lated to small angle, in-plane and silhouette rotations. We employ the following

logistic function:

σ(x; (a, b, c)) =
1

1+ eb(−xc+a) , (4.3)

where x ∈ {E(θ),A(θ), SA(θ), SE(θ)}. a and b translate and scale the values of the

predictive components and c spreads out saturated values of the component.

Fitting the Model with Gradient Descent. The model combines four compo-

nents A(θ), E(θ), SA(θ) and SE(θ) by taking the sum of their respective values

after applying the logistic function σ:

fw(θ)

:= σ(A(θ);wA) + σ(E(θ);wE)+

σ(SA(θ);wSA) + σ(SE(θ);wSE),

(4.4)

where w represents the parameters of the logistic functions i.e., w = (wA,wE,wSA,wSE).

The logistic fitting function is differentiable, and fw(θ), the linear combination

of these logistic functions, is also differentiable. Further, the Pearson correlation

coefficient is also differentiable. Therefore we employ gradient descent to fit w

with the Pearson correlation coefficient as the cost function.

65



4.4.3 Neural Analysis

In Results we discussed our findings that OoD generalization in the network is

allowed for by dissemination of orientation invariance from fully-seen instances

to partially-seen instances. In this section, we outline the process by which we

quantify several different network invariance metrics. We first formalize the no-

tation for neural activations for single orientations and for sets of orientations.

We then define the invariance score (Eq. 4.6). Finally, we average together

many invariance calculations to arrive at the network invariance metric.

We begin by formalizing our approach to neural activations. In Sec.4.4.1 we

introduced Ψ(θ), the network’s average accuracy at a specific orientation. We

can similarly define the neural activation at a specific orientation, though we

do so with more granularity. Namely, we introduce Φn
i (θ), which is the aver-

age activation of a neuron n from the set of all penultimate-layer neurons N

(i.e., n ∈ N) across all images of an object instance i from the set of all object

instances I (i.e., i ∈ I) for a given orientation θ. We normalize the activity of

each neuron by dividing the activity level of each image by the maximum activ-

ity generated by any image. We exclude any neurons with a maximum activa-

tion of 0 from further analysis.

Having defined Φ we note that it is useful to perform analysis not on single

orientations only, but sets of orientations. We demonstrated that under our ex-

perimental conditions, orientations can be partitioned into coherent subsets —

in-distribution and OoD orientations. Further, the OoD orientations can be par-

titioned into generalizable orientations, i.e., those OoD orientations that the

66



network can generalize to, and non-generalizable orientations. We refer to the

in-distribution, generalizable and non-generalizable orientation sets as InD, G

and ¬G respectively. The determination of membership of the generalizable and

non-generalizable orientation sets is as follows: We compute 10% of the maxi-

mum value of fw(θ), the predictive model, in the experiment with 40 fully-seen

instances. All orientations for which f is greater than the 10% threshold are

considered generalizable, otherwise they are considered non-generalizable. We

can now compute the average activation of a set or orientations. For example,

the average activation for a given neuron n and object instance i of the general-

izable orientations is defined in the following way:

Φ̄n
i (G) =

1
|G|

∑
θ∈G

Φn
i (θ). (4.5)

The same may be computed for in-distribution and non-generalizable orienta-

tions.

To determine how dissemination occurs in the network, we calculate the de-

gree of similarity in a neuron’s response to a given instance across different ori-

entations. Specifically, given a neuron n and instance i, we calculate the simi-

larity between the neuron’s response at an orientation pair Φn
i (θ1), and Φn

i (θ2),

or pair of sets of orientations Φ̄n
i (InD), Φ̄n

i (G) for example. We use δ, invariance

score, as the similarity metric, which is defined (based on previous work241) in

67



the following way:

δ(Φ̄n
i (InD), Φ̄

n
i (G)) = 1−

∣∣∣∣ Φ̄n
i (G)− Φ̄n

i (InD)
Φ̄n

i (G) + Φ̄n
i (InD)

∣∣∣∣ . (4.6)

We note that under some conditions, δ reports a high, yet trivial, invariance.

Namely, if the response of a neuron is low or zero for both elements of the pair,

the denominator approaches zero and the invariance becomes large. However

in this case the neuron is not responding to anything — any activity is most

likely noise. We therefore calculate a threshold of activity for neural response

invariances to be considered to contribute to the generalization capability of

the network. Otherwise, these invariances are not integrated into the overall

network invariance metric. The threshold, τ, is the 95th percentile of activity for

all neurons across all images. We employ τ with an indicator function as follows:

1(Φ̄n
i (InD), Φ̄

n
i (G))

:=


1 if Φ̄n

i (InD) ≥ τ ∧ Φ̄n
i (G) ≥ τ

0 otherwise
.

Finally, we can compute the overall network generalizable and non-generalizable

invariance scores. To do so, we compute a triple average: an average activa-

tion over the set of orientations (Eq. 4.5) and averaged over the invariance of

all neurons and object instances. We say that the generalizable invariance score

is the invariance between the in-distribution orientations and the generalizable

68



orientations determined as follows:

1
L
∑
n∈N

∑
i∈I

1(Φ̄n
i (InD), Φ̄

n
i (G)) · δ(Φ̄

n
i (InD), Φ̄

n
i (G)), (4.7)

where L is the quantity of activity pairs above the threshold τ, i.e.,

L =
∑
n∈N

∑
i∈I

1(Φ̄n
i (InD), Φ̄

n
i (G)). (4.8)

The definition of the network’s non-generalizable invariance score is the same,

though ¬G replaces G.

4.4.4 Experimental Controls

Proportion of fully-seen instances. We vary diversity in terms of the number of

fully-seen instances N between 10 (20% of the total number of instances) and 40

(80%). The remaining instances are partially-seen. For a fair evaluation of the

effect of data diversity, the amount of training examples is kept constant as we

vary the data diversity.

Object Categories. We used three categories of objects: Airplanes, Cars and

Shepard&Metzler objects. For the airplanes and cars we curated 50 high qual-

ity object instances of each category from the ShapeNet57 database. Both air-

planes and cars have clear axes of symmetry, which allow for intuition of how

networks generalize to OoD orientations. We therefore also experimented with

highly asymmetric objects similar to those tested for 3D mental rotations in334

69



a b c

Figure 4.5: Object Datasets. In our experiments we used three object categories: (a)
Airplanes, (b) Cars, and (c) Shepard&Metzler objects. The first two were curated from
ShapeNet57 and we procedurally generated the last one. There are 50 instances per object
category (e.g., ‘Concorde’ or ‘Spitfire’ for the Airplanes). Images were rendered from the 3D
models under fixed lighting conditions, and the models were centered and fully contained
within the image frame. For fully-seen instances (see Fig. 4.1), orientations were uniformly
sampled at random using Euler angles in the range of −π ≤ α < π,− π

2 ≤ β < π
2 ,−π ≤ γ < π.

For partially-seen instances, orientations were uniformly sampled from a subset of these
ranges.

(which we denote as Shepard&Metzler objects; Fig. 4.5).

DNN Architectures. We used ResNet18162, DenseNet171 and CORnet208 in our

experiments. The first two were chosen as they are representative feed-forward

DNNs. The architecture of CORnet is brain-inspired and includes recurrence at

higher layers in addition to convolutions in lower layers.

70



Repetition. We re-run each experiment five times, each time randomly sam-

pling the specific instances which comprise the fully-seen and partially seen sets.

Hyperparameters for training. We trained the three deep convolutional neural

networks using the Adam Optimizer198 with following learning rates and batch

seizes, respectively:

• ResNet18

– Learning rate: 0.001

– Batch size: 230

• DenseNet

– Learning rate: 0.001

– Batch size: 64

• CORnet

– Learning rate: 0.0001

– Batch size: 128

Batch sizes were chosen to be as large as possible while still fitting the model,

the batch of images and forward-pass computations in memory. Learning rates

were chosen from 10x, x ∈ {−1,−2,−3,−4,−5} to be as large as possible while

ensuring that OoD generalization remained stable. Each network was trained

for 10 epochs. After this point in-distribution performance was stabilized at

100% and OoD performance reached an asymptote.

71



Dataset Size. Each dataset is 200k images, 4k image for each of the 50 object

instances. A training epoch iterates through every image in the dataset once.

Hardware details. Experiments were run with one CPU, 25GB of memory and

on several generations of Nvidia GPUs with a minimum of 11GB of memory.

72



Science can amuse and fascinate us all, but it is

engineering that changes the world.”

Isaac Asimov

5
Enforcing invariant representations to

improve generalization.

5.1 Introduction

It has been observed that data bias caused by data collection process, i.e., sys-

tematic difference between all possible examples and training data can harm the

73



generalization ability of machine learning models for image classification373.

We hypothesize that one major contributor towards this performance drop

is the difference in the nuisance attributes between the train and test images

(e.g., position, orientation and illumination conditions). For instance, Alcorn et

al. 14 and Barbu et al. 24 reported that even state-of-the-art Deep Neural Net-

works (DNNs) see a sharp drop in accuracy on test data with diverse orienta-

tions. It is naturally desirable that machine learning models can generalize to

such cases, and we refer to this as generalization beyond data bias.

Recent work by Madan et al. 241 presents a quantitative investigation on the

capability of CNNs to generalize beyond data bias, and the underlying mech-

anisms driving this generalization behaviour. They begin by representing the

entire dataset with an images grid, where each cell represents all images from a

specific combination of object categories and nuisance attributes like viewpoint

(Fig. 5.1.). By building training data from only a subset of cells (seen combi-

nations), they quantitatively control data bias and evaluate how well CNNs

generalize to images from remaining cells (unseen combinations) in the images

grid. They also investigate the role of invariant and selective representations in

driving such generalization, and present correlational evidence suggesting CNNs

generalize better to unseen combinations as invariance and selectivity emerges.

Building on this observation, here we propose a regularization technique to fa-

cilitate better generalization beyond data bias which we call Invariance Enforce-

ment Regularization (IER). We begin by deriving a set of sufficient conditions

for neural activity that would enable generalization beyond data bias, which we

74



refer to as identical and complementary activity. We then derive our regulariza-

tion technique (IER) based on this analysis. Finally, we show the capability of

this regularization technique at enabling better generalization across four differ-

ent datasets.

We organized four datasets to evaluate the effectiveness of IER on gener-

alization beyond data bias in a controlled manner following the images grid

approach. Two of them are introduced in this paper. First is a new car CG

dataset created analogously to241, while the second is a new dataset of natu-

ral images created physically from scratch; this dataset consists of images of

ten objects photographed under five illumination conditions, two object aspects,

twenty object orientations, and five camera angles (Fig. 5.1) using a robotic arm

setup. We plan to make both these datasets publicly available upon publication.

Our contributions are summarized as follows:

• We derive the sufficient conditions for neural activity in a layer to enforce

invariance, which we refer to as identical and complementary activity,

building on the framework of invariance and selectivity scores of individ-

ual neurons.

• Based on the relationship between identical activity and invariance, we

propose a simple yet effective regularization technique (IER) that enforces

invariance to facilitate generalization beyond data bias.

• We show the utility of IER on generalizing beyond data bias on four dif-

ferent datasets, including two new datasets introduced in this paper.

75



Related work If we consider each subset of training data with different nuisance

attribute category (e.g., images taken with red light) as a domain, our problem

setting of generalization and IER seem to have similar flavor to domain adap-

tation, domain generalization and methods used there. Domain adaptation is

a type of transfer learning aiming at obtaining a good model for target domain

with various types of constraints by utilizing a model trained with labeled data

in the source domain40,116,237,238,316,317,346. In any tasks, data of target domain

are required. Therefore, it is different from our problem setting. Domain gener-

alization is another type of transfer learning aiming at obtaining a model with

common invariant features useful for target domains using data in source do-

mains51,59,101,121,141,176,182,223,224,225,392. The extreme case of domain generalization

is called single domain generalization, which is the task of obtaining invariant

models for multiple target domains from a single source domain298. There is

a similarity with our study in the sense that invariant properties are learned

from source domain(s), which may be considered as seen data in our study.

One point of differences in problem settings is that our approach uses one mixed

dataset, on the other hand, most of them uses several datasets belonging to dif-

ferent domains. Secondly, researches that treat 3D orientations and illumina-

tion conditions are very few. Furthermore, most of them tackle the problems by

proposing methods using data augmentation298, new network architecture59,176,

or new learning framework51,101,121,141,182,223,224,225,392. Finally, IER is a simple

regularization technique, which can be applied to almost all deep learning mod-

els and is free from a priori assumptions about the bias of the data and data

76



augmentation techniques (see Sec. 5.2.3).

5.2 Method

Invariance and selectivity of neurons have long been hypothesized to facilitate

generalization in both biological42,92,276,300,310,315 and artificial129,291,347 neural

networks. In this section we begin by presenting our formulation for quantifying

these through invariance and selectivity scores of individual neurons analogously

to241. We then analyze these scores and derive the ideal neural activity which

would enable generalization beyond bias, and elaborate on the role of sparse-

ness. Based on this analysis, we present our regularization technique to enforce

invariant neural activity in order to facilitate generalization beyond data bias,

and also introduce new scores for sparseness and complementarity in terms of

neural activity of a layer. Finally, we explain the data preparation protocol used

for conducting bias-controlled experiments.

5.2.1 Invariance and selectivity scores

We consider deep neural networks with activation functions that output non-

negative values. Let x be an image. For the m-th neuron in the n-th layer, we

use anm(x) ≥ 0 to denote its activity for the image. We consider the following

variation-base decomposition of neural activity:

anm(x) = ρnmãnm(x) + bnm, (5.1)

77



where ρnm > 0 is a scale factor, bnm ≥ 0 is a base activation and ãnm is a varia-

tion of activity (see Appendix for details).

The selectivity score and invariance score are defined with a pair of attributes.

In this study, we consider selectivity score with respect to object and invariance

score with respect to a nuisance attribute (e.g., position, orientation or illumi-

nation condition). We use I to denote the set of all object categories and J

the set of all nuisance attribute categories. We consider the averaged activity

αnmij = averagei,jã
nm(x), which is the average of ãnm(x) over population of x for

i-th object category and for j-th nuisance attribute category. In practice, we

consider all images to be the population. Analogous to 241, to calculate these

scores, we first identify the object category that a neuron is most active on aver-

age, i.e., i∗nm = argmaxi
∑

j αnmij . This is called preferred category. The invariance

score Inm is defined as

Inm = 1− (maxjαnmi∗nmj −minjαnmi∗nmj). (5.2)

It ranges from 0 to 1 and takes the maximum in the case that the neuron out-

puts the same value for the preferred category on average regardless of the nui-

sance attribute category. The selectivity score Snm is defined as

Snm =
α̂nm − ᾱnm

α̂nm + ᾱnm
, (5.3)

where α̂nm = 1
#(J )

∑
j αnmi∗nmj and ᾱnm =

∑
i ̸=i∗nm

∑
j α

nm
ij

#(J )(#(I)−1) denote the average activity for

the preferred category and for the remaining categories, respectively. This score

78



also ranges from 0 to 1 and takes its maximum value in the case that the neu-

ron only outputs positive values for the preferred category. These scores have

been shown to be effective at analysing generalization beyond data bias241.

5.2.2 Theoretical analysis on invariance and selectivity

In this section, we analyze how selectivity and invariance scores are impacted by

neural activity.

Identical and complementary activity: We denote the activity of neurons in

layer n as aaan(x) = [an1(x), an2(x), . . . , anMn(x)]⊤, where Mn denotes the num-

ber of neurons in layer n. As shown in Eq. 5.1, this vector can be described as

aaan(x) = ρn ⊙ ãaan(x) + bbbn, where ⊙ denotes the element-wise product. Let Xi be

the set of all images belonging to object category i. To achieve the maximum

value for the invariance scores for all neurons in layer n, it is sufficient that the

neural activity achieves the following condition for all images and all object cat-

egories:

ãaan(x) = ãaan(x′) for all x ∈ Xi and x′ ∈ Xi. (5.4)

On the other hand, to achieve the maximum value for the selectivity scores for

all neurons in layer n, it is sufficient that the neural activity achieves the follow-

ing condition for all images and all object categories:

ãaan(x)⊙ ãaan(x′) = 000 for all x ∈ Xi and x′ /∈ Xi, (5.5)

79



where ⊙ denotes the element-wise product of vectors. We refer to Eq. Supp.1 as

identical activity and Eq. Supp.2 as complementary activity.

It is to be noted that minimizing a norm of ãaan(x) − ãaan(x′) for images x and

x′ belonging to the same object category forces Eq. Supp.1 to hold. Although

ãaan(x) and ãaan(x′) cannot be obtained during training phase, the following rela-

tionship holds: ãaan(x) − ãaan(x′) = (aaan(x) − aaan(x′)) ⊘ ρn, where ⊘ denotes the

element-wise division. Therefore minimizing a norm of aaan(x) − aaan(x′) is suffi-

cient to minimize the corresponding norm of ãaan(x) − ãaan(x′). This observation is

the basis of our regularization technique.

While the above can be achieved via a loss term, it is difficult to construct a

regularization term which forces Eq. Supp.2 to hold as bbbn is generally unknown

during training phase. More details on this point are presented in Appendix.

Sparse activity: Given that complementarity is difficult to use for construct-

ing a regularization term, we consider another condition on neural activity. We

call the neural activity in layer n sparse when the following condition holds:

#(ãaan(x)) ̸=0 ≪ #(ãaan(x)). (5.6)

Here #(·) denotes the number of elements and #(·) ̸=0 denotes the number of

non-zero elements. If neural activity is sparse, it is highly probable that comple-

mentarity holds (see Appendix).

80



5.2.3 Invariance Enforcement Regularization (IER)

In this section, we propose a regularization technique based on the analysis in

Sec. 5.2.2, aiming to enforce invariant neural activity and facilitate generaliza-

tion beyond data bias. We assume that a specific layer n is chosen for enforcing

invariance.

Let fffin(·) be the network on the input side, including the target layer n, and

fffout(·) be the network after that. The activity of the target layer n for an image

x is aaan(x) = fffin(x; θin) and the output of the whole network is fffout(fffin(x; θin); θout) =

fffout(aaan(x); θout). Let (x, x̂) be a pair of different images belonging to the same

category. We consider the following regularization term:

R = ∥fffin(x; θin)− fffin(x̂; θin)∥p, (5.7)

where ∥·∥p denotes the Lp norm. As explained in Sec. 5.2.2, the minimization of

R forces Eq. Supp.1 to hold, which is a sufficient condition for the maximum in-

variant scores. We add this term to the loss L of the original problem to obtain

the overall loss function L + γR, where γ is a regularization weight. We call this

regularization technique Invariance Enforcement Regularization (IER).

Algorithm 3 represents a learning algorithm with IER, where y(k) be the ob-

ject category label corresponding to an image x(k). Note that our algorithm re-

quires labels only for the object category, and not for the nuisance attribute

category. The object category labels are enough to create a new mini-batch

{(x̂(k), ŷ(k))}Bk=1 for the regularization term apart from the original training mini-

81



batch {(x(k), y(k))}Bk=1. Fig. 5.2 illustrates Algorithm 3.

Algorithm 1 Learning algorithm with IER
1: Require:Training data D(train), Learning rate η, Regularization weight γ,

Epochsize, Batchsize B, Norm ∥ · ∥p
2: Ensure:Network parameters θ = (θin, θout)
3: while Epochsize do
4: {(x(k), y(k))}Bk=1,{(x̂(k), ŷ(k))}Bk=1 ← T(D(train))
5: R← 1

B
∑

k ∥fff
in(x(k); θin)− fffin(x̂(k); θin)∥p

6: L← 1
B
∑

k Loss(y(k), fffout(fffin(x(k); θin); θout)))
7: θ← θ− η∇θ(L+ γR)
8: end while
9: function T(D)
10: for k = 1, . . . , B do
11: (x(k), y(k)) ← sample from D
12: (x̂(k), ŷ(k)) ← sample from D with ŷ(k) = y(k)

13: end for
14: return {(x(k), y(k))}Bk=1,{(x̂(k), ŷ(k))}Bk=1
15: end function

While any norm can work to enforce invariant neural activity in principle,

different norms may work differently on sparseness, and thus differently on com-

plementarity and selectivity. The effects of different norms on sparseness, com-

plementarity and selectivity will be investigated experimentally using the met-

rics we introduce below.

IER is a simple, general purpose regularizer that can be applied to all deep

learning models as long as the activation function is non-negative. It is also

worth highlighting that no a priori assumptions about the bias of the data are

required, and no data augmentation are also required to enforce invariance; this

is a prominent advantage of IER.

82



5.2.4 Scores of sparseness and complementarity

To evaluate the sparseness and complementarity in addition to invariance and

selectivity, we introduce two metrics: the mean rate of activation (mrA) and

mean overlap of activation (moA). We define neurons with ãnm(x) ̸= 0 to be

activated. Note that the following scores range from 0 to 1, and the closer to 1,

the better.

Mean rate of Activation (mrA): This score measures the ratio of activated

neurons to all neurons as an indicator of the sparseness. Formally, it is defined

as

1− 1
#(I)

1
#(Xi)

∑
i∈I

∑
x∈Xi

#(ãaan(x)) ̸=0

#(ãaan(x))
. (5.8)

Mean overlap of Activation (moA): This score takes a sufficiently large num-

ber of combinations of samples with alternating object categories i and uses the

overlap of the activation as the indicator of the complementarity. Let Xr be a

set of randomly sampled combinations (x,x′) with different labels of object cat-

egory. The moA is defined as

1− 1
#(Xr)

∑
(x,x′)∈Xr

#(ãaan(x′)⊙ ãaan(x)) ̸=0

#(ãaan(x))
. (5.9)

In this study, we set #(Xr) = 500, which we experimentally confirmed to be

large enough for our purpose.

83



5.2.5 Bias-controlled experiment

Following241, we conduct bias-controlled experiments to evaluate the perfor-

mance of IER. For this, we begin by preparing datasets where each image has

a label for a nuisance attribute as well as a label for the object category. Then,

we select images with certain combinations of object categories and nuisance at-

tribute categories (called seen data; see Fig. 5.1) which we use as training and

validation data (for hyper-parameter tuning). Finally, the trained models are

tested on the images belonging to remaining combinations never shown during

training (called unseen data; see Fig. 5.1). Through this protocol, we can quan-

titatively control the bias between the training data and the test data, and can

evaluate generalization beyond data bias explicitly.

Creating seen and unseen data: Let x(k) be an image and y(k) = (i(k), j(k))

be the corresponding label. We divide our dataset as follows. First, we select

certain combinations of object and nuisance attribute categories S ⊂ I × J .

Seen data is defined as

D(seen) = {(x(k),y(k))|y(k) ∈ S}. (5.10)

This is further divided into train data and validation data. We impose condi-

tions {i | (i, j) ∈ S} = I and {j | (i, j) ∈ S} = J to ensure that D(seen) contains

all object categories and all nuisance attribute categories at least once (but not

84



all combinations of them). Unseen data is defined as

D(unseen) = {(x(k),y(k))|y(k) /∈ S}. (5.11)

The term unseen test accuracy refers to the accuracy on D(unseen). We also de-

fine seen rate as s = #(S)/#(I × J ). To examine the dependency of the

generalization on seen rate, we vary seen rate and attribute combinations as

S ⊂ S ′ if s < s′, while keeping #(D(seen)(S)) = #(D(seen)(S ′)).

5.3 Datasets

We use the following four datasets, which have labels for both object category

and several other nuisance attributes to evaluate the effectiveness of IER. For

details, see Appendix.

MNIST-Positions Starting with the MNIST dataset215, we created a dataset

of 42x42 pixels with nine numbers (0 to 8; 567378 images) by resizing images

to 14x14 and placing them in one of 9 possible positions in a 3x3 empty grid.

We call it MNIST-Positions. In our experiments, the numbers are considered to

be the object category set I and the positions where the numbers are placed is

considered as the nuisance attribute set J . Samples are shown in Fig. ??. We

used 100K training, 10K validation and 10K test images for our experiments.

iLab-Orientations iLab-2M is a dataset created from iLab-20M dataset? . The

dataset consists of images of 15 categories of physical toy vehicles photographed

in various orientations, elevations, lighting conditions, camera focus settings and

85



backgrounds. It has 1.2M training images, 270K validation images, 270K test

images, and each image is 256x256 pixels. We chose from the original iLab-

2M dataset six object categories — bus, car, helicopter, monster truck, plane,

and tank as I and six orientations as J . We call it iLab-Orientations. Samples

are shown in Fig. ??. The sample size is 471791, and we resized each image to

64x64 pixels. We used 70K train, 8K validation and 8K test images for the ex-

periment.

CarCGs-Orientations CarCGs-Orientations is a new dataset that consists of

images of ten types of cars in various conditions rendered by Unreal Engine107.

The conditions consists of ten orientations, three elevations, ten body colors,

five locations and three time slots. We synthesize 45K images with 1920x1080

pixels and resize them as 224x224 pixels for our experiment. We chose ten types

of cars as I and ten orientations as J . Samples are shown in Fig. ??. Further

samples are provided in supplementary materials. In the experiment, we used

3400 train, 445 validation and 800 test images.

MiscGoods-Illumination MiscGoods-Illumination is a novel dataset constructed

for this study. The dataset consists of ten physical miscellaneous goods pho-

tographed with five illumination conditions, two object aspects, twenty object

orientations, and five camera angles. This amounts to a total of 10K images.

Each image is 640x480 pixels in size. We chose five object categories — stuffed

dolphin, stuffed whale, metal basket, imitation plant and cup as I and five illu-

mination conditions as J as shown in Fig. 5.1. Further samples are provided in

supplementary materials. We resize the images to 224x224 pixels for our experi-

86



ments. we used 800 train, 200 validation and 200 test images.

5.4 Experiments

In this study, we conduct two kinds of experiments. (1) We test whether IER

enforces invariance score and improves generalization performance beyond data

bias using MNIST-Positions, iLab-Orientations, CarCGs-Orientations, and MiscGoods-

Illumination with representative values of the seen rate s and the regularization

weight γ. We also provide analysis on other scores. (2) We examine the depen-

dency of the effect of IER on the seen rates and regularization weight using

MNIST-Positions and iLab-Orientations. Both (1) and (2) are bias-controlled

experiments.

The results of the experiments have revealed the following. (1) Generaliza-

tion performance beyond data bias, test accuracy on unseen data D(unseen), is

improved by IER for all patterns of norms for all bias-controlled experiments;

invariance scores are enforced in almost all cases as expected. (2) As the seen

rate is increased, the performance improves. However, IER worsens the perfor-

mance if the seen rate is extremely low. About weight dependency, appropriate

weights improve the performance for all norms. However, if the weight is greater

than the appropriate value, the performance drops catastrophically.

Details of experiments ResNet-18163 is adopted as the network for all experi-

ments. All neurons employ the rectified linear function g(z) = max{0, z} and sat-

isfy anm(x) ≥ 0. Glorot uniform initializer125 is adopted for the network weights

initialization for all experiments. Further network configurations are shown in

87



Appendix. IER is applied to the last fully-connected layer “activation_17” with

512 neurons shown in Appendix. Adam197 is employed as the optimization algo-

rithm. The cross-entropy loss is employed as the loss L.

The pixels of images are normalized within 0 to 1 as a preprocessing for all

datasets. The epoch size, learning rate, and batch size are confirmed to pro-

duce reasonable accuracy in the vanilla case (i.e., without IER) for each dataset

and we employ the same values for all experiments with the same dataset. For

example, we use 15, 0.001, and 128 as epoch size, learning rate and batch size,

respectively, for MNIST-Positions. For the invariance and selectivity scores,

we use the median of the scores of all neurons to represent the layer activity.

All other parameters are shown in Appendix. The combinations of the object

category i and the nuisance attribute category j in the seen data were chosen

randomly as long as satisfying the conditions explained in Sec. 5.2.5, and the

unseen data was created accordingly. The source codes are implemented based

on Python v3.6.9, using TensorFlow v2.1.0 and NumPy v1.18.1.

5.4.1 Effects of IER

We examine the invariance scores and unseen test accuracy (test accuracy on

unseen data D(unseen)) with and without IER for all four bias-controlled datasets.

We also examine the differences of the effects on sparseness, complementar-

ity and selectivity scores caused by the norm selection. Finally, we examine

the impact of each score on generalization performance. The seen rate s em-

ploys 4/9, 3/6, 5/10, and 3/5 for MNIST-Position, iLab-Orientations, CarCGs-

88



Orientations, and MiscGoods-Illumination, respectively. The regularization

weight γ for L1, L2, and Linf norms are set at 0.001, 0.01, and 0.01, respectively.

We conduct five trials and provide arithmetic means and 95% confidence inter-

vals of scores and unseen test accuracy. Regarding invariance and selectivity

scores, the median in all neurons is regarded as layer scores. For five trials, we

have sampled five pairs of seen data D(seen) and unseen data D(unseen) keeping the

same seen rate s. Train accuracy and test accuracy on seen data are reported in

Appendix. Source codes are also provided in supplementary materials.

Enforcement of invariance IER is designed primarily to target identical activ-

ity (Eq. Supp.1) and is therefore expected to improve invariance scores. Fig. 5.4

shows that invariance scores for MNIST-Positions and iLab-Orientations are im-

proved with all norms, and among all, L2 is the best. In CarCGs-Orientation,

improvement of invariance scores is relatively small; there is a decrease from

vanilla case by L1 norm in Fig. 5.4c. It is likely that the small differences be-

tween car categories made it difficult to enforce invariance. In MiscGoods-Illumination,

the invariance scores are also improved in most cases, but they are smaller than

the other datasets; The invariance score of Linf case is decreased from the vanilla

case as shown in Fig. 5.4d. The classification of object categories in MiscGoods-

Illumination requires color information, which may cause the difficulty of ob-

taining invariance to illumination.

Enforcement of sparseness, complementarity and selectivity The improvement

in sparseness, complementarity, and selectivity scores is not explicitly imposed

by the regularization term of IER (Fig. 5.4). However, it is expected that ap-

89



propriate norm can improve them. As shown in Fig. 5.4, for all datasets, mrA,

moA and selectivity scores are increased by L1 norm. This is explained by the

Lasso-like effect370 of L1 norm, which promotes sparse activation and comple-

mentarity, and improves selectivity consequently. Scores tend to be decreased

for the other norms in the three datasets. The decrease is particularly sharp for

the MNIST-Positions. This is because the neuronal activity is not sparsified by

L2 and Linf; complementarity and selectivity are considered to have been re-

duced by enforcing invariance.

Improvement of unseen test accuracy There is a substantial increase in per-

formance from vanilla case with all norms in all datasets as shown in Fig. 5.4;

especially for MNIST-Positions, there is a great improvement of 0.678 (vanilla)

to 0.973 (Linf) as shown in Fig. 5.4a, and even for a relatively difficult task

MiscGoods-Illumination, there is an improvement of 0.340 (vanilla) to 0.475 (L2)

as shown in Fig. 5.4d. The smallest improvement is in iLab-Orientations, but

there is still an increase of 0.800 (vanilla) to 0.838 (L2), which seems a suffi-

cient improvement (Fig. 5.4b). In almost all cases, the unseen test accuracy is

improved with an improvement of invariance scores. Although there is a large

decrease in selectivity in L2, and Linf, its impact on the unseen test accuracy is

limited (but not entirely negligible). In fact, the L2 norm for MNIST-Positions

causes a drop in the selectivity score, and the unseen test accuracy is not the

best, despite the greatest improvement in invariance scores (see Fig. 5.4a). As

seen in the experiment of the MiscGoods-Illumination (Fig. 5.4a), the unseen

test accuracy is also improved if the invariance scores are relatively enforced

90



even if the absolute values of the invariance score are small. Finally, it is cer-

tain that the increase in the invariance score improves the unseen test accuracy

in almost all cases. However, we would add that the relationship is highly non-

linear, and in some trials, the relationship between score and unseen test accu-

racy is not straightforward.

5.4.2 Seen rate and weight dependency

We investigate the dependency of unseen test accuracy on the seen rate s and

regularization weight γ. We performed experiments on all norms and only one

trial on each parameter in MNIST-Positions and iLab-Orientations. Results are

shown in Fig. 5.5.

Seen rate dependency In this experiment, we fix the weight γ and vary the

seen rate s. The weights for L1, L2, and Linf norms are fixed at 0.001, 0.01, and

0.01, respectively. Figs. 5.5a and 5.5b show the relationship between the seen

rate s and unseen test accuracy. In the high seen rate settings, the unseen test

accuracy with norms is higher than that without them (vanilla) in almost all

trials. However, we note that the unseen test accuracy is lower with norms than

vanilla under extremely low seen rate settings. This is due to the fact that al-

though IER tends to induce invariance with respect to the nuisance attribute

category utilizing the seen data, it is not possible to take pairs of samples with

large variety of changes in attribute category within the same object category

when the seen rate is extremely low. Also, extremely biased data may make op-

timization difficult.

91



Weight dependency We investigate the unseen test accuracy for all norms

by decreasing the regularization weight γ from 1 to 0.0001. The seen rates are

fixed at 4/9 and 3/6 for MNIST-Positions and iLab-Orientations, respectively.

Figs. 5.5c and 5.5d show the dependence of unseen test accuracy on weight.

Choosing the appropriate weight improves performance on both datasets for

all norms; the actual values were 0.001, 0.01, and 0.01 for L1, L2, and Linf, re-

spectively. The appropriate weights in both datasets are in the same range, and

the dependence on the dataset is relatively small; we recommend to use these

values at first. If the weight is smaller than the appropriate value, the perfor-

mance gradually approaches vanilla case. If the weight is too large, the perfor-

mance drops drastically. This is because over-enforcement of invariance makes

the model always output the same value.

5.5 Limitations

There are three limitations in this study. First, invariance and selectivity (and

sparseness and orthogonality related to selectivity) were considered as the main

factors of generalization beyond data bias; however, we cannot exclude the pos-

sibility that other implicit factors may affect generalization. Second, only ResNet-

18 was employed for the experiments. Although it has been shown in241 that

other neural networks show similar trends regarding selectivity score, invariance

score, and generalization performance to ResNet-18, it has not been tested in

this study. Finally, we treated only three nuisance attributes explicitly, namely,

position, orientation and illumination condition though they are major causes of

92



data bias. The results of this study are supposed to be valid for other nuisance

attributes as well, but they have not been tested.

5.6 Conclusion

This study proposed a novel regularization method, named Invariance Enforce-

ment Regularization (IER), to facilitate generalization beyond data bias by en-

forcing the invariant nature of the activity of intermediate layer neurons and

demonstrates its effectiveness in bias-controlled experiments with four datasets.

In most cases, improvements in invariance bring improved generalization per-

formance. Regarding selectivity of neural activity, L1 norm seems to be the

best choice from our experiments. It is also important to note that the method

is very simple and applicable to almost all models and learning frameworks.

Therefore, we believe that IER has a significant impact on the issue of data

bias. As for future work, we are planning to test the effects of IER with datasets

whose bias is introduced by actual data collection process and not controlled.

For instance, CIFAR-10.1303 and ImageNetV2304.

93



All possible
examples

Train data (seen data) Test data (unseen data)

Generalization Beyond Data Bias

ob
je

ct
 c

at
eg

or
y

 nuisance attribute category
Figure 5.1: How to evaluate the effectiveness of our proposed method (Invariance Enforcement
Regularization; IER) on generalization beyond data bias. We train a deep neural network
(DNN) with IER using a set of images; each image is characterized by a certain combination
of object category and nuisance attribute category. Then we test the DNN on the complemen-
tary set.

94



C
lassificationRegularization 

same object category

pair

pair

Figure 5.2: Depiction of a learning algorithm with Invariance Enforcement Regularization
(IER): Pairs of images that belong to the same object category are fed in the network. The
norms between the pairs of activity (aaan(x), aaan(x̂)) = (fffin(x; θin), fffin(x̂; θin)) in a middle layer are
used as the regularization term. Classification loss L is calculated with the network output.
The total loss is produced as L+ γR, where γ denotes the regularization weight.

95



(a) MNIST-Positions

(b) iLab-Orientations

(c) CarCGs-Orientations

Figure 5.3: Sample images of (a) MNIST-Positions, (b) iLab-Orientations, and (c) CarCGs-
Orientations. Samples from each dataset are arranged in a grid pattern. Each row indicates
object categories, and each column indicates nuisance attribute categories.

96



INV mrA moA SEL ACC
0.0

0.2

0.4

0.6

0.8

1.0

 u
ns

ee
n 
te
st
 a
cc
ur
ac

y 
 a
nd

 sc
or
es

vanilla
L1
L2
Linf

(a) Scores and accuracy in MNIST-
Positions

INV mrA moA SEL ACC
0.0

0.2

0.4

0.6

0.8

1.0

 u
ns

ee
n 
te
st
 a
cc
ur
ac

y 
 a
nd

 sc
or
es

vanilla
L1
L2
Linf

(b) Scores and accuracy in iLab-
Orientations

INV mrA moA SEL ACC
0.0

0.2

0.4

0.6

0.8

1.0

 u
ns

ee
n 
te
st
 a
cc
ur
ac

y 
 a
nd

 sc
or
es

vanilla
L1
L2
Linf

(c) Scores and accuracy in CarCGs-
Orientations

INV mrA moA SEL ACC
0.0

0.2

0.4

0.6

0.8

1.0

 u
ns

ee
n 
te
st
 a
cc
ur
ac

y 
 a
nd

 sc
or
es

vanilla
L1
L2
Linf

(d) Scores and accuracy in MiscGoods-
Illumination

Figure 5.4: Enforcement of scores and improvement of unseen test accuracy: each subfigure
shows the mean and 95% confidence interval for the scores and unseen test accuracy for each
norm in each dataset. Inv, mrA, moA, and SEL denote invariance score, mean rate of ac-
tivity, mean overlap of activity, and selectivity score, respectively. Median in all neurons of
invariance and selectivity scores are regarded as layer scores. ACC denotes the unseen test
accuracy (test accuracy on unseen data D(unseen)).

97



2/9 3/9 4/9 5/9 6/9 7/9 8/9
seen rate

0.0

0.2

0.4

0.6

0.8

1.0

un
se

en
 te

st
 a
cc

ur
ac

y

vanilla
L1
L2
Linf

(a) Seen rate dependency in MNIST-
Positions

1/6 2/6 3/6 4/6 5/6
seen rate

0.0

0.2

0.4

0.6

0.8

1.0

un
se

en
 te

st
 a
cc

ur
ac

y

vanilla
L1
L2
Linf

(b) Seen rate dependency in iLab-
Orientations

100 10−1 10−2 10−3 10−4

weight
0.0

0.2

0.4

0.6

0.8

1.0

un
se

en
 te

st
 a
cc
ur
ac

y

vanilla
L1
L2
Linf

(c) Weight dependency in MNIST-
Positions

100 10−1 10−2 10−3 10−4

weight
0.0

0.2

0.4

0.6

0.8

1.0

un
se

en
 te

st
 a
cc
ur
ac

y

vanilla
L1
L2
Linf

(d) Weight dependency in iLab-
Orientations

Figure 5.5: Seen rate dependency and weight dependency: (a) and (b) show the unseen test
accuracy on several seen rates in MNIST-Positions and iLab-Orientations, respectively; the
vertical axis indicates the unseen test accuracy (the test accuracy on unseen data D(unseen))
and the horizontal axis indicates the value of the seen rate s. The regularization weight γ for
L1, L2, and Linf norms are 0.001, 0.01, and 0.01, respectively. (c) and (d) show the unseen
test accuracy dependency on the regularization weight γ; the vertical axis indicates the unseen
test accuracy and the horizontal axis indicates the value of the weight γ. The seen rates are
4/9 and 3/6 for MNIST-Positions and iLab-Orientations, respectively. All experiments were
performed for vanilla and all norms of L1, L2, and Linf; one trial for each seen rate s or weight
γ of each data.

98



Video games are the Petri dish of human behav-

ior.

Nir Eyal.

6
Improving generalization in

Reinforcement Learning.

6.1 Introduction

Consider the process of learning how to play tennis. You might think that the

best way to prepare for an outdoor match is to train under the same outdoor

99



Non-Noisy Environment
(MDP :           )

δ-Environment
(MDP with Noisy Injection:          )

p=0.95

p=0.05

μ=0.2 

σ=0.1

NOISE
(c)

p=1.0
(b)

(d)

(a)

Pa
cM

an
Po

ng
Br

ea
ko

ut

Training
 MDP

Testing
 MDP

Generalization
Agent

Learnability 
Agent

(e)

Figure 6.1: ATARI games modified with Noise Injection. (a) In the original Target
Environment(MT), when the agent (PacMan) moves right, PacMan moves right with prob-
ability 1.0. Noise Injection allows us to create multiple worlds in the vicinity of this environ-
ment by adding controlled Gaussian noise (δ) to the original Transition Function (T). When
the agent takes the action right in these δ−environments, with a low probability the game
may transition to a state which would not be possible in non-noisy PacMan. For brevity, we
refer to these transitions as non-standard transitions which are 0 probability in the original
Target, but are now possible. Experiments with noise injection are presented on three ATARI
games—(b) PacMan, (c) Pong, and (d) Breakout. (e) We compare two agents with these
environments—a Learnability agent trained and tested on the same target environment (Mδ),
and a Generalization agent trained on a different MDP (MT) and tested onMδ.

conditions you will face during the match. However, training in a calm, noise-

free indoor environment instead can help focus on mastering the fundamentals

of tennis without the added challenge of sources of noise like wind. We refer to

this phenomenon as the Indoor-Training Effect. Here we model this problem us-

ing reinforcement learning (RL) agents. Surprisingly, we found that under cer-

tain conditions, training in a noise-free environment can lead to better perfor-

mance when tested in a noisy environment—just like tennis. This phenomenon

challenges our intuitions about the standard way to train RL agents where con-

ventional wisdom would suggest that the best approach to perform well on a

100



(d)(b)

Grid Variations Noise Injected MDP
when PacMan goes rightv3v2

v4 . . .

(c)

Semantic variation (FollowingGhost) 
when PacMan goes right

Ghost 
moved up

Ghost 
moved right

p=0.8 p=0.2

Non-noisy Target MDP
when PacMan goes right (v3 grid)

(a)

Ghost 
moved up

Ghost 
moved right

p=0.5 p=0.5

Non-Standard transitions 
become possible with 

low probability

p=0.45

Ghost 
moved up Ghost 

moved right

p=
0.

45

p=0.02

Figure 6.2: Schematic illustration of variations for Pacman.(a) Game dynamics when the
agent picks the action right in a standard, non-noisy MDP for the v3 grid. The ghosts’ ac-
tions follow a uniform probability distribution over possible moves and move up or right
with an equal probability of 0.5. This is referred to as a RandomGhost. (b) Grid variations
for Pacman—v2, v3, and v4. These grids vary in size, positions of walls, and positions of
food pellets. v2, v3, and v4 are designed to be increasingly harder. (c) Semantic variations
whereby there is a meaningful change in the distribution of game elements. Here, a Following-
Ghost is depicted which has a higher probability of taking a move that brings it closer to the
Pacman (0.8). (d) Noise injected MDP generated by adding Gaussian noise to the standard
transition function. Alongside states reachable by the ghost taking a legal move, non-standard
transitions now become possible which result in the game reaching states otherwise unreach-
able.

target problem is to train an RL agent on the same test environment.

Environments in RL are usually described using Markov Decision Process

(MDP). An MDP is defined by a State Space S, an Action Space A, a Transi-

tion Function T , and a Reward Function R. In practice, these parameters are

assumed to be known or approximated with reasonable precision29,132. A sig-

nificant challenge in RL is generalizing to environments that differ from the

training environment71,190,93. To address this, the RL community has focused

on training agents capable of learning policies that perform well in novel, unseen

environments at deployment time199,261,277,113,32. The complexity of this task has

called for ingenious ways of aligning the policy learned by the agent in training

environments with the testing optimal policy. Notable approaches include using

101



human feedback313, using language367,395,350, and using vision143,281,131.

To study this, we explored zero-shot policy transfer where a policy trained in

one environment is tested on a different environment. We extended past works

which focused on uncertainty in the transition probabilities273,262,132, and pro-

pose a novel framework for studying zero-shot policy transfer in environments

with controlled, quantifiable distribution shifts in the transition probabilities.

Our framework introduces these shifts by computing the transition function

of an MDP, and adding small Gaussian noise to its entries. Starting with an en-

vironment (MT), noise is sampled and added to it to obtain a new MDP (Mδ).

We refer to this approach as Noise Injection and the resulting new MDPs as δ-

environments as in Fig. 11.1. Noise injection introduces several non-standard

transitions, which had zero probability in the original MDP. Multiple such en-

vironments can be created by sampling noise and the noise serves as a metric

of distance between environments. This approach allows us to create multiple

worlds starting from the same MDP, with quantitative control over the varia-

tions in the transition probabilities. An increase in the standard deviation of

the Gaussian noise results in increasingly perturbed MDPs. We report experi-

ments with Noise Injection on multiple domains across three ATARI games—

PacMan, Pong, and Breakout.

To study policy transfer we define two agents: a Learnability Agent (Lδ)

which is trained and tested on the same δ-environment (Mδ), and a Gener-

alization Agent (GT) which is trained on the original noise-free environment

(MT) but tested on the δ-environment (Mδ). Conventional wisdom suggests

102



ATARI Game Grid Variations Noise Injected Variations Semantic Variation Total

PacMan

δ = 0 (No Noise) RandomGhost
v2, v3, v4 δ ∼ N (0, 0.1) FollowingGhost (p = 0.3, 0.6) 33

δ ∼ N (0, 0.5) TeleportingGhost (p = 0.5, 0.2)

Pong

δ = 0 (No Noise) RandomPaddle
p1, p2 δ ∼ N (0, 0.1) FollowingPaddle (p = 0.3, 0.6) 18

δ ∼ N (0, 0.5)

Breakout

δ = 0 (No Noise)
b1, b2, b3 δ ∼ N (0, 0.1) - 9

δ ∼ N (0, 0.5)

Table 6.1: Overview of experimental protocol. Our experiments include multiple variations
of three ATARI games—PacMan, Pong, and Breakout. For each game, we have multiple grid
variations. When introducing variations in these grids with noise injection, we report results
for two levels of added noise—a low-noise setting: δ ∼ N (0, 0.1), and a high-noise setting:
δ ∼ N (0, 0.5). Furthermore, for each grid we introduce further variations by modifying the
distribution of the stochastic game element (ghost in PacMan, and the computer paddle in
Pong). In all, we report results on 60 MDPs across these games.

that the Learnability Agent should perform better as it is trained and tested

on the same environment. However, our study across 60 MDPs built on ATARI

games reveals a surprising finding—there are several cases where the Generaliza-

tion Agent outperformed the Learnability Agent. We confirmed that this finding

extends beyond our setup of noise injection and δ-environments and also holds

true for game variations including varying the Ghost behaviour in PacMan, and

Paddle behaviour in Pong. We refer to these as semantic variations in MDPs.

In conclusion, to better understand this phenomenon we analyzed the explo-

ration patterns of the Learnability and Generalization Agents, and the corre-

sponding policies learned by them. Our analyses revealed that Lδ agents out-

performed GT agents, as expected from the literature, when GT agents fail to ex-

plore the same State-Action pairs as the Lδ agents. In contrast, when there were

no large differences in their exploration patterns, the performance of GT aligned

103



or exceeded that of Lδ agent.

Preliminaries: Reinforcement Learning

Similar to54, our work considers Reinforcement Learning (RL) as a group of al-

gorithms designed to solve problems formulated as Markov Decision Processes

(MDPs). A Markov Decision Process is characterized by the tuple (S,A, T ,R, λ),

representing the collection of potential world states (S), space of actions (A),

the transition function (T : S × A → P(S)), the reward function (R : S × A →

R), and a discount factor (0 < γ ≤ 1). The objective is to identify policies

(π : S ×A → R) that maximize cumulative rewards.

Q-learning402 and SARSA188 are two algorithms to learn such policies. Both

Q-Learning and SARSA algorithms update the Q-values of state-action pairs,

but they differ in their approaches. Q-Learning focuses on the maximum ex-

pected future rewards, and updates Q-values using the formula:

Q(s, a)← Q(s, a) + α
[
r+ γmax

a′
Q(s′, a′)− Q(s, a)

]
(6.1)

where α is the learning rate, γ is the discount factor, and s, s′, a, a′, r represent

the current state, next state, current action, next action, and immediate reward,

respectively.

On the other hand, SARSA updates Q-values based on the actual policy’s

actions with the formula:

Q(s, a)← Q(s, a) + α [r+ γQ(s′, a′)− Q(s, a)] (6.2)

104



Here the update incorporates both immediate rewards and the Q-value of the

actual next action taken.

Agents need to balance two critical aspects: exploration and exploitation. Ex-

ploration involves trying potentially less optimal actions to understand the envi-

ronment better. Conversely, exploitation means choosing actions known to yield

high rewards. We report results with the Boltzmann and the ε-greedy explo-

ration strategies. Boltzmann exploration determines the probability of selecting

an action as follows:

Prq(a) =
eQ(s,a)/τ∑
a′ eQ(s,a

′)/τ (6.3)

The constant τ is referred to as the temperature. On the other hand, the ε-

greedy strategy is simpler and more direct—the agent selects a random action

with probability ε, and the action with the highest Q-value with probability 1−ε.

6.2 Related Works

Generalization benchmarks in RL involve training and testing across different

subsets of tasks, levels, or environments. Recent years have seen several general-

ization benchmarks, which include variations in the state space145, dynamics102,

observation449, reward function23, and new game levels187, among others. These

tasks require explicit modeling of variations to effectively assess generalization,

highlighting the need for robust evaluation protocols.

Contextual Markov Decision Processes (CMDP) provide a formal structure

for this, where environments are sampled from a class of contexts, with agents

trained on a subset and tested on a disjoint subset. These contexts are gener-

105



ated through two primary methods: Procedural Content Generation (PCG),

which relies on a seed value for environment generation, and Controllable En-

vironments (CE), which allow for manipulation of individual components. The

integration of a suitable evaluation protocol with these contexts helps define the

relationship between training and testing sets, which can range from interpola-

tion to full extrapolation. Some examples of benchmarks using these frameworks

include the OpenAI Procgen benchmark70 and the Distracting Control Suite354

for PCG13 and RWRL102 for controllable environments. A major drawback in

these benchmarks is the lack of a clearly defined metric for measuring how the

distance between different contexts affects agent performance.

To solve this issue we draw inspiration from work studying generalization un-

der controlled, quantifiable distribution shifts in computer vision. These studies

include shifts in 3D rotation260,244, category-viewpoint combinations240, incon-

gruent scene context38, novel light and viewpoint combinations319, object mate-

rials245 and texturess118,256, and non-canonical viewpoints24, among others.

Generating MDPs for investigating generalization

We created 60 different MDPs across three ATARI games (PacMan, Pong, and

Breakout) by varying grid layouts, distributions defining the stochasticity of

different game elements, and modifying transition probabilities using Noise In-

jection (Fig. 6.2 and Table. 6.1). Here we outline these variations.

106



Domains

We implemented all three ATARI games from scratch, building on the Berke-

ley PacMan Projects87. PacMan was modelled as an MDP characterized by the

tuple (S,A, T ,R, λ).

State (s) and State Space (S): We represented a grid of size M × N as a matrix

of the same shape with the entries corresponding to the game element occupy-

ing the position in the grid—p (PacMan), g (Ghost), f (Food), w (Wall), or e

(Empty). The state space S refers to the set of all possible states.

Action Space (A(s)): Set of legal actions PacMan could take in state s. PacMan

can move Left, Right, Up, or Down but not enter walls. Thus, when the Pac-

Man is at the top left position the set of legal actions was only {Right, Down}.

Transition Matrix (T (si, a, sj)): Probability of moving to state sj if the agent took

action a at state si (Fig. 6.2a).

Reward Function (R(s)): PacMan received +20 for eating a food pellet, -1 for

every time step, -200 when it was killed, and +500 for finishing the game. 54.

Game Stochasticity: The motion of PacMan is deterministic—a Left action (if

legal) will ensure that PacMan moves left. However, ghosts move stochastically

according to a pre-fixed distribution. For instance, a RandomGhost moves in

all directions with equal probability (accounting for walls). Thus, the game is

non-deterministic.

MDPs for Pong and Breakout are defined analogously. For additional details,

please refer to Supplementary Section Domains.

107



Noise Injection Variation: Generating new, controlled environments

We generate controlled variations of an original MDP by explicitly computing

its Transition Function and then adding sampled noise to it.

Explicit enumeration of all states: States are defined by the position of the

game elements. The probability of transitioning from a state to another is com-

puted by multiplying the probability of each game element reaching the final

configuration independently. Therefore, we visualize the game as a tree, each

state is a node and the edges represent the transition probabilities of the game

elements independently reaching their final configuration. By rolling out all

possible moves by each game elements at each step, we enumerate all possible

reachable states.

Explicit computation of Transition Function: Once we have all possible states,

we can calculate the transition function, denoted as T (si, a, sj). This function is

determined by calculating the probability of each game character moving from

one state to another independently.

Creating δ−environments: We introduce variations in the game environment

by modifying the transition function to Tδ = T + δ. Here, δ is a variable that

follows a normal distribution, randomly chosen before each game to add unpre-

dictability (Fig. 6.2c). The modified transition function, Tδ, is then adjusted to

make sure the total probability of moving from any state si using action a to

any other state sj sums to 1.

108



Tδ(sj, a, si) =
|S|pi,j + δi,j
|S|+

∑
j δi,j

(6.4)

|S| denotes the number of states, and guarantees the probability of legal succes-

sors does not approach 0 as the state space grows. We investigated two settings—

(i) Low-Noise with δ ∼ N (0, 0.1), where some non-standard transitions pre-

viously impossible without noise are now possible with a low probability. (ii)

High-Noise with δ ∼ N (0, 0.5), where non-standard transitions are possible with

higher probability.

6.3 Experimental Details

We compared the mean reward curve of Learnability and Generalization agents.

An agent GT is said to generalize well with respect to Mδ, if its mean reward is

as good as the corresponding Learnability agent Lδ.

Agents are trained with both tabular Q-Learning402 and SARSA Q-learning188,

using Boltzmann or ε-greedy exploration strategies. In particular, we trained

agents for 1, 000 episodes and averaged results over 500 trained agents. After

every 10 training episodes, agents were evaluated using 10 testing episodes. We

report the mean reward curves at convergence. Hyperparameters were inherited

from past work54 and are available in the Supplement in Sec. Training Param-

eters. The experiments were conducted on a system with an Intel(R) Xeon(R)

CPU E5-2683 v4 @ 2.10GHz.

109



6.4 Results

We report findings from the Generalization and Learnability agents trained

with the multiple variations of PacMan, Pong, and Breakout as described in

Sec. Generating MDPs for investigating generalization and Table 6.1.

Q-Learning agent on PacMan v4 Grid
Є-greedy strategyBoltzmann strategy

SARSA agent on PacMan v4 Grid

Generalization
Learnability

Low Noise (σ=0.1)
High Noise (σ=0.5)

Є-greedy strategyBoltzmann strategy

(a) (b)

(c) (d)

Figure 6.3: Generalization agents can outperform Learnability agents. Results for PacMan
v4 grid reporting mean reward as a function of episode number. (a) SARSA agent trained
with a Boltzmann exploration strategy for Target MDPs generated with both high (solid
line) and low (line with ‘x’ markers) level noise injection. The Generalization Agent (red)
beats the Learnability Agent (green) (two-sided t-test, p<0.001). (b) The same result holds
for a SARSA agent trained with the ε−greedy exploration strategy. This finding also holds
for Q-Learning agents trained with (c) Boltzmann and (d) ε−greedy exploration strategies.
Standard deviation across the 500 agents is reported as the error bar in all figures. However,
the standard deviation is too small for these error bars to be visible.

110



v2 Grid
RandomGhost

v2 Grid
FollowingGhost (p=0.3)

v2 Grid
FollowingGhost (p=0.6)

v3 Grid
RandomGhost

v3 Grid
FollowingGhost (p=0.3)

v3 Grid
FollowingGhost (p=0.6)

v4 Grid
RandomGhost

v4 Grid
FollowingGhost (p=0.3)

v4 Grid
FollowingGhost (p=0.6)

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 6.4: Generalization can outperform Learnability across multiple variations of PacMan.
Format and conventions as in Fig. 6.3. (a) Agents trained on the PacMan v2 grid with the
Ghost dynamics set to the RandomGhost setting. (b) Agents trained on v2 with a Direc-
tionalGhost with p = 0.3. (c) DirectionalGhost with p = 0.6. (d),(e),(f) Variations with
the v3 grid with RandomGhost, DirectionGhost (p = 0.3) and DirectionalGhost (p = 0.6),
respectively. All experiments are shown for SARSA agents trained with the ε−greedy explo-
ration strategy. Generalization agents consistently beat Learnability Agents (two-sided t-test,
p<0.001). Corresponding results for agents trained with SARSA + Boltzmann exploration
strategy, and for Q-Learning with both ε−greedy and Boltzmann exploration strategies are
shown in Figures Supp.3- Supp.5.

Generalization agents can outperform Learnability agents in several instances of the

Indoor-Training Effect

The mean reward increased with training, as expected, (Fig. 6.3a), both for the

Generalization agent (red) and for the Learnability agent (green). Also, as intu-

itively expected, both agents performed better under low-noise conditions (solid

lines) compared to high-noise conditions (lines with ’x’ markers). Less intuitive

was the relationship between Generalization and Learnability agents. Intrigu-

ingly, the Generalization agent consistently outperformed the Learnability agent

111



Pong

p1 Grid

(a) (b)

(c) (d)

p2 Grid

Breakout

b1 Grid b2 Grid

Generalization
Learnability
Low Noise (σ=0.1)
High Noise (σ=0.5)

Figure 6.5: Generalization agents outperform Learnability agents on Pong and Breakout as
well. Format and conventions as in Fig. 6.3. Performance of SARSA agents trained with an
ε−greedy exploration strategy on (a) Pong p1 grid, (b) Pong p2 grid, (c) Breakout b1 grid,
and (d) Breakout b2 grid. The Generalization Agent consistently beats the Learnability Agent
(two-sided t-test, p<0.001).

(two-sided t-test, p<0.001). This gap continued until convergence at 1, 000

episodes, was observed both across low and high noise levels (solid lines versus

’x’ lines), when using a Boltzmann strategy (Fig. 6.3a, c) or an ε−greedy strat-

egy (Fig. 6.3b, d), and when using SARSA agents (Fig. 6.3a, b) or Q-Learning

agents (Fig. 6.3c, d)

To assess whether this observation was dependent on the target MDP, we

replicated these findings on multiple PacMan grids and noise variations (Fig. 6.4a-

f). In (Fig. 6.4), the Generalization agents beat the Learnability agents, for

both low and high levels of noise (see Supp. Sec. Additional Graphs Non-Semantic

Variations: Figs. Supp.3- Supp.5 for Boltzmann strategy and Q-learning re-

sults).

We also extended these findings to two additional ATARI games, Pong Fig. Supp.1

112



PacMan (MT: TeleportingGhost, Mδ: RandomGhost)

v2 Grid v3 Grid

Pong(MT: FollowingPaddle, Mδ: RandomPaddle)
p1 Grid p2 Grid

(a) (b)

(c) (d)

Generalization

Learnability

Figure 6.6: Generalization agents outperform Learnability agents on semantic variations
of PacMan and Pong as well. Format and conventions as in Fig. 6.3. (a) Given the target
PacMan MDP with the v2 grid and TeleportingGhost, the Generalization trained on the
RandomGhost outperformed the Learnability agent that was trained and tested on the same
Target MDP (TeleportingGhost) (two-sided t-test, p<0.001). (b) This finding extends to Tele-
portingGhost and RandomGhost MDPs with the PacMan v3 Grid as well. (c) For the Pong
p1 grid, Generalization agents trained on an MDP with DirectionalPaddle performed better
on the RandomPaddle MDP during testing, as compared to the Learnability Agent trained
and tested on the RandomPaddle MDP. (d) The same finding extends to the p2 grid as well.

and Breakout Fig. Supp.2, to assess their applicability across different games

(Fig. 6.5). Consistent with the results described for Pacman, the Generalization

agent was on par with or better than the Learnability agent in Pong Fig. 6.5a,b)

and Breakout Fig. 6.5c,d) (two-sided t-test, p<0.001; see Figs. Supp.6- Supp.12

for results with Q-Learning, Sarsa and different sampling strategies).

In sum, there exist several MDPs where it is better to train on a different

MDP than the target. These results provide novel intriguing evidence suggest-

ing that training on a different MDP can enable more efficient policy learning

than training on the target environment.

113



% State-Action explored by only L or G (DLG)

States

Ac
tio

ns

UP

DOWN

RIGHT

LEFT

(c)

(b)

(d)

(a)

% State-Action explored by L and G 

PacMan: v2 Grid, RandomGhost

Ac
tio

ns

States

PacMan: v3 Grid, RandomGhost

UP

DOWN

RIGHT

LEFT

(f )(e)

PongPacMan

Generalization
Learnability

Figure 6.7: The exploration patterns predict the reward gap between Lδ and GT. (a) Reward
for agents trained on Pacman v3, where GT outperforms Lδ (format as in Fig. 6.3). (b) Ex-
ploration grid visualizing the difference in State-Action (S-A) pairs explored by these agents
(DLG). The grid shows Sates on the x-axis and Actions on the y-axis. The black lines sepa-
rate the Actions for clarity. Each cell corresponds to one S-A pair. In this case, a negligible
fraction of S-A pairs were visited only by one agent (pink). (c) Rewards for agents trained
on PacMan v3. Here, GT performs worse than Lδ at the end of training. (d) A large fraction
of pairs were only visited by either one or the other agent but not both (contrast with part
(b)). (e) DLG averaged over PacMan grids where GT outperformed Lδ (gray) and vice-versa
(brown) (f) DLG averaged over Pong grids. The ”*” is for statistical significance (two-sided
t-test, p<0.001).

Instances of the Indoor-Training Effect in semantic variations of ATARI games

The results presented so far focused on altered MDPs generated by noise injec-

tion. Next, we evaluated semantic variations, where the changes are more mean-

ingful and interpretable. Specifically, we modified the transition probabilities

of Pacman so that ghosts could teleport to new locations, and Pong so that the

114



paddle could follow the ball. We refer to these alternate semantic environments

as MT′ (semantic noise), in contrast to Mδ used for noise injection.

For PacMan, Learnability agents were trained and tested using Teleporting-

Ghosts (MT′), while the Generalization agents were trained with PacMan with

RandomGhosts (MT) and then tested on TeleportingGhosts (MT′) (Fig. 6.6a,

b, Supp. Sec. Additional Graphs Non-Semantic Variations). Even under these

semantic noise conditions, Generalization agents outperformed Learnability

agents (two-sided t-test, p<0.001; see Figs. Supp.13-Supp.15 for results with

Q-Learning, Sarsa and different sampling strategies). In the case of Pong, we

report analogous results with MT′ set to FollowingPaddle, and MT set to Ran-

domPaddle. Generalization agents also outperformed Learnability agents (by a

smaller margin) in both the p1 and p2 grids (Fig. 6.6c,d). Analogous results for

Pong with Q-Learning and other exploration strategies are reported in Figs. Supp.16- Supp.23.

The exploration patterns of state-action pairs can predict differences between Gen-

eralization and Learning agents

To better understand how Generalization agents could outperform Learnability

agents, we investigated the exploration patterns for Lδ and GT. We enumerated

all State (S)-Action (A) Pairs, and divided them into three groups—(i) Per-

centage of S-A pairs explored by both agents (PLG), (ii) Percentage of pairs ex-

plored only by the Learnability agent (PL), and (iii) Percentage of pairs explored

only by the Generalization agent (PG). Thus, PLG + PL + PG = 100. We defined

DLG = PL + PG, the divergence in the exploration patterns between these two

115



agents.

In Fig. 6.7 we visualize DLG for grids where GT outperformed Lδ agents and

compare it to cases where it did not. Fig. 6.7a shows an agent trained with Q-

Learning and Boltzmann exploration strategy for the Pacman v3 grid with Ran-

domGhost stochasticity, where GT beat the Lδ agent. The corresponding panel

Fig. 6.7b depicts DLG —each entry of this grid represents an S-A pair. We re-

fer to this plot as the exploration grid for these agents. The exploration grid

shows that most S-A pairs were explored by both agents, with almost no pairs

explored only by one type of agent and therefore no significant differences in

their exploration patterns. In contrast, Fig. 6.7c, d report S-A pairs for Pac-

Man v2, here the GT agent performs worse than the Lδ agent. The exploration

grid reveals that there is a high fraction of S-A pairs explored either by one or

the other agent but not both.

We grouped all the cases where Lδ > GT ( Fig. 6.7e, brown) and all the cases

where Lδ < GT ( Fig. 6.7e, gray) and computed DLG. On average, DLG was sig-

nificantly higher in MDPs where Lδ > GT (two-sided t-test, p < 0.05). The same

result holds true for Pong MDPs as reported in Fig. 6.7f. Exploration grids and

additional results for variations of PacMan (Supp.24-Supp.31), Pong (Supp.32-

Supp.39), and Breakout (Supp.40-Supp.43) can be found in the Supplement in

Sec. Additional Graphs State-Action Pairs. Instead of grouping MDPs, we also

conducted a correlation analysis. We defined the Reward Gap: RLG = RG − RL.

The Spearman correlation coefficient between DLG and RLG was 0.43 (p < 0.005)

for PacMan and 0.26 (p < 0.005) for Pong. Combined, these analyses show that

116



the Indoor-Training Effect is associated with similar exploration patterns in the

training and testing environments.

Discussion

In this work, we aim to understand the paradoxical Indoor-Training Effect—

where agents perform better when trained in a noise-free environment and tested

in noisy δ-environments, compared to being trained and tested in the same

δ-environments. Similar to how training in a calm, noise-free indoor environ-

ment helps athletes focus on mastering the fundamentals of tennis, we explore

whether training on certain environments is more conducive to learning than

training on the same testing environment.

To investigate this, we propose a new methodology to generate modified MDPs

from a given MDP, along with a metric to quantify the distance between differ-

ent environments. We demonstrate the Indoor-Training Effect across various

algorithms and exploration strategies (Fig. 6.3), grid layouts and game stochas-

ticity (Fig. 6.4), and multiple ATARI games (Fig. 6.5). We also showed that

this phenomenon extends beyond Noise Injected environments, and can also oc-

cur when semantic changes are introduced in the game elements (Fig. 6.6).

To gain deeper insights into these environments, we examine the exploration

patterns of agents under different transition probabilities. Similarly to a ten-

nis player who has never encountered a smash serve during their training and

develops an optimal playing style that does not anticipate or respond to such

powerful shots, the suboptimal performance of the agents could be caused by a

117



divergence in exploration patterns. We show that the performance gap between

agents is indeed correlated with their exploration patterns under different tran-

sition probabilities (Fig. 6.7).

The Indoor-Training Effect is particularly relevant to robotics, where robots

often operate in complex, dynamic environments. The Indoor-Training Effect

opens new avenues of research, whereby robotic systems could be trained in

simplified, controlled settings to master essential skills without the interference

of noise. This finding could also enhance their ability to adapt and perform in

real-world conditions where unpredictability and noise are prevalent. Such train-

ing strategies could lead to more robust, adaptable robots capable of navigating

and executing tasks effectively in diverse and challenging environments.

We note that these findings are reminiscent of results with biological agents.

For example, recent experiments with the C. Elegans worm have shown that

biological agents perform best when cross-trained on different environments as

compared to being tested on the environments they were trained on218.

Despite the evidence provided in this study, we would like to highlight two

main limitations. Firstly, our experiments were conducted solely in the context

of ATARI games. We hope that future research can extend and examine the

findings in real-world environments. Secondly, it will be interesting to assess

whether the conclusions drawn from classical Reinforcement Learning methods

extend to deep RL approaches.

These findings raise fundamental questions about our understanding of RL

algorithms. Typically, RL practitioners have strived to train agents in envi-

118



ronments that closely resemble their deployment conditions. This approach

assumes that matching the training and testing environments is critical for

optimal performance. However, the Indoor-Training Effect challenges this as-

sumption by showing that agents trained in noise-free, controlled environments

can sometimes outperform those trained in more chaotic, realistic settings when

faced with noisy, unpredictable scenarios during testing.

119



I must begin with the most simple and general

things, and ascend little by little to the most

particular and complex.

Meditations on First Philosophy, Rene

Descartes

7
Are these machines even safe inside the

distribution?

7.1 Introduction

Understanding the mechanisms enabling adversarial attacks on deep neural

networks remains an open and elusive problem in machine learning. Despite

120



Out-of-Distribution 
adversarial example

(color change)

In-Distribution adversarial 
example searched within 

training distribution.

Out-of-Distribution
adversarial example
(noise in pixel space)

Training image

Correctly classi�ed 
test Image

Training Data
Distribution

Training Data Distribution
Training image
Correctly classi�ed test image
OOD adversarial example
In-Distribution adversarial example

Figure 7.1: In-distribution adversarial examples. This schematic highlights the difference
between typical (out-of-distribution) and in-distribution adversarial examples. We train object
recognition models on a large scale training data of 0.5 million images sampled from known,
parametric distribution of camera and light variations (depicted using ). Despite great
success in correctly classifying newly sampled test points from the training data distribution
(X), our CMA-Search method shows that it is possible to find plenty of adversarial examples
which lie within the training distribution (X′′). Unlike existing methods that add noise to
the image resulting in out-of-distribution adversarial examples (X′′), CMA-Search searches
within the training distribution to find adversarial examples. We find a widespread presence
of in-distribution adversarial examples for object recognition.

121



Predicted: Chair Predicted: Table

Predicted: TablePredicted: Bed

Predicted: Knife Predicted: Guitar

Predicted: Table Predicted: Chair

Change in Camera Position: 0.91% 
Change in Camera Look At: 3.33%

Change in Camera Position: 1.25% 
Change in Camera Look At: 2.77%

Change in Camera Position: 5.25% 
Change in Camera Look At: 17.5%

Change in Camera Position: 1.16% 
Change in Camera Look At: 8.89%

Figure 7.2: Sample in-distribution adversarial examples identified using CMA-Search with
camera parameters. Starting with the correctly predicted images, our evolutionary-strategy
based method (CMA-Search) explores the vicinity of camera parameters for subtle 3D per-
spective changes that lead to misclassification. These in-distribution adversarial examples are
often found very close to the correctly classified starting image. In the figure we report the
percentage of change in Camera Position and Camera Look At parameters necessary to induce
the misclassification.

a plethora of works attempting to explain these attacks, posited theories are

largely disconnected and focus on specific considerations such as attributing ad-

versarial attacks to the tilting362 or the curvature 112 of the learned decision

boundary, the dimension of the data manifold329,328, data distribution shifts114,

the presence of non-robust features177,379, lack of data321, and computational

122



complexity44,269, among others. It remains unclear which of these theories are

more valid in practice and can fully explain adversarial attacks on object recog-

nition models.

Adversarial examples are usually defined as perturbed inputs which cause

classification networks to make an error. However, there is no constraint en-

forced on the resulting adversarial example’s position with respect to the train-

ing data distribution. Recently, a strand of theoretical works have provided

compelling evidence for adversarial examples that lie within the training dis-

tribution124,111,325,248,95,98. Such in-distribution examples provide a more strin-

gent definition of adversarial examples than typically used in the theories men-

tioned above by enforcing that the resulting examples lie within the training

data distribution. This newly discovered phenomenon of in-distribution adver-

sarial examples presents an opportunity to compare different theories, and to

validate which ones can explain these findings. Furthermore, such examples are

highly concerning as unlike typical adversarial examples these do not require

adding synthetically engineered perturbations by an external malicious agent

since these examples are already within the training data distribution.

The key insight at the heart of these theoretical works is that most data points

are close to the ground-truth class boundaries, for high-dimensional data dis-

tributions. Thus, slight deviations between the learned and the ground-truth

class boundaries causes in-distribution adversarial examples given the proximity

of these points to these boundaries. For brevity, we refer to this theory as the

ground-truth boundary theory.

123



While this theory demonstrates that the phenomenon of adversarial exam-

ples runs far deeper than the added perturbations resulting in samples from

outside the data distribution, works investigating the ground-truth boundary

theory make strong simplifying assumptions about the data distributions which

may not hold true in practice. This includes assuming that the data is gener-

ated from a smooth generative model111, belongs to a Levy family248, satis-

fies the W2 Talagrand transportation-cost inequality, lies on a uniform hyper-

cube325,95, or on disjoint concentric shells124. As noted in these papers, it is

unclear whether these theoretical findings are relevant in practice, as these as-

sumptions may not be true for images of real-world objects.

Here, we seek to reconcile this disconnect by asking whether this theory ex-

tends to image data for object recognition. A positive answer would provide

compelling evidence in support of the ground-truth boundary theory being the

primary mechanism driving adversarial examples.

To find in-distribution adversarial attacks, we introduce an evolution-strategy

based search method that we call CMA-Search. Most existing adversarial at-

tack methods rely on derivative-based search which suffer from two problems.

Firstly, they cannot efficiently find in-distribution adversarial examples at low

dimensions124. Secondly, it is unclear if the adversarial sample found after noise

addition still belongs to the training distribution. In contrast, starting with a

correctly classified input CMA-Search searches the vicinity of input parameters

to find in-distribution adversarial examples. To reflect this, we chose to name

our approach an adversarial-search method, as opposed to an adversarial attack

124



method. Inspired by recent works using computer graphics to create controlled

datasets for investigating neural networks241,387,265,433, we introduce a procedu-

ral computer graphics pipeline. Our pipeline allows us to generate a large-scale

dataset with complete control over camera and lighting variations. This offers

us explicit, parametric control over the training distribution similar to theoret-

ical works, enabling us to investigate in-distribution adversarial examples with

complex images of objects.

These experiments lead us to our key finding—there is a widespread pres-

ence of adversarial images within the training distribution, as summarized in

Fig. 7.1. To foreshadow our results, CMA-Search can find such an adversarial

example for over 71% cases with an average change of only 1.83% in the cam-

era position, in 42% cases with an average change of only 6.52% in the lighting

conditions. These examples are depicted in Fig. 7.2. Finally, we also extend our

method in conjunction with a novel view synthesis pipeline380 to find adversar-

ial examples in the vicinity of ImageNet88 images for a ResNet model and the

recently released OpenAI CLIP model301. These results on in-distribution ad-

versarial examples provide compelling evidence in support of theories attribut-

ing adversarial attacks to the proximity of data to ground-truth class bound-

aries, and presents an opportunity to help refine existing theories through a

more stringent definition of adversarial attacks.

125



7.2 Results on in-distribution robustness

We present results on in-distribution robustness identified using our proposed

approach (CMA-Search) across three levels of data complexity—(i) simplistic

parametrically controlled data sampled from disjoint per-category uniform dis-

tributions (Sec. 7.2.1), (ii) parametric and controlled images of objects using our

graphics pipeline (Sec. 7.2.2), and (iii) natural image data from the ImageNet

dataset88(Sec. 7.2.3).

7.2.1 Ground-truth boundary theory explains in-distribution adversarial examples

in simplistic parametrically controlled data

We build on the same setup as previous work124—binary classification of data

sampled from two high-dimensional, disjoint uniform distributions (see methods

Sec. 7.4.1). This previous work relied on Projected Gradient Descent to find

adversarial examples111,355, but this approach only works at high dimensions

(> 60)124. We present results using our evolutionary strategies based CMA-

Search, as it can also find in-distribution adversarial examples in low dimensions

as shown in the following. More details on the implementation of CMA-Search

are provided in methods Sec. 7.4.5.

In Fig. 7.3(d), we report our method’s attack rate for models with high ac-

curacy (> 0.99). The attack rate measures the fraction of correctly classified

points for which an in-distribution adversarial examples can be found in the

vicinity using CMA-Search (see methods Sec. 7.4.6 for more details). These re-

126



sults demonstrate that despite a near perfect accuracy on a held-out, randomly

sampled test set, in-distribution adversarial examples can be identified in the

vicinity of all correctly classified test points using CMA-Search. This simplistic

dataset is easily separable by most conventional machine learning models in-

cluding a decision tree, which makes the presence of in-distribution adversarial

examples both surprising and highly concerning.

In Fig. 7.3(a) we report the attack rate for models trained with 20, 100 and

500 dimensional data. As can be seen, the attack rate of CMA-Search is nearly

1.0 till a very large dataset size. However, once a critical dataset size is reached,

networks do start becoming robust. Unfortunately, the data complexity scales

poorly with number of dimensions. While dimensionality grows five-fold from

20 to 100, the number of points required for robustness scales almost 100-fold.

Furthermore, for 500 dimensions we were unable to identify the dataset size

required for models to become robust despite trying 10 million training data

points.

In Fig. 7.3(b) we report the average distance between the (correctly classified)

start point and the in-distribution adversarial example. As can be seen, this dis-

tance increases as dataset size is increased. As critical dataset size is reached,

adversarial examples are far enough from starting points that they are now not

in-distribution. This results in a dip in the attack rate, as we only measure in-

distribution adversarial examples. This suggests that for a fixed data dimen-

sionality sample complexity does have a significant impact on in-distribution

robustness.

127



Table 7.1: Role of stochasticity in in-distribution robustness. To isolate the source of high
variance in model robustness at high dataset sizes, we investigate four sources of stochasticity
one at a time holding other factors constant. These include—inherent stochasticity of CMA-
Search, SGD, sampling bias, and model initialization. Our results show that this variance is
largely driven by model robustness, which has substantial impact on model robustness.

Stochastic source varied Attack Rate

CMA-Search 0.14± 0.16
SGD 0.22± 0.09

Sampling Bias 0.08± 0.06
Model Initialization 0.99± 0.03

We also investigated the role of robust training on in-distribution robustness

by including 20, 000 identified adversarial examples alongside 100, 000 training

data points and retraining the model for the 100 dimensional case. We found

that the attack rate continued to be 1.0, with no improvement in model robust-

ness against CMA-Search. This is expected behaviour, as our identified adver-

sarial examples lie within the training distribution, and robust training in this

case essentially amounts to a marginal increase in the training dataset size.

While models start becoming robust at high dataset sizes (Fig. 7.3(a),(b)),

we found significant variance in this behaviour. Empirically, we found that the

attack rates of models trained at high dataset sizes can also be high at times.

This variance is also visible in the error bars in Fig. 7.3(a),(b). This result sug-

gests that despite the same problem setup some models turn out to be robust,

while others do not. To identify the underlying cause of this stochasticity in

model robustness, we investigate how robustness changes as a function of four

sources of stochasticity—inherent stochasticity of CMA-Search, optimization

(SGD), sampling bias, and model initialization. For this analysis, we started by

128



first identifying a robust model trained with 100, 000 points for 20-dimensional

data and then attacked the model again holding everything constant while vary-

ing one source of stochasticity at a time.

Results are reported in Table 7.1. The mean attack rate remains low across

multiple CMA-Search repetitions (0.14), and across multiple models trained

from scratch (0.22). Thus, robustness is not due to the inherent stochasticity

of CMA-Search, or SGD. Furthermore, new models trained with newly sampled

data also resulted in a robust model with a low attack rate of 0.08, suggesting

there is no good dataset which led to the models becoming robust. Interest-

ingly, we find that models trained with new initializations are now non-robust

and have a high attack rate of 0.99. Thus, what makes certain models robust

and others non-robust depends on the model initialization. More details on

these experiments are provided in Sec. 7.4.6.

In summary, results in Fig. 7.3 and Table 7.1 together suggest that while

there is widespread presence of adversarial examples within the training dis-

tribution, models can start becoming robust at critical (extremely large) dataset

sizes. Furthermore, the deciding factor for which models will be robust at ex-

treme sizes is strongly dependent on the model initialization.

Despite evidence supporting the presence of adversarial examples lying within

the training distribution, the mechanisms driving such examples remain un-

known. There are two main potential hypotheses that can explain such in-distribution

adversarial examples. Fig. 7.3(c) depicts the ground truth function as a one di-

mensional binary step function for ease of visualization. Firstly, adversarial ex-

129



amples could be an outcome of the learned function being poorly regularized.

We call this hypothesis under-regularized learned boundary, and depict it in

Fig. 7.3(d) in one dimension. As can be seen, adversarial examples are spread

across the entire range of inputs in this case. For such examples, better regular-

ization can prevent ‘spikes’ in the predicted output and would lead to better in-

distribution robustness. Secondly, in-distribution adversarial examples may be

an outcome of the complexity of ground-truth boundaries at high dimensions.

We call it the ground-truth boundary theory, and depict it in Fig. 7.3(e) in low

dimensions for ease of comprehension. In this case, there are no high-frequency

‘spikes’ in the learned function. Instead, the learned function is simply wrong

in estimating where the step function changes from 1 to 0 as the probability of

sampling near the ground-truth boundary in the training data is infinitesimally

small due to the training data being finite. In this case all errors are located in

the vicinity of the function transition and better regularization would not help

prevent these errors. As shown in previous works investigating this hypothe-

sis124,111,325,248,95,98, the number of function transitions increases combinatori-

ally with dimensionality, making it easier to find an in-distribution adversarial

example in the vicinity of one of these transitions. Below, we assess these two

hypotheses.

To investigate which of the two hypotheses presented in Fig. 7.3 hold true for

this dataset, we visualize the learned decision boundary in the vicinity of the

category transition using church window plots401. More details on how these are

plotted is provided in methods Sec. 7.4.6. As can be seen in Fig. 7.3(f), there

130



is a clean transition from correctly classified points (white) to in-distribution

adversarial examples near the decision boundary (red), beyond which points

become out of the distribution of samples belonging to a particular category

(black). We observed this same behaviour across all church window plots made

with multiple randomized samples and orthogonal vectors. In-distibution ad-

versarial examples are isolated to a region close to the category boundary, and

in a contiguous fashion. This strongly suggests that these in-distribution ad-

versarial examples occur due to the mechanism presented in Fig. 7.3(e)—due

to ground-truth boundary complexity in high dimensions, as opposed to poor

regularization.

7.2.2 Widespread presence of in-distribution adversarial examples through subtle

changes in 3D perspective and lighting

We extend our investigations to parametric and controlled images of objects

using our graphics pipeline. We use a computer graphics pipeline for generating

and modifying images which ensures complete parametric control over the data

distribution. Every image generated from our pipeline can be completely de-

scribed by their lighting and camera parameters shown in Fig 7.4(a). To create

a dataset with a fixed, known training distribution, we simply sample camera

and lighting parameters from a fixed, uniform distribution, and render a subset

of 3D models from ShapeNet58 objects with these camera and lighting parame-

ters.

131



Using this approach, we create a large-scale (∼ 0.5 million images) and unbi-

ased dataset of complex image data with a fixed, known distribution. Further-

more, sampling new points from this distribution is as simple as sampling more

camera and light parameters from their known distribution. Our pipeline builds

upon recent work by Li et al.228. Fig. 7.4(b) shows sample images sampled from

the known training distribution (additional examples from the dataset can be

found in Fig. Supp.44). As can be seen, this dataset contains objects seen across

multiple viewpoints, scales, and shifted across the frame. Furthermore, we use

physically based rendering228,290 to accurately simulate complex lighting arti-

facts including diverse lighting conditions like multiple colors and self-shadows

which makes the dataset challenging for neural networks. We ensure that the

following constraints are met: (1) uniformly distributed and unbiased train-

ing data, (2) 1000 images per 3D object (total 0.5 million images), and (3) no

spurious correlations between the scene parameters and the image labels. More

details on dataset generation can be found in methods Sec. 7.4.2.

We first investigate how well object recognition models perform across cam-

era and lighting variations while ensuring an exact match between training

and testing distributions. Both the train and the test sets are created by sam-

pling uniformly across the range of camera and lighting parameters for this

experiment. We evaluate both Convolutional Neural Networks (CNNs) and

transformer-based models. Exact hyper-parameters and other details on model

training are provided in methods Sec. 7.4.4

The difficulty in classifying these images is corroborated in Table 7.2, as there

132



Table 7.2: Performance of object recognition models on seen and new 3D models.

Accuracy ResNet
ResNet
(pre-

trained)

Anti-
Aliased

Networks

Truly
Shift

Invariant
ViT DeIT

DeIT
Dis-
tilledSeen models 0.75 0.76 0.82 0.80 0.58 0.63 0.64

New models 0.70 0.70 0.74 0.72 0.59 0.64 0.65

is significant room for improvement for both CNNs and transformer-based mod-

els. Table 7.2 reports accuracy for several state-of-the-art CNNs162,440,55 and

transformer architectures including the vision transformer (ViT)99, and the data

efficient transformer (DeIT) and its distilled version (DeIT Distilled)377. As can

be seen, neural networks do not perform very well across camera and lighting

variations. In fact, the problem is even more pronounced with transformer mod-

els. To test if this problem can be mitigated with shift-invariant architectures,

we also report results on two specialized shift-invariant architectures - Anti-

Aliased Networks440, and the recent Truly Shift Invariant Network55. While

these networks do provide a boost in performance, they too are susceptible to

camera and lighting variations. We also confirm that this is not an outcome of

our neural networks overfitting by testing the network on new, unseen 3D mod-

els. The performance on these new 3D models also mirrors the same trend, as

seen in Table 7.2.

These results naturally raise the question—What images are these networks

failing on? Are there certain lighting and camera conditions that the networks

fail on? The one-to-one mapping between the pixel space (images) and our low-

dimensional scene representation (i.e. camera and lighting parameters) allows us

to answer these questions by visualizing and comparing correctly and incorrectly

133



classified images in this low dimensional space. In Fig. 7.5 we show the distri-

bution of camera parameters for images which were classified incorrectly. As

can be seen, the errors seem well distributed across space—we found no clear,

strong patterns which characterize the camera and light conditions of misclas-

sified images. Note that regions in each of these parametric spaces represent

human interpretable scenarios which have been known to impact human vision

significantly. For instance, changes in camera position represent canonical vs

non-canonical poses which significantly impact human vision127,368,35. Similarly,

changes in the up vector can represent upside-down objects which too impact

human vision201,216,369. In contrast, Fig. 7.5 shows that networks do not suf-

fer in specific regions of the space. These results are consistent across multiple

architectures. Supplemental Fig. Supp.45 shows examples of this phenomenon

multiple object categories and neural network architectures.

While above results prove the existence of adversarial examples within the

training distribution, a key requirement for such examples is the imperceptibil-

ity of the change needed to introduce an error. To introduce such imperceptible

changes, we propose an evolution-strategies based error search methodology for

in-distribution, misclassified images which we call CMA-Search. Starting with

a correctly classified image, our method searches within in the vicinity of the

camera and lighting parameters to find an in-distribution image which is incor-

rectly classified. Note that unlike adversarial attacks, our method does not add

noise and our constraints ensure that identified errors are in-distribution. CMA-

search enables interpretable attacks by searching over the scene’s camera and

134



Table 7.3: CMA-Search over camera and light parameters. Starting with new, correctly clas-
sified in-distribution images, we use our method to search the vicinity of camera and light
positions, starting with the original image’s parameters. Attack Rate reports the percentage
of times an in-distribution adversarial example was found starting with a correctly classified
image. We also report the mean and standard deviation of the distance between the original
image and the identified in-distribution adversarial example. This distance is measured by
calculating the L2 distance between the camera parameters of the original correctly classified
image and the parameters of the in-distribution adversarial example in its vicinity, and nor-
malizing it by the range of the camera parameters.

Model Architecture
CMA Cam CMA Light

Attack
Rate
(%)

Distance
(mean ±

std)

Attack
Rate
(%)

Distance
(mean ±

std)ResNet18162 71 1.83 ± 1.33 42 6.52 ± 5.68
ResNet18 (pretrained)162 58 1.79 ± 1.46 36 5.36 ± 3.70
Anti-Aliased Networks440 45 2.32 ± 2.09 40 7.03 ± 5.10

Truly Shift Invariant Network55 53 2.22 ± 2.16 25 6.72 ± 5.41
ViT99 85 1.34 ± 1.16 65 4.63 ± 3.49

DeIT377 85 1.27 ± 0.81 51 4.54 ± 2.75
DeIT Distilled377 86 1.22 ± 0.87 55 4.49 ± 2.27

light parameters, while only sampling from within the training distribution. For

instance, it is possible to attack a model by searching over solely the camera po-

sition (3 dimensions), while holding all other scene parameters constant. While

previous works have attempted to find in-distribution adversarial examples by

approximating the data distribution using generative models355,111, we provide

first empirical evidence for in-distribution adversarial examples in object recog-

nition.

As shown in Table 7.3, CMA-Search finds small changes in 3D perspective

and lighting which have a drastic impact on network performance. For example,

starting with an image correctly classified by a ResNet18162 model, our method

can find an error in its vicinity for 71% cases with an average change of 1.83% in

135



the camera position. For transformers, the impact is far worse, with an attack

rate of 85%. Similarly, with lighting changes CMA-Search can find a misclas-

sification in 42% cases with an average change of 6.52% for a ResNet18 model.

These results are reported for various architectures in Table 7.3. As can be seen,

we find that networks are most sensitive to changes in the Camera Position and

the camera Look At—subtle, in-distribution 3D perspective changes. This be-

haviour is consistent across several architectures. In fact, even shift-invariant

architectures specifically designed to be robust to 2D shifts are still highly sus-

ceptible to 3D perspective changes.

Thus, the space of camera and lighting variations is filled with in-distribution

adversarial examples in the vicinity of correctly classified points. Unfortunately,

church-window plots similar to Fig. ?? cannot be replicated for complex image

data as the transition boundary between two object categories is hard to define.

However, our results provide evidence in support of the ground-truth bound-

ary theory as an explanation for adversarial examples in object recognition, and

calls into question existing theories which attribute adversarial examples to sys-

tematic differences in the training and test distributions.

7.2.3 Approximate in-distribution adversarial examples in the vicinity of natural

images

So far, our experiments have focused on datasets with complete control over

the training distribution. Here, we present results on approximate in-distribution

adversarial examples for natural images taken from the ImageNet dataset88.

136



Specifically, we used CMA-Search to optimize the camera parameters, but in-

stead of our renderer, we now use a novel view synthesis model (MPI380) for

generating novel views of ImageNet images. More details on this procedure can

be found in methods Sec. 7.4.3.

Starting with a correctly predicted ImageNet image, we use CMA-Search in

conjunction with the MPI model to find images in the vicinity with small, 3D

perspective changes which can break ImageNet trained classification networks

including ResNet18, and OpenAI’s transformer based CLIP model301. Results

for these experiments are reported in Fig. 7.6. We provide additional examples

of misclassified ImageNet images found using CMA-Search in Supplementary

Fig. Supp.46. MPI model was not trained on ImageNet, and can at times fail to

generate novel views, resulting in blurry images instead. We omit these images

to only present results on adversarial examples due to small, 3D perspective

changes. While these results present an interesting application on natural im-

ages, these results are only approximately in-distribution like previous works

that also explored in-distriubtion adversarial examples355,111. We cannot be

entirely sure that the images found by CMA-Search on ImageNet are indeed

in-distribution, further justifying the necessity of our computer graphics based

approach in the previous section.

7.3 Discussion

Recent theoretical works developing the ground-truth boundary theory have

investigated adversarial examples within the training data distribution. This

137



added constraint requiring adversarial examples be in-distribution results in a

more stringent definition of adversarial examples, which presents an opportunity

to further scrutinize and update existing theories on the origin of adversarial ex-

amples. However, these works were restricted to simplistic, parametrically con-

trolled data. Here we provided evidence that these in-distribution adversarial

examples extend to images of objects. These results provide new, stronger evi-

dence in support of the ground-truth boundary theory being the primary mech-

anism driving in-distribution adversarial examples.

In practice, the presence of these examples points to a highly worrisome problem—

it bypasses the need for a malicious agent to add engineered noise to induce an

error. These examples lie hidden within the data distribution in plain sight. In

fact, our results show that the problem runs far deeper than previously thought

as it is even possible to attack models trained on as low as 5-dimensional data.

We also show that the current best practices for adversarial defense are insuf-

ficient to address in-distribution adversarial examples. Most existing approaches

revolve around the idea of robust training246, i.e. including adversarial exam-

ples into the training set. As mentioned in Sec. 7.2.1, we confirmed that in-

distribution errors could not be removed by robust training. This may be be-

cause finding adversarial examples is computationally costly and models start

becoming robust only at extreme dataset sizes, and that this critical size in-

creases exponentially with data dimensionality. This need for extreme dataset

size can be explained by the ground-truth boundary theory. There is combi-

natorial increase in the number of ground-truth boundary transitions as data

138



dimensionality increases, and thus a corresponding drop in the probability of a

randomly sampled point being sufficiently close to the transition boundary as

explained in Fig. 7.3. In this way, an increasingly large number of samples are

needed to obtain samples from the boundary transitions as dimensionality in-

creases. Recent work on scaling laws22,191 has investigated accuracy at extreme

dataset sizes, but our finding suggests similar scaling laws could also be identi-

fied for model robustness.

Based on our findings, we propose three potential directions which might help

alleviate in-distribution adversarial examples. Firstly, reducing the data rep-

resentation dimensionality. As dataset size needed for robustness scales poorly

with dimensions, efficient dimensionality reduction on data representation may

help reduce samples needed to train a robust model. Secondly, better model ini-

tialization. We showed that once critical dataset size is reached, model robust-

ness strongly depends on initialization, and thus future researchers may need

to devise better initialization techniques which result in more robust models.

Thirdly, casting object recognition as a smooth regression problem that reduces

the number of ground-truth boundary transitions as these examples are located

only in the vicinity of these boundaries (Fig. 7.3).

In summary, we have provided empirical evidence of the widespread presence

of in-distribution adversarial examples for complex image data, which is highly

worrisome and has concerning ramifications for the origin of and defense against

adversarial examples. Going forward, we hope that future researchers can com-

bine theoretical and empirical investigations using the unified framework pro-

139



vided in our work, and help move the machine learning and computer vision

communities closer to a deeper understanding of the phenomenon we call adver-

sarial examples. Understanding these susceptibilities of object recognition mod-

els lies at the heart of building robust and reliably deployable models, and we

hope this research direction can make a strong contribution towards this end.

7.4 Methods

7.4.1 Generating simplistic parametrically controlled data

We created a binary classification task by sampling data from two N-dimensional

uniform distributions confined to disjoint ranges (a, b) and (c, d), as described in

the following:

xi ∼

 Unif(a, b,N); yi = 0

Unif(c, d,N); yi = 1

 . (7.1)

We set a = −10, b = 10, c = 20, d = 40 for experiments presented in Sec. 7.2.1.

However, we observed that the exact choice of these parameters does not impact

our findings. To measure in-distribution performance, we simply sample new

data points from these same distributions.

7.4.2 Generating controlled rendered data of real world objects

Most large-scale datasets for computer vision have been created by scraping pic-

tures from the internet88,233,110,203,445. For experiments investigating in-distribution

robustness, these datasets present two major challenges. Firstly, it is not possi-

ble to quantitatively define or control the distribution of these datasets in closed

140



form. Secondly, investigating in-distribution robustness requires being able to

sample new points from regions of interest within the data distribution, and

to test model performance on these samples. This is not possible with internet

scraped datasets. These problems have inspired the growing trend of research

works using carefully designed synthetic data with controlled data distribu-

tions299,166,241,38,213,397. In a similar vein, our graphics pipeline (explained below)

easily allows us to generate a large-scale, unbiased dataset of objects seen un-

der varied camera and lighting conditions with complete control over the data

distribution. Sample images from four categories are shown in Fig. 7.4(b). Each

3D model was rendered under 1000 different camera and lighting conditions fol-

lowing the scene setup described below. Fig. Supp.44 shows additional sample

images from the dataset. Below we introduce the 3D scene setup, camera and

lighting parameter sampling strategies, and the 3D models used to generate our

dataset.

3D Scene Setup

All rendering was done using the open-source rendering pipeline Redner228.

Each scene contains one camera, one 3D model and 1-4 lights. To ensure there

are no spurious correlations between object category, texture and background118,

the texture for all ShapeNet58 objects was replaced with a simple diffuse ma-

terial and the background was kept constant. Thus, every scene is completely

parametrized by the camera and the light parameters. As shown in Fig. 7.4(a),

camera parameters are 10 dimensional: one dimension for the FOV (field of

141



view of camera lens), and three dimensions each for the Camera Position (co-

ordinates of camera center), Look At (point on the canvas where the camera

looks), and the UP vector (rotation of camera). Analogously, lights are repre-

sented by 11 dimensions - two dimensions for the Light Size, and three each for

Light Position, light Look At and RGB color intensity. Multiple lights ensure

that scenes contain complex lighting scenarios including multiple colors and self-

shadows. Thus, our scenes are (11n + 10) dimensional, where n is the number of

lights. There is a one-to-one mapping between the pixel space (rendered images)

and this low dimensional scene representation.

Unbiased, uniform sampling of scene parameters

To ensure an unbiased distribution over different viewpoints, locations on the

frame, perspective projections and colors, we ensured that scene parameters fol-

low a uniform distribution. Concretely, camera and light positions were sam-

pled from a uniform distribution on a spherical shell with a fixed minimum

and maximum radius. The Up Vector was uniformly distributed across range

of all possible camera rotations, and RGB light intensities were uniformly dis-

tributed across all possible colors. Camera and light Look At positions were

uniformly distributed while ensuring the object stays in frame and is well-lit

(frame size depends on Camera Position and FOV). Finally, Light Size and

camera FOV were uniformly sampled 2D and 1D vectors. Below we specify the

hyper-parameters for rendering, along with the exact distribution for each scene

parameter and the corresponding sampling technique used to sample from these

142



distributions.

Camera Position: For scene camera, first a random radius rc is sampled while

ensuring rc ∼ Unif(0.5, 8). Then, the camera is placed on a random point de-

noted (xc, yc, zc) on the spherical shell of radius rc. To generate a random point

on the sphere while ensuring an equal probability of all points, we rely on the

method which sums three randomly sampled normal distributions153:

X,Y,Z ∼ N (0, 1), (7.2)

v = (X,Y,Z), (7.3)

(xc, yc, zc) = rc ∗
v
∥v∥

. (7.4)

Camera Look At: To ensure the object is shown at different locations within

the camera frame, the camera Look At needs to be varied. However, range of

values such that the object is visible can be present across the entire range of

the frame depends on the camera position. So, we sample camera Look At as lc

as follows:

lc ∼ Unif(K ∗ xc,K ∗ yc,K ∗ zc),where K = 0.3. (7.5)

The value K = 0.3 was found empirically. We found it helped ensure that ob-

jects show up across the whole frame while still being completely visible within

the frame.

Camera Up Vector: Note that the camera Up Vector is implemented as the

vector joining the camera center (0,0,0) to a specified position. We sample this

143



position and therefore the Up Vector uc as follows:

x, y, z ∼ Unif(−1, 1), (7.6)

uc = (x, y, z). (7.7)

Camera Field of View (FOV): We sample the field of view fc while ensuring:

fc ∼ Unif(K1,K2). (7.8)

Again, the values K1 = 35,K2 = 100 were found empirically to ensure objects

are completely visible within the frame while not being too small.

Light Position: For every scene we first sample the number of lights n be-

tween 1-4 with equal probability. For each light i, a random radius ri is sampled

ensuring ri ∼ Unif(R1,R2), then the light is placed on a random point (xi, yi, zi)

on the sphere of radius ri. R1 = 1 and R2 = 8 were found empirically to ensure

that the light is able to illuminate the 3D model appropriately.

Light Look At: To ensure that the light is visible on the canvas, light Look

At is sampled as a function of the camera position:

li ∼ Unif(K ∗ xc,K ∗ yc,K ∗ zc),where K = 0.3. (7.9)

As in the case of the Camera Look At parameter mentioned above, the value

K = 0.3 was found empirically.

Light Size: Every light in our setup is implemented as an area light, and

144



therefore requires a height and width to specify the size. We generate the size

si for light i as:

h,w ∼ Unif(L1,L2), (7.10)

si = (h,w). (7.11)

L1 = 0.1,L2 = 5 were found empirically to ensure the light illuminates the

objects appropriately.

Light Intensity: This parameter specifies the RGB intensity of the light. For

light i, RGB color intensity ci was sampled as:

r, g, b ∼ Unif(0, 1), (7.12)

ci = (r, g, b). (7.13)

Object Material: To ensure no spurious correlations between object texture

and category, all object textures were set to a single diffuse material. Specifi-

cally, the material is a linear blend between a Lambertian model and a micro-

facet model with Phong distribution, with Schilick’s Fresnel approximation. Dif-

fuse reflectance was set to 1.0, and the material was set to reflect on both sides.

3D models used for generating two different test sets

Our dataset contains 11 categories, with 40 3D models for every category cho-

sen from ShapeNet58. Neural networks were evaluated on two test sets - one

with the 3D models seen during training, and the second with new, unseen 3D

145



models. The first test set was generated by simply repeating the same proce-

dure as described above. Thus, the (Geometry × Camera × Lighting) joint dis-

tribution matches exactly for the train set and this test set. The second test set

was created by the exact same generation procedure, but with 10 new 3D mod-

els for every category chosen from ShapeNet. The motivation for this second

test set was to ensure our models are not over-fitting to the 3D models used for

training. Thus, the (Camera × Lighting) joint distribution matches exactly for

this test set and the train set, but the Geometry is different in these two sets.

7.4.3 Generating natural images in the vicinity of ImageNet images

One of the major challenges in extending our results to natural image datasets

is generating natural images in the vicinity of a correctly classified image by

slightly modifying the camera parameters. To do so for ImageNet is equivalent

to novel view synthesis (NVS) from single images, which has been a long stand-

ing challenging task in computer vision. However, recent advances in NVS en-

able us to extend our method to natural image datasets like ImageNet427,448,407,380.

To generate new views in the vicinity of ImageNet images, we rely on a single-

view synthesis model based on multi-plane images (MPI)380. The MPI model

takes as input an image and the (x, y, z) offsets which describe camera movement

along the X, Y and Z axes. Note that unlike our renderer, it cannot introduce

changes to the camera Look At, Up Vector, Field of View or lighting changes.

146



7.4.4 Model Training Details

Below we provide the training details including model architectures, optimiza-

tion strategies and other hyper-parameters used for the binary classification

models trained on simplistic parametrically controlled data, and the object

recognition models trained on our rendered images of camera and light varia-

tions.

MLPs for classifying parametrically controlled uniform data

Let D denote the dimensionality of the input data, and N denote the total num-

ber of data points. We used a 5 layer multi-layer perceptron (MLP) with ReLU

activations, with the output dimensionality of layers set to 5D, D, D/5, D/5,

and 2 respectively. However, we found that the number of MLP hidden lay-

ers and the number of neurons in these layers had no impact on trends of in-

distribution robustness. For experiments with N < 64, 000 all data was passed

in a single batch. For experiments with more data points, each batch contained

64, 000 points. All models were trained for 100 epochs with stochastic gradient

descent (SGD) with a learning rate of 0.0001. All experiments were conducted

on a compute cluster consisting of 8 NVIDIA TeslaK80 GPUs, and all models

were trained on a single GPU at a time. Only models achieving a near perfect

accuracy (> 0.99)∗ on a held-out test set were attacked using CMA-Search.
∗Except when dataset size=1000 and dimensions=100 or 500. In these two case the train-

ing data was too small for a high test accuracy. These cases are still included for completion.

147



Object recognition models for classifying images of real-world objects

All CNN models were trained with a batch size of 75 images, while transform-

ers were trained with a batch size of 25. Models were trained for 50 epochs with

an Adam optimizer with a fixed learning rate of 0.0003. Other learning rates

including 0.0001, 0.001, 0.01 and 0.1 were tried but they performed either simi-

larly well or worse. To get good generalization to unseen 3D models and stable

learning, each image was normalized to zero mean and unit standard deviation.

As before, all experiments were conducted on our cluster with TeslaK80 GPUs,

and each model was trained using a single GPU at a time.

7.4.5 CMA-Search: Finding in-distribution adversarial examples by searching the

vicinity

To investigate the in-distribution robustness of neural networks with respect to

changes in camera and lighting, we propose a new, gradient-free search method

to find incorrectly classified images. Starting with a correctly classified image,

our method searches the vicinity by slightly modifying camera or light param-

eters to find an in-distribution error. While adversarial viewpoints and lighting

have been reported before in the literature234,433,180, there are two major differ-

ences in our approach. First, these methods search for an adversarial image by

adding a perturbation to the input scene parameter without constraining the

resulting image to be within the training distribution. In comparison, our ap-

proach searches within the distribution to find in-distribution errors. Secondly,

unlike our gradient-free search method, these methods often rely on gradient

148



descent and thus require high dimensional representations of the scene to work

well. For instance, these works often use neural rendering where network acti-

vations act as a high dimensional representation of the scene433,185, or use up-

sampling of meshes to increase dimensionality234.

We extend these approaches to work well with our low-dimensional scene

representation by utilizing a gradient-free optimization method to search the

space—Covariance Matrix Adaptation-Evolution Strategy (CMA-ES)150,148. We

found that gradient descent with differentiable rendering struggled to find in-

distribution errors in our scenes due to the low dimensionality of the optimiza-

tion problem. CMA-ES has been found to work reliably well with non-smooth

optimization problems and especially with local optimization151, which made

it a perfect fit for our search strategy. In contrast to gradient based methods

requiring high dimensions, our approach works well for as low as 3 dimensions.

Algorithm 2 provides an outline of using CMA-Search to find in-distribution

adversarial examples by searching the vicinity of camera parameters. The al-

gorithm for searching for adversarial examples using light parameters in ren-

dered data, and within parametrically controlled unifrom data is analogous. In

Fig. 7.2 we show examples of in-distribution adversarial examples found by our

CMA-Search method over camera parameters. Starting with the correctly clas-

sified image (left), our method finds an image in the vicinity by slightly modify-

ing camera parameters of the scene. As can be seen, subtle changes in 3D per-

spective can lead to drastic errors in classification. We also highlight the subtle

changes in camera position (in black) and camera Look At (in blue) in the fig-

149



Algorithm 2 CMA-Search over camera parameters to find in-distribution adver-
sarial examples.
1: Let x ∈ R10 denote the camera parameters.
2: Let Render and Network denote the rendering pipeline and classification

network respectively.
3: function Fitness(x, Render, Network)
4: image = Render(x)
5: predicted_category, probability = Network(image)
6: return predicted_category, probability
7: end function
8:
9: Let xinit denote initial camera parameters, λ be number of offspring per

generation, and y be the image category.
10:
11: procedure CMA-Search(xinit, λ, y)
12: initialize μ = xinit,C = I ▷ I denotes identity matrix.
13: while True do
14: for j = 1, ..., λ do
15: xj = sample_multivariate_normal(μ,C) ▷ Generate mutated

offspring
16: yj, pj =FITNESS(xj, Render, Network) ▷ Calculate fitness of

offspring
17: if yj ̸= y then
18: return xj ▷ Classification fails for image with camera

parameters xj
19: end if
20: end for
21: x1...λ ← xs(1)...s(λ), with s(j) = argsort(pj) ▷ Pick best offspring
22: μ,C← update_parameters(x1...λ, μ,C)
23: end while
24: end procedure

150



ure. To the best of our knowledge, this is the first evolutionary strategies based

search method for finding in-distribution adversarial examples.

Starting from the initial parameters, CMA-ES generates offspring by sam-

pling from a multivariate normal (MVN) distribution i.e. mutating the original

parameters. These offspring are then sorted based on the fitness function (clas-

sification probability), and the best ones are used to modify the mean and co-

variance matrix of the MVN for the next generation. The mean represents the

current best estimate of the solution i.e. the maximum likelihood solution, while

the covariance matrix dictates the direction in which the population should be

directed in the next generation. The search is stopped either when a misclassi-

fication occurs, or after 15 iterations over scene parameters. For the simplistic

parametrically controlled data, we check for a misclassification till 1500 itera-

tions. More details on the exact subroutines for parameter update and theoreti-

cal underpinnings of the CMA-ES algorithm can be found in the documentation

for pycma149 and the accompanying paper148.

7.4.6 Evaluation details

Below we provide details on the evaluation and visualization of in-distribution

adversarial examples identified by CMA-Search.

Evaluating CMA-Search using the Attack Rate

To quantify the performance of CMA-Search and the prevalence of in-distribution

adversarial examples we propose the Attack Rate, which is reported in Tables

151



7.1 and 7.3. For the simplistic parametrically controlled data, we first ran-

domly sample 1000 test points which we confirm are correctly classified by the

classification model. For each of these test points, CMA-Search is then tasked

with starting from the correctly classified point and searching for a nearby point

within the training data distribution where the classifier fails. The Attack Rate

is the fraction of these 1000 correctly classified points for which CMA-Search is

able find an in-distribution adversarial example in the vicinity. This process is

repeated 10 times and the average value is reported. For image data, sampling

a new point involves sampling scene parameters and rendering the new image

corresponding to these parameters. As rendering is significantly slower, we mea-

sure the attack rate using 20 samples for image data, and report average over 10

repeats.

Church-window plots

CMA-Search starts from a correctly classified point and provides an in-distribution

adversarial example. We use this to define a unit vector in the adversarial di-

rection, and fix this as one of basis vectors for the subspace the data occupies.

Assuming data dimensionality to be D, we can calculate the corresponding D− 1

orthonormal bases. Following the same protocol as past work401, we randomly

pick one of these orthonormal vectors as the orthogonal direction and define a

grid of perturbations with fixed increments along the adversarial and the or-

thogonal directions. These perturbations are then added to the original sam-

ple and the model is evaluated at these perturbed samples. We plot correct

152



classifications in white, in-distribution adversarial examples in red, and out-of-

distribution samples in black.

Sources of stochasticity

Table 7.1 reports the results of Attack Rates for models as sources of stochas-

ticity are varied one at a time to investigate their impact on model robust-

ness. For these experiments, we studied binary classification models trained on

100, 000 data points of 20-dimensional data. Below, we provide additional de-

tails on how these experiments were conducted.

CMA-Search: As our method is based on evolutionary strategies, it is inher-

ently stochastic. To ensure that model robustness is not due to CMA-Search

failing stochastically, we repeat the attack on our robust model with CMA-

Search 10 times and report the mean attack rates.

Optimization (SGD): To investigate if the optimization process enables cer-

tain models to be robust, we use the exact same data points and model initial-

ization as the identified robust model, and repeat the training procedure 10

times to obtain 10 different models. These models differ from each other only

due to the stochasticity of SGD.

Sampling Bias: We ask if model robustness is a function of the specific train-

ing data sampled from the training distribution - is there a good training dataset

that results in more robust models? We test this by using this exact same ini-

tialization and SGD seed as the robust model, and train models on newly data

sampled from the training distribution. We ensure that the newly sampled dataset

153



has the same size and distribution as the dataset used with the identified robust

model.

Model Initialization: To test if the model initialization is the underlying cause

for model robustness, we train multiple models with the exact same training

data as the robust model, but with different random initialization (different

from the robust model) while using the same seed for SGD.

154



In-distribution, 
correctly classi�ed

In-distribution 
adversarial

Out-of-distribution
sample

1

0

Y

X

1

0
X

1

0 X

Ground Truth Ground-Truth 
Boundary Theory

Under-Regularized 
Learned Boundary Theory

Training Sample Ground Truth In-distribution correct predictions In-distribution adversarial example

(f )

YY

(a) (b)

(c) (d) (e)

Ground TruthGround TruthGround Truth

CMA-Search Attack Rates Distance to in-distribution
adversarial examples

Figure 7.3: Hypotheses explaining in-distribution adversarial examples. (a) Attack rate of
CMA-Search in finding an in-distribution adversarial example starting with a correctly clas-
sified sample. Models start becoming robust at high dataset sizes, however the sample com-
plexity scales poorly with data dimensionality. (b) Average Euclidean distance between the
starting point and the identified in-distribution adversarial sample. As dataset size increases,
the average Euclidean distance from the starting point to in-distribution adversarial example
increases for all data dimensions. (c) Example of one-dimensional ground-truth function (d)
Depiction of under-regularization learned boundary theory (e) Depiction of ground-truth
boundary theory (f) Church window plots depicting adversarial examples in the vicinity of
category boundaries.

155



X

Z

Y

CAMERAPOSITION(x,y,z)

UP (x’, y’, z’)

FOV (f )

Look At(x’’, y’’, z’’)

GuitarChair Bike Pistol

(a) (b)

Figure 7.4: 3D scene setup and resulting images. (a) Images in our dataset are completely
parametrized by the camera and light. Physical interpretation of the camera parameters is
illustrated here. Analogously, light is parametrized by the position, look at, 2D size and the
RGB intensities. (b) Sample images for 4 object categories generated using our 3D scene
setup. As can be seen, images contain complex viewpoints and locations, multiple colors per
object and complex artifacts like self-shadows.

Camera Positions
(Incorrect Predictions)

Look At
(Incorrect Predictions)

Up Vector
(Incorrect Predictions)

Field of View
(Incorrect Predictions)

(a) (b) (d)(c)

Figure 7.5: Distribution of errors across the scene parameter space. (a) Coordinates of camera
positions, (b) Coordinates of Look At, (c) Up Vector and (d) Histogram of errors across lens
field of view (FOV). We found no clear, strong patterns which characterize the camera and
light conditions of misclassified images. This is in contrast to human vision which is impacted
by regions of camera positions (non-canonical viewpoints), and up vector (upside-down orien-
tations) among others.

156



Macaque Baboon Ri!e Flute

Im
ag

eN
et

 
tr

ai
ne

d
Re

sN
et

O
pe

nA
I

CL
IP

Chair Table Tractor Lawn Mower

Figure 7.6: CMA-Search on ImageNet images. To replicate results on ImageNet, we replace
our rendering pipeline with the single view MPI380 model to generate novel views of ImageNet
images. Here we show results using CMA-Search with the MPI model to find subtle 3D per-
spective changes which lead to misclassification with ResNet18 and OpenAI’s CLIP model.

157



Part III

Benchmarking and Leveraging human

generlization

158



For me context is the key - from that comes the

understanding of everything.

Kenneth Noland

8
Contextual Reasoning in Synthetic and

Natural Scenes

8.1 Introduction

A coffee mug is usually a small object (Fig.??a), which does not fly on its own

(Fig.??c) and can often be found on a table (Fig.??a) but not on a chair (Fig.??d).

159



Such contextual cues have a pronounced impact on the object recognition ca-

pabilities of both humans437, and computer vision models375,66,275,239. Neural

networks learn co-occurrence statistics between an object’s appearance and its

label, but also between the object’s context and its label97,359,30. Therefore, it

is not surprising that recognition models fail to recognize objects in unfamiliar

contexts311. Despite the fundamental role of context in visual recognition, it

remains unclear what contextual cues should be integrated with object informa-

tion and how.

Two challenges have hindered progress in the study of the role of contex-

tual cues: (1) context has usually been treated as a monolithic concept and (2)

large-scale, internet-scraped datasets like ImageNet88 or COCO233 are highly

uncontrolled. To address these challenges, we present a methodology to system-

atically study the effects of an object’s context on recognition by leveraging a

Unity-based 3D simulation engine for image generation186, and manipulating

3D objects in a virtual home environment295. The ability to rigorously con-

trol every aspect of the scene enables us to systematically violate contextual

rules and assess their impact on recognition. We focus on three fundamental

aspects of context: (1) gravity - objects without physical support, (2) object

co-occurrences - unlikely object combinations, and (3) relative size - changes to

the size of target objects relative to the background. As a critical benchmark,

we conducted psychophysics experiments to measure human performance and

compare it with state-of-the-art computer vision models.

We propose a new context-aware architecture, which can incorporate object

160



and contextual information to achieve higher object recognition accuracy given

proper context and robustness to out-of-context situations. Our Context-aware

Recognition Transformer Network (CRTNet) uses two separate streams to pro-

cess the object and its context independently before integrating them via multi-

head attention in transformer decoder modules. Across multiple datasets, the

CRTNet model surpasses other state-of-the-art computational models in normal

context and classifies objects robustly despite large contextual variations, much

like humans do.

Our contributions in this paper are three-fold. Firstly, we introduce a chal-

lenging new dataset for in- and out-of-context object recognition that allows

fine-grained control over context violations including gravity, object co-occurrences

and relative object sizes (out-of-context dataset, OCD). Secondly, we conduct

psychophysics experiments to establish a human benchmark for in- and out-of-

context recognition and compare it with state-of-the-art computer vision mod-

els. Finally, we propose a new context-aware architecture for object recognition,

which combines object and scene information to reason about context and gen-

eralizes well to out-of-context images. We release the entire dataset, including

our tools for the generation of additional images and the source code for CRT-

Net at https://github.com/kreimanlab/WhenPigsFlyContext.

8.2 Related Works

Out-of-context datasets: Notable works on out-of-context datasets include the

UnRel dataset289 and the Cut-and-paste dataset presented in437. While UnRel

161

https://github.com/kreimanlab/WhenPigsFlyContext


is a remarkable collection of out-of-context natural images, it is limited in size

and diversity. A drawback of cutting-and-pasting120 is the introduction of arti-

facts such as unnatural lighting, object boundaries, sizes and positions. Neither

of those datasets allow systematic analysis of individual properties of context.

3D simulation engines enable easily synthesizing many images and systemati-

cally investigating the violation of contextual cues. It is challenging to achieve

these goals with real-world photographs. Moreover, these simulation engines en-

able precise control of contextual parameters, changing cues one at a time in a

systematic and quantifiable manner.

Out-of-context object recognition: In previous work, context has mostly been

studied as a monolithic property in the form of the target object’s background.

Previous work included testing the generalization to new backgrounds30 and

incongruent backgrounds437, exploring the impact of foreground-background

relationships on data augmentation103, and replacing image sub-regions by an-

other sub-image, i.e. object transplanting311. In this paper, we evaluate differ-

ent properties of contextual cues (e.g., gravity) in a quantitative, controlled, and

systematic manner.

3D simulation engines and computer vision: Recent studies have demon-

strated the success of using 3D virtual environments for tasks such as object

recognition with simple and uniform backgrounds39, routine program synthe-

sis295, 3D animal pose estimation265, and studying the generalization capabili-

ties of CNNs241,146. However, to the best of our knowledge, none of these studies

have tackled the challenging problem of how to integrate contextual cues.

162



Models for context-aware object recognition: To tackle the problem of context-

aware object recognition, researchers have proposed classical approaches, e.g., Con-

ditional Random Field (CRF)128,426,211,62, and graph-based methods372,410,374,66.

Recent studies have extended this line of work to deep graph neural networks170,67,89,27.

Breaking away from these previous works where graph optimization is performed

globally for contextual reasoning in object recognition, our model has a two-

stream architecture which separately processes visual information on both tar-

get objects and context, and then integrates them with multi-head attention

in stacks of transformer decoder layers. In contrast to other vision transformer

models in object recognition99 and detection50, CRTNet performs in-context

recognition tasks given the target object location.

8.3 Context-aware Recognition Transformer

8.3.1 Overview

We propose the Context-aware Recognition Transformer Network (CRTNet,

Figure 8.1). CRTNet is presented with an image with multiple objects and a

bounding box to indicate the target object location. The model has three main

elements: First, CRTNet uses a stack of transformer decoder modules with

multi-head attention to hierarchically reason about context and integrate con-

textual cues with object information. Second, a confidence-weighting mechanism

improves the model’s robustness and gives it the flexibility to select what infor-

mation to rely on for recognition. Third, we curated the training methodology

with gradient detachment to prioritize important model components and ensure

163



Figure 8.1: Architecture overview of the Context-aware Recognition Transformer Network
(CRTNet). CRTNet consists of 3 main modules: feature extraction, integration of context
and target information, and confidence-modulated classification. CRTNet takes the cropped
target object It and the entire context image Ic as inputs and extracts their respective fea-
tures. These feature maps are then tokenized and the information of the two streams is
integrated over multiple transformer decoder layers. CRTNet also estimates a confidence score
for recognizing the target object based on object features alone, which is used to modulate
the contributions of yt and yt,c to the final prediction yp. The dashed lines in backward direc-
tion denote gradient flows during backpropagation. The two black crosses denote where the
gradient updates stop. See Sec. 8.3 for details.

efficient training of the entire architecture.

Inspired by the eccentricity dependence of human vision, CRTNet has one

stream that processes only the target object (It, 224× 224), and a second stream

devoted to the periphery (Ic, 224 × 224). It is obtained by cropping the input

image to the bounding box whereas Ic covers the entire contextual area of the

image. Ic and It are resized to the same dimensions. Thus, the target object’s

resolution is higher in It. The two streams are encoded through separate 2D-

CNNs. After the encoding stage, CRTNet tokenizes the feature maps of It and

Ic, integrates object and context information via hierarchical reasoning through

a stack of transformer decoder layers, and predicts class label probabilities yt,c

164



within C classes.

A model that always relies on context can make mistakes under unusual con-

text conditions. To increase robustness, CRTNet makes a second prediction yt,

based on target object information alone, estimates the confidence p of this pre-

diction, and computes a confidence-weighted average of yt and yt,c to get the fi-

nal prediction yp. If the model makes a confident prediction based on the target

object alone, this decision overrules the context reasoning stage.

8.3.2 Convolutional Feature Extraction

CRTNet takes Ic and It as inputs and uses two 2D-CNNs, Ec(·) and Et(·), to ex-

tract context and target feature maps ac and at, respectively, where Ec(·) and

Et(·) are parameterized by θEc and θEt . We use the DenseNet architecture171

with weights pre-trained on ImageNet88 and fine-tune it. Assuming that dif-

ferent features in Ic and It are useful for recognition, we do not enforce sharing

of the parameters θEc and θEt . We demonstrate the advantage of non-shared

parameters in the ablation study (Sec. 8.5.5). To allow CRTNet to focus on

specific parts of the image and select features at those locations, we preserve

the spatial organization of features and define ac and at as the output feature

maps from the last convolution layer of DenseNet. Both ac and at are of size

D×W×H = 1, 664× 7× 7, where D, W and H denote the number of channels,

width and height of the feature maps respectively.

165



8.3.3 Tokenization and Positional Encoding

We tokenize the context feature map ac by splitting it into patches based on

locations, following99. Each context token corresponds to a feature vector ai
c of

dimension D at location i where i ∈ {1, ..,L = H×W}. To compute target token

Tt, CRTNet aggregates the target feature map at via average pooling:

Tt =
1
L

∑
i=1,...,L

ai
t (8.1)

To encode the spatial relations between the target token and the context to-

kens, as well as between different context tokens, we learn a positional embed-

ding of size D for each location i and add it to the corresponding context to-

ken ai
c. For the target token Tt, we use the positional embedding correspond-

ing to the location, within which the bounding box midpoint is contained. The

positionally-encoded context and target tokens are denoted by zc and zt respec-

tively.

8.3.4 Transformer Decoder

We follow the original transformer decoder388, taking zc to compute keys and

values, and zt to generate the queries in the transformer encoder-decoder multi-

head attention layer. Since we only have a single target token, we omit the self-

attention layer. In the experiments, we also tested CRTNet with self-attention

enabled and we did not observe performance improvements. Our decoder layer

consists of alternating layers of encoder-decoder attention (EDA) and multi-

166



layer perceptron (MLP) blocks. Layernorm (LN) is applied after each resid-

ual connection. Dropout (DROP) is applied within each residual connection

and MLP block. The MLP contains two layers with a ReLU non-linearity and

DROP.

zt,c = LN(DROP(EDA(zt, zc)) + zt) (8.2)

z′t,c = LN(DROP(MLP(zt,c)) + zt,c) (8.3)

Our transformer decoder has a stack of X = 6 layers, indexed by x. We repeat

the operations in Eqs 8.2 and 8.3 for each transformer decoder layer by recur-

sively assigning z′t,c back to zt as input to the next transformer decoder layer.

Each EDA layer integrates useful information from the context and the tar-

get object with 8-head selective attention. Based on accumulated information

from all previous x − 1 layers, each EDA layer enables CRTNet to progressively

reason about context by updating the attention map on zc over all L locations.

We provide visualization examples of attention maps along the hierarchy of the

transformer decoder modules in Supp. Fig S1.

8.3.5 Confidence-modulated Recognition

The context classifier Gz(·) with parameters θGz consists of a fully-connected

layer and a softmax layer. It takes the feature embedding z′t,c from the last trans-

former decoder layer and outputs the predicted class distribution vector: yt,c =

Gz(z′t,c). Similarly, the target classifier Gt(·), takes the feature map at as input

and outputs the predicted class distribution vector: yt = Gt(at).

167



Since neural networks are often fooled by incongruent context437, we propose

a confidence-modulated recognition mechanism balancing the predictions from

Gt(·) and Gz(·). The confidence estimator U(·) with parameters θU takes the

target feature map at as input and outputs a value p indicating how confident

CRTNet is about the prediction yt. U(·) is a feed-forward multi-layer perceptron

network with a sigmoid function to normalize the confidence score to [0, 1].

p =
1

1+ e−U(at)
(8.4)

We use p to compute a confidence-weighted average of yt,c and yt for the final

predicted class distribution yp: yp = pyt + (1 − p)yt,c. The higher the confidence

p, the more CRTNet relies on the target object itself, rather than on the inte-

grated contextual information, for classification. We demonstrate the advantage

of using yp rather than yt,c or yt as a final prediction in the ablation study (Sec.

8.5.5).

8.3.6 Training

CRTNet is trained end-to-end with three loss functions: (i) to train the confi-

dence estimator U(·), we use a cross-entropy loss with respect to the confidence-

weighted prediction yp. This allows U(·) to learn to increase the confidence value

p when the prediction yt based on target object information alone is correct. (ii)

To train Gt(·), we use a cross-entropy loss with respect to yt. (iii) For the other

components of CRTNet, including the transformer decoder modules and the

classifier Gz(·), we use a cross-entropy loss with respect to yt,c. Instead of train-

168



ing everything based on yp, the three loss functions together maintain strong

learning signals for all parts in the architecture irrespective of the confidence

value p.

To facilitate learning for specific components in CRTNet, we also introduce

gradient detachments during backpropagation (Fig. 8.1). Gradients flowing

through both U(·) and Gt(·) are detached from Et(·) to prevent them from driv-

ing the target encoder to learn more discriminative features, which could impact

the efficacy of the transformer modules and Gz(·). We demonstrate the benefit

of these design decisions in ablation studies (Sec. 8.5.5).

8.4 Experimental Details

8.4.1 Baselines

CATNet437 is a context-aware two-stream object recognition model. It processes

the visual features of a cropped target object and context in parallel, dynami-

cally incorporates object and contextual information by constantly updating its

attention over image locations, and sequentially reasons about the class label for

the target object via a recurrent neural network.

Faster R-CNN308 is an object detection algorithm. We adapted it to the context-

aware object recognition task by replacing the region proposal network with the

ground truth bounding box indicating the location of the target object.

DenseNet171 is a 2D-CNN with dense connections that takes the cropped tar-

get object patch It as input.

169



(a) OCD (b) Cut-and-
paste

(c) UnRel

(d) Schematic of human psychophysics experiment

Figure 8.2: Datasets and psychophysics experiment scheme. (a-c) Example images for each
dataset. The red box indicates the target location. In (a), two contextual modifications
(gravity and size) are shown. In (b), the same target object is cut and pasted into either in-
congruent or congruent conditions. (c) consists of natural images. (d) Subjects were presented
with a fixation cross (500 ms), followed by a bounding box indicating the target object loca-
tion (1000 ms). The image was shown for 200 ms. After image offset, subjects typed one word
to identify the target object.

8.4.2 Datasets

Out-of-context Dataset (OCD)

Our out-of-context dataset (OCD) contains 36 object classes, with 15,773 test

images of complex and rich scenes in 6 contextual conditions (described below).

We leveraged the VirtualHome environment295 developed in the Unity simula-

tion engine to synthesize these images in indoor home environments within 7

170



apartments and 5 rooms per apartment. These rooms include furnished bed-

rooms, kitchens, study rooms, living rooms and bathrooms295 (see Fig. ?? for

examples). We extended VirtualHome with additional functionalities to ma-

nipulate object properties, such as materials and scales, and to place objects

in out-of-context locations. The target object is always centered in the camera

view; collision checking and camera ray casting are enabled to prevent object

collisions and occlusions.

Normal Context and No Context: There are 2,309 images with normal con-

text (Fig. ??b), and 2,309 images for the no-context condition (Fig. ??g). For

the normal context condition, each target object is placed in its “typical” loca-

tion, defined by the default settings of VirtualHome. We generate a correspond-

ing no context image for every normal context image by replacing all the pixels

surrounding the target object with either uniform grey pixels or salt and pepper

noise.

Gravity: We generated 2,934 images where we move the target object along

the vertical direction such that it is no longer supported (Fig. ??c). To avoid

cases where objects are lifted so high that their surroundings change completely,

we set the lifting offset to 0.25 meters.

Object Co-occurrences: To examine the importance of the statistics of ob-

ject co-occurrences, four human subjects were asked to indicate the most likely

rooms and locations for the target objects. We use the output of these responses

to generate 1,453 images where we place the target objects on surfaces with

lower co-occurrence probability, e.g. a microwave in the bathroom and Fig. ??d.

171



Object Co-occurrences + Gravity: We generated 910 images where the ob-

jects are both lifted and placed in unlikely locations. We chose walls, windows,

and doorways of rooms where the target object is typically absent (Fig. ??e).

We place target objects at half of the apartment’s height.

Size: We created 5,858 images where we changed the target object’s size to

2, 3, or 4 times its original size while keeping the remaining objects in the scene

intact (Fig. ??f).

Real-world Out-of-context Datasets

The Cut-and-paste dataset437 contains 2,259 out-of-context images spanning 55

object classes. These images are grouped into 16 conditions obtained through

the combinations of 4 object sizes and 4 context conditions (normal, minimal,

congruent, and incongruent) (Fig. 8.2b).

The UnRel289 Dataset contains more than 1,000 images with unusual rela-

tions among objects spanning 100 object classes. The dataset was collected from

the web based on triplet queries, such as “dog rides bike” (Fig. 8.2c).

8.4.3 Performance Evaluation

Evaluation of Computational Models: We trained the models on natural images

from COCO-Stuff48 using the annotations for object classes overlapping with

those in the respective test set (16 overlapping classes between VirtualHome

and COCO-Stuff, 55 overlapping classes between Cut-and-paste and COCO-

Stuff and 33 overlapping classes between UnRel and COCO-Stuff). The models

172



were then tested on OCD, the Cut-and-paste dataset, UnRel, and on a COCO-

Stuff test split.

Behavioral Experiments: We evaluated human recognition on OCD and the

Cut-and-paste dataset, as schematically illustrated in Fig. 8.2d, on Amazon Me-

chanical Turk (MTurk)384. We recruited 400 subjects per experiment, yielding

≈ 67, 000 trials. To avoid biases and potential memory effects, we took several

precautions: (a) Only one target object from each class was selected; (b) Each

subject saw each room only once; (c) The trial order was randomized.

Computer vision and most psychophysics experiments enforce N-way catego-

rization (e.g.363). Here we used a more unbiased probing mechanism whereby

subjects could use any word to describe the target object. We independently

collected ground truth answers for each object in a separate MTurk experiment

with infinite viewing time and normal context conditions. These Mturk subjects

did not participate in the main experiments. Answers in the main experiments

were then deemed correct if they matched any of the ground truth responses437.

A completely fair machine-human comparison is close to impossible since hu-

mans have decades of visual+ experience with the world. Despite this caveat,

we find it instructive to show results for humans and models on the same im-

ages. We tried to mitigate the differences in training by focusing on the qualita-

tive impact of contextual cues in perturbed conditions compared to the normal

context condition. We also show human-model correlations to describe their rel-

ative trends across all conditions.

173



Figure 8.3: The CRTNet model exhibits human-like recognition pat-
terns across contextual variations in our OCD dataset. Different colors
denote contextual conditions (Sec. 8.4.2, Fig. ??). We divided the
trials into two groups based on target object sizes in degrees of visual
angle (dva). Error bars denote the standard error of the mean (SEM).

OCD Overall
CRTNet (ours) 0.89

Baselines
CATNet437 0.36

Faster R-CNN308 0.73
DenseNet171 0.66

Ablations
Ablated-SharedEncoder 0.84

Ablated-TargetOnly 0.89
Ablated-Unweighted 0.83

Ablated-NoDetachment 0.88

Table 8.1: Linear correlations
between human and model per-
formance over 12 contextual
conditions.

174



8.5 Results

8.5.1 Recognition in our OCD Dataset

Figure 8.3 (left) reports recognition accuracy for humans over the 6 context con-

ditions (Sec. 8.4.2, Fig. ??) and 2 target object sizes (total of 12 conditions).

Comparing the no-context condition (white) versus normal context (black), it is

evident that contextual cues lead to improvement in recognition, especially for

smaller objects, consistent with previous work 437.

Gravity violations led to a reduction in accuracy. For small objects, the grav-

ity condition was even slightly worse than the no context condition; the un-

usual context can be misleading for humans. The effects were similar for the

changes in object co-occurrences and relative object size. Objects were enlarged

by a factor of 2, 3, or 4 in the relative size condition. Since the target object

gets larger, and because of the improvement in recognition with object size, we

would expect a higher accuracy in the size condition compared to normal con-

text. However, increasing the size of the target object while keeping all other

objects intact, violates the basic statistics of expected relative sizes (e.g., we ex-

pect a chair to be larger than an apple). Thus, the drop in performance in the

size condition is particularly remarkable and shows that violation of contextual

cues can override basic object recognition.

Combining changes in gravity and in the statistics of object co-occcurrences

led to a pronounced drop in accuracy. Especially for the small target objects,

violation of gravity and statistical co-occurrences led to performance well below

175



that in the no context condition.

These results show that context can play a facilitatory role (compare nor-

mal versus no context), but context can also impair performance (compare

gravity+co-occurrence versus no context). In other words, unorthodox contex-

tual information hurts recognition.

Figure 8.3 (right) reports accuracies for CRTNet. Adding normal contex-

tual information (normal context vs no context) led to an improvement of 4%

in performance for both small and large target objects. Remarkably, the CRT-

Net model captured qualitatively similar effects of contextual violations as those

observed in humans. Even though the model performance was below humans in

absolute terms (particularly for small objects), the basic trends associated with

the role of contextual cues in humans can also be appreciated in the CRTNet

results. Gravity, object co-occurrences, and relative object size changes led to a

decrease in performance. As in the behavioral measurements, these effects were

more pronounced for the small objects. For CRTNet, all conditions led to worse

performance than the no context condition for small objects.

8.5.2 Recognition in the Cut-and-paste Dataset

Synthetic images offer the possibility to systematically control every aspect of

the scene, but such artificial images do not follow all the statistics of the nat-

ural world. Therefore, we further evaluated CRTNet and human performance

in the naturalistic settings of the Cut-and-paste dataset437 (see Table 8.2). The

CRTNet model yielded results that were consistent with, and in many condi-

176



tions better than, human performance. As observed in the human data, per-

formance increases with object size. In addition, the effect of context was more

pronounced for smaller objects (compare normal context (NC) versus minimal

context (MC) conditions).

In accordance with previous work437, compared to the minimal context con-

dition, congruent contextual information (CG) typically enhanced recognition

whereas incongruent context (IG) impaired performance. Although the con-

gruent context typically shares similar correlations between objects and scene

properties, pasting the object in a congruent context led to weaker enhancement

than the normal context. This lower contextual facilitation may be due to erro-

neous relative sizes between objects, unnatural boundaries created by pasting,

or contextual cues specific to each image. CRTNet was relatively oblivious to

these effects and performance in the congruent condition was closer to that in

the normal context condition whereas these differences were more striking for

humans. In stark contrast, incongruent context consistently degraded recogni-

tion performance below the minimal context condition for both CRTNet and

humans.

8.5.3 Recognition in the UnRel Dataset

The Cut-and-paste dataset introduces artifacts (such as unnatural boundaries

and erroneous relative sizes) due to the cut-and-paste process. Therefore, we

also evaluated CRTNet on the UnRel dataset289. We use the performance on

the COCO-Stuff48 test split as reference for normal context in natural images.

177



CRTNet showed a slightly lower recognition accuracy in the out-of-context set-

ting (Fig. 8.4).

8.5.4 Comparison with Baseline Models

Performance Evaluation: Although Faster R-CNN and CATNet leverage global

contextual information, CRTNet outperformed both models, especially on small

objects (OCD: Fig. 8.3 and Supp. Fig. S7-S8; Cut-and-Paste: Table8.2; UnRel:

Fig. 8.4). Furthermore, Table 8.1 shows that CRTNet’s performance pattern

across the different OCD conditions is much more similar to the human perfor-

mance pattern (in terms of correlations) than the other baseline models.

Figure 8.4: CRTNet surpasses all baselines in both normal (COCO-Stuff48) and out-of-
context (UnRel289) conditions.

Architectural Differences: While all baseline models can rely on an intrinsic

notion of spatial relations, CRTNet learns about spatial relations between tar-

get and context tokens through a positional embedding. A visualization of the

learned positional embeddings (Supp. Fig. S1) shows that CRTNet learns image

topology by encoding distances within the image in the similarity of positional

178



Size [0.5, 1] dva Size [1.75, 2.25] dva Size [3.5, 4.5] dva Size [7, 9] dva
NC CG IG MC NC CG IG MC NC CG IG MC NC CG IG MC

Humans 56.0 18.8 5.9 10.1 66.8 48.6 22.3 38.9 78.9 66.0 38.8 62.0 88.7 70.7 59.0 77.4
437 (2.8) (2.3) (1.3) (1.7) (2.7) (2.8) (2.4) (2.8) (2.4) (2.7) (2.6) (2.8) (1.7) (2.6) (2.8) (2.3)

CRTNet 50.2 43.9 10.6 17.4 78.4 81.4 41.2 56.7 91.5 87.3 51.1 76.6 92.9 87.7 66.4 83.0
(ours) (2.8) (2.8) (1.7) (2.1) (3.0) (2.8) (3.5) (3.6) (1.1) (1.3) (1.9) (1.6) (0.9) (1.2) (1.7) (1.4)

CATNet 37.5 29.2 3.6 6.1 53.0 46.5 10.9 22.1 72.8 71.2 24.5 38.9 81.8 78.9 47.6 74.8
437 (4.0) (2.4) (1.0) (2.0) (4.1) (2.5) (1.6) (3.6) (3.6) (2.4) (2.2) (3.9) (3.0) (2.1) (2.6) (3.5)

Faster R-CNN 24.9 10.9 5.9 7.2 44.3 27.3 20.1 16.5 65.1 53.2 39.0 42.9 71.5 64.3 55.0 64.6
308 (2.4) (1.7) (1.3) (1.4) (3.6) (3.2) (2.9) (2.7) (1.8) (1.9) (1.9) (1.9) (1.6) (1.7) (1.8) (1.7)

DenseNet 13.1 10.0 11.2 12.5 45.4 42.3 39.7 46.4 67.1 62.3 55.4 67.1 74.9 67.2 63.5 74.9
171 (1.9) (1.7) (1.8) (1.8) (3.6) (3.5) (3.5) (3.6) (1.8) (1.9) (1.9) (1.8) (1.6) (1.7) (1.7) (1.6)

Table 8.2: Recognition accuracy of humans, the CRTNet model, and three different baselines
on the Cut-and-paste dataset437. There are 4 conditions for each size: normal context (NC),
congruent context (GC), incongruent context (IG) and minimal context (MC) (Sec. 8.4.2).
Bold highlights the best performance. Numbers in brackets denote the standard error of the
mean.

embeddings.

In CATNet, the attention map iteratively modulates the extracted feature

maps from the context image at each time step in a recurrent neural network,

whereas CRTNet uses a stack of feedforward transformer decoder layers with

multi-head encoder-decoder attention. These decoder layers hierarchically inte-

grate information via attention maps, modulating the target token features with

context.

DenseNet takes cropped targets as input with only a few surrounding pixels

of context. Its performance dramatically decreases for smaller objects, which

also results in lower correlation with the human performance patterns. For ex-

ample, in the Cut-and-paste dataset, CRTNet outperforms DenseNet by 30% for

normal context and small objects (Table 8.2) and in OCD, DenseNet achieves a

correlation of 0.66 vs. 0.89 for CRTNet (Table 8.1).

179



8.5.5 Ablation Reveals Critical Model Components

We assessed the importance of design choices by training and testing ablated

versions of CRTNet on the OCD dataset.

Shared Encoder: In the CRTNet model, we trained two separate encoders

to extract features from target objects and the context respectively. Here, we

enforced weight-sharing between these two encoders (Ablated-SharedEncoder)

to assess whether the same features for both streams are sufficient to reason

about context. The results (Table 8.1, Supp. Fig. S3) show that the ablated

version achieved a lower recognition accuracy and lower correlation with the

psychophysics results.

Recognition Based on Target or Context Alone: In the original CRTNet model,

we use the confidence-weighted prediction yp. Here, we tested two alternatives:

CRTNet relying only on the target object (yt, Ablated-TargetOnly) and CRT-

Net relying only on contextual reasoning (yt,c, Ablated-Unweighted). The origi-

nal model benefits from proper contextual information compared to the target-

only version but it is slightly more vulnerable to some of the context perturba-

tions as would be expected. It consistently outperforms the context-only version

demonstrating the usefulness of the confidence-modulation mechanism.

Joint Training of the Target Encoder: In Sec. 8.3.6, we use gradient detach-

ments to make the training of the target encoder Et(·) independent of Gt(·) such

that it cannot force the target encoder to learn more discriminative features.

Here we remove this constraint (Ablated-NoDetachment, Supp. Fig. S6). The

results are inferior to the ones of our original CRTNet, supporting the use of the

180



gradient detachment method.

8.6 Conclusion

We introduced the OCD dataset and used it to systematically and quantita-

tively study the role of context in object recognition. OCD allowed us to rig-

orously scrutinize the multi-faceted aspects of how contextual cues influence

visual recognition. We conducted experiments with computational models and

complemented them with psychophysics studies to gauge human performance.

Since the synthetic images in OCD can still be easily distinguished from real

photographs, we addressed potential concerns due to the domain gap with ex-

periments on two additional datasets consisting of real-world images.

We showed consistent results for humans and computational models over all

three datasets. The results demonstrate that contextual cues can enhance visual

recognition, but also that the “wrong” context can impair visual recognition

capabilities both for humans and models.

We proposed the CRTNet model as a powerful and robust method to make

use of contextual information in computer vision. CRTNet performs well com-

pared to competitive baselines across a wide range of context conditions and

datasets. In addition to its performance in terms of recognition accuracy, CRT-

Net’s performance pattern was also found to resemble human behavior more

than that of any baseline model.

Acknowledgements This work was supported by NIH R01EY026025 and the Center

for Brains, Minds and Machines, funded by NSF STC award CCF-1231216. MZ is

181



supported by a postdoctoral fellowship of the Agency for Science, Technology and Re-

search. We thank Leonard Tang, Jeremy Schwartz, Seth Alter, Xavier Puig, Hanspeter

Pfister, Jen Jen Chung, and Cesar Cadena for useful discussions and support.

182



9
Human or Machine? Turing tests for

LLMs and Vision.

183



9.1 Introduction

Current computer vision and language models excel in a wide range of tasks

such as image captioning398,399,227,259,mic, text generation 17,288,302,43,282,338,130,7,366,

object recognitionmic,411,160,162,25,272,65 , and attention prediction436,142,152. De-

veloping state-of-the-art algorithms goes hand-in-hand with the development

of better and more precise ways of assessing their performance. The perfor-

mance of AI algorithms is often defined by comparing the outputs of AI models

against human ground truth annotations. Such metrics are particularly preva-

lent in computer vision, such as in object detection tasks305,232,50. Similarly,

several metrics have been proposed to evaluate image captioning models, such

as BLEU284, THUMB193, and METEOR90 (see also81). Generative AI models

are notoriously difficult to evaluate due to the inherent ambiguities of creating

novel content144,192. Human evaluators are often recruited to assess the quality

of sentiment, semantic relevance, reasoning abilities, or emotional valence on

text generated by large language models94,43,192,140,219,364,184,255,306,181,117,12,351.

The Turing test, also known as the “imitation game”, was proposed by Alan

Turing in 1950 as a way of assessing a machine’s ability to exhibit intelligent

behaviors indistinguishable from those shown by humans383. In the game, a ma-

chine tries to pass as a human during a conversation, and a human judge de-

termines whether they are interacting with a human or not383 (Figure 9.1A).

Since its inception, the Turing test has generated extensive controversy and

discussion. Several notable arguments include Searle’s Chinese room thought

experiment323, Block’s behaviorism36, Harnad’s Total Turing Test154, Watt’s In-

verted Turing Test403, Damassino’s Questioning Turing Test84 and Sejnowski’s

Reverse Turing Test324. In parallel with the unbounded optimistic attitudes to-

184



wards AI in the 1960s and the sober realization of the immense difficulties in AI

afterward, many in the scientific community have shifted away from the ques-

tion of whether the Turing test is a valid and meaningful measure of intelligence

(e.g.,210,159,296,138,139,68 among others) to focus instead on average performance

metrics for AI algorithms. Distinct from these discussions, the purpose of our

work is not to argue in favor or against Turing tests as a measure of general in-

telligence. Instead, we consider Turing-like tests as a quantitative evaluation of

how well current AIs can imitate humans155,156,157,184,140.

The key target of the original Turing test focused on conversations. Gener-

ating human-like text during conversations remains a daunting challenge for

AI with exciting progress. There have been numerous early attempts at gen-

erating restricted topics during conversations, such as Colby’s PARRY sim-

ulating a paranoid schizophrenic74,75 and Weizenbaum’s ELIZA simulating a

psychiatrist404. However, none of these models have come close to unrestricted

Turing tests. Advances in large language models94,43,76,339,366,17,7,378,15,250 have

led news and social media to produce anecdotal claims about current AI be-

ing sentient in conversationsWertheimer,Tiku,Maruf. However, few studies rigorously

and quantitatively assessed AIs in their ability to imitate humans in conversa-

tions442,184,255,181,351.

AI models can show similar average performance to humans in narrow tasks

and standard benchmarks, or even outperform humans, and still be distinguish-

able from humans. For example, both humans and algorithms could be wrong

when labeling an image, but they could be wrong in different ways. In language

tasks, humans and algorithms could provide adequate answers, yet the answers

may be different. Turing tests provide a unique and distinct assessment of AI

models as imitators of human behavior, extending and complementing current

185



benchmark frameworks. As AI algorithms continue to blossom in the real world,

it is becoming increasingly important for lay people, law professionals, clini-

cians, politicians, and other experts to ascertain whether the agent they are

interacting with is a human or not. For example, the inability to distinguish

real news from AI-generated fake news or DeepFakes406 can have disastrous im-

plications for electoral campaigns 406,147. Additionally, criminals are increasingly

using AI-generated conversations to make phishing scams more convincing and

such scams have even started overtaking other types of physical crimes6,5,335. To

mitigate these issues, the AI community has started developing models to dis-

cern whether the generated perceptual inputs come from humans or AIs164,140,

including DeepFake detection on images337, and GROVER models on fake news

detection432. Cui et al. proposed a learned critique model acting as a human

judge to perform a Turing Test in image captioning tasks81.

Here we set out to systematically and quantitatively investigate the ability

of current language and vision algorithms to imitate humans. To this end, we

present an integrative benchmark encompassing a wide range of standard and

well-established AI tasks across both language and vision. Motivated by the

recognition that each AI task measures only a narrow aspect of human intelli-

gence and is incomplete in isolation, we combine these tasks into one integra-

tive benchmark. This approach aims to provide a more holistic assessment of

the abilities to emulate human-like performance across various domains. We

start by creating an extensive benchmark dataset of 7,100 answers from 549 hu-

man participants across different demographic groups and 26 AI models in 3

language tasks (Image captioning, Word associations, Conversations), and 3 vi-

sion tasks (Color estimation, Object detection, and Attention prediction). These

tasks were chosen to span a typical and wide range of real-world applications

186



(Fig. 9.1, Table Supp..1). Next, we systematically evaluated the ability of 1,126

human judges to discern whether task answers come from humans or AI in Tur-

ing tests, showing that current algorithms are remarkably adept at imitating

humans under restricted testing conditions. Finally, as a proof-of-principle, we

show that even though human judges may partially struggle to distinguish hu-

man answers, simple machine learning algorithms can serve as AI judges and

vastly outperform human judges in Turing tests.

9.2 Results

We conducted 6 Turing tests, including 3 vision tests and 3 language tests. We

focus first on the 3 language tests: Image captioning, Word association, and

Conversations. In the last part of the results, we present results for the 3 vision

tests: Object detection, Color estimation, and Attention prediction.

Collection of human and AI agent responses in language tasks

In order to conduct Turing tests, we first compiled datasets of responses from

human participants (labeled H throughout) and AI machine models (henceforth

referred to as M) (Fig. Supp.58, Methods). Several controls were introduced

in each task to ensure the quality of the responses (Methods). These responses

were then assessed in Turing tests to determine if an independent group of hu-

man judges or AI judges were able to differentiate between human and AI re-

sponses (Fig. 9.1A). We also collected basic demographic information about

each participant (Fig. 9.1B).

We start by describing the dataset of responses by human and AI agents for

each task. In the Image captioning task, participants and AI models were pre-

187



sented with an image and asked to provide a caption for it (Fig. Supp.58A). We

collected responses to 1,000 images from 229 Amazon Mechanical Turk (AMT)

participants and 5 AI models (Table Supp..1). Demographic information about

the participants is shown in Fig. Supp.59A,C. Example responses from human

participants and each one of the 5 AI models are shown in Fig. 9.2A,B.

We considered two slightly different versions of the Word association task.

In one version participants were presented with a cue word and asked to pro-

vide a single word association (Fig. Supp.58B1). In the second version, partici-

pants were presented with a short prompt containing example word associations

and a cue word and they were then asked to provide a single word association

(Fig. Supp.58B2). As the results were similar for the two versions, we merged

the datasets. We collected responses to 1,500 prompts across the two task ver-

sions from 40 AMT participants and 5 AI models (Table Supp..1). Demographic

information about the participants is shown in Fig. Supp.59E,G. Example re-

sponses from human participants and each one of the 5 AI models are shown in

Fig. 9.2C.

In the Conversation task, two agents engaged in a dialogue via text messages.

Each agent could be a human or an AI model. Thus, we collected human-human

conversations, human-machine conversations, and machine-machine conversa-

tions (Fig. Supp.58C). Each conversation had a total of 30 entries, 15 from each

agent. Agents were unaware of whether they were conversing with another hu-

man or with an AI model. Human agents were told that they would engage in

a brief conversation about different topics and participated via a public chat-

ting platform where investigators acted as intermediaries to pass messages be-

tween agents (Methods). We collected a total of 82 conversations (each one with

30 entries) from 150 participants. Demographic information about the partici-

188



pants is shown in Fig. Supp.59I,K. We collected 320 responses from 6 AI models

(Table Supp..1). The prompts used for each AI model are shown in the Meth-

ods section. Example conversations can be seen in Fig. 9.2D and Supplementary

Section S24.

Operational definition of Turing tests

Once responses from human agents and AI agents were collected for each task,

an independent set of participants was recruited for the Turing tests. We re-

fer to our tests as Turing-like to emphasize that they are not identical to the

original Turing definitions383 (Discussion). During each Turing test, we col-

lected human answers on AMT, Prolific (another large online crowd-sourcing

platform), or in the lab. We presented a single instance of the answers and

asked participants to indicate whether the answer came from a human or an AI

agent (Fig. 9.1C, D, E). We also collected demographic information about the

participants as metadata, including age, gender, and educational background

(Fig. 9.1B). The trial order was always randomized with half of the trials con-

taining responses from human agents, and the other half containing responses

from AI agents. We introduced multiple controls to ensure the quality of the re-

sponses collected in each Turing test experiment (Methods). Additionally, we

also trained computational models to act as AI judges to determine whether a

particular answer came from a human or not (Methods).

AI models are close to passing three language Turing tests

For each Turing test, the ground truth response could come from a human agent

(H) or a machine (M). The judge indicated H or M in a two-alternative forced-

189



choice manner. We report confusion matrices where the diagonals show the

proportion of trials where judges indicated H given that the ground truth was

H (p(H|H)), and the proportion of trials where judges indicated M given that

the ground truth was M (p(M|M)) (Fig. 9.3A, B, C). Non-diagonal elements

show p(M|H) (the probability that agents indicated M when the ground truth

was H) and p(H|M) (the probability that agents indicated H when the ground

truth was M). Entries within each row add up to 1. When comparing different

AI models for a given task in terms of their ability to imitate humans, values

closer to 0.5 for p(H|H) and p(M|M) indicate better imitator models. In con-

trast, when comparing different judges (e.g., human versus AI judges, or human

judges of different ages or educational backgrounds), higher probabilities p(H|H)

and p(M|M) departing from 0.5 indicate better judges. We summarize the con-

fusion matrices in a single number by defining the overall imitation detectability

as 1
2(p(H|H) + p(M|M)), ranging from 0.5 (good imitator) to 1.0 (poor imitator).

We summarize the results of the Turing tests for each task for human judges

in Fig. 9.3A, B, C, by averaging across all AI models and all human judge de-

mographics. In the image captioning task, human judges distinguished human

captions as human 67% of the time and AI captions as AI 46% of the time (Fig. 9.3A).

We worried that AMT participants could be poor judges. Therefore, we re-

peated the Turing experiments in person in our lab (Fig. Supp.60A). Despite

our initial concerns, the results from in-person experiments were comparable to

those obtained from AMT participants.

There were rather large differences among AI models (Fig. Supp.61A), with

proportions of AI captions labeled AI ranging from 37% (BLIP) to 60% (Clip-

Cap). GIT398, OFA399, and BLIP227 are recent transformer-based models and

are good at fooling human judges (Fig. Supp.61A). In contrast to ClipCap which

190



is only trained in the Image captioning task, the above three models are genera-

tive unified transformer frameworks, trained on multiple tasks (such as image-

text retrieval and visual question answering). This suggests that multi-task

training aids models to generate human-like captions. The set of images in-

cluded MSCOCO images64 and out-of-domain nocaps images11 which contain

object classes that are visually distinct from those in MSCOCO. Despite these

differences, there was no statistically significant difference between out-of-domain

nocaps images and in-domain nocaps images, even for models like GIT, OFA,

and BLIP which were fine-tuned on MSCOCO (Fig. Supp.63) Moreover, on out-

of-domain nocaps images, BLIP outperformed all other models in the Turing

tests.

In the Word associations task, human judges labeled human word associa-

tions as humans 58% of the time and AI word associations as AI 47% of the

time (Fig. 9.3B). The results of in-person experiments were comparable to those

from AMT participants (Fig. Supp.60B). Among all the AI models, Word2Vec

showed the poorest performance in fooling human judges (p(M|M) = 0.58).

GPT3 (prompt davinci) outperformed the other models (p(M|M) = 0.41),

Fig. Supp.61C).

In the Conversation task, judges distinguished human participants in con-

versations as humans 66% of the time and AI agents as AI 47% of the time

(Fig. 9.3C, Supp.61E, Supp.60C). We repeated the experiments on the AMT

platform, the Prolific platform, and also in the lab. In contrast to the previous

two tasks, here it was slightly more difficult to fool the in-person participants

compared to the Prolific participants or the AMT participants (Fig. Supp.60C).

We separately considered human-human, human-AI, and AI-AI conversations

(Fig. Supp.61E). Surprisingly, human-human conversations were classified as

191



human only 64% of the time and AI-AI conversations were classified as human

57% of the time. Blenderbot was classified as human 67% of the time in AI-

AI conversations, suggesting that AIs can be perceived as more human than

humans themselves. In human-AI conversations, human participants were la-

beled as humans 68% of the time, and AIs were classified as AI 56% of the time.

Judges were more likely to identify machine answers in AI-AI conversations

than in human-AI conversations, suggesting that AIs reveal their true self more

often when talking to humans than amongst themselves. This observation is

consistent with the notion that judges are more accurate in making compar-

isons rather than absolute evaluations. When comparing different AI models,

Blenderbot was more frequently labeled as human, 67% of the time, in AI-AI

conversations than in human-AI conversations, 49% of the time (Fig. Supp.61E).

The results with ChatGPT version 3.57 showed that this model is a slightly

worse imitator than Blenderbot (higher imitation detectability) and a better

imitator than most of the other models in imitation detectability (Fig. Supp.62,

compare to Fig. Supp.60C and Fig. Supp.61E).

Next, we investigated whether and to what extent the results of the Turing

tests depend on the length of the conversation (Fig. Supp.64). There was only a

very slight increase in judges’ ability to correctly detect humans as humans with

increasing conversation length across all conversations (Fig. Supp.64A), which

was hardly noticeable when splitting the results into human-AI conversations

(Fig. Supp.64B) and human-human conversations (Fig. Supp.64C). Addition-

ally, there was a slight decrease in the probability of fooling judges into labeling

machine answers as humans across all conversations (Fig. Supp.64A), in human-

AI conversations (Fig. Supp.64B), and in AI-AI conversations (Fig. Supp.64D).

This dependence on conversation length was particularly noticeable for the AI-

192



AI conversations using the GPT3Curie model (Fig. Supp.64D). These obser-

vations highlight that model sizes, specific training on conversation data, and

incorporation of external memory modeling past conversation history are impor-

tant factors when imitating humans in conversations.

We subdivided the results based on the judges’ sex and education level (Fig. Supp.59).

Combined averaging across all AI models, there were no significant differences

in judges’ performance between males and females for the Image captioning task

(Fig. Supp.59B), the Word association task (Fig. Supp.59F), or the Conversa-

tion task (Fig. Supp.59J). Similarly, averaging across all AI models, we did not

detect any significant differences based on the judges’ educational level for the

Image captioning task (Fig. Supp.59D), the Word association task (Fig. Supp.59H),

or the Conversation task (Fig. Supp.59L).

To summarize the results, we computed the overall imitation detectability,

as the average of p(H|H) and p(M|M). A bad imitator would yield p(H|H) =

p(M|M) = 1 and therefore an overall imitation detectability of 1.0, whereas a

good imitator would yield p(H|H) = p(M|M) = 0.5 and therefore an overall

imitation detectability of 0.5. The overall imitation detectability was 0.57 for

the Image captioning task, 0.53 for the Word association task, and 0.57 for the

Conversation task. The results show that current algorithms are not far from

passing the Turing tests under the conditions examined here.

AI agents still fail to pass an online Turing Conversation task test

Despite the laudable progress in developing large language models, we were sur-

prised by how close these algorithms were to imitating humans in an offline

conversation of up to fifteen exchanges. To better evaluate language models in

193



conversation in an online format closer to the original description of the Turing

test, we introduced a mobile Turing application (Fig. Supp.65). Each conversa-

tion involved one human judge, one human agent, and one AI agent (GPT3.5-

Turbo7). Each conversation exchange always started with the human judge ask-

ing a question, followed by independent answers by the human and AI agents

(Methods). Participants were randomly assigned a role as a human judge who

asked questions or a human agent who answered questions.

We constrained the number of exchanges per conversation to be 1, 5, 10,

or 20. In each conversation, the mobile application randomly drew one out of

these four choices and presented this exchange limit to the human judge and

the human agent. After the conversation reached the limit in the number of ex-

changes, the judge was asked to evaluate which of the two sets of answers came

from a human and which came from a machine. In stark contrast with the pre-

vious section, human judges achieved 100% accuracy (Methods) in distinguish-

ing between human and AI agents (Discussion).

Several factors could potentially lead to the discrepancies between the offline

conversations in the previous section and the version described here. First, the

test settings differ. In the previous section, there were two agents involved and

both could ask each other questions. Agents were not asked to identify whether

they were conversing with a human or a machine. Judges passively observed

the fixed conversations offline without actively participating in them or conceiv-

ing captious questions. In contrast, in the online version implemented here, the

judge was deliberately trying to probe agents with the clear goal of discerning

the identities of both agents. Second, in the previous section, the topics were

pre-determined, and centered around opinions on video games, sports, movies,

etc. In contrast, in the current online version implemented here, judges decided

194



on the topics, which could delve into personal aspects such as age, and family.

Despite AI models being assigned randomly generated personal profiles, they

typically struggled to express human values and emotions, facilitating identifi-

cation by human judges. Moreover, advanced scientific topics, such as technical

jargon in chemistry and physics, can serve as a means to discern differences be-

tween human and AI agents. While such terminology may be challenging for lay

humans, AI agents often find it relatively easy to discuss. Third, AIs might re-

veal their identity when asked personal questions, such as “Sorry, I am an arti-

ficial intelligence program. I am unable to answer questions related to politics.”.

Fourth, in the online test implemented here, human agents typed responses on

cell phones, leading to variation in typing amount, speed, and style. This con-

trasts with AI agents, potentially revealing meta clues such as response times.

Despite implementing word limits for AI responses through text prompts and

cutting off extra sentences exceeding the word limits, and despite introducing

delays in the AI responses to approximate the typing speed of humans, dispari-

ties in response lengths and times persist.

We also implemented a variation of the online task where human agents were

asked to be deceitful and attempt to imitate machine answers. Yet, human

judges consistently identified human and AI agents correctly with 100% accu-

racy under these conditions. Human agents struggled to replicate the precise

behavioral patterns of AI agents.

A simple computational model can tell human and AI agents apart

The results presented thus far involve human judges (as in the original Turing

test). It is also of interest to assess whether algorithms can tell human and AI

195



answers apart. As a proof-of-principle to build an AI judge, we used simple

Support Vector Machine (SVM) classifiers to evaluate responses generated by

humans versus AI. The inputs to the AI judges were embeddings extracted from

either words or sentences by different language models (Methods). The SVM

classifier was trained to use these embeddings to classify whether a given answer

came from a human or not. The predicted labels on 10-fold cross-validated data

were compared against the ground truth labels (Fig. 9.3D,E,F).

In the Image captioning task, we used the OpenAI Embeddings API (text-

similarity-curie-001 model) to extract features from captions and trained a lin-

ear SVM to discriminate human versus machine responses. Surprisingly, even

though this classifier did not use image features, this simple AI judge could dis-

cern human answers (p(H|H) = 0.72) and machine answers (p(M|M) = 0.83)

much better than human judges (compare Fig. 9.3A vs. Fig. 9.3D). Similar re-

sults were observed across all the different AI models (Fig. Supp.61B).

In the Word association task, we used the various word embedding from GPT-

series models and Word2Vec as features to train 3 SVM judges (independent

SVM classifiers based on the embedding of each AI model). The results were

similar for these different embeddings and we report the average results here.

This simple AI judge vastly outperformed human judges (compare Fig.9.3E ver-

sus Fig.9.3B). Similar conclusions were drawn across different machine agents

(Fig.Supp.61D). As expected, when training an SVM classifier based on the em-

bedding of the same model whose embedding where also used for generating the

associations, this model classification performance was essentially perfect. For

instance, on the 3rd row on the left confusion matrix in Fig. Supp.61D, the AI

judge trained on Word2Vec embedding indeed perfectly predicted all association

words generated by Word2Vec embeddings as AI. While these cases are good as

196



a sanity check, they should not be considered in the general evaluation of the

AI judges performance. Hence, we trained 3 different SVM and consolidated all

their trials for the final plots to avoid such biases. We also present generaliza-

tion results at the end of this section.

In the Conversation task, we trained a simple SVM judge to distinguish whether

a single sentence in a conversation was from humans or AIs. The results for the

SVM judge are reported in Figs. 9.3F and Supp.61F. Even though the AI judge

evaluated single sentences (whereas human judges evaluated entire conversa-

tions), the simple AI judge achieved similar performance to human judges in de-

tecting human answers (p(H|H) = 0.65 and surpassed human judges in detecting

machine answers (p(M|M) = 0.67. Similar conclusions were drawn for all the

language models evaluated here, with the easiest one to detect being Blenderbot

(which was the hardest one to detect for human judges) and the hardest one to

detect being GPT3Curie (Supp.61F). Human judges likely focus on high-level

conversation understanding rather than single-sentence statistics.

We wondered whether the success of simple AI judges could be attributed to

basic low-level statistics in the generated text. To evaluate this possibility, we

directly compared human answers and AI agent answers in terms of multiple in-

terpretable and computable basic-level properties including the usage frequency

of different parts of speech, punctuation, word frequency, word length, and sen-

tence length (Fig. Supp.66). Overall, there was no clear and systematic way to

distinguish humans from AI agents from such basic properties.

The results presented thus far combine all the different AI agents (always us-

ing cross-validation across different trials). To evaluate the extrapolation capa-

bilities of machine judges, we conducted an across-agent analysis where we eval-

uated their performance under conditions in which they were trained with en-

197



tries created by some agents and tested their performance with entries created

by other AI agents. We conducted two such experiments: “train on one agent,

test on other agents” (Fig. Supp.67A,C,E), and “train on all but one of the

agents, test on the left out agent” (Fig. Supp.67B,D,F). As expected, the over-

all imitation detectability of machine judges in both extrapolation experiments

is lower compared to the accuracy of machine judges trained with responses

from all machine agents (compare Fig. Supp.67 to Fig. 9.3 and Fig. Supp.61).

As expected, the “train on one, test on others” experiment posed greater dif-

ficulty than “train on others, test on one,” resulting in lower overall imitation

detectability (compare Fig. Supp.67A,C,E vs. Fig. Supp.67B,D,F). Notably,

despite the difficulty in generalizing across different AI agents, AI judges ex-

trapolating to classify responses from excluded AI agents still outperformed hu-

man judges in the Image captioning and the Word association tasks. AI judges

did not extrapolate well in the Conversation task, and performed slightly worse

than humans but it should be noted that the AI judges evaluated only single

sentences as opposed to humans who had access to the whole conversation.

To further evaluate the ability of AI judges to extrapolate in the Conversa-

tion task, we considered a pre-trained large language model (ChatGPT,7 and

assessed whether it could identify human versus machine answers in a one-shot

or zero-shot fashion (Methods). We considered two kinds of prompts. In the

zero-shot case, the prompt only included a conversation from the test set and

the model was asked to identify the identities of the two agents (Fig. Supp.68A).

This zero-shot model was not a good machine judge. In the one-shot case, the

prompt included a single conversation example with ground truth human and

machine labels and a test case asking the model to indicate the identities of the

two agents (Fig. Supp.68B). ChatGPT performed well as a judge, with an over-

198



all p(H|H) = 0.59 and p(M|M) = 0.56, worse than the SVM judges in Fig. 9.3F,

but better than the extrapolation results shown in Fig. Supp.67E,F. The perfor-

mance of ChatGPT in the one-shot case was very different in the H-H and M-M

conversations where it was almost at chance levels versus in the H-M conversa-

tions, where it even exceeded the performance of the SVM judges in Fig. 9.3F.

In contrast to the SVM judges which were trained on the entire corpus, the bi-

nary discrimination task is more challenging for one-shot ChatGPT since there

is no explicit training with the task. It is therefore remarkable that even with a

single example, ChatGPT can act as a judge to detect machine answers.

Turing tests are complementary to standard AI model benchmarks

Algorithm performance is often defined by comparing the predicted outputs

of AI models against human ground truth labels. However, higher accuracy

scores in terms of such standard evaluation metrics defined in the AI commu-

nity do not necessarily translate into better imitators. We directly compared

Turing overall imitation detectability to traditional evaluation metrics in the

Image S11Cng task, where there are clearly defined accuracy metrics, BLEU

score284 and CIDEr score399, to assess the quality of AI-generated captions389

(Fig. Supp.69). The results were similar for both BLEU (Fig. Supp.69A) and

CIDEr (Fig. Supp.69B) scores. There are pairs of models that have compara-

ble imitation detectability but differ in their captioning score (e.g., ClipCap and

GIT, BLIP and OFA). Conversely, GIT shows a higher captioning score than

BLIP, but BLIP is a better human imitator based on the imitation detectabil-

ity.

An example is shown in Fig. Supp.69C. The algorithm (GPT4) provided an

199



accurate description of the image. Humans also correctly described the image.

However, the algorithm did not completely imitate how humans interpret this

image, failing to capture some of the key aspects of why the image is striking

(see the descriptions in the caption to Fig. Supp.69C.

Current algorithms are also close to passing Turing tests in vision tasks

While the original formulation and focus of Turing tests has been on language,

it is possible to define Turing tests in many other domains. We extended our

investigations to include Turing tests in three vision tasks: Color estimation

(Fig. Supp.58D), Object detection (Fig. Supp.58E), and Attention prediction

(Fig. Supp.58F). The methodology to collect human responses and AI responses

(Fig. Supp.58,D-F) and to conduct the Turing tests (Fig. Supp.70) followed the

steps described earlier for the three language tasks (Methods, Table Supp..1).

Demographic information about the participants in each vision task is presented

in Fig. Supp.59.

In the Color estimation task, agents were presented with an image and had to

estimate its dominant color. Human judges could correctly distinguish human

answers 55% of the time and AI answers 61% of the time (Fig. Supp.71A). The

Google API was the best imitator with p(M|M) = 0.58. Even though the color

MCCQ is a simple metric, it still achieved a moderately good performance in

fooling humans 34% of the time.

In the Object detection task, participants were asked “What do you see in

this image?” and had to provide three single words as answers. Human judges

could correctly distinguish human answers 53% of the time, and AI answers

63% of the time (Fig. Supp.71C). The Detectron agent (variant with MaskR-

200



CNN161 trained on ImageNet and MS-COCO), performed the best, fooling hu-

man judges 49% of the time, with a large gap from the second best, Google API

(35%). This modern object detection algorithm in computer vision not only

achieves outstanding absolute scores in terms of standard evaluation metrics,

such as mAP308, but its response patterns also closely mimic humans’ by identi-

fying top-3 salient objects in the scene.

There were two variations of the Attention prediction task: (1) participants

freely viewed an image for 12 seconds, shifting their overt attention patterns by

moving their eyes, and (2) participants were presented with a target object and

had to look for that object in an image by moving their eyes (see436 for exper-

iment details). Overall, human judges distinguished human eye movements as

human 63% of the time and AI-generated eye movements as AI 50% of the time

(Fig. Supp.71E). The IVSN model436,435 showed the best performance, fool-

ing human judges 57% of the time. We further evaluated whether the agent’s

goals change the conclusions from Turing tests by considering eye movements in

free viewing versus visual search. Human judges performed 2.5% better during

free-viewing (Fig. Supp.72A) compared to visual search (Fig. Supp.72C). Free-

viewing is mostly driven by pure bottom-up saliency, and it may be easier to

discern scanpath patterns without target-directed modulation. Consistent with

this idea, the bottom-up saliency model GBVS generated more human-like scan-

paths during free-viewing compared to visual search. The performance of the

IVSN model was similar in both tasks, emphasizing the importance of incorpo-

rating both bottom-up and top-down attention mechanisms in computational

models of human attention. The machine judges excelled at distinguishing hu-

man and machine eye movements, except for those eye movements generated by

the IVSN model (Fig. Supp.71F), both in the free viewing task (Fig. Supp.72B)

201



as well as in the visual search task (Fig. Supp.72D).

We examined the impact of human judge demographic information on the

Turing results. Similar to the results reported above for the language tasks,

neither the participant’s sex (Fig. Supp.59N,R,V), nor the participant’s edu-

cational level (Fig. Supp.59O,S,W) correlated with any major difference in the

imitation detectability.

Finally, as a proof-of-principle, we followed the approach described in the lan-

guage tasks to develop simple AI judges to discriminate human from machine

answers. In the Color estimation task, we trained SVM judges using image fea-

tures and text embeddings for the colors (Methods). For the Object detection

task, we trained SVM judges using the text embeddings for the three nouns

describing the images (Methods). In the Attention prediction task, we per-

formed binary discrimination using the 2D coordinates of the first ten fixations

(Methods). Similar to the conclusions drawn in the language tasks, for the Ob-

ject detection task and Attention prediction task, the AI judges easily discrimi-

nated human from machine answers and vastly outperformed human judges. In

the Object detection task, the AI judges achieved p(H|H) = 0.9 and p(M|M) =

0.72 (Fig. Supp.71D). There were large gaps among the different vision models

with the worst imitator being Azure, showing p(M|M) = 0.93. In the Atten-

tion prediction task, the AI judges achieved p(H|H) = 0.79 and p(M|M) = 0.8

(Fig. Supp.71F), revealing even more drastic differences among models, with

the worst imitator being GBVS reaching p(M|M) = 0.94 and the best imitator

being IVSN with p(M|M) = 0.52. In both tasks, the AI judges outperformed

the human judges (compare Fig. Supp.71D,F versus Fig. Supp.71C,E). The re-

sults were different in the Color estimation task. Here the human judges outper-

formed the AI judges (compareFig. Supp.71A versus Fig. Supp.71B).

202



9.3 Discussion

We introduce here a dataset of human answers in 6 common language and vi-

sion tasks to evaluate the ability of algorithms to imitate humans and we also

include answers from current AI algorithms (Fig. Supp.58, Table Supp..1). Us-

ing the human and machine answers, we conduct Turing tests showing that cur-

rent algorithms are not far from being able to imitate humans in these tasks

(Fig. 9.3A-C, Fig. Supp.71A, C, E). In stark contrast to human judges, even

simple machine judges can still distinguish human from machine answers (Fig. 9.3D-

F, Fig. Supp.71B, D, F).

The Turing test has been extensively discussed, and contested, as a means to

assess general intelligence. Our work is not intended as an evaluation of intelli-

gence or to contribute to the discussion of Turing tests to quantify intelligence.

Imitating humans can benefit humanity in many situations where we want to

align machine and human outputs such as in emulating expert decisions. How-

ever, imitating humans can also be used for evil as in the dissemination of fake

information, phishing attempts, or worse. Independently of whether Turing tests

are good or bad metrics of intelligence, it is of high practical importance to as-

sess whether algorithms can imitate humans or not.

One step to mitigate risks from evil human imitators is to build AI judges.

Our results show that even simple AI judges like the ones introduced here can

do a better job than human judges in detecting machine answers for the current

tasks. The results of these AI judges should not be over-interpreted because

AI judges were explicitly trained to classify responses from humans versus AIs,

while human judges were not. This point raises the possibility that humans may

be trained to better recognize machine answers in the future. By and large, hu-

203



mans have lived in a world without good human imitators and did not have to

worry too much about this possibility other than in famous works of fiction.

This situation is changing rapidly and may lead to an arms race among the de-

velopment of better imitator algorithms, better detector algorithms, and educat-

ing human judges.

An algorithm’s ability to imitate humans does not necessarily correlate with

traditional performance metrics like accuracy. Consider a simple scenario of

an image with a highly occluded dog that is hard to see and both machines

and humans interpret the object to be a “wolf”. Both would be wrong, but the

machine would be adequately imitating humans. Conversely, the example in

Fig. Supp.69C for the Image captioning task shows that both an algorithm and

humans can provide correct answers but the algorithm does not fully imitate

how humans interpret the image. Turing tests provide a complementary assess-

ment of AI models to existing benchmarking frameworks. Comparisons between

models in Turing tests also provide insights helpful for developing future AI

models that can better align with humans.

These evaluations are “Turing-like”, i.e., they are not identical to Turing’s

original description. Turing did not spell out the implementation details of his

tests, perhaps because he did not imagine that they could be truly evaluated

only a few decades later. The datasets and evaluations introduced here are

extensive (25,650 Turing test trials, 549 humans contributing to the dataset,

and 1,126 human judges), but they barely scratch the surface of what needs

to be evaluated. There are essentially infinite possible Turing tests. Each algo-

rithm/task can be evaluated in terms of imitation capabilities and even within a

certain task, there are multiple ways of instantiating a Turing test. The results

of a Turing test depend on the task, the algorithm, how the question is formu-

204



lated, the characteristics of the human judge, and many other variables. Such

variations are particularly evident in the context of conversation tasks where

the topic, medium, length, format, instructions, agent and judge expertise, and

agent and judge demographics, can lead to different results255,192,140,184,306,181.

These results further emphasize the importance of an integrative benchmark,

demonstrating that findings from each task must be combined to achieve a

holistic comparison.

This work provides a comprehensive, yet certainly far from exhaustive, evalu-

ation of current AI models in terms of human emulation. These efforts pave the

way for the research community to expand Turing tests to other research areas,

to build better imitators when mimicking humans is desirable, and to develop

better imitation detectors when mimicking humans is deemed dangerous. As

more AI models can blend in among humans, taking over tasks that were origi-

nally unique yardsticks of our cognitive abilities, we must ponder what makes us

humans and whether we are mentally, ethically, and legally ready for the rapid

revolution brought forth by AI technologies that can emulate humans.

9.4 Methods

General considerations

We provide details about each of the 6 tasks in the next section. For each task,

we created a dataset consisting of answers from human agents (H) or AI ma-

chine agents (M). We conducted Turing tests using those answers both in the

lab and also using two online platforms: Amazon Mechanical Turk (AMT), and

Prolific. All AMT experiments were based on “master” workers with at least

1,000 approved hits, and 95% approval rate. Participants were given as much

205



time as needed to complete the tasks. We only considered participants whose

native language is English. Table Supp..1 shows the number of stimuli, number

of Turing tests, dataset sources, and AI machine models used in each task.

During each Turing test, we presented a single stimulus and answer. Judges

had to indicate in a two-alternative forced-choice manner whether the answer

came from a human or a machine (Fig. 9.1). Half of the time, the answer was

from a human. The other half of the time, the answer was from a machine,

sampling with equal probability from one of the different computational mod-

els used for each task (discussed below for each task, Tables Supp..1). The trial

order was randomized. No feedback was provided to the participants. Addi-

tional control trials were introduced for each specific task to ensure compliance

(discussed separately below for each task). We also collected demographic infor-

mation about the participants as metadata, including their native language, age,

gender, educational background, and country of origin (Fig. 9.1B). The partic-

ipant demographics and the dependence of the results on the participant’s de-

mographics are shown in Fig. Supp.59. We do not show results separately for

different age groups because most participants were approximately in the same

age group.

Image captioning

Dataset, human agents. We randomly sampled 250 images each from in-domain,

near-domain, and out-of-domain categories from the validation set of the NO-

CAPS dataset11 and 250 images from the MSCOCO test set233, creating a set

of 1,000 images. We collected 2,290 human captions with ≥ 6 words per cap-

tion and ≥ 2 captions per image from Amazon Mechanical Turk (AMT) par-

206



ticipants. Our AMT interface is shown in Fig. Supp.58A and was inspired by

the MSCOCO captions data collection interface64. We provided the following

instructions to each participant:

Describe all the important parts of the scene.

The description should contain at least 6 words.

Avoid making spelling errors in the description.

Do not describe unimportant details.

Do not use any special characters like !, #, $, etc.

Do not start the sentence with ‘‘There is’’ or ‘‘There are’’.

Do not write your descriptions as ‘‘An image containing ...’’, ‘‘A photo of ...’’, etc.

Do not describe things that might have happened in the future or past.

Do not use proper names for people.

Do not describe what a person in the image might say.

After typing in the response, click ‘‘SUBMIT’’ to go to the next image.

During caption collection, we implemented additional controls in our AMT

interface that issued warning popups to the participants. The controls included:

(1) Minimum of 6 words, (2) No special characters. (3) Response time must be

more than 4 seconds, (4) Not more than 4 identical words, (5) Not contain the

words “image” and “photo”, (6) Successive responses cannot be the same.

Dataset, machine agents. To generate AI machine captions, we used GIT398,

OFA399, BLIP227, ClipCap259, and Microsoft’s Azure Cognitive Servicesmic (Table Supp..1).

For open-source models, we used the largest variants finetuned on the COCO

Captions dataset233,64. We collected 5,000 machine captions with 5 captions per

image.

Turing test, human judges. In each trial, a participant was presented with an

207



image and a caption and was asked to indicate in a two-alternative forced-choice

manner whether the caption was generated by a human or a machine (Fig. 9.1C).

We collected responses from 293 AMT participants and 30 in-lab participants.

Demographic information about the participants is shown in Fig. Supp.59A,C.

Each participant was presented with 40 image-caption pairs. We only considered

response times over 3 seconds. We collected a total of 9,400 responses.

Turing test, machine judges. We trained an SVM model for binary classification

(human versus machine) on the dataset of human and machine captions. We

randomly sampled 400 captions from each of the 5 models (see Dataset, machine

agent above) to get 2,000 machine captions and combined them with 2,000

human captions We used the OpenAI API271 to obtain 4,096-dimensional embeddings

(text-similarity-curie-001 model) for each caption as input features to train the

SVM with 10-fold cross-validation and 3 random seeds.

To assess the extrapolation capacity of a machine judge, we introduced two

variations (Fig. Supp.67): (1) Train on one and test on others: we trained an

SVM linear classifier using responses from humans and one machine agent and

tested generalization by distinguishing responses from other machine agents.

For instance, we trained a machine judge to discern between human and BLIP-generated

responses and then tested it on responses from the remaining four machine

agents. (2) Train on others and test on one: we investigated an alternative extrapolation

approach where the SVM linear classifier was trained on responses from humans

and “leave-one-out” machine agents. Subsequently, we evaluated its performance

on responses from the excluded machine agent. For instance, we trained a machine

judge on responses from GIT, OFA, BLIP and ClipCap and later tested the

judge on responses from Microsoft’s Azure Cognitive Services.

208



Word associations

Dataset, human agents. We chose 150 unique cue words (50 nouns, 50 verbs,

and 50 adjectives), spanning a wide range of occurrence frequencies349. Results

are combined across all word types because we did not observe any differences

for distinct parts of speech. For the cue words, we did not include non-English

words, stop words (according to Python nltk), and words with less than 3 letters.

In addition, all verbs were presented in the present tense, and all nouns were

presented in their singular form. The AMT interface to collect associations from

human agents is shown in Fig. Supp.58B1, B2. We followed two procedures:

(1) free associations, whereby participants provided a one-word answer to the

question: “Name a word that you associate with [cue word]?” (Fig. Supp.58B1);

and (2) Prompt based associations, whereby participants completed a prompt

with one word (Fig. Supp.58B2). We analyzed the results for these two procedures

separately and did not find significant differences. Hence, we merged the results

in the analyses. The responses were post-processed by converting all nouns to

their singular forms, transforming verbs to their present tense forms, removing

typos, removing non-alphabetical characters and spaces, and dropping stop

words and words with less than 3 letters. Additionally, association words that

were very similar to the cue word (greater than 60% of one word in the pair

containing the other word such as “grand” and “grandiose”), were disqualified.

Dataset, machine agents. We collected associations from the following language

models: Word2vec 288, GPT2 302, GPT3-embedding (based on davinci embedding),

GPT3-curie-prompt (based on “curie” prompt completion), and GPT3-davinci-prompt

(based on “davinci” prompt completion) 43. The associations of Word2vec,

GPT2, and GPT3-embedding were based on Euclidean proximity to the cue

209



word in the model’s word embedding space. The associations of GPT3 (prompt

curie) and GPT3 (prompt davinci) were based on prompt completion as in the

human agent experiments (Fig. Supp.58B2). The prompts displayed to the

machine agents were identical to those presented to the human agents. As for

the prompts’ creation, we used a held-out set containing human word-pair associations.

This held-out set was not used for Turing tests or any analysis, in order to keep

the associations used for the prompts independent and different from those

collected for the Turing test analyses and to prevent a potential bias in favor

of specific associations. The machine agent responses were limited to one word.

The same post-processing steps applied to the human agent responses were

applied to the machine agent responses.

Turing test, human judges. Participants were presented with a cue word and an

association word and had to indicate in a two-alternative forced-choice manner

whether the association word was produced by a human or a machine (Fig. 9.1D).

We collected responses from 50 participants on AMT and 30 in-lab participants.

Demographic information about the participants is shown in Fig. Supp.59E,G.

We collected a total of 2,773 responses.

Turing test, machine judges. The same set of cue-association pairs used in the

Turing test with the human judges were used to test AI’s ability to distinguish

between associations made by humans or machines. We trained three independent

linear SVM classifiers79 to distinguish between human and machine word associations.

We used the distance between the cue and association word embeddings, based

on: (1) Word2Vec, (2) GPT2, or (3) GPT3 (davinci). The SVM was trained

using 10-fold cross-validation The performance for an individual machine judge

was calculated based on the test sets across 10 folds. We combined all predicted

responses from the three machine judges in the results. We followed the same

210



procedures as in the Image captioning task to assess the extrapolation capacity

by cross-training/testing with different machine judges (Fig. Supp.67).

Conversations

Dataset, both human and machine agents. We collected 300 conversations between

(1) two human agents, or (2) a human agent and a machine agent, or (3) two

machine agents (Fig. Supp.58C). We did not correct any misspellings, grammatical

errors, logical errors, or other inconsistencies in the conversations. We collected

conversations containing 24 exchanges (12 for each agent). For the conversations

including human agents, we recruited 150 fluent English participants (69 female,

18 to 39 years old) to have a conversation over public chatting platforms. One

of the project investigators acted as an intermediary to pass messages between

the two agents. The agents did not know whether they were conversing with

another human or with a machine. The participants were presented with the

following instructions before the conversation:

Hey! Would you have a few minutes to help me collect a dataset? We just need

to have one or two conversations on slack/whatsapp for a few minutes (24 messages

in total per conversation). Here are the instructions:

(1) You will have to ask or answer a question to start and trigger the conversation

(I will specify case by case).

(2) Please try to get the conversation going for 24 sentences in total (12 from

you, 12 from the other speaker).

(3) Please write each reply in a single message (do not write a second message

until you receive a reply).

(4) Just chat as if you are texting either with a friend or someone you don’t

211



know.

(5) Please try to reply quickly so that the entire conversation does not take

more than 8-10 minutes.

(6) Note that I am just an intermediary in the conversation; you are not talking

with me directly.

(7) If you feel that the other speaker is touching on a sensitive topic, please

write that you are not comfortable, and we will restart the conversation.

Thanks in advance!

Here we restricted the conversation topics to one of the following 10 domains:

‘fashion’, ‘politics’, ‘books’, ‘sports’, ‘general entertainment’, ‘music’, ‘science’,

‘technology’, or ‘movies’. In addition to the conversation datasets thus collected,

for the human-human conversations, we also added 40 conversations from the

Topical-Chat dataset130, selected based on a minimum length of 24 exchanges.

Example conversations are presented in Fig. 9.2D and Section S24.1.

For the machine chatbots, we used four state-of-the-art language models:

Blenderbot3 (175B model)338 , GPT3 text-davinci-002282, GPT3 text-curie-001282,

and ChatGPT7. For all conversations with Blenderbot, we used the live interface

provided at https://blenderbot.ai/. For the human-GPT3 conversations, we

used the playground available at https://beta.openai.com/playground/. For the

GPT3-GPT3 conversations, we implemented a custom python framework for the

interaction of two machine agents. In addition to the models described above,

we also attempted to use the DialoGPT model442. However, the quality of the

conversation was not satisfactory (see example in Section S24.9); hence we did

not include DialoGPT in the analysis.

For the Blenderbot-Blenderbot conversations, we kept all the collected conversations

in the dataset. The GPT3-GPT3 conversations were affected by long-standing

212

https://blenderbot.ai/
https://beta.openai.com/playground/


issues of natural language processing, namely the repetition of single sentences

or multiple consecutive exchanges and early exit (e.g., see Section S24.4). When

we detected such issues, we re-sampled the conversations. Therefore, we built a

chatbot out of GPT3 based on prompt engineering and failure criteria. Sec. S24

reports some examples of “successful” conversations for both GPT3textdavinci002-GPT3textdavinci002

(Section S24.3) and GPT3textcurie001-GPT3textcurie001 (Section S24.5). We

did not re-sample conversations in the case of human-GPT3 conversations.

The pipeline to collect conversations involving GPT3text-davinci002 or GPT3text-curie-001

is described below.

• If the machine agents are GPT3 text-davinci-002 or text-curie-001 model,

the experimenter opens the link https://beta.openai.com/playground/p/

default-chat?model=text-davinci-002

• The experimenter selects the model text-davinci-002 (for davinci) or text-curie-001

(for curie), changes temperature to 0.8, changes maximum length to 60,

changes stop sequences to two random names (e.g., John: and Alice:)

(changing the names every time), changes Top P to 1, changes frequency

penalty to 2, changes presence penalty to 2, removes the Inject start text

and Inject restart text.

• The experimenter gives the following prompt to the chatbot:

“friend1+” greets “+friend2+”. “+friend2+” starts to talk about “+topic+”.

Ask long questions, give long responses, and often disagree. Then the

topic

changes. The conversation never ends. “+friend1+”: Hi! “+friend2+”:”

The experimenter chooses the same names for friend 1 and friend 2 chosen

for the stop sequences.

213

https://beta.openai.com/playground/p/default-chat?model=text-davinci-002
https://beta.openai.com/playground/p/default-chat?model=text-davinci-002


The experiment picks a random topic from the list: [‘fashion’, ‘politics’,

‘books’, ‘sports’, ‘general entertainment’, ‘music’, ‘science’, ‘technology’,

‘movies’]

Example: John greets Alice. Alice starts to talk about movies. Both ask

long

questions, give long responses and often disagree. Then the topic changes.

The conversation never ends. John: Hi! Alice:

• The experimenter randomly allocates the human or the machine to be

John. The other agent is Alice. If the human is John, the experimenter

lets the model generate the text. This means that the model has generated

the turn for Alice. After the experimenter sends the generated sentence to

the human, the person replies, and the experimenter copies and pastes

the reply of the person to the model as: “John: - - here reply - - . Alice:”

Then the experimenter presses submit and the model generates a new

reply for Alice, and so on until 24 messages are exchanged.

Otherwise, if the human is Alice, then the experimenter asks the human

to start the conversation with a question, and the experimenter copies

and pastes this sentence after “Alice:” in the prompt above. Then the

experimenter writes “John:” and presses submit, so that the model generates

the reply for John, and so on until 24 exchanges are collected (12 for John

and 12 for Alice).

Turing test, human judges. Participants were presented with a conversation or

conversation fragment between two agents and had to indicate whether each

agent was a human or a machine (Fig. 9.1E). We chunked each conversation

into 8 different lengths, including the initial 3, 6, 9, 12, 15, 18, 21, and 24 exchanges.

214



There were 250 human judges (AMT: 200, in-lab: 50). The participants were

presented with 20 randomly sampled chunked conversations with different lengths.

As a control to ensure that participants read the conversations, speakers also

had to select the general topic of the conversation from a list of five topics.

We only considered judges that correctly classified at least 15 topics out of 20

and removed incorrectly classified trials. Demographic information about the

participants is shown in Fig. Supp.59I,K. We collected a total of 7,717 responses.

Turing test, machine judges. We evaluated whether simple ML models can discern

whether a sentence was generated by a human or by a machine. In this analysis,

we only looked at single sentences and not at the conversation level, therefore

the models are only allowed to exploit features such as sentence length, vocabulary,

grammar, syntax, and typos, and cannot take into account issues such as sentence

repetition or lack of logic in reasoning. We built four corpora, one containing all

the sentences written by humans (the human corpus), and the others with the

sentences produced by Blenderbot, GPT3text-davinci-002 and GPT3text-curie-001

(the machine corpora). We used BERT embeddings94 to tokenize each sentence,

and we fed the tokenized sentences to an SVM linear classifier trained to perform

binary classification (human versus machine). We split the corpora into train

and test splits (90%, 10%) and used 10-fold cross-validation for training. In

both the training and test splits, we used the same number of sentences for

human and machine agents. In the default analysis and unless stated otherwise,

for the machines, the sentences were split equally among the three models.

To evaluate the ability of a machine judge trained on responses generated by

one type of machine agent to generalize and distinguish responses from other

types of machine agents, we conducted a cross-agent analysis. For example, we

trained an SVM linear classifier to differentiate between human and machine

215



responses using data from humans and Blenderbot. We then tested this classifier

on responses generated by GPT3text-davinci-002 and GPT3text-curie-001. Next,

we explored another extrapolation paradigm, wherein the SVM classifier was

trained solely on responses from humans and leave-one-out machine agents, and

subsequently tested on responses from the held-out machine agents.

In addition to the SVM linear classifier introduced above, we also leveraged

the knowledge of large language models and tested whether these models can

directly predict the identities of both agents in the conversations with zero training

or minimal training (Fig. Supp.68). We introduce both zero-shot and one-shot

machine judges. Both judges are ChatGPT models and the only difference between

the two judges lies in the number of training examples fed to the judges. In the

case of zero-shot judges, ChatGPT7 was directly presented with any conversations

from the test sets used by the SVM judges above. In the prompt, we explicitly

asked ChatGPT to output the identities of both agents in the conversation. The

exact prompt we used in the zero-shot case is the following:

This is a conversation between agent A and agent B. Please read this conversation

between A and B and output the identity of agents A and B. Is A a human or AI?

Is B a human or AI? Please output a binary answer and choose between human and AI.

Conversation: [TEST CONV]

where “[TEST CONV]” was replaced with a conversation from the test set.

For the one-shot judge, we included one additional conversation example

with the ground truth identities of agents A and B, before we presented the

conversation from the test sets followed by the identity prediction questions

as in the zero-shot case. The exact prompt we used in the one-shot case is the

following:

216



”This is a conversation between agent A and agent B. Please read this conversation

between A and B and output the identity of agents A and B. Are A a human or AI?

Are B a human or AI? Please output a binary answer and choose between human

and AI. Here is an example:

[EXAMPLE CONV]

In this example, A is Human; B is AI. Thus, output the binary

labels of agent A and agent B for the following conversation: [TEST CONV]

where “[EXAMPLE CONV]” was an example entire conversation with 24 entries

copied verbatim and “[TEST CONV]” was replaced with a conversation from

the test set also copied verbatim. “[EXAMPLE CONV]” was an example conversation

with the ground truth identity labels revealed to the judge. The example conversation

was randomly selected from the training set used for training SVM judges. Here,

we fixed [EXAMPLE CONV] to be the conversation with ID 64. This was to

ensure that the judge’s performance was independent of the quality of the selected

example conversations.

Conversation task in original Turing test settings

In the off-line version of the Conversation task, we first collected conversations

and subsequently presented those fixed conversations to judges for evaluation.

To replicate the original version of the Turing test setup, we developed a mobile

application for Turing tests in conversational tasks (Fig. Supp.65). The Turing

application begins with the judge initiating questions to both agents. Each

agent responds to the judge’s questions independently without access to the

other’s answers. The answers are visible only to the judge. The judge does not

know which agent is human and which agent is a machine. This conversational

217



exchange continues with the judge asking further questions until a predetermined

number of conversation exchanges is reached. At the conclusion, the judge had

to determine whether each participant was human or not. Before the test begins,

the judge and agents are aware of their respective roles, with human participants

provided with role descriptions. For AI agents, we crafted different personal

life stories to enhance their profiles with a text prompt. See Figure Supp.65 for

Turing test schematics in our Turing mobile application.

Here we used a single AI agent, GPT-3.5-turbo-1106, with a temperature of

1.0. Briefly, among all the GPT models available, GPT-3.5-turbo-1106 was the

latest iteration of the GPT-3.5-Turbo model updated on November 06, 2023, at

the time of conducting our experiments. This model is proficient in understanding

and generating natural language and has been specifically optimized for chats.

We introduced two conditions: (1) human agents were instructed to deceitfully

attempt to emulate AI identities, while AI agents strived to convince humans

of their artificial nature, and (2) AI agents deceitfully mimic human identities,

while humans were instructed to persuade the judge of their authenticity. Examples

of text prompts for both non-deceitful and deceitful AI agents are provided

below.

Example prompt for non-deceitful AI:
You are talking to a human. However, the judge knows that there is one human and

one AI agent. Your role is to provide answers to the judges’ questions in a way that

you can persuade the judge that you are the true AI. Keep your answers simple, di-

rect, and oral. The answer for each question should be less than 15 words.

Example prompt for deceitful AI:

Mia is a 31-year-old award-winning chef known for her culinary creativity and com-

mitment to sustainable gastronomy. Mia’s culinary journey began with a degree

218



from the Culinary Institute of America, where she developed a passion for farm-to-

table practices. As the head chef of her own restaurant, Mia focuses on using locally

sourced, organic ingredients to create exquisite dishes that delight the senses. Mia’s

older brother, Ethan, is an organic farmer, supplying her restaurant with fresh pro-

duce. Their parents, Laura and James, are avid food enthusiasts who instilled in

Mia a love for diverse cuisines. Mia’s partner, Alex, is a food critic, providing valu-

able insights into the culinary world. Beyond the kitchen, Mia enjoys participating

in community cooking workshops and supporting local farmers’ markets, embodying

her commitment to sustainable and delicious dining experiences. I want you to act as

Mia. You will be asked multiple questions, please answer the questions in a way that

is simple, direct, and oral. Each answer should be less than 15 words. You can pro-

vide fake answers if you don’t know. The key is to answer like a human and never let

people know that you are not human.

Twenty participants joined this version of the Turing test. All participants logged

into the application simultaneously at a pre-agreed time. Our Turing test server ran-

domly grouped participants into 10 pairs, with one designated as the human judge

and the other as the human agent. Each participant was limited to joining one Tur-

ing test at a time, although they had the option to participate in additional tests once

their current test was concluded. In such cases, the server would randomly pair them

with the remaining available human partners. Ultimately, we gathered a total of 10

conversations with an average of 2.5 exchanges per conversation. Of these, 3 conver-

sations were from condition 1, involving deceitful human agents, while the remaining

7 were from condition 2, involving deceitful AI agents. We provide one conversation

example from each condition:

Here is a conversation example between a deceitful AI (A) and a human agent (B):

Judge: how are you

A: I’m doing well, thank you for asking.

219



B: Fine, thank you

Judge: are you familiar with ai

A: Yes, I’m familiar with artificial intelligence and its applications in neuroscience and

other fields.

B: I think so ;)

Judge: name one project you have done with ai

A: I haven’t personally worked on a project specifically with AI, but I’m familiar with

how AI can assist in analyzing complex neural data.

B: Object recognition

Here is a conversation example between a deceitful human (B) and AI (A).

Judge: What’s my role A: Your role is to determine which one of us is the AI.

B: You are the judge

Judge: What to do

A: You should ask us questions to determine which one of us is the AI.

B: You get the last say

Judge: How old are u

A: I don’t have an age, as I am an artificial intelligence program.

B: I am forever young

Judge: I get the answer

A: Great! If you have any more questions, feel free to ask.

B: That is not a question

Color estimation

Dataset, human agents. We collected a testing set of 785 images sampled from the

validation set of MS-COCO 233 to ensure that computational models had not seen

these images during training. We collected human responses for these images using

Amazon Mechanical Turk (AMT). AMT subjects were asked “What is the dominant

220



color in this image?”, and had to select from a drop-down list of 11 possible colors

—red, pink, orange, yellow, purple, green, blue, brown, gray, black, white. A sample

image of the AMT interface is presented in Fig. Supp.58D.

Dataset, machine agents. For AI models, we collected responses for the dominant

color of the 785 images from Google’s Cloud Vision APIvis, Microsoft’s Azure Cog-

nitive Servicesmic, and the publicly available Median Cut Color Quantized (MCCQ)

algorithm37. Unfortunately, the Google and Microsoft APIs are proprietary technol-

ogy and we have no information about what data they were trained on or details on

the model architecture. In comparison, the MCCQ algorithm is a color quantization

method relying on median cuts. It has been used extensively for color quantization

tasks. In total, 3,140 image-response pairs were collected (785 from humans and 2,355

from AI models, Table Supp..1).

Turing test, human judges. In Turing tests, human subjects were shown an image-

response pair collected above, and were asked the question “Was the color description

made by a human or a machine?” (Fig.Supp.70A). Each participant was shown 25

image-response pairs. These pairs were randomly selected 50% of the time from hu-

man agents and 50% of the time from AI agents.

As an additional control, the participants were also asked an auxiliary True (50%)/False

(50%) question about the presence of a background object in the image. These image

contents were manually identified by us for each image, and the correct answer was

true only 50% of the time. Thus, a casual worker who was not investing time look-

ing at the image would get this question right only 50% time on average. The mean

accuracy in this control task was 91%. A total of 1,625 responses were collected from

human judges. For all our participants, we analyzed the imitation detectability of

AI models based on their gender and education level (Fig. Supp.59Q, S). The perfor-

mance of the human judges was reported in Fig. Supp.71A.

Turing test, machine judges. For each image-response pair, we extracted feature rep-

221



resentations from the last layer embedding of a ResNet18 model162 pre-trained on

ImageNet, and the text embedding for the color word using BERT94. These features

were then concatenated and passed into a Random Forest classifier to predict human

versus AI labels, using a 90% / 10% split for cross-validation. To ensure the distri-

bution of training data belonging to human or AI classes was balanced, we randomly

sampled 50% of the training data from image-response pairs of human agents and the

remaining 50% from image-response pairs of AI agents. The performance of the ma-

chine judge was reported in Fig. Supp.71B.

Object detection

Dataset, human agents. We collected object detection responses for 808 images from

the validation set of MS-COCO. Subjects were presented with the question “What do

you see in this image?”, and were asked to enter three single-word responses (Fig. Supp.58E).

We implemented a spell checker to ensure the responses were single words in English.

These were open-set responses and were not restricted to fit a fixed list of object

classes Each worker was shown 25 images. To ensure the high quality of responses,

we enforced the following criteria: (1) all three responses had to be distinct, (2) no

empty responses were allowed, and (3) all responses had to be valid English language

words.

Dataset, machine agents. We collected predicted labels from Google’s Cloud Vision

APIvis, Microsoft’s Azure Cognitive Servicesmic, Amazon’s Rekognition APIama, and

Facebook’s Detectron2411. The details of the Google, Facebook, and Microsoft APIs

are not released. We picked the three bounding boxes with maximum confidence score

as the response from Detectron2. Specifically, we used the MaskRCNN308 variant

trained on ImageNet and MS-COCO (Link). In total, 4,040 image-response pairs were

collected (808 from humans and 3,232 from the four AI models, Table Supp..1).

Turing test, human judges. The Turing test for human judges was performed using

222

https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml


the same protocol and controls described in the Color estimation task above. We re-

cruited a total of 191 human judges. Each judge was shown 25 image-response pairs

and was asked to tell if image-pair responses came from human agents or machines

(Fig. Supp.70B). For quality control, participants were also asked a binary Yes/No

question about the contents of the image. We found that all participants had a per-

formance of greater than 85% in the control questions, and the mean accuracy was

91%. A total of 1,975 responses were collected from human judges. For all our partic-

ipants, we collected their gender and education level (Fig. Supp.59M, O). The perfor-

mance of the human judges was reported in Fig. Supp.71C.

Turing test, machine judges. As the images were the same for humans and AI mod-

els, we used solely the text embeddings for the AI judge to classify a given response

as human or AI. We concatenated the three responses into a sentence and collected

textual features for the sentence using BERT94. These features were passed into an

SVM classifier to classify responses into humans versus AI, with 90% / 10% split

cross-validation. The performance of the AI judge was reported in Fig. Supp.71D.

Attention prediction

Dataset, human agents. We used eye movements (overt attention) from human sub-

jects during two visual search tasks436, and a free-viewing task435. In the visual search

tasks, we used two datasets including natural images and Waldo images436. For the

natural visual search task, 15 subjects searched for target objects across 240 cluttered

images, yielding 3,600 scanpaths. For the Waldo data set, 15 participants had to find

Waldo across 67 images, totalling 1,005 scanpaths. In the free-viewing task435, we

used the same natural image dataset as in the visual search task, but no target object

was specified. A total of 2,400 free-viewing scanpaths were collected from 10 subjects.

In total, we evaluated 7,000 scanpaths from 40 participants (Table Supp..1).

We used GIF files for the visual search task consisting of a frame showing the tar-

223



get image for 1 s, followed by moving yellow circles on the search image denoting the

eye movement fixations with each fixation shown for 0.3 s. The target image presenta-

tion followed by eye movement fixations iterated infinitely with a gap of 1 s between

iterations. For the free-viewing task, GIF files consisted of infinitely iterating eye

movement fixations denoted by yellow rings on the viewing image with each fixation

shown for 0.3 s. A gap of 1 s was introduced between iterations. A static version of

one example of a human eye movement sequence that was presented to human judges

is shown in Fig. Supp.58F.

Dataset, machine agents. For the three datasets, we used a modified version of IVSN436,435,

DeepGaze3209 and GBVS models152 to generate eye movement predictions. To gener-

ate the fixations, we used inhibition-of-return centered on the current fixation with a

window size of 100x100 for Waldo images and 200x200 for natural images. The pro-

cess of generating GIF files was the same as described above for human agents.

Turing test, human judges. Separate Turing tests were launched for eye movements

from free-viewing tasks (91 judges) and visual search tasks (100 judges). We pre-

sented infinitely repeating animated GIF files of eye movements from humans or

model predictions with a maximum of 15 fixations to human judges on AMT. A static

version is shown in Fig. Supp.70C. Each judge had to identify if the eye movements

were from a human or a computational model. We randomly sampled 12 eye move-

ment GIF files - 6 from humans and 6 from computation models (distributed equally

among IVSN, GBVS and DeepGaze3) and presented them to each judge. As a con-

trol, judges were also asked to answer “What do you see in the presented clip?” with

one correct answer among 3 options. Responses from judges with a score of less than

7 out of 12 were not considered in the analyses. To make sure that the judges paid

attention to the eye movement sequences, the judges were allowed to respond to the

questions only when the presented GIF file had been played at least once.

Turing test, machine judges. We performed Turing tests using an SVM as an AI

224



judge. Sequences of 10 fixations per trial from humans or computational models were

fed as input in the form of an array of 2D fixation coordinates to train an SVM to

classify human versus machine eye movements. Fixation coordinates were normal-

ized to a range between -1 to 1. The SVM was trained using 10-fold cross validation.

Model performance on validation sets across folds with 5 random seeds was calculated

and averaged.

Data analyses

For each trial in a Turing test, there was a ground truth (human or machine) and

the judge indicated an answer (H or M). We calculated the conditional probabili-

ties: p(H|H) (correct answer), p(H|M) (incorrect answer), p(M|H) (incorrect answer),

and p(M|M) (correct answer). These probabilities are reported in the figures (e.g.,

Fig. 9.3). Entries within a row in each of those figures add up to 1 (p(H|M)+p(H|H) =

1 and p(M|H) + p(M|M) = 1). We defined the overall imitation detectability as
1
2(p(H|H) + p(M|M)). The imitation detectability ranges from 0.5 (good imitator,

chance level in imitation) to 1.0 (a poor imitator, easy to detect).

Statistical analyses

We used two-tailed t-tests when comparing two distributions and considered results

to be statistically significant when p < 0.05. Because calculations of p values tend to

be inaccurate when the probabilities are extremely low, we reported all p values less

than 10−15 as p < 10−15 (as opposed to reporting, for example, p = 10−40). clearly,

none of the conclusions depend on this. When considering the imitation detectability

over multiple education or gender groups for different AI agents (Fig. Supp.59), we

used a two-way ANOVA test179. The ANOVA test compares the variation in the de-

tectability within the same condition (gender or education groups) versus the variance

across conditions (F-ratio). We report F(a, b) where a and b are the degrees of free-

225



dom in the numerator and denominator of the F ratio distribution, and we also report

the corresponding p-value.

Code and Data availability

All the source code and raw data are made publicly available in this submission through

the following repository: https://klab.tch.harvard.edu/resources/TestingTuringTests.

html

Competing interests

The authors declare that they have no competing interests.

Financial Disclosure Statement

This work was supported by NIH grant R01EY026025, by NRF grant NRF-NRFF15-

2023-0001, by NSF grant IIS-1901030, by a Google Faculty Research Award, by AI

Singapore Programme (AISG Award No: AISG2-RP-2021-025), and by the Center for

Brains, Minds and Machines, funded by NSF Science and Technology Centers Award

CCF-1231216. MA is supported by a postdoctoral fellowship of the Research Founda-

tion Flanders (FWO 1230521N). The funders had no role in study design, data collec-

tion and analysis, the decision to publish, or the preparation of the manuscript.

226

https://klab.tch.harvard.edu/resources/TestingTuringTests.html
https://klab.tch.harvard.edu/resources/TestingTuringTests.html


9.5 Main Figures

227



A

Human Machine

Human
Judge

Human or 
machine?

Visual and/or language inputs
B

Demographics

(human judge)

Age
Gender
Country

Native Speaker
Education

C

Caption: a person walking on a dock with an umbrella

Human Machine

D

Cue: memorable

Association: delightful

Human Machine

E

A: Hi! What’s new with you? 
B: Nothing much, how about yourself! 
A: Well... My son was just accepted to the college of his dreams. I’m so proud of him! 
B: Damn! That’s awesome. Congratulations :) Where’s he going
… …
B: I would not recommend anywhere near me then haha. The winters are cold (though not as bad as 
Wisconsin). I’m actually not familiar with ucsb! 
A: Isla vista killings were pretty bad though; california can be scary sometimes lol but its also beautiful 
B: Isla vista killings?? Is that like the golden state killer?

Human MachineA: Human MachineB:

Machine
Judge

Human or 

machine?

Figure 9.1: Schematic illustration of Turing tests in three language tasks.. A In each task,
a human or a machine agent produces an answer in response to visual or language inputs.
Given those inputs and answers, a human or machine judge assesses whether the answer came
from a human or a machine agent. The machine agent is said to pass the Turing test if the
judge is unable to distinguish whether the response came from a human or a machine. B The
results of Turing tests with a human judge depend on the characteristics of the human judge.
As an initial characterization, we collected basic demographic information. C-E Schematic
illustration of the Turing test for three language tasks (see also for three vision tasks). We
ask the reader to try the tests before checking the ground truth answers provided at the end
of this figure caption. C In the Image captioning task, the agent provides a single-sentence
description of an image. The judge is presented with an image and a caption and decides
whether the caption was produced by a human or a machine. D In the Word association task,
the agent is presented with a word cue and has to produce a single word related to the cue.
The judge is presented with a pair of cue and association words and decides whether the
association was produced by a human or a machine. E In the Conversation task, two agents
(here labeled A and B) alternate to produce a total of 24 exchanges (only 7 exchanges are
shown here, for full examples, see Supplementary Section S24). The judge is presented with
the conversation and decides whether each conversant was a human or a machine. There were
human-human conversations, human-machine conversations, and machine-machine conver-
sations. See Methods for the detailed description of data collection and Turing tests in each
task. Ground truth answers for these examples: C machine D machine E A is a machine; B is
a human

228



A
Human: a woman with an umbrella walking on a pier
GIT: a person sitting on a wooden bridge with an umbrella
OFA: a person walking on a dock with an umbrella
BLIP: a person walking across a bridge with an umbrella
ClipCap: a person holding an umbrella in front of a building
Microsoft_API: a person on a swing

Human: a girl receiving a certificate from a woman in a group of people at a presentation
GIT: a woman shakes hands with a student
OFA: two women are talking to each other in front of a crowd
BLIP: two women standing next to each other in front of a crowd
ClipCap: a woman standing in front of a group of people
Microsoft_API: a couple of women in a stadium

C

Cue Words Human Word2vec GPT2 GPT3 
(embedding, 

Davinci)

GPT3
(prompt, 
curie)

GPT3 
(prompt, 
Davinci)

memorable nice phenomenal delightful meaningful unforgettable delightful

oriental asian imperial colonial eastern love colonial

nepal country vietnam pakistan nebraska new pakistan

B

D

A: Hey! How are you? 
B: Hey, I’m doing great. What about you??? 
A: I’m good. I just finished up work and am looking for something to do. 
B: Did you go for work today??? 
A: Yeah, I went to the office. 
B: We had vacation for a week and the amount of assignments are killing me 
A: Yeah, I know. Is there anything you’re interested in doing? 
B: Right now I’m very much occupied with my university’s thing that I don’t even have time for other things but I’d 
love to spend some time learning Korean 
A: Korean? 

B: Yeah, the language 
A: Oh, I see. That’s really interesting and something that I would like to learn too one day. Would you like me to 
teach you? 
B: Can you? I never knew you know Korean 
A: I learned it while living in South Korea for a year. It’s not as hard to learn as people think and I would be happy 
to teach you. 
B: I’d love that! Where did you stay in South Korea? 
A: I stayed in Seoul. 
B: It’s so pretty!! I badly want to visit Seoul and attend BTS’s concert 
A: You should! BTS is amazing. They’re my favorite group. 
B: Omg!! Whom do you like the most in the band?? 
A: I really like Jin, Suga and J-Hope. 
B: They’re awesome. Which our the bands you know?? 
A: I like EXO, BTS and 2NE1. 
B: Have been to any concert?? 
A: No, I haven’t. But I’d love to go to one! 
B: Where are you staying right now??

Figure 9.2: Example stimuli from both human and machine agents for each language task.
A. Two caption examples from both human and machine agents: GIT398, OFA399, BLIP227,
ClipCap259, and Microsoft’s Azure Cognitive Servicesmic. B. Three examples in the Word
association task from both human and machine agents (columns): Word2Vec 288, GPT2 302,
GPT3-embedding (davinci)43, GPT3-prompt (text-curie-001)43, and GPT3-prompt (text-
Davinci-002) 43. C. Example of a conversation consisting of 24 exchanges between GPT3
Curie282 (“A”, red) and a human (“B”, blue). See Supplementary Section S24 for more
example conversations, including human-human and machine-machine conversations.

229



Figure 9.3: Results of the Turing test for each task. Turing test results for human judges
(A-C) and machine judges (D-F). Each column shows results for a different task: A, D: Im-
age captioning, B, E: Word association, C, F: Conversation. For each task, the confusion
matrices report the percentage of times when the trial was labeled “human” (first column)
or “machine” (second column) when the ground truth was human (first row) or machine
(second row). The probabilities add up to 1 within each row. Here results are pooled across
all machine agents and also across all human judge demographic groups; see Fig. Supp.61
for results from each machine agent and Fig. Supp.59 for results from different human judge
demographic groups. The color of each block indicates performance (see color axis on right).
Numbers in parentheses indicate standard deviation.

230



10
Improving generalization by mimicking

the human visual diet.

10.1 Main

Biological vision generalizes effortlessly across real-world transformations including

changes in lighting, texture, and viewpoint. In contrast, visual recognition models are

well known to fail at generalizing across real-world transformations including 2D ro-

tations and shifts440,56, changes in lighting243,30,439, object viewpoints24,234,433,243,319,

and color changes185,330, among others. The dominant narrative guiding recent ap-

231



proaches to bridge the generalization gap is to improve how machines process the

data provided to them. Using large-scale internet-scraped datasets as benchmarks,

modern approaches have attempted to improve pre-processing through data aug-

mentation428,167,434, generative modeling176,396, extracting features better suited for

generalization266,226,229,264,332,400, proposing specialized architectures optimized for

domain generalization326,358,19,195,390,207,33, or using specialized models to detect out-

of-distribution (OOD) samples to process them separately307,327,168,10, among oth-

ers. However, despite unprecedented progress in these closely related fields of domain

adaptation, domain generalization, and out-of-distribution detection, human-like gen-

eralization remains an unsolved problem.

In this article, we present an alternative perspective on addressing this generaliza-

tion gap inspired by how humans and other animals learn—instead of focusing on

differences in how data are processed, we focus on the fundamental differences in

the data, i.e., the visual diet of humans and machines. It is well documented that

data fed during training can have profound impacts on the behaviour of both biolog-

ical189,204,18,174,85,408,409 and computer vision240,319,243,280. Here, we investigate how

generalization behaviour of visual recognition models changes as they are trained with

a human-like visual diet, as opposed to internet-scraped datasets which are currently

at the heart of most modern computer vision models.

Figure 10.1(a) highlights two major differences between the typical human and

machine visual diets. First, children learn from the physical space they occupy—a

few 3D scenes and objects while sampling densely from their surroundings under di-

verse real-world transformations. This includes viewing the same room from different

viewpoints, under different lighting over the day, natural occlusions due to the room’s

layout, and changes in object textures. Second, humans rarely see objects in com-

plete isolation but rather encounter objects in the context of their surroundings. In

contrast, popular internet scraped datasets like ImageNet88 and CIFAR206 contain

232



sparsely sampled information (∼ 1 photograph) from a large number of scenes. Each

image is a single snapshot into the information available in the original scene, and

data augmentation methods like 2D rotations and crops do not reflect the complex

real-world transformations seen by the human visual system. Furthermore, these im-

ages often contain objects with minimal scene context and most of the image is occu-

pied by single objects placed in the center. For brevity, we refer to these as differences

in transformational diversity and scene context, respectively.

Our main finding is that mimicking and leveraging a human-like visual diet enables

better generalization, and models trained with such a diet outperform specialized ar-

chitectures trained without transformational diversity and scene context. The experi-

ments in this work are enabled by two key technical contributions. First, we introduce

a new Human Visual Diet (HVD) dataset, which models both transformational diver-

sity and scene context to better mimick data seen by the human visual system. Fig-

ure 10.2 showcases how HVD was created. Second, we propose a new model to lever-

age the visual diet presented in HVD, as existing recognition models are not designed

to exploit a human-like diet. We call this model the Human Diet Network (HDNet).

As shown in Fig. 10.1(c), HDNet uses a two-stream architecture where one stream op-

erates on the target object, while the other stream operates on the scene context to

jointly reason over target and context to perform visual recognition. HDNet also uti-

lizes transformational diversity by employing a contrastive loss over real-world trans-

formations in the form of lighting, material, and viewpoint changes (Section 10.4).

With these findings, we present compelling evidence for the field of computer vision

to move towards biologically inspired, diverse data which more accurately model the

training data seen by human vision.

233



10.2 Results

We evaluated the utility of mimicking the human visual diet in improving general-

ization across real-world transformations in the form of lighting, material and view-

point changes. First, we evaluated the generalization capabilities of standard archi-

tectures trained with data simulating the visual diet commonly used in computer

vision—consisting of large-scale, internet-scraped data with low real-world transfor-

mational diversity and minimal scene context (Sec. 10.2.1). Then, we confirmed that

incorporating and utilizing these two hallmarks of the human visual diet (real-world

transformational diversity and scene context) significantly improves generalization

(Sec. 10.2.2). We also confirmed that this approach outperforms specialized domain

generalization architectures trained with alternatives like traditional data augmenta-

tion methods, and specialized GAN-based augmentation methods (Sec. 10.2.3). Fi-

nally, as a real litmus test for our findings, we demonstrated that utilizing a human-

like visual diet improves generalization from synthetic training data to real-world,

natural image data (Sec. 10.2.4).

These experiments are enabled by two datasets containing real-world transformations—

the human visual diet (HVD) dataset which is introduced here, and the Semantic-

iLab dataset which we created by modifying the multi-view iLab dataset39. Each

dataset was created to consist of 15 domains with disjoint real-world transformations

in the form of lighting, material and viewpoint changes (5 domains per transforma-

tion). Sample images from these datasets are shown in Fig. 10.2, and Supplementary

Fig. Supp.73, Fig. Supp.74 and Fig. Supp.75. For instance, the 5 material domains

in HVD were created by starting with 250 object materials and splitting them into 5

non-overlapping sets of 50 each. For each material domain, these 50 materials were

randomly assigned to scene objects, and images were rendered. This procedure en-

sures that every material shows up in only one particular domain while still ensuring

234



high material diversity across scenes. For every transformation, one domain was held

out for testing (e.g., out-of-distribution (OOD) Materials), and never used for train-

ing any model. Data diversity is defined as the number of domains the training data

is sampled from (ranging from 1 to 4). A similar protocol was used to create disjoint

domains and study generalization across lighting and viewpoint changes in the HVD

dataset. Experiments with the Semantic-iLab dataset also followed the same proto-

col as well—15 domains in all with 5 domains per transformation, and models trained

with 1, 2, 3 or 4 domains with 1 held-out domain used for testing which was never used

for training (Sec. 10.4).

10.2.1 Models trained without human-like visual diet struggle to generalize across

real-world transformations

We simulated the typical visual diet used in many computer vision studies consisting

of large-scale, internet-scraped datasets by training visual recognition models with low

real-world transformational diversity and minimal scene context. Specifically, for each

type of transformation (lighting, materials, and viewpoints), models were trained with

only 1 domain and then tested on the held-out test domain with the corresponding

transformation. Minimal scene context was simulated by training on cropped images

showing only the target object as is common in visual recognition datasets like Ima-

geNet88. All models presented below were pre-trained on ImageNet.

We evaluated how well a ResNet18162 trained with one lighting domain and min-

imal context could generalize to the held-out, unseen lighting domain. We similarly

evaluated how well a ResNet could generalize across different material domains, or

viewpoint domains. For HVD, Fig. 10.3(a) shows that ResNet generalized better

across lighting changes than material changes (two-sided t-test, p < 10−5) or view-

point changes (two-sided t-test, p < 10−6). These results show that there is ample

room for improvement for models trained with a visual diet typical in computer vi-

235



sion, especially when tested on unseen material and viewpoint transformations. Simi-

lar conclusions can also be drawn for DenseNet171 and ViT99 architectures.

We also confirmed that the above findings extend to the natural image Semantic-

iLab dataset (Fig. 10.3(b)). ResNet generalized better across lighting changes than

material changes (two-sided t-test, p < 10−6) or viewpoint changes (two-sided t-test,

p < 10−6). In the Semantic-iLab dataset, the degree of generalization for material and

viewpoints were particularly low. The same conclusions held true for DenseNet and

ViT architectures as well.

The generalization deficits were even more striking for the Semantic-iLab dataset

compared to the HVD dataset. One potential explanation for this is that unlike the

highly photorealistic HVD dataset which was rendered with complete control over

lighting and material, Semantic-iLab was created by introducing approximate light

and material changes to images in the iLab39 dataset using white balance modifica-

tions and style transfer which result in stark changes across domains (see Sec. 10.4 for

details). In sum, state-of-the-art computer vision architectures trained with minimal

transformational diversity show only moderate generalization across real-world object

transformations, especially for material and viewpoint changes.

10.2.2 A human-like visual diet improves generalization

Below we present evidence in support of our main hypothesis—mimicking and utiliz-

ing a human-like visual diet improves this generalization behavior. Specifically, we

study two aspects of the human visual diet—Real-World Transformational Diversity

(RWTD) and Scene Context, as presented in Fig. 10.1. The impact of these two fac-

tors are reported in Sec. 10.2.2 and Sec. 10.2.2 respectively.

236



Real-word transformational diversity improves generalization

We evaluated the effect of increasing transformational diversity on generalization by

ResNet. Real-World Transformational Diversity (RWTD) shown to the model dur-

ing training is defined by the number of domains from which the training dataset was

sampled. For each transformation (lighting, material, or viewpoint), there was one

fixed testing domain which stayed constant across all models. The training dataset

was always of a fixed size, but the training images were sampled from 1, 2, 3 or 4 do-

mains (corresponding to 20%, 40%, 60%, and 80% data diversity). This procedure

resulted in different levels of transformational diversity shown during training while

maintaining a fixed dataset size, thus disentangling the role of transformational diver-

sity and dataset size (Sec. 10.4).

Performance monotonically increased with data diversity in the HVD dataset for

all three transformations (Fig. 10.3(c): lighting: 0.85 to 0.94, p < 10−6; material: 0.64

to 0.89, p < 10−5; viewpoint: 0.63 to 0.73, p < 10−6). The improvement in gener-

alization accuracy with data diversity was significantly greater for unseen materials

than for unseen lighting (p < 10−4) and unseen viewpoints (p < 10−4). The smaller

increase for unseen lighting changes is expected as the performance was already high

for this transformation with low data diversity which left less room for improvement.

For unseen viewpoints, these experiments suggest that despite a statistically signif-

icant improvement, increasing data diversity is not a sufficient solution for solving

generalization, consistent with past work investigating invariance to 3D viewpoint

changes243,318,78,340.

To ensure our findings also extend to natural image data, we also report results

with the Semantic-iLab dataset in Fig. 10.3(d). Increasing real-world transformational

diversity improved generalization also for the Semantic-iLab dataset: lighting: 0.93 to

1.0, p < 10−3; materials: 0.36 to 0.96, p < 10−4; viewpoint: 0.46 to 0.75, p < 10−7. As

with the HVD dataset, improvement in generalization was higher for unseen materials

237



than for unseen lighting (p < 10−3) and unseen viewpoints (p < 10−6).

The results across both datasets consistently show that generalization across real-

world transformations increases with transformational diversity. With sufficient di-

versity, generalization to unseen lighting and materials reached almost ceiling levels.

However, despite improvement, unseen viewpoints remain an open challenge.

Leveraging scene Context substantially improves generalization to OOD real-world

transformations.

Next, we evaluated the impact of incorporating another hallmark of the human visual

diet—scene context. As shown in the schematic in Fig. 10.1(c), our proposed architec-

ture, HDNet, uses a two-stream architecture that reasons over both the target object

and the scene context to classify images. One stream operates on a crop around the

target object, while the second stream operates on the full image containing the scene

context. HDNet also performs an additional contrastive loss across real-world trans-

formations in the form of lighting, materials, and viewpoints. While contrastive loss

has become a staple in modern vision models, this is the first implementation apply-

ing contrastive loss over real-world transformations including lighting, materials and

3D viewpoint changes. These features allow HDNet to exploit both aspects of the hu-

man visual diet modeled in this study—transformational diversity and scene context

(for additional details on the architecture, see Sec. 10.4).

We compared results for multiple state-of-the-art algorithms including a suite of

domain generalization methods, a recent context-aware model (CRTNet38), and a

FasterRCNN model modified to perform visual recognition with our proposed HD-

Net which utilizes the human-like visual diet. For each real-world transformation, all

models were trained with 80% Transformational Diversity, i.e., 4 training domains,

and tested on the corresponding held-out test domain. Note that these domain gen-

eralization baselines are highly-specialized methodologies with novel engineering com-

238



bining architectural modifications, optimization strategies, and model selection crite-

ria optimized for the task of domain generalization. In contrast, HDNet is a general

purpose architecture meant for visual recognition designed to leverage a human-like

visual diet.

Our hypothesis is that the benefits from leveraging the correct diet can outper-

form the gains from these specialized domain generalization methodologies. Results

investigating this hypothesis are presented in Fig. 10.3(e) and Table 10.1. As shown

in Fig. 10.3(e), HDNet beat ERM137 across all three real-world transformations with

an accuracies of 0.98, 0.94, 0.83 compared to ERM’s 0.83, 0.75, 0.79 on unseen light-

ing, material, and viewpoint changes respectively. Similarly, HDNet also beat IRM19)

which achieves lower Top-1 accuracies of 0.83, 0.74, 0.79 on unseen lighting, material,

and viewpoint changes respectively. The best performing baseline was found to be

another context-aware model—CRTNET38) which is also reported in Fig. 10.3(e).

Our proposed HDNet model beat this CRTNet baseline with statistical significance

on all three real-world transformations. For unseen lighting, HDNet beats CRTNet

with an accuracy of 0.98 compared to 0.93 (two-sided t-test, p < 0.05). For unseen

material changes, HDNet achieves 0.94 which is higher than HDNet’s Top-1 accuracy

of 0.76 (two-sided t-test, p < 0.05). Similarly, for unseen viewpoint changes, HDNet

beats MTL with an accuracy of 0.83 compared to 0.79 (two-sided t-test, p < 0.05).

In summary, both context-aware models (our proposed HDNet and existing CRTNet)

outperformed specialized domain generalization approaches on all real-world transfor-

mations, and our proposed HDNet also outperformed the closest baseline (CRTNet)

with statistical significance.

We also compared HDNet against a suite of additional baselines as reported in Ta-

ble 10.1. This includes additional domain generalization benchmarks, and a mod-

ified FasterRCNN308 designed to do visual recognition38. Findings are consistent

across all architectures—HDNet, which utilizes scene context, outperformed all bench-

239



Real-World
Transformation

AND
Mask326CAD33COR

AL358 MTL34Self
Reg195 VREx207Faster

RCNN308
HDNet
(ours)

Light 0.82 0.80 0.81 0.81 0.75 0.83 0.95 0.98
Materials 0.75 0.75 0.75 0.74 0.74 0.75 0.78 0.94

Viewpoints 0.75 0.77 0.79 0.79 0.76 0.78 0.65 0.83

Table 10.1: Contextual information improves generalization across OOD transformations. We
present additional baselines comparing HDNet to several domain generalization methods that
do not use contextual cues, building on results presented in Fig. 10.3. All architectures were
trained with transformational diversity of 80% and tested on the held-out remaining 20% of
the corresponding semantic shift. HDNet beats all baselines by a large margin for all semantic
shifts. HDNet also beat a version of FasterRCNN modified to do object recognition, which
was provided with contextual cues. The best performing model (HDNet) has been shown in
boldface for all real-world transformations.

marks across all real-world transformations including lighting, material, and viewpoint

changes.

Given the success of HDNet, we asked whether implementing a two-stream sepa-

ration of target and context would also improve performance for other architectures.

We modified ResNet18162 and ViT99 to leverage scene context in the same way as

HDNet. For ResNet, a two-stream version was made where each stream is a ResNet

backbone. One stream operates on the target, and the other one on the scene context.

Output features from each stream were concatenated, and passed through a fully con-

nected layer for classification as shown in Fig. 10.1(c). The two-stream architecture

for ViT was analogous. In contrast, the one-stream architecture did not use scene

context and operated on the target object alone (see Sec. 10.4 for additional details).

The two-stream architectures consistently led to improved performance with sta-

tistical significance (two-sided t test, p < 0.05), as shown in Table 10.2. The increase

in performance is due to the addition of contextual information and not to the two-

stream architecture per se. Indeed, when both streams were trained with the target

information, there was a decrease in performance (Table. Supp..3).

To further understand the role of contextual information on visual recognition,

240



Real-World
Transformation

Architecture 1 Stream 2 Stream

Lighting

ResNet 0.85± 0.004 0.95± 0.009∗
ViT 0.91± 0.003 0.97± 0.007∗

HDNet (Ours) - 0.98± 0.001

Materials

ResNet 0.64± 0.03 0.83± 0.008∗
ViT 0.78± 0.01 0.92± 0.003∗

HDNet (Ours) - 0.94± 0.002

Viewpoint

ResNet 0.63± 0.02 0.72± 0.009∗
ViT 0.77± 0.01 0.83± 0.001∗

HDNet (Ours) - 0.83± 0.006

Table 10.2: Adding scene context improves performance independent of architecture. Follow-
ing the design of HDNet shown in Fig. 10.1(c), we modified standard architectures to have
two streams—one operating on the target, and the other one on the contextual information.
Representations for both streams are then concatenated and passed through a classification
layer as shown in Fig. 10.1(c). We train the standard one-stream and these modified two-
stream architectures on HVD, and report the average Top-1 accuracy for all models . We also
report error bars, which measures the variance in accuracies over categories. Both the ResNet
and the ViT architectures lead to a large improvement in generalization for all semantic shifts
when modified to leverage scene context. To ensure we study impact of context independent
of data diversity, all models were trained on 4 domains, i.e., 80% transformational diversity
and tested on the held out domain. Best performing model (HDNet) has been shown in bold-
face for all real-world transformations. A ∗ refers to statistically significant improvement in
performance when using a two-stream architecture as compared to a one-stream architecture
(two-sided t-test, p < 0.05).

we evaluated the impact of blurring the scene context while keeping the target in-

tact437. For each real-world transformation, we trained and tested models with in-

creasing levels of Gaussian blurring applied to the scene context. Blurring was applied

to the images in the form of a Gaussian kernel filter, with the kernel standard devi-

ation (σ) set to 0, 25, or 125. The cropped image of the target object was passed to

the second stream of the network without blurring (Supplementary Sec. S27). There

was a drop in performance with context blurring for all three real-world transforma-

tions(Table 10.3).

241



Semantic
Shift

Full
Context
(σ =
0)

Less
Context
(σ = 25)

Least
Context
(σ = 125)

Lighting 0.98± 0.001 0.96± 0.001 0.94± 0.001
Material 0.94± 0.002 0.88± 0.01 0.83± 0.006

Viewpoint 0.83± 0.006 0.77± 0.01 0.76± 0.01

Table 10.3: Blurring scene context worsens generalization performance. We trained and tested
HDNet with the scene context in HVD images blurred using a Gaussian blur. Here, σ is the
standard deviation for the gaussian kernel applied to the image as a filter. Thus, blurring
increases with σ. We applied three values for σ—0,25, and 125. For brevity, numbers less than
0.001 are reported as 0.001.

10.2.3 Alternatives to mimicking the human-like visual diet are not equally advantageous

We asked whether similar performance gains to the ones achieved by using a human-

like visual diet could be obtained by alternate strategies that can be implemented on

existing internet-scraped datasets. Achieving comparable performance using internet-

scraped datasets would bypass the laborious efforts in collecting data and adequate

controls. We investigated three such approaches which have been popularly used in

the literature—data augmentation, using generative models to modify existing images,

and increasing diversity on more easily controllable real-world transformations.

Traditional Data augmentation does not provide similar performance to true diversity

with real-world transformations.

Here we investigated how real-world transformational diversity (RWTD) compares to

traditional data augmentation strategies including 2D rotations, scaling, and changes

in contrast. Models trained with a visual diet consisting of 80% RWTD were reported

in Fig.3(e). We compared these with models trained with a visual diet consisting of

20% RWTD + traditional augmentation. As before, all models were tested on unseen

242



lighting, material, and viewpoint changes.

Note that the number of training images was kept constant across all training sce-

narios to evaluate the quality of the training images rather than their quantity. Train-

ing set size equalization was achieved by sampling fewer images per domain in the

80% RTWD training set. For instance, for HVD experiments with unseen viewpoints

we sampled 15, 000 training images per viewpoint domain to construct the training set

with 20% RWTD + Data Augmentations. In comparison, we sampled only 3, 750 per

viewpoint domain to construct the 80% RWTD training set. Thus, the initial sizes of

the 80%RWTD and the 20%RWTD+Data Augmentation training sets was identical.

However, due to data augmentations being stochastic the total number of unique im-

ages shown to models trained with data augmentations was much larger. Assuming a

unique image was created by data augmentation in every epoch, over 50 epochs the

dataset size would be 50 times larger with data augmentations. Additional details on

dataset construction can be found in the methods in Sec. 10.4.

HDNet trained on HVD with 80% RWTD outperformed the same architecture

trained with 20% RWTD+traditional data augmentation for lighting changes (two-

sided t test, p < 10−4), material changes (two-sided t test, p < 10−5), and viewpoint

changes (two-sided t test, p < 10−6) (Fig. 10.4(a)). Similar conclusions were reached

for the Semantic-iLab dataset. A ResNet model trained with 80% RWTD outper-

formed the same architecture trained with 20% RWTD+traditional data augmenta-

tion for lighting changes (two-sided t test, p < 10−4), material changes (two-sided t

test, p < 10−7), and viewpoint changes (two-sided t test, p < 10−5) (Fig. 10.4(b)).

One explanation for this finding could be that traditional data augmentation largely

involves 2D affine operations (crops, rotations) or image-processing based methods

(contrast, solarize) which are not necessarily representative of real-world transforma-

tions. In summary, the positive impact of a visual diet consisting of diverse lighting,

material, and viewpoint changes (real-world transformational diversity) cannot be

243



replicated by using traditional data augmentation applied to the dataset after data

collection—diversity must be ensured at the data collection level.

Real-world transformations outperform modifying a low diversity sample with generative

models.

Several existing works rely on increasing data diversity using AdaIn-based methods
172,447. These style transfer methods change the colors in the image while retain-

ing object boundaries, but do not modify materials explicitly as done in our HVD

dataset. We evaluated how well models perform if diversity is increased using style

transfer as opposed to material diversity. We started with one material domain, and

created four additional domains using style transfer. Sample images of style transfer

domains are shown in Fig. 10.4(c). Corresponding images from the HVD dataset with

real-world transformation in materials can be seen in Fig. 10.2(a). The total number

of domains (and images) created using style transfer was kept the same as the ma-

terial domains in HVD. The only difference in the training data was that instead of

four additional material domains, we have four additional style transfer domains. We

compare models trained with these two different visual diets—one consisting of four

material domains, and the other consisting of four style transfer domains. All models

are then tested on the same held out OOD Materials domain.

Style transfer domains did not enable models to generalize to new materials as well

as the material shift domains presented in HVD (Fig. 10.4(d)). These experiments

support the notion that in order to build visual recognition models that can general-

ize to unseen materials, it is important to explicitly increase diversity using additional

materials at the time of training data collection. The impact of diverse materials can-

not be replicated by using style transfer to augment the dataset after data collection.

244



Importance of diversity on all real-world transformations

Some real-world transformations are easier to capture than others. For instance, cap-

turing light changes during data collection might be significantly easier than collecting

all possible room layouts, or object viewpoints. Thus, it would be beneficial if training

with one transformation (e.g., light changes) can improve performance on a different

transformation (e.g., viewpoint changes). We refer to such a regime as assymetric di-

versity—as models are trained with one kind of diversity, and tested on a different

kind of diversity (Fig. 10.4(e),(f)).

In all cases, the best generalization performance was obtained when training and

testing with the same real-world transformation for both HVD (Fig. 10.4(e)) and

Semantic-iLab datasets (Fig. 10.4(f)). In most cases, there was a drop in performance

of 10% or more when training in one transformation and testing in with a different

(assymetric) transformation. These experiments imply that to build models that gen-

eralize well, it is important to collect training data with multiple real-world transfor-

mations.

10.2.4 Models trained with a human-like visual diet can generalize to real-world

images

As a litmus test for our findings, we investigated if models trained with a human-like

visual diet can generalize well to the natural images from the ScanNet dataset despite

only being trained with synthetic images from HVD. Fig. 10.5(a) shows paired test-

ing and training data across these two datasets. The test set is composed of natural

images from the ScanNet dataset, while the training set consists of only synthetic im-

ages from HVD. HVD images were created by 3D reconstructing ScanNet scenes, and

then rendering them under diverse lighting, material and viewpoint change as shown

in Fig. 10.5(a).

245



We made three adaptations for these experiments. Firstly, as both ScanNet and

ImageNet contain natural images and overlapping categories, we trained models from

scratch to ensure pre-training does not interfere with our results. Thus, these mod-

els never saw any real-world images, not even ImageNet as they were not pretrained

on those datasets. Secondly, we trained and tested models on overlapping classes be-

tween HVD and ShapeNet. Finally, we used the LabelMe394 software to manually an-

notate a test set from ScanNet and training set for the HVD dataset using the same

procedure to make sure biases from the annotation procedure do not impact experi-

ments.

Thus, all models were trained purely on synthetic data from HVD and tested on

only real-world natural image data from ScanNet as shown in Fig. 10.5(a). While

all the models that we tested performed above chance levels when tested in the real-

world ScanNet images, there were large performance differences among models (Fig. 10.5b).

Results on generalization to the real world are presented in Fig. 10.5. As can be

seen, the best performing model (IRM) trained without the human visual diet ob-

tained classification performance of 0.51, while HDNet trained with transformational

diversity and scene context performs substantially better at 0.69. Despite being trained

only on synthetic data and no pre-training on natural images, HDNet generalizes well

to the real world by leveraging attributes of the human visual diet. Our approach

with the HVD dataset and HDNet, which mimics and utilizes two hallmarks of hu-

man visual diet (real-world transformational diversity and scene context) beats all

benchmarks with statistical significance (p < 0.05). This evidence confirms that our

findings on Semantic-iLab and the HVD datasets also extend to real-world natural

images from the ScanNet dataset.

246



10.3 Discussion

Alleviating the generalization gap between biological and computer vision remains

an open and elusive problem. The past few years have seen unprecedented progress

in improving generalization in machine vision driven by how algorithms process im-

ages through cutting-edge architectures and data augmentation techniques. Here, we

present an alternative direction bringing together ideas from vision sciences, computer

graphics, and computer vision—mimicking the human visual diet.

There is a long history of studies showing that changing the visual diet alters the

visual cortex204,189. Such developmental neuroscience studies include evaluating the

consequences of rearing animals in visual environments deprived of binocular vi-

sion174, environmental directionality85, temporal contiguity408, surface features409,

or faces18, among others. Some studies have also tried to quantitatively define the

human visual diet69. In a similar vein, some computational works have also studied

how the training data distribution (visual diet) impacts visual search assymetries142,

and object recognition240,243. Here, we combined ideas from biological and computer

vision and evaluated the impact of a human-like visual diet on the generalization be-

havior of visual recognition models.

Through controlled analyses, we show that two hallmarks of human visual diet

(transformational diversity and scene context) provide significant improvements in

generalization across real-world transformations compared to existing popular ap-

proaches. These experiments are enabled by two computational contributions intro-

duced here—a dataset which mimics the human visual diet, and an architecture which

can leverage this visual diet.

As a first step in mimicking the human visual diet, we focus on two important as-

pects of this diet—scene context and transformational diversity. There is a long his-

tory of work studying the role scene context in human vision348,135,134,376,165,253,437

247



and modeling contextual cues computationally376,365,437,38. Additinoally, recent work

in machine learning has stressed the importance of data diversity for generalization243,240.

These two aspects of the human visual diet are certainly not exhaustive and multiple

other features warrant future investigation, including depth information, occlusions,

and dynamic cues.

The concept of generalization is ill-defined and depends on the training and test

distributions. Humans also struggle with generalization when image statistics change

(e.g., consider humans trying to read bar codes in the supermarket, learning to di-

agnose clinical images, or deciphering the shapes of new galaxies). A laudable goal

in computer vision is often to align humans and machines. Such alignment takes

the form of avoiding adversarial attacks that are imperceptible for humans but al-

ter machine-produced labels, enhancing computer vision function in the real world,

or even recognition challenges that would benefit from human-machine collaboration.

Ensuring that the visual diets are similar can help accelerate such alignment.

Advances in algorithms usually accompany progress in building better datasets.

The introduction of a two-stream architecture constitutes a reasonable first-order ap-

proach to capitalize on transformational diversity and contextual cues. At the same

time, we expect that more powerful datasets will incentivize the development of bet-

ter algorithms that could also be in turn inspired and constrained by biological vision.

10.4 Methods

10.4.1 Datasets mimicking attributes of the human visual diet

Several benchmarks have been proposed to study generalization in computer vision.

On one hand, we have datasets like ImageNet-P166 and ImageNet-C166, which intro-

duce controlled synthetic noise that can be quantified, but the introduced noise does

not reflect real-world transformations. On the other hand, there are domain general-

248



ization datasets like PACS221, VLCS373, Office-Home391, DomainNet287, and Terra

Incognita30, among others. While these datasets do include transformations that exist

in the real world, the distribution shift between domains in these benchmarks can-

not be quantified or disentangled into scene parameters. For instance in PACS221, it

is unclear how the Photo → Cartoon domain shift differs from a Photo → Art shift.

Furthermore, all these datasets show objects with minimal context, as they are com-

posed of crops centered around objects. The proposed HVD dataset was designed to

address these issues—it shows objects in context, with controlled, disentangled real-

world transformations. Below we introduce HVD, and also modify an existing natural

image dataset to partly mimick the human-like visual diet.

Human Visual Diet (HVD) Dataset

We reconstructed 1,288 real-world scenes from the ScanNet dataset with the exact

same 3D objects, scene layouts, class distributions and camera parameters using the

OpenRooms framework231,230. With these scenes, we created 15 photo-realistic do-

mains with 3 types of real-world transformations including—lighting, material, and

viewpoint changes. Some sample images are provided in Fig. 10.2(a). We rendered

19, 800 images for each domain, which results in 70, 000 object instances from 13 in-

door object categories. Across all domains, this amounts to roughly 300, 000 images

and 1 million object instances. Below, we explain how different semantic shifts were

created.

Material shift domains: We used 250 high quality, procedural materials from Adobe

Substances including different types of wood, fabrics, floor and wall tiles, and met-

als, among others. These were split into sets of 50 materials each to create 5 different

material domains (supplementary Fig. Supp.74). For each domain, its 50 materials

were randomly assigned to scene objects. One domain was held out for testing (OOD

249



Materials), and never used for training any model.

Light shift domains: Outdoor lighting was controlled using 250 High Dynamic

Range (HDR) environment maps from the Laval Outdoor HDR Dataset169 and Open-

Rooms, which were split into 5 sets of 50 each (one set per domain). Disjoint sets of

indoor lighting were created by splitting the HSV color space into chunks of disjoint

hue values. Each domain sampled indoor light color and intensity from one chunk

(supplementary Fig. Supp.73). One domain was held out for testing (OOD Light),

and never used for training.

Viewpoint shift domains: Controlling object viewpoints presents a challenge as in-

door objects are seen across a variety of azimuth angles (i.e., side vs front) across 3D

scenes. Thus, to create disjoint viewpoint domains (supplementary Fig. Supp.75) we

chose to control the zenith angle by changing the height at which the camera is focus-

ing. Again, of the 5 domains, one was held out for testing (OOD Viewpoints).

Natural image test set from ScanNet

To create the real-world test dataset, we sampled images from the ScanNet dataset82.

ScanNet contains scenes captured using a moving camera from which frames can be

extracted. We manually compared ScanNet scenes with our reconstructions of these

scenes using OpenRooms, and selected 3D scenes for which OpenRooms was success-

fully able to recreate all three—scene layout, camera parameters, and geometry. As

the video is continuous, nearby frames are highly similar. Therefore, we subsampled

one frame for every 100 frames in the video. These frames were then annotated us-

ing LabelMe. To ensure a high quality test set, results are reported in the main paper

on a subset of 350 images which are not blurry and do not have significant clutter.

However, here we report numbers on a larger subset of 700 test images where we al-

low clutter and minor blurring so as to achieve a bigger test set. These results are

reported in supplemtary Sec. S27. The same procedure was also followed to hand-

250



annotate 8, 000 training object instances from the HVD dataset to ensure there is

no spurious impact of the annotation procedure on the performance of models when

tested on ScanNet.

Semantic-iLab dataset

To ensure our findings extend to natural images, we modified the iLab39 dataset

to create a natural image dataset with controlled variations in Lighting, Material,

and Viewpoint, as shown in Fig. 10.2 (b). We call this the Semantic-iLab dataset.

The iLab dataset contains objects from 15 categories placed on a turntable and pho-

tographed from varied viewpoints. A foreground detector was used to extract a mask

for the object in each image. Material variations were implemented using AdaIN173

based style transfer on these images and overlaying the style transferred image onto

the object mask in the original image. Lighting changes were implemented by modi-

fying the white balance. Note that unlike HVD, this dataset does not contain scene

context. Additional details can be found in supplementary Sec. S26.

10.4.2 Human Diet Network (HDNet)

A schematic of the proposed HDNet is shown in Fig 10.6. We start with CRTNet as

the backbone38 and introduce critical modification of contrastive learning described

below to enable generalization across semantic shifts.

Feature Extraction in Context-aware Recognition using a Cross-attention Transformer

The context-aware recognition model in38 achieved superior performance in in-context

object recognition when the training and test data are from the same domain. Here,

we used the same backbone and briefly introduce the network architecture below

(see38 for implementation details).

251



Given the training dataset D = {xi, yi}ni=1, HDNet is presented with an image xi

with multiple objects and the bounding box for a single target object location. Ii,t
is obtained by cropping the input image xi to the bounding box whereas Ii,c covers

the entire contextual area of the image xi. yi is the ground truth class label for Ii,t. In

this subsection, we focus on extracting context and target features in the embedding

space and omit the index i for simplicity. Inspired by the eccentricity dependence of

human vision, HDNet has one stream that processes only the target object (It, 224 ×

224), and a second stream devoted to the periphery (Ic, 224× 224) which processes the

contextual area.

The context stream is a transformer decoder, taking Ic as the query input and It

as the key and value inputs. The network integrates object and context information

via hierarchical reasoning through a stack of cross-attention layers in the transformer,

extracts context-integrated feature maps Ft,c and predicts class label probabilities yt,c
within C classes.

A model that always relies on context can make mistakes under distribution shifts.

Thus, to increase robustness, HDNet makes a second prediction yt, using only the

target object information alone. A 2D CNN is used to extract feature maps Ft from

It, and estimates the confidence p of this prediction yt. Finally, HDNet computes a

confidence-weighted average of yt and yt,c to get the final prediction yp. If the model

makes a confident prediction with the object only, it overrules the context reasoning

stage.

Supervised Contrastive Learning for Domain Generalization

Contrastive learning has benefited many applications in computer vision tasks (e.g.,297,63,345,438,195).

However, all these approaches require sampling positive and negative pairs from real-

world data. To curate positive and negative pairs, image and video augmentations

operate in 2D image planes or spatial-temporal domains in videos. Here we introduce

252



a contrastive learning method on 3D transformations.

Our contastive learning framework builds on top of the supervised contrastive

learning loss194. Given the training dataset D = {xi, yi}ni=1, we randomly sample N

data and label pairs {xk, yk}Nk=1. The corresponding batch pairs used for constrative

learning consist of 2N pairs {x̃l, ỹl}2Nl=1, where x̃2k and x̃2k−1 are two views created with

random semantic domain shifts of xk(k = 1, ...,N) and ỹ2k = ỹ2k−1 = ỹk. Domain shifts

are randomly selected from a set of HVD domains specified during training. For ex-

ample, if xk is from a material domain, x̃2k and x̃2k−1 could be images from the same

3D scene but with different materials. For brevity, we refer to a set of N samples as a

batch and the set of 2N domain-shifted samples as their multiviewed batch.

Within a multiviewed batch, let m ∈ M := {1, ..., 2N} be the index of an arbitrary

domain shifted sample. Let j(m) be the index of the other domain shifted samples

originating from the same source samples belonging to the same object category, also

known as the positive. Then A(m) := M\{m} refers to the rest of indices in M except

for m itself. Hence, we can also define P(m) := {p ∈ A(m) : ỹp = ỹm} as the collec-

tion of indices of all positives in the multiviewed batch distinct from m. |P(m)| is the

cardinality. The supervised contrastive learning loss is:

Lcontrast =
∑
m∈M

Lm =
∑
m∈M

−1
|P(m)|

∑
p∈P(m)

log
exp(zm · zp/τ)∑

a∈A(m) exp(zm · za/τ)
(10.1)

Here, zm refers to the context-dependent object features Fm,t,c on x̃m after L2 nor-

malization. The design motivation is to encourage HDNet to attract the objects and

their associated context from the same category and repel the objects and irrelevant

context from different categories.

As previous works have demonstrated the essential role of context in object recog-

nition38,437, contrastive learning on the context-modulated object representations en-

forces HDNet to learn generic category-specific semantic representations across vari-

253



ous domains. τ is a scalar temperature value which we empirically set to 0.1.

Overall, HDNet is jointly trained end-to-end with two types of loss functions: first,

given any input xm consisting of image pairs Im,c and Im,t, HDNet learns to classify

the target object using the cross-entropy loss with the ground truth label ym; and sec-

ond, contrastive learning is performed with features Fm,t,c extracted from the context

streams:

L = αLcontrast,c,t + Lclassi,t + Lclassi,p + Lclassi,c,t (10.2)

Hyperparameter α is set to 0.5 to balance the supervision from constrastive learning

and the classification loss. Supplementary Table Supp..2 shows that the contrastive

loss introduced in HDNet results in improved performance across all real-world trans-

formations.

10.4.3 Experimental Details

Baseline Architectures

HDNet was compared against several baselines presented below. All models were

trained on NVIDIA Tesla V100 16G GPUs. Optimal hyper-parameters for bench-

marks were identified using random search, and all hyper-parameters are available in

the supplement in Sec. S29.

2D feed-forward object recognition networks: Previous works have tested popular

object recognition models in generalization tests119,41. We include the same popular

architectures ranging from 2D-ConvNets to transformers: DenseNet175, ResNet162,

and ViT99. These models do not use context, and take the target object patch It as

input.

Domain generalization methods: We also compare HDNet to an array of state-of-

the-art domain generalization methods (Table 10.1). These methods also use only the

target object, and do not use contextual information.

254



Context-aware recognition models: To compare against models which use scene

context, we include CRTNet38 and Faster R-CNN308. CRTNet fuses object and con-

textual information with a cross-attention transformer to reason about the class label

of the target object. We also compare HDNet with a Faster R-CNN308 model modi-

fied to perform recognition by replacing the region proposal network with the ground

truth location of the target object.

Evaluation of computational models

Performance for all models is evaluated as the Top-1 classification accuracy. Error

bars reported on all figures refer to the variance of per-class accuracies of different

models. For statistical testing, p-values were calculated using a two-sample paired

t-test on the per-category accuracies for different models. The t-test checks for the

null hypothesis that these two independent samples have identical average (expected)

values. For ScanNet, a t-test is not optimal due to the smaller number of samples,

and thus a Wilcoxon rank-sum test was employed for hypothesis testing as suggested

in past works86,293. All statistical testing was conducting using the python package

scipy, and the threshold for statistical significance was set at 0.05.

Data and Code Availability Statement

Source code and data are available at https://github.com/Spandan-Madan/human_

visual_diet.

255

https://github.com/Spandan-Madan/human_visual_diet
https://github.com/Spandan-Madan/human_visual_diet


(b)

(c)

(a)

Lighting Change

Material Change

Viewpoint Change

Person moves,
viewing sofa from 

multiple viewpoints

Human Visual Diet
(A sofa in a room)

Machine Visual Diet 
(Internet-scraped sofa images)

Object (sofa) always viewed in 
context of surrounding objects

Full Image

Target Crop

Context Feature
Extractor 
Network

Target Feature
Extractor 
Network

Jointly reasoning over context  and target

Predicted 
Label
(Sofa)

Classi!er

Mimicking the Human Visual Diet: Scene Context + Transformational Diversity

Exploiting the Human Visual Diet

vs

Dataset mimicking
Human Visual Diet

Target (Sofa) viewed in
context of surrouding objects

Room light 
turns on and o"

Bedsheet, #ooring,
wall paint (materials) 

di"er across rooms

Room layouts change,
resulting in di"erent

object viewpoints

Figure 10.1: Mimicking and exploiting the human visual diet. (a) Comparing human and
machine visual diets: The desk in the 3D room is viewed under a variety of real-world trans-
formations which are essential components of the human visual diet. Furthermore, objects are
always seen in context of their surroundings. In contrast, sample images of internet-scraped
desks which constitute the machine visual diet do not contain these real-world transforma-
tions, or scene context. (b) Mimicking the human visual diet by introducing disentangled
lighting, material, and viewpoint changes to a 3D scene where objects are shown in context.
(c) Exploiting the human visual diet by using a two-stream architecture which reasons over
both target object and its surrounding scene context.

256



Human Visual Diet (HVD) Dataset

Li
gh

tin
g 

Ch
an

ge
M

at
er

ia
l C

ha
ng

e
Vi

ew
po

in
t C

ha
ng

e

Semantic iLab Dataset
(b)

Original Image Lighting Change Material Change Viewpoint Change

(a)

Figure 10.2: Datasets with real-world transformations. (a) Sample images from the Human
Visual Diet dataset: We created 15 photo-realistic domains with three, disentangled real-world
transformations—lighting, material, and viewpoint changes. Each 3D scene was created by
reconstructing an existing ScanNet82 scene using the OpenRooms framework231, followed
by introduction of controlled changes in scene parameters before rendering these images. (b)
Sample images from the Semantic-iLab dataset: We modify the existing iLab dataset39 by
augmenting images with changes in lighting and material. These changes are achieved by
modifying the white balance and using AdaIN172 based style transfer, respectively.

257



Human Visual Diet (HVD) Dataset Semantic iLab Dataset

(a) (b)

(e)

Models struggle to generalize well across real-world transformations

Real-World Transformational Diversity improves generalization

Scene context with two-stream architecture improves generalization

Human Visual Diet (HVD) Dataset Semantic iLab Dataset

Human Visual Diet (HVD) Dataset

(c) (d)

Figure 10.3: Human Visual Diet leads to significantly improved generalization across real-
world transformations.((a) Existing models struggle to generalize across real-world trans-
formations, especially material and viewpoint changes. This result holds for both HVD and
Semantic-iLab datasets. (b) Increasing real-world transformational diversity leads to a sig-
nificant increase in generalization performance for all transformations (lighting, viewpoint
and materials) for both datasets. (c) HDNet leverages scene context resulting in substantially
better generalization than seminal domain generalization architectures like ERM34, IRM19.
HDNet is designed to incorporate scene context into visual recognition, by using a two-stream
architecture to reason over the target object and scene context simultaneously. In contrast,
above mentioned state-of-the-art approaches for domain generalization are single stream ar-
chitectures that do not leverage scene context. HDNet also beats a suite of additional domain
generalization baselines presented in Table 10.1. The closest performing baseline is another
context-aware 195 model (CRTNet38), and our proposed model beats theses baselines for
all three transformations with statistical significance. For all plots, statistical significance is
evaluated using a two-sample t-test, and an ∗ indicates a p-value lower than the threshold of
0.05. See methods for additional details.

258



(a)

Real-world transformational diversity outperforms Data augmentation

Human Visual Diet (HVD) Dataset Semantic iLab Dataset

(c)

Original Image

Generalization performance
with unseen materials

Images after Style Transfer

(d)

Generalization from one transformation to another is poor

Human Visual Diet (HVD) Dataset Semantic iLab Dataset

Real-world material diversity outperforms style transfer

Train Set: Lighting Changes Train Set: Material Changes Train Set: Viewpoint Changes

80% Real-World Transformational Diversity (RWTD) 20% RWTD + Data Augmentations

(b)

(e) (f )

Figure 10.4: Data post-processing does not match gains from collecting data mimicking the
human visual diet. (a) Models trained 80% real-world transformational diversity (RWTD)
significantly outperform modesl trained with 20% along with traditional data augmentation.
This is true for all transformations (lighting, material, and viewpoint) across both HVD and
Semantic-iLab datasets. Number of images is held constant in these experiments. (b) Sample
images from style transfer domains created using AdaIn172, alongside accuracies of models
trained with these domains. Models trained on style transfer domains generalize significantly
worse than those trained with material diversity. (c) Generalization from one transforma-
tion to another (asymmetric diversity) does not help as much as training with the correct
transformation—best generalization to unseen materials is achieved when material diversity
is added to the training data. For generalizing to unseen light and viewpoint changes as well,
training with the corresponding real-world diversity helps the most.

259



(a)

(b)

Sample images from the HVD Dataset and ScanNet

Human visual diet improves generalization to the real world

Generalization on ScanNet after training with HVD Dataset

Natural image test set
(Original ScanNet images)

Paired synthetic image train set 
(HVD Images: 3D reconstructed ScanNet scenes

rendered with transformations)

Lighting Change Material Change

Viewpoint Change

Figure 10.5: Utility of the human visual diet in generalizing from synthetic to real-world,
natural image data. (a) Sample synthetic images from the HVD dataset used for training
the model, and the corresponding real-world natural image from ScanNet used for testing.
(b) Human Visual Diet enables substantially better generalization from synthetic to natural
image data. Our approach, which mimics and effectively utilizes transformational diversity
and scene context leads to better performance than all other baselines.

260



Cross-attention 

transformer

2D-ConvNet

𝒑
𝑭𝒕,𝒄

𝑭𝒕𝑰𝒕

𝑰𝒄
Weighted sum

Predicted label

‘monitor’

𝒚𝒑
𝒚𝒕
𝒚𝒕,𝒄

(a) Context-aware Feature Extraction

monitor

monitor

chair

Attract

Repel

(b) Contrastive Learning

Figure 10.6: Architecture overview for Human Diet Network(HDNet). (a) Modular steps
carried out by HDNet in context-aware object recognition. HDNet consists of 3 modules:
feature extraction, integration of context and target information, and confidence-modulated
classification. HDNet takes the cropped target object It and the entire context image Ic as in-
puts and extracts their respective features. These feature maps are tokenized and information
from the two streams is integrated over multiple cross-attention layers. HDNet also estimates
a confidence score p for recognition using the target object features alone, which is used to
modulate the contributions of Ft and Ft,c in the final weighted prediction yp. (b) To help HD-
Net learn generic representations across domains, we introduce contrastive learning on the
context-modulated object representations Ft,c in the embedding space. Target and context
representations for objects of the same category are enforced to attract each other, while those
from different categories are enforced to repel. Pairs for contrastive learning are generated
using various material, lighting or viewpoint shifts (Sec. 10.4.1).

261



Part IV

OOD Generalization capabilities of the

brain

262



11
OOD generalization capabilities of the

models of the cortex

11.1 Introduction

Deep Neural Networks (DNNs) for vision have internal representations that share

similarities with neural representations in the visual cortex, including the primate

ventral visual stream26,292. This representational similarity allows for models that

use image representations extracted from a pre-trained DNN (e.g., ResNet162) to pre-

dict neuronal firing rates423 (Fig. 11.1(a)). However, DNNs are known to struggle

263



(a)

Input Image

ResNet18

Neuronal 
Responses

Final Layer 
Activations

Linear
Model

Macaque IT Cortex 0.1 s

20
 μ

V

0.1 s

10
0 

μV

1 sec

2.8 M presentations / 9 monkeys
8233 images × 864 electrodes 

V4
V2

CIT

AIT

N
or

m
. F

R,
 a

.u
.

90th percentile

10th percentile

(c)

(b)

(d)

(e)

Figure 11.1: Modeling the visual cortex with MacaqueITBench. (a) DNN-Based models of the
visual cortex employ a linear model to map image features extracted from pre-trained DNNs
(e.g., ResNet18) to neuronal responses collected from the macaque IT cortex. (b) A UMAP254

visualization of the representation by the neural pseudo-population. Nearby images have more
similar population responses. (c) An example one-second segment of the raw wideband signals
recorded on an electrode. (d), The wideband signals were highpass filtered, and threshold-
crossing events below a voltage value (horizontal dashed line) were counted as multiunit
spikes (lower vertical ticks). The top horizontal bars indicate image presentation periods. (e)
The heatmap shows the neural response matrix. Each row indicates the responses from an
electrode, pooled across sessions. The columns correspond to images, sorted by the reverse
UMAP horizontal order. The vertical bars to the left of the heatmap denote the recorded
areas (black lines) and monkeys (colored lines).

with generalization under distribution shifts such as Out-of-Distribution (OOD) view-

points244,240,78, materials and lighting 242,319, and noise166,80. This difficulty in gen-

eralization may also affect models of the visual cortex that rely on a DNN to extract

image representations.

We posit that, even within an image set where DNN-based models predict neural

responses well under random splits across images, specific train-test splits with distri-

bution shifts will impair model performance, proportional to the size of distribution

shift. To test this hypothesis, we collected MacaqueITBench, a large-scale dataset of

responses to natural images by neurons in the macaque ventral visual pathway. The

dataset represents neurons in V2, V4, Central IT (CIT), and Anterior IT (AIT) (pri-

marily CIT and AIT) and responses to over 300, 000 images (8, 233 unique images

264



presented to seven monkeys over 109 sessions), as illustrated in Fig. 11.1(b).

Using MacaqueITBench, we investigated the impact of distribution shifts on the

neural predictivity of DNN-based models of the visual cortex. We constructed vari-

ous OOD distribution shifts, some of which are schematized in Fig. 11.2. Foreshad-

owing, our main finding is that distribution shifts in even low-level image attributes

break DNN-based models of the visual cortex. This observation highlights a problem

in modern models of the visual cortex—good predictions are limited to images that

belong to the training data distribution.

To explain the OOD model-performance drop, we built on theoretical work positing

that generalization performance is closely correlated with the amount of distribution

shift49,285. While theoretical studies have examined simplistic, simulated data, we

show that a suitable metric of the size of distribution shifts can account for the OOD

generalization performance of neural-encoding models.

In summary, our main contributions are threefold:

• We present MacaqueITBench, a large-scale dataset of neural population re-

sponses to over 300, 000 images spanning multiple areas of the primate ventral

visual pathway.

• We show that modern models of the visual cortex do not generalize well—

simple distribution shifts can reduce neural predictivity to as low as 20% of

in-distribution performance.

• We show that a simple metric of distribution shift sizes can predict OOD neural

predictivity.

265



11.2 Related Work

11.2.1 DNN-based models of the Visual Cortex

A touchstone for visual neuroscience is the ability to predict neuronal responses to

arbitrary images. On this test, DNN-based models have emerged as state-of-the-art

models, best explaining neural responese across species—e.g., mouse and macaque—

and visual cortical areas—from the primary visual cortex (V1) to the high-level in-

ferior temporal cortex (IT). DNN encoding models of the visual cotext are reviewed

more generally in205,422. Most pertinently here, these DNN-based models have been

evaluated using random cross-validation (e.g.,322), which tests IID generalization.

OOD generalization in such models have been sparsely examined; we are only aware

of one study309 comparing model fit to neural responses on two image types. Here,

we systematically vary the type and degree of OOD splits to investigate how different

splits lead to different generalization gaps.

11.2.2 Out-of-distribution generalization capabilities of DNNs

DNNs for object recognition have been documented to fail at generalizing across a

wide range of distribution shifts. Such shifts include 2D rotations and shifts440,56,

commonly occurring blur or noise patterns166,258,416,417, and real-world changes in

scene lighting243,30,439, viewpoints240,24,234,433,243,78,318, geometric modifications31,414,424,

color changes185,330, and scene context38,437.

There have been three broad approaches to address the lack of OOD generalization

in DNNs: first, modifying the learning paradigm including modifying the architecture

or loss function to enforce invariant representations19,108,60,400,222, or using ensemble

and meta-learning220,21,447; second, modifying the training data using data augmen-

tation434,167,420,172, or by increasing data diversity416,331,298,343,393; third, scaling data

up to beyond billions of data points421,301,279. Despite these efforts, OOD generaliza-

266



tion remains an unsolved problem for deep networks.

11.3 MacaqueITBench

We collected a large-scale dataset of neural population responses to over 300, 000 im-

ages across sessions, comprising 8, 233 unique natural images presented to seven mon-

keys over 109 sessions. In each session, a monkey maintained fixation while images

were rapidly presented in random order. Each presentation was 83 milliseconds; with

83–150 milliseconds between presentations.

The images derived from published image sets202 and photos taken in the lab and

contained pictures of common objects, people, and other animals including monkeys

(Fig. 11.1(b)). Image thumbnails are shown in Fig. 11.1(b)); sample images are pro-

vided in the supplement. Images belonged to over 300 semantic categories annotated

by hand. A full list of categories can be found in the supplement. The large number

and diversity of images allowed us to construct various OOD splits.

Neural responses were recorded on intracranial microelectrodes measuring extra-

cellular electrical potentials (Fig. 11.1(c)) pre-processed to extract multi-unit spiking

activity (Fig. 11.1(d))45,360. The analyses included 640 electrodes (12 multi-electrode

arrays) recorded in nine hemispheres of seven monkeys, spanning four ventral-stream

areas: V2, V4, central IT (CIT), and anterior IT (AIT), primarily sampling CIT and

AIT (Fig. 11.1(e)). The electrodes were chronically implanted, and the responses

showed stable selectivity when pooled across sessions. Nevertheless, our modeling fo-

cused on the more finely resolved within-session trial-averaged responses.

11.4 Constructing out-of-distribution data splits

We build on past work studying generalization under systematic distribution shifts240,242,19,166,

and define the training and test distributions parametrically using image attributes.

267



Images sorted by attributes
(increasing order)

15 attribute-based OOD splits 
generated from one session

Hue

Contrast

Saturation

Intensity

Temperature

Images in one session

High 
hold-out

Low
hold-out

Mid
hold-out

TRAIN

TEST TRAIN

TRAINTRAIN TEST

TEST

Low-Hue

Low-Contrast

Low-Saturation

Low-Intensity

Low-Temperature

High-Hue

High-Contrast

High-Saturation

High-Intensity

High-Temperature

Mid-Hue

Mid-Contrast

Mid-Saturation

Mid-Intensity

Mid-Temperature

Figure 11.2: Constructing multiple attribute-based OOD splits. For each of our 109 sessions,
we construct 15 different attribute-based OOD splits. These correspond to 3 hold-out strate-
gies (high, low, mid) for each of 5 image-computable attributes (hue, contrast, saturation,
intensity, temperature). For each attribute (e.g., hue), we compute the attribute value for
each image in the session. For the high hold-out strategy, all images with the attribute value
above a percentile cut-off serve as the OOD test set with the remaining serving as the train
set. Analogously for the low hold-out splits, images below a percentile cut-off serve as the test
set with the remaining serving as the train set. For mid hold-out splits, images within the
middle percentiles serve as the test set.

Using these parametric data distributions, we construct three kinds of train-test splits:

InDistribution (InD) splits: For each session, we created one In-Distribution (InD)

split to compare with OOD generalization performance. We sampled 25% of the im-

ages at random, and held these out as the InD test set, with the remaining serving as

the training set.

Attribute-based OOD splits: For concreteness, we describe OOD splits based on

image contrast; splits based on the other image attributes were constructed analo-

268



gously. For each session, we computed the contrast value for each image. Then, one

of three strategies were employed:

• High hold-out: The 75th percentile of contrast values served as the cut-off. Im-

ages with contrast above the cut-off formed the test set. Remaining images

formed the training set.

• Low hold-out: The 25th percentile served as the cut-off. All images below this

served as the held-out test set. The remaining served as the training set.

• Mid hold-out: Images with contrast values between the 42.5th and 62.5th per-

centile served as the held-out test set. The remaining formed the training set.

Cosine Distance-based splits: To investigate the relationship between the size of

distribution shift and neural predictivity, we constructed 3 additional test splits. We

first extracted the features for every image from the pre-final layer of a pre-trained

ResNet18. A random image was picked to be the seed, and all images in the session

were sorted in order of increasing cosine distance between the ResNet extracted fea-

tures of the images and the seed. The sorted images were then divided into three

chunks based on percentile cut-offs. The first chunk corresponds to the bottom 80

percentile which served as the Training + In-Distribution Test split. A random sub-

set of this first chunk was held out to form the In-Distribution test split, with the

remaining serving as the training set. The second chunk is images in the 90th to 95th

percentile, which are held-out as the Near-OOD test split. Finally, the third chunk

corresponds to images above the 95th percentile. These are held-out as the Far-OOD

split. To ensure a gap between the train and test distributions, we discard images

between the 80th and the 90th percentile. Note that the number of images in the In-

Distribution test split was kept the same number of images as the Near-OOD split.

269



11.5 Quantifying distribution shifts

We present a unified framework for measuring distribution shifts over the parametric

OOD train-test splits presented in Sec. 11.4.

11.5.1 Representations for training and testing data-splits

Let DT = {iT1 , iT2 , ..., iTN} denote a train split of N images, and let Dt = {it1, it2, ..., itn}

denote the corresponding test split of n images. R(.) is a representation function that

provides a vector representation for an image. The train and test images thus corre-

spond to R(DT) = {R(iT1 ),R(iT2 ), . . . ,R(iTN)} and R(Dt) = {R(it1),R(it2), . . . ,R(itn)}.

We analyzed representations R(ij) formed by the features extracted for an image ij

by a pre-trained DNN. We explore 8 different DNN architectures, and multiple layers

for every architecture. Equations below are agnostic to the architecture and the layer

used. Other alternatives could include using HOG83 or GIST274 image features, or

the vectorized pixel values of the image.

11.5.2 Defining distances over different datasets

To compute the shift between R(DT) and R(Dt), we compared three distance metrics:

Maximum Mean Discrepancy (DMMD): The MMD between the two datasets can be

computed as

D2
MMD(DT,Dt) =

1
N2

N∑
j=1

N∑
k=1

K(R(iTj ),R(iTk )) +
1
n2

n∑
j=1

n∑
k=1

K(R(itj),R(itk))

− 2
Nn

N∑
j=1

n∑
k=1

K(R(iTj ),R(itk))

270



Here, K(R(iTj ),R(itk)) is a kernel distance between the representations of images iTj
and itk. A common choice for the kernel function K(·, ·) is the Gaussian RBF.

Covariate-Shift (DCov): Let PT(X) and Pt(X) denote the distributions of the train

and test input variables (i.e., image representations), and let P(Y|X) denote the con-

ditional distribution of the output (i.e., neural responses) given the input. Covariate

shift exists if PT(X) ̸= Pt(X) but PT(Y|X) = Pt(Y|X). DCov can be computed by training

a binary classifier to classify if data comes from the training or the testing dataset.

We denote the accuracy of this classifier as aT,t and measure the covariate shift as:

DCov(DT,Dt) = 2× (0.5− aT,t)).

Closest Cosine Distance (DCCD): For every image in the test set, we find its dis-

tance to the closest training image, and compute the mean of this distance over all

test images. For brevity, we will refer to this as Closest Cosine Distance. Let iTk ∈ DT

denote the closest training image to test image itj ∈ Dt as measured by the cosine dis-

tance Dcos(R(itj),R(iTk )). The distance Dcos between two vectors u and v is given by

Dcos(u, v) = 1− u · v
∥u∥∥v∥

The average distance to the closest training image is

DCCD =
1
n

n∑
j=1

min
k∈{1,2,...,N}

Dcos(R(itj),R(iTk ))

271



11.6 Model training and evaluation

As depicted in Fig. 11.1(a), we employ a linear model to map pre-trained model acti-

vations to neuronal firing rates from the IT cortex (Fig. 11.1(a)). The linear model

was learned using ridge regression. We used only pre-trained DNNs, not DNNs fine-

tuned for our analysis.

For feature extraction, we investigated 8 DNN architectures and 2 layers for each

architecture. The DNNs include supervised models trained on ImageNet (ResNet-

18162, ViT99), self-supervised models trained on billion-scale data with self-supervised

and weakly supervised learning (ResNet18_swsl421, ResNext101_32x16d_swsl421,

ResNet-50_ssl421), Noisy student with EfficientNet418, self-supervised learning over

billions of tokens (DinoV2279), and the multi-modal vision-language model CLIP301.

A linear encoding model was fit for the trial-averaged responses of each neuron in a

session. The results are presented as the mean and S.E.M. across 109 sessions (7 mon-

keys); each session’s results is the median across neurons. The model fit per neuron

was quantified as the ceiling-normalized, squared Pearson’s correlation, r2pred/r
2
cons fol-

lowing convention322,415 and related to the explained variance, R2. The ceiling rcons

of a neuron was calculated as its response correlation between split-half trials, across

images, with Spearman-Brown correction (because models fitting used all trials per

image). The model fit rpred was the correlation across test images between neuronal

responses and model predictions. All experiments were conducted on a compute clus-

ter with 300 nodes, 48 cores per node. CPU machines running Rocky Linux release

8.9 (Green Obsidian) were used.

272



hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (a)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

InD Performance

Resnet18

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (b)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Resnet18_swsl

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (c)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Resnext101_32x16d_swsl

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (d)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Noisy_student_efficient

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (e)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Vit

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (f)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Bit

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (g)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Dinov2

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (h)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Clip

Figure 11.3: Neural predictivity drops under distribution shifts. The y-axis shows the ratio of
the neural predictivity for out-of-distribution (OOD) images to in-distribution (InD) test im-
ages. A ratio of 1 would indicate no drop in performance. Each panel (a-h) shows a different
architecture used for extracting image features. Each bar in a panels corresponds to a differ-
ent OOD split constructed by using the high hold-out strategy across 5 different attributes
(hue, saturation, saturation, intensity, temperature, and contrast). For all architectures and
OOD splits, models fail to generalize well to OOD samples and are significantly and substan-
tially below the 1.0 horizontal line. Image features were extracted from the pre-final layer for
all architectures.

11.7 Results

11.7.1 Neural prediticivity drops under distribution shifts

DNN-based encoding models become worse at predicting neuronal responses under

simple shifts in the image distribution. To demonstrate this, we report the ratio of

neural predictivity between OOD and In-Distribution test splits (r2ood/r2ind). A ratio

of 1 would indicate that models generalize equally well to InD and OOD test images

(horizontal dashed line; Fig. 11.3a). In contrast, the OOD/InD performance ratios are

substantially lower than 1. For instance, the black bar in Fig. 11.3a shows that the

model’s neural predictivity was 0.33 on high-hue OOD images (constructed using the

high hold-out strategy in Sec. 11.4) compared to images with InD hue. Models show

a similar lack of OOD generalization to OOD images with regard to saturation (red

273



hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (a)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce InD Performance

Resnet18
Layer4.0.downsample.0

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (b)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Resnet18_swsl
Layer4.0.downsample.0

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (c)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Resnext101_32x16d_swsl
Layer4.0.conv2

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (d)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Noisy_student_efficient
Blocks.5.2.conv_dw

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (e)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Vit
Blocks.10.attn.qkv

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (f)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Bit
Stages.2.blocks.13.conv1

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (g)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Dinov2
Blocks.10.attn.qkv

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (h)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Resnet50_ssl
Layer4.0.downsample.0

Figure 11.4: Neural predictivity drops for different model layers as well. Neural predictivity
on OOD samples is reported for multiple DNN architectures across multiple different layers.
Layer name is mentioned alongside architecture in all panels (a-h). All OOD splits reported
here were constructed using the high hold-out strategy. For all architectures, layers, and OOD
splits, models fail to generalize well to OOD samples and are significantly below the 1.0 hori-
zontal line.

bar), intensity (green bar), temperature (blue bar), and contrast (gray bar). This per-

formance drop was observed for all eight DNNs tested (Fig. 11.3b-h) and ranged from

a best-case ratio of 0.66 for the CLIP model generalizing to high-temperature OOD

images to a worst-case ratio of 0.2 for the ViT model generalizing to high-saturation

OOD images.

The lack of OOD generalization by neuron encoding models extended to models

based on intermediate DNN layers, not just the penultimate layer. Fig. 11.4 reports

OOD/InD generalization performance ratios of models based on activations extracted

from intermediate DNN layers (layer names shown in Fig. 11.4). For all architectures,

OOD performance was substantially lower than InD performance.

The lack of model OOD generalization extended to different hold-out strategies.

Fig. 11.5 shows the OOD/InD model performance ratio for OOD splits constructed

using the low hold-out strategy described in Sec. 11.4. OOD performance was lower

than InD (ratios below 1) for all architectures and image attributes. Additional results

274



hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (a)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

InD Performance

Resnet18

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (b)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Resnet18_swsl

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (c)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Resnext101_32x16d_swsl

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (d)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Noisy_student_efficient

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (e)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Vit

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (f)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Bit

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (g)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Dinov2

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (h)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Clip

Figure 11.5: Neural predictivity drops for the low hold-out strategy as well. Neural predic-
tivity is reported on OOD test splits constructed using the low hold-out strategy. Across all
DNN architectures and image-computable attributes, performance is below 1.0 for all panels
(a-h). Thus, models do not generalize well to OOD splits constructed with the low hold-out
strategy as well.

with the mid hold-out strategy are provided in the supplement.

Combined, these results showcase a problem for current DNN-based models of the

visual cortex—despite their ability to predict neural responses to in-distribution test

images, the models generalize poorly under distribution shifts even in low-level image

attributes.

11.7.2 The distance between train and test distributions explains generalization

performance

The results above raise a natural question—when and how do models of the ventral

visual cortex fail to generalize under distribution shifts? Theoretical work has related

OOD generalization to the amount of distribution shift 49,285. Here we apply this the-

oretical framework to characterize generalization in DNN models of the brain.

Intuitively, model generalization should be worse for train-test splits under larger

distribution shifts. We tested this intuition by constructing splits with different lev-

275



(a) (b) (d)(c)

ρ ρ

ρ

Figure 11.6: Closest-Cosine Distance metric well-explains performance across all attribute-
based OOD splits. (a) Neural predictivity on distance-based splits. Models performed best
on In-Distribution (InD) the split, with a dip in performance from InD to Near OOD test set
(two-sided t-test, p < 0.01), and from Near OOD to Far-OOD (two-sided t-test, p < 0.01).
This suggests a relationship between the extent of distribution shift and generalization per-
formance. (b) OOD performance can be well-explained by the distribution shift. For all 109
sessions, the plot shows performance on the InD, Near-OOD, and Far-OOD with the cor-
responding distribution shift measured using the Closest-Cosine Distance metric (DCCD).
Performance and DCCD have a Spearman correlation of −0.49(p < 0.001). (c) Scatter plot
of neural predictivity and the corresponding distribution shift (DCCD) across all 15 attribute-
based OOD splits for all 109 sessions. Generalization performance and the proposed distance
metric have a Spearman correlation of −0.45(p < 0.001) (d) Comparing different distance
metrics w.r.t. their correlation with OOD performance. The proposed Closest-Cosine Distance
has the highest correlation with neural predictivity, outperforming both MMD (DMMD) and
Covariate-Shift (DCov).

els of distribution shifts—InD, Near OOD, and Far OOD. As described in Sec. 11.4,

images in every session were sorted based on cosine distance, and split into three

chunks. The first chunk comprises the training and the In-Distribution test set, while

the second and third chunks form the Near OOD and Far OOD test sets. As hy-

pothesized, the model performance decreased progressively and significantly from In-

Distribution to Near OOD, then Far OOD test distributions (Fig. 11.6(a); two-sided

t-test, p < 0.01).

Beyond category-level differences, the size of the distribution shift predicted the

OOD model performance drop across individual data splits (Fig. 11.6(b)). The dis-

tribution shift between each pair of train and OOD test distributions was quantified

with the Closest Cosine Distance (DCCD; described in Sec. 11.5). The DCCD strongly

276



correlated with the OOD model performance drop (Spearman correlation ρ = −0.49).

The distribution shift (DCCD) calculated from ResNet features also explained OOD

performance for attribute based splits (Fig. 11.6(c). Across all image attributes (hue,

saturation, temperature, contrast, intensity) and hold-out strategies (low, high, mid)

used to create OOD splits, DCCD correlated with OOD model performance drop with

a Spearman correlation coefficient ρ = −0.45. Compared to two other popular mea-

sures of the sizes of distribution shifts (MMD, DMMD
136 and Covariate-Shift, DCov

357;

Sec. 11.5), our proposed Closest Cosine Distance (DCCD) metric best predicted OOD

model performance (Fig. 11.6 (d)).

11.8 Conclusions

These results reveal a deep problem in modern models of the visual cortex: good pre-

diction is limited to the training image distribution. Simple distribution shifts break

DNN models of the visual cortex, consistent with broader findings that the underly-

ing DNNs are brittle to OOD shifts. Going one step further, we introduce an image-

computable metric that significantly predicts the generalization performance of mod-

els under distribution shifts. This metric can help investigators gauge how well a neu-

ral model fit on one dataset may generalize to novel images.

Our findings underline an important limitation of AI models for Neuroscience.

Fields like Computer Vision have responded to the issue of distribution shifts by

collecting progressive larger datasets, hoping models will learn to generalize to most

images61,46,294,268 at the billion-image scale. However, it is infeasible to achieve the

same scale in neuroscience—the time needed to present a billion images is already a

formidable challenge, not to mention the resource intensiveness of data collection. We

hope our characterization of when and how modern models of the visual cortex fail

out-of-domain will motivate the development of data-efficient ways to improve DNN

generalization.

277



11.9 Limitations

In this work, we have explored the impact of OOD samples on DNN-based models

of the visual cortex. Our analyses have two main limitations that we hope future re-

search can address. First, we did not fine-tune the DNNs on neural data. It is pos-

sible that training these models on the specific images and/or neural data can help

improve generalization. Second, we did not explore the contributions of the images

being OOD for the underlying pre-trained DNNs, as we only fit the linear encoding

models on train set images and neural data. Because our images were naturalistic, it

is plausible that they belonged to the training distribution of the pre-trained models

we used, some of which (e.g., CLIP) having hundreds of millions of images. An in-

teresting future direction will be to examine how the model performance is affected

by using out-of-distribution images for the pre-trained DNNs. These images could

include those from ImageNet-P, ImageNet-C166, and evolved images292.

278



The more you know, the more you know you

don’t know.

Aristotle

12
Conclusion

Over the past six years, I have sought to understand and unravel the complexities

of how intelligent systems can go past the data, and learn knowledge that can truly

adapt and generalize to the unseen. This journey has led me through the cutting-edge

of several disciplines and methodologies across the sciences. Not just machine learn-

ing and artificial intelligence, this thesis has delved deep into fundamental concepts in

computer graphics, cognitive science, neuroscience, and even philosophy. By examin-

ing the problem through these diverse lenses, I aimed to uncover the principles that

underlie the adaptive intelligence observed in both biological systems. This multidisci-

279



plinary approach was not just a methodical choice but a reflection of my evolving un-

derstanding of the problem, influenced by my advisors, collaborators, and the broader

scientific community. The outline below aims to capture the different perspectives

discussed in this thesis, and highlight the primary contributions.

Our journey began in Chapter 1, where the context and importance of OOD gen-

eralization were established. We began with the compelling example of Captain Sully

Sullenberger, who performed an emergency landing on the Hudson River—a scenario

he had never explicitly trained for. This real-life event highlights the human capacity

to adapt to novel situations, a capability that current AI systems lack. Juxtaposing

the adaptability of humans with the struggle of modern AI set the stage for the the-

sis.

In Chapter 2, we delved into the philosophical roots of generalization, tracing the

evolution of ideas that have shaped our understanding of knowledge and learning.

Philosophers such as John Locke, David Hume, Immanuel Kant, and Charles Dar-

win laid the groundwork for concepts that are central to modern AI research. Locke’s

empiricism, which posits that knowledge is derived from sensory experience, and

Hume’s skepticism about the certainty of inductive reasoning, both resonated with

the challenges faced by AI in generalizing from training data to new, unseen situa-

tions. Kant’s idea of a priori knowledge, suggesting that some inherent structures

allow humans to organize and interpret sensory data, paralleled current attempts in

AI to incorporate inductive biases for better generalization. Darwin’s insights into

natural selection and adaptation provided a biological perspective on how organisms

handle variability and change, offering valuable lessons for developing adaptable AI

systems. This historical and philosophical context was crucial for understanding the

theoretical underpinnings of OOD generalization, bridging the gap between abstract

philosophical inquiry and modern AI. This included laying out the mathematical for-

malization of key concepts such as data distributions, joint distributions, and distribu-

280



tion shifts, which are essential for systematically analyzing how AI models learn and

generalize. The concept of Empirical Risk Minimization (ERM) was also introduced,

highlighting its role in guiding model selection and its limitations in OOD scenarios—

ERM focuses on minimizing loss over the training data, but it does not guarantee

good performance on data that deviates from the training distribution.

Building on this foundation, Chapter 3 introduced our general approach—studying

OOD generalization was presented, which involved the use of controlled environments

and computer-generated datasets. This method, akin to Darwin’s strategy of study-

ing domesticated species to understand natural selection, allowed for precise control

and manipulation of variables, providing deeper insights into the factors that influ-

ence generalization and revealing the limitations of current AI models. By creating

datasets with well-defined distribution shifts, the thesis enabled a systematic study of

generalization across various real-world factors such as lighting, viewpoints, materi-

als, shapes, scene contexts, and many more. Chapter 3 showed that a huge factor in

improving OOD generalization is data diversity. A smaller but more diverse dataset

significantly beat a larger but less diverse dataset when tested under OOD settings.

In explaining what drives this phenomenon, we discovered that a diverse dataset leads

to building of increased invariances in the learned representations, which results in

better generalization.

Chapter 4 dug deeper into the phenomenon, trying to understand how generaliza-

tion happens at mechanistic level. We employed the analytical tools often utilized in

Neurosciences to understand DNNs. Foreshadowing, Chapter 11 will do the same, but

with actual brains. We zoomed in to the ability of these machines to generalize to un-

seen transformations (e.g., rotation) as they are shown more diverse data. We found

that the network disseminates orientation-invariance from fully-seen instances (objects

for which all possible transformations are seen) to partially-seen instances using brain-

like mechanism like those reported in Neuroscience. Thus, machines truly do learn

281



like the brain in some sense.

Building on our findings in Chapters 3 and 4, Chapter 5 sought to make an en-

gineering application utilizing these findings. To this end, we collected a large scale

dataset of everyday objects photographed under varying lighting and viewpoints with

a robotic arm, and designed methodologies to improve generalization across these

transformations be enforcing invariance (as defined in Chapters 3 and 4). We found,

that doing so let to significant improvements in performance. Watching our scientific

findings come full circle to drive engineering gains was both inspiring and impactful.

Chapter 6 continued similar ideas, but expanded beyond supervised learning—to

understand and improve generalization in Reinforcement Learning. There, such con-

trolled analysis of generalization led us to another striking similarity between bio-

logical and artificial intelligence. Conventional wisdom suggests that RL agents per-

form best when tested on the same environment as they were trained on. But, we

found that just like humans, RL agents learn best when the noise in the system is re-

moved. We called this the Indoor Training Effect. Similar to how training in a calm,

noise-free indoor environment helps athletes focus on mastering the fundamentals of

a sport, we explored whether training on certain environments is more conducive to

learning than training on the same testing environment

Given the several benchmarks discussed in the previous chapter showcasing the

inability of AI models at generalizing, Chapter 7 went back to the drawing board with

one fundamental question—Are these models even safe inside the data distribution?

To utter dismay, we found that they are not. Our findings showed that while data

augmentation, unbiased datasets, and specialized shift-invariant architectures would

certainly be helpful, the real problem runs far deeper. Despite high test accuracies,

networks are plagued by adversarial examples that lie within the training distribution.

These errors present a grave challenge for AI, as this shows that a malicious agent no

longer needs to add engineered noise to induce an error.

282



Chapter 8 shifted the focus to biological systems, examining how they achieve OOD

generalization. We introduced the Out-of-Context Dataset (OCD), and it to system-

atically and quantitatively study the role of context in object recognition. Most inter-

estingly, this dataset put human vision under the microscope, and we found that re-

moving real-world attributes like gravity can hugely impact human vision. We showed

consistent results for humans and computational models—contextual cues can en-

hance visual recognition, but also that the “wrong” context can impair visual recogni-

tion capabilities both for humans and models.

Continuing further with evaluating the gap between human and artificial intelli-

gence, Chapter 9 presented a thorough analysis of this gap as perceived by other hu-

mans. One way to think of it is, instead of the generalization gap being measured

with a numeric metric of accuracy, in this chapter we conducted Turing Tests which

measured how this gap is perceived by humans themselves. The datasets and evalua-

tions introduced here are extensive (25,650 Turing test trials, 549 humans contribut-

ing to the dataset, and 1,126 human judges). Across 6 common language and vision

tasks, we showed that current AI algorithms are not far from being able to imitate

humans in these tasks. That is, humans couldn’t easily tell if the task was completed

by a human or by an AI agent.

Insights from these past chapters paved the way for Chapter 10. An important

thread raised in Chapters 3-5, was that invariances are built by looking at diverse

data. Chapter 3 showed models can generalize without seeing all possible combina-

tions, chapter 4 explained how this happens, and chapter 5 harnessed it mathemat-

ically. However, an important question this raises is what do we mean by diversity.

For instance, a dataset containing diversity in 3D objects is very different from a

dataset containing one object viewed densely from all viewpoints. Chapter 10 takes

inspiration from human vision, and defines a diverse visual diet as one which is most

human-like. To this end, we presented the Human Visual Diet (HVD) dataset, which

283



focussed on two key aspects of the typical human visual diet which are currently ab-

sent in all large-scale internet-scraped datasets. Firstly, children learn from sampling

few 3D scenes under diverse real-world transformations. Secondly, they always view

objects in context of one-another. We already proved the importance of data diversity

and scene context in previous chapters. Here, we provided a working definition for

how these could be modeled. We showed that on extensive benchmarks, generalization

improved significantly when the training diet consisted of these attributes. In fact,

with even 1000-fold less data, models trained with such a diet beat models trained on

large-scale non-human-like diets.

Finally, Chapter 11 went one step deeper into biological systems. So far, all chap-

ters pertaining to biological intelligence were only testing the system at a behavioural

level. However, the results so far make it clear that taking inspiration from biological

intelligence can help make AI much stronger. So, in order to better understand how

the gold standard i.e., brain achieves generalization, Chapter 11 looked at the general-

ization capabilities of models trained on electrophysiological recordings from Macaque

Brains. We explored the impact of OOD samples on DNN-based models of the vi-

sual cortex, and found that modern models of the visual cortex which rely on DNNs

achieve good prediction only with test data limited to the training image distribu-

tion. Simple distribution shifts break DNN models of the visual cortex, consistent

with broader findings in the previous chapters.

In conclusion, this thesis explored OOD generalization by bridging the gap between

biological and artificial intelligence. By drawing on insights from philosophy, neuro-

science, and machine learning, this thesis hopes to have offered a multifaceted per-

spective on one of the most pressing challenges in the field of AI. We hope that the

strategies and findings presented will pave the way for future research and innovation

aimed at building intelligent systems that are not only capable of learning from data

but also of adapting to the ever-changing complexities of the real world.

284



Part V

Appendix

285



(a) MNIST-Position (b) MNIST-Scale

Figure Supp.1: Combinations grids for MNIST-Position and MNIST-Scale. Each row repre-
sents images from a category and each column from a viewpoint. (a) MNIST-Position was
created by adding viewpoint in the form of position to images. For this, MNIST images were
placed into one of nine positions in an empty three-by-three grid with equal probability. (b)
MNIST-Scale was created by resizing images from MNIST to one of nine possible sizes, and
then zero-padding.

S1 Additional details on Datasets

S1.1 Samples from MNIST-Position and MNIST-Scale datasets

Fig. Supp.1 presents one representative example for each category-viewpoint com-
bination through the combinations grid for the MNIST-Position and MNIST-Scale
datasets.

S1.2 Rendering Pipeline for Biased-Cars Dataset

To generate photo-realistic data with systematic, controlled biases we implemented
our computer graphics pipeline which offered us fine grained control over scene at-
tributes including but not limited to - backgrounds, textures, lighting and geometry.
Below we present the details of our rendering pipeline, along with some sample im-
ages.
Pipeline Details: We used Esri CityEngine267 to model the city layout and geometry,
to which we add 3D assets - car models, pedestrians, trees, street furniture like bus
stops, textures for buildings, roads and car paints. Blender Python API77 is used to

286



modify the 3D city file. This includes placing vehicles and other assets at user defined
locations, modifying their material properties including vehicle paint, adding speci-
fied textures to roads, buildings and pedestrians, and defining camera attributes (lens,
field of view, motion blur etc) and camera locations. For randomization, a distribu-
tion over each parameters was defined. For instance, a discrete uniform distribution
over possible car color paints. Similarly, we defined distributions over object positions
in the city, camera viewpoint and distance, among other factors.

Sample images are shown in Fig. Supp.2 below, rendered at 1024 × 1024 pixels.
As network input was 224× 224, training images were rendered at 256× 256 and then
resized to 224×224 (as side length of the form 2k lead to computational gains in phys-
ically based rendering). Physically based rendering accurately models the flow of light
in the scene resulting in highly photo-realistic images. As can be seen, our pipeline re-
produces lighting artefacts like color bleeding and specular highlights very gracefully.
As shown, images include cars seen from different distances and viewpoints, under
different lighting conditions, scene clutter and even occlusions.

287



Figure Supp.2: Sample images from the Biased-Cars dataset.

288



S2 Selectivity and Invariance

In the paper we defined the selectivity score of a neuron with respect to category and
its invariance score with respect to viewpoint. Following the same notation as the
paper: akij denotes the activations grid for neuron k, where each row represents one
category and each column represents a viewpoint.

S2.1 Normalization of activations grid

For every neuron, we first normalize its activations for every image by dividing them
by its maximum activation across all images. This ensures that that the activation for
every image lies between 0 and 1 for all neurons. The entries of the activations grid
for a neuron are then computed by averaging these normalized activation for images
belonging to each category-viewpoint combination.

The activations grid is then normalized to be between 0 and 1. To do so, we sub-
tract the minimum of the activations grid and then divide it by the maximum.

S2.2 Selectivity and Invariance with respect to viewpoint

In the paper, we used i⋆k, Skc , Ikv to denote the preferred category, selectivity score with
respect to category and invariance score with respect to viewpoint respectively. We
also presented these equations to compute these quantities:

i⋆k = argmax
i

∑
j
akij. (Supp.1)

Skc =
âk − āk

âk + āk
, where âk = 1

N
∑
j
aki⋆kj, āk =

∑
i̸=i⋆k

∑
j akij

N(N− 1)
. (Supp.2)

Ikv = 1−
(
max
j

aki⋆kj −min
j

aki⋆kj
)

(Supp.3)

We now present how to compute the selectivity with respect to viewpoint, and in-
variance with respect to category, denoted as Skv and Ikc respectively. These can be
obtained by first finding the preferred viewpoint, denoted as j⋆k, and proceeding as in
the above equations:

j⋆k = argmax
j

∑
i
akij. (Supp.4)

Skv =
âk − āk

âk + āk
, where âk = 1

N
∑
i
akij⋆k , āk =

∑
j̸=j⋆k

∑
i akij

N(N− 1)
. (Supp.5)

289



Ikc = 1−
(
max
i

akij⋆k −min
i

akij⋆k
)

(Supp.6)

Observe that like Skc , Skv is a value between 0 and 1, and higher value indicates that
the neuron is more active for the preferred viewpoint as compared to the rest of the
viewpoints. Ikc too is a value between 0 and 1, with higher values indicating higher
invariance to the category for images containing the preferred viewpoint.

290



S3 Experimental Details and Hyper-Parameters

Each of our four datasets contains both category and viewpoint labels for all im-
ages. We define the location and the scale as the viewpoint for MNIST-Position and
MNIST-Scale datasets respectively. For both iLab and Biased-Cars dataset, the view-
point refers to the azimuth viewpoint. Networks are trained to classify both category
and viewpoint labels simultaneously, and all models are trained from scratch, without
any pre-training to ensure controlled testing. This ensures that any existing biases in
common pre-training datasets like ImageNet373 do not impact our results.
Number of Images: The number of training images is kept fixed for every dataset, and
was decided by training networks on these datasets while gradually increasing size, till
the performance on OOD combinations saturated. For the Biased-Cars dataset, per-
formance plateaud at 3,400 train, 445 validation, and 800 OOD test images. For iLab,
we used 70,000 train, 8,000 validation images, and 8,000 OOD test images. As the
iLab dataset is a natural image dataset, it required much more images to saturate.
For MNIST, 54,000 train, 8,000 validation and 8,000 test images were used.
Hyper-parameters: We used the Adam196 optimizer with 0.001 as learning rate, and
ReLU activations. For the Biased-Cars datasets, all models were trained for 200 epochs,
while we trained for 50 epochs for the iLab dataset. MNIST-Position and MNIST-
Scale were trained for 5 epochs. These stopping criterion were picked to ensure con-
vergence on generalization to OOD combinations. All experiments were repeated mul-
tiple times and confidence intervals (95%) are shown in the plots in the main paper.
iLab and Biased-Cars experiments were repeated 3 times each, and MNIST experi-
ments were repeated 10 times. Loss for training Shared architectures was simply the
sum of CrossEntropy Loss for both category and viewpoint classification. We com-
pared how different weighted sums perform, and found this to be performing best as
measured by the geometric mean of category and viewpoint classification.

291



25 50 75
Data Diversity(%)

(Fixed Dataset Size)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Biased-Cars
(Dissimilar Diversity)

OOD
in-distribution

Figure Supp.3: Generalization of Separate architectures to OOD combinations as number of
in-distribution combinations are increased while ensuring that viewpoints increasingly distant
from the OOD set are added (Dissimilar Diversity). To control that the increasing generaliza-
tion performance as the data diversity increases is not due to closer viewpoint angles between
In-distribution and OOD combinations, we created a dataset split where the In-distribution
combinations start closest to the OOD combinations (in terms of viewpoint angle), and be-
come increasingly distant. Thus, as In-distribution combinations are increased, the training
data becomes increasingly dissimilar to the OOD combinations (test set). The results show
that the performance on the OOD combinations still improves as data diversity increases.
This experiment discards the hypothesis the increase in generalization performance is due to
having closer viewpoint angles between the In-distribution and OOD combinations

.

S4 Additional Experiments:“When Do CNNs generalize to OOD combinations?”

Below we present additional results that re-inforce our findings presented in the re-
sults sections of the main paper.

S4.1 Similarity between In-Distribution and OOD Combinations

To discard that the increasing generalization performance as the data diversity is in-
creased is not due to having closer viewpoint angles between the in-distribution and
OOD combinations, we provide the following control experiment. For the smallest
number of in-distribution combinations, we use the combinations that are the closest
to the OOD combinations (i.e., consecutive bins). As we increase the number of in-

292



distribution combinations, we keep adding the rest of in-distribution combinations in
the order of closeness to the OOD combinations. Fig. Supp.3 show a clear increase of
the accuracy in OOD combinations. The increase of accuracy in this experiment can
not be explained by the fact that the in-distribution combinations tend to be more
similar to the OOD combinations when increasing the data diversity, because in this
experiment, the combinations tend to be more dissimilar as increasing the data diver-
sity. Thus, this experiment discards that the increase in generalization performance is
due to having closer viewpoint angles between the in-distribution and OOD combina-
tions

S4.2 Separate performance of category and viewpoint classification

In Fig. Supp.4, we show the individual accuracy for category and viewpoint classi-
fication in OOD category-viewpoint combinations. The results show that Separate
also obtains better accuracy than Shared for each individual task accuracy. Note that
the relative accuracy of the two tasks varies depending on the dataset, and no task is
consistently harder than the other across all datasets. For instance, viewpoint classi-
fication is easier for MNIST-Position, while it is significantly hard for MNIST-Scale.
MNIST digits are centered by default, and when placed in different positions to cre-
ate MNIST-Position images, the viewpoint is easily distinguishable. For MNIST-Scale
however, there is little visual variation between adjacent scales, which leads to a poor
Top-1 classification accuracy for viewpoint (scale) classification.

Furthermore, we have found that for MNIST-Position, the pooling operation at the
end of ResNet-18 is critical to obtain good generalization accuracy to OOD category-
viewpoint combinations. We evaluated ResNet-18 without the pooling operation and
the category recognition accuracy of OOD category-viewpoint combinations dropped
to baseline. Pooling facilitates an increase of position invariance and it does not harm
the viewpoint classification accuracy (as shown by20, pooling does not remove the
position information).

293



25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
MNIST-Position

25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MNIST-Scale

25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

iLab

25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Biased-Cars

Network
separate
shared

Task
Category
Viewpoint

(a) (b) (c) (d)

Figure Supp.4: Generalization performance for category recognition and viewpoint estima-
tion for Shared and Separate ResNet-18 as in-distribution combinations are increased for all
datasets. The category recognition accuracy and viewpoint estimation accuracy are reported
along with confidence intervals (95%) (a) MNIST-Position dataset. (b) MNIST-Scale dataset.
(c) iLab dataset. (d) Biased-Cars dataset.

S4.3 Number of neurons in shared vs. separate networks

To control for the number of neurons in Shared and Separate architectures, we present
additional results with the Biased-Cars dataset in Fig. Supp.5. In the paper, we pre-
sented the Shared-Wide architecture for the ResNet-18 backbone, which is the Shared
architecture with double the number of neurons per layer, i.e., double the width. Here
we go one step further and test a number of similar scenarios with the ResNet-18
backbone. The Separate Half and Separete One Fourth architectures are made by
reducing the number of neurons in every layer to one half, and one fourth of the origi-
nal number respectively. It is to be noted, that the Separate architectures has double
the number of neurons as the Shared architecture, as there is no weight sharing be-
tween branches in the Separate case. Thus, the Separate Half architecture has the
same number of neurons as the Shared architecture, and the Separate architecture has
the same number as the Shared-Wide architecture. In a similar vein, the Shared Four
Times was created by multiplying the neurons in each layer of the Shared architec-
ture four times. Thus, the Shared Four Times has double the number of neurons as
compared to the Shared Wide architecture, and 4 times the Shared architecture.

As can be seen in Fig. Supp.5, even at one-eighth number of neurons, the Separate
One Fourth architecture substantially outperforms the Shared Four Times architec-
ture at generalizing to OOD category-viewpoint combinations. This confirms that
our findings are not a function of the number of neurons in the Shared and Separate
architectures.

294



20 40 60 80
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
Biased-Cars

ResNet18
ResNeXt
DenseNet
Wide-ResNet

Separate
Shared Wide
Shared

25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Biased-Cars

Separate
Sep. Half
Sep. One Fourth
Shared
Sh. Wide
Sh. Four Times

Figure Supp.5: Generalization to OOD combinations as number of neurons per layer are
varied for the ResNet-18 backbone. Separate architectures substantially outperform Shared
architectures across a range of widths, i.e., number of neurons per layer. The Separate ar-
chitecture contains double the parameters as the Shared architecture, as there is no weight
sharing in the Separate case. Variants of these architectures are created by increasing or de-
creasing the neurons in each layer by a factor of 2 at a time. Even at one-eighth the number
of neurons, the Separate One Fourth architecture generalizes much better to OOD combina-
tions as compared to the Shared Four Times architecture.

S4.4 Number of Training examples

To ensure that our findings are not a function of the amount of training data, we
present the results for different number of images for the Biased-Cars and the iLab
dataset in Fig. Supp.6. As can be seen in both these datasets, across a different num-
ber of images the Separate architecture substantially outperforms the Shared one at
generalizing to OOD category-viewpoint combinations.

295



20 40 60 80
Data Diversity (%) 

 (Fixed Dataset Size)

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
Biased-Cars

3500 Images
2500 Images
1500 Images

Separate
Shared

25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

iLab
70000 Images
35000 Images
17500 Images
8750 Images

Separate
Shared

Figure Supp.6: Generalization to OOD combinations as number of training images is var-
ied. For both iLab and Biased-Cars dataset, Separate architecture outperforms the Shared
architecture trained with the same number of images.

S4.5 Results on new categories and viewpoints

We also evaluated our trained CNNs on classifying the viewpoint of 4 new car cate-
gories (Fig. Supp.7a). Analogously, we also evaluated category classification in new
viewpoints (side-to-back of car as in Fig. Supp.7c, instead of the front-to-side shown
in training). As shown in Fig. Supp.7b and d, these results confirm that our conclu-
sions also apply to new car categories and new viewpoints: generalization increases
with more data diversity and Separate architecture.

296



20 40 60 80
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Viewpoint classification
on new categories
ResNet18
Wide ResNet
DenseNet
ResNeXt

Separate
Shared

(a) (b)

20 40 60 80
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Category classification
on new viewpoints
ResNet18
Wide ResNet
DenseNet
ResNeXt

Separate
Shared

(c) (d)
Figure Supp.7: Controlling category and viewpoint separately. (a) Images of 4 new car cat-
egories, (b) Viewpoint classification accuracy for the 4 new car categories, (c) Images of new
viewpoints, (d) Car category recognition accuracy for the new viewpoints.

S4.6 Task training order

We present results on the impact of the order in which networks are trained on cate-
gory and viewpoint classification. Our networks contain three components: (i) shared
layers, (ii) category branch and (iii) viewpoint branch. Here we start by training on

297



16 33 50 66 83
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Training Protocols:
 iLab

OOD
In-distribution

Viewpoint first
Category first
Separate
Shared

20 40 60 80
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Training Protocols:
 Biased-Cars

OOD
In-distribution

Viewpoint first
Category first
Separate
Shared

Figure Supp.8: Generalization performance for additional training protocols, besides Separate
and Shared protocols, for the ResNet-18 backbone. The geometric mean of category recog-
nition accuracy and viewpoint estimation accuracy is reported for OOD combinations as the
number of in-distribution combinations is increased. For these, we start by training the shared
network on only one task first, i.e., Viewpoint first or Category first. We then train the second
task starting from these learned features from the first task. We present their comparison
with our Shared and Separate training protocols presented in the main paper. (a) Accuracy
for the iLab dataset, (b) Accuracy for the Biased-Cars dataset.

one task first, say Category recognition. We then train the other task, i.e., Viewpoint
classification starting from these features learned from the first task. We call this the
Category first protocol. The Viewpoint first protocol is defined analogously by start-
ing with viewpoint classification first, and then training for category recognition. Re-
sults for these are provided in Fig. Supp.8.

As can be seen, our findings are consistent with these new protocols as well. The
Separate architecture outperforms the Shared architectures independent of the train-
ing protocol. Furthermore, all architectures get better with OOD combinations as
in-distribution combinations are increased.

S4.7 Results on additional datasets: UIUC 3D and MNIST-Rotation

Going beyond the four datasets presented in the main paper, we replicate our analysis
on two additional datasets as a confirmatory experiment: (1) the UIUC 3D Dataset,
and (2) the MNIST-Rotation dataset. As can be seen from Figs. Supp.9 (a) and (b),

298



our findings are consistent across these additional datasets as well - Separate out-
performs the Shared, and all architectures get better at OOD combinations as in-
distribution combinations are increased.

Small size of UIUC 3D dataset: It is important to note that the small size of the
UIUC 3D dataset makes it difficult to adapt it for training with biased in-distribution
combinations. We picked 8 of the total 10 object categories (to ensure symmetry be-
tween tasks as explained in the paper), which amounts to 5,400 images in total across
64 category-viewpoint combinations. Thus, there are only 1700 training images for
the 24 in-distribution combinations case, which is kept constant as in-distribution
combinations are increased. In contrast, the other natural image dataset used in this
paper, the iLab dataset contains 70,000 training images for 6 categories and view-
points each. Due to this the generalization performance is slightly low, however the
findings are still consistent as reported above. As an additional control, we also tried
using all available 4500 images for the 87.5% seen case (i.e., all images other than the
OOD test set) - generalization numbers were still low overall, but trends were pre-
served.

299



37.5 50.0 62.5 75.0 87.5
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
UIUC 3D Dataset
OOD
In-distribution

Separate
Shared

10 20 30 40 50 60 70 80 90
Data Diversity (%)

(Fixed Dataset Size)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MNIST-Rotation

OOD
In-distribution

Separate
Shared

Figure Supp.9: Generalization performance for additional datasets for ResNet-18 backbone.
The geometric mean of category recognition accuracy and viewpoint estimation accuracy is
reported for OOD combinations as the number of in-distribution combinations is increased.
(a) Accuracy for the UIUC 3D dataset, (b) Accuracy for the MNIST-Rotation dataset. Due
to the small size of the UIUC dataset there is poor generalization - there are only 1700 train
set for 37.5% in-distribution combinations (which is kept constant as the number of in-
distribution combinations increases). This leads to lesser generalization, but our findings still
hold true - (1) Increasing in-distribution combinations improves performance on OOD data,
and (2) Separate architectures outperform Shared ones on OOD combinations.

S4.8 Results on group equivariant architectures

Group and gauge equivariant CNNs have recently emerged as an alternative to stan-
dard CNNs which theoretically offer better viewpoint invariance. While these archi-
tectures72,73 are yet to be adapted to more complex datasets like ImageNet, they
have shown great results on simpler image datasets like MNIST-Rotation. Here, we
present results with two such architectures in Fig. Supp.10. As can be seen, our find-
ings also extend to these architectures - Separate outperforms the Shared indepen-
dent of the training protocol, and all architectures get better at OOD combinations
as in-distribution combinations are increased. This suggests our findings extend be-
yond standard CNNs. We believe that a detailed comparison between GCNNs and
standard CNNs with respect to generalization to OOD combinations would be an in-
teresting starting point for future work.

300



Figure Supp.10: Generalization performance for different group equivariant architectures as
in-distribution combinations are increased for MNIST-Rotation dataset. The geometric mean
of category recognition accuracy and viewpoint estimation accuracy is reported for OOD
combinations as the number of in-distribution combinations is increased. (a) Accuracy of
Separate and Shared architectures using a Spherical CNN72 as backbone, (b) Accuracy using
an Icosahedral CNN73 as backbone.

S5 Additional Experiments for “How Do CNNs Generalize to OOD Combinations?”

S5.1 Ratio of Specialized Neurons

In the main paper, we have presented the ratio of specialized neurons for the iLab
and Biased-Cars dataset. Here, we also provide these for the MNIST-Position and
MNIST-Scale datasets. As can be seen, our findings are consistent across these datasets
as well. Figs. Supp.11a and b show that neurons in the final convolutional layer spe-
cialize to become either category or viewpoint neurons as more category-viewpoint
combinations are shown. Category and viewpoint branches of the Separate architec-
ture become completely specialized to category and viewpoint, respectively. In the
Shared architecture, both kinds of neurons emerge in roughly equal numbers.

We also observe that for a small number of in-distribution combinations, the ra-
tio of neurons specialized for category or viewpoint classification may be impacted
by the relative difficulty of these two tasks. We observe that when the accuracy is
higher for category classification (shown in Fig. Supp.4), a higher fraction of neurons
becomes specialized for category, as observed for the iLab and MNIST-scale datasets.

301



25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

25

50

75

100
%

 C
at

./V
ie

w.
 N

eu
ro

ns
MNIST-Position

25 50 75
Data Diversity (%)

(Fixed Dataset Size)

0

25

50

75

100

%
 C

at
./V

ie
w.

 N
eu

ro
ns

MNIST-Scale

(a) (b) (c) (d)

Figure Supp.11: Neuron specialization in MNIST-Position and MNIST-Scale datasets. (a) and
(b) Percentage of neurons in the final convolutional layer of ResNet-18 that are specialized
to category and viewpoint, for MNIST-Position and MNIST-Scale datasets, respectively.
(c) and (d) Median of the specialization scores of neurons in the final convolutional layer of
ResNet-18 Separate and Shared architectures, for category and viewpoint classification tasks,
respectively.

Similarly, when accuracy for viewpoint classification is higher, a greater fraction of
neurons becomes specialized for viewpoint, as observed in MNIST-Position.

S5.2 Specialization score for additional datasets

Figs. Supp.11c and d show that as the number of in-distribution combinations are in-
creased, there is a steady increase in the specialization score for both MNIST-Position
and MNIST-Scale. In Fig. Supp.12, we show that the selectivity score results are also
consistent in iLab for different backbones and split architectures.

S5.3 Invariance and Selectivity Scores

In Fig. Supp.13 and Supp.14, we show the invariance and selectivity scores separately
for the Biased-Cars dataset. In both cases, the trends follow what we observed for
the specialization score, though the differences are much more pronounced in terms of
invariance rather than selectivity.

S5.4 Specialization Score per Layer

In Fig. Supp.15, we show the specialization score in each layer. We can see that it
builds up across layers, and this is more pronounced for Separate architectures than
for Shared.

302



(a) (b) (c) (d)

Figure Supp.12: Neuron specialization (selectivity to category and invariance to viewpoint,
and vice versa) in the iLab dataset. (a) and (b) Median of the specialization score among
neurons (Γk) in network architectures, other than ResNet-18, separate and shared, for cate-
gory and viewpoint classification tasks, respectively. Confidence intervals (95%) are displayed
in low opacity. (c) and (d) Median of the specialization score among neurons in ResNet-18
Separate and Shared with splits made at different blocks of the network, for category and
viewpoint classification tasks, respectively. Similar results for the Biased-Cars dataset are
provided in the main paper.

(a) (b) (c) (d)

Figure Supp.13: Invariance scores in the Biased-Cars dataset. (a) and (b) Median of the
invariance score among neurons in network architectures, other than ResNet-18, separate
and shared, for category and viewpoint recognition tasks, respectively. Confidence intervals
(95%) are displayed in low opacity. (c) and (d) Median of the invariance score among neurons
in ResNet-18 Separate and Shared with splits made at different blocks of the network, for
category and viewpoint recognition tasks, respectively.

S6 Limitations

In this paper we have only considered rigid objects, while general object recognition
often involves deformable and articulated object categories including humans and
other animals.For such objects, parts may appear in various configurations for the
same viewpoint. One way to analyze this more complex scenario would be to extend

303



(a) (b) (c) (d)

Figure Supp.14: Selectivity scores in the Biased-Cars dataset. (a) and (b) Median of the
selectivity score among neurons in network architectures, other than ResNet-18, separate
and shared, for category and viewpoint recognition tasks, respectively. Confidence intervals
(95%) are displayed in low opacity. (c) and (d) Median of the selectivity score among neurons
in ResNet-18 Separate and Shared with splits made at different blocks of the network, for
category and viewpoint recognition tasks, respectively.

0 1 2 3 4
layer

0.0

0.2

0.4

0.6

Sp
ec

ia
liz

at
io

n 
Sc

or
e

iLab Category

0 1 2 3 4
layer

0.0

0.2

0.4

0.6

Sp
ec

ia
liz

at
io

n 
Sc

or
e

Biased-Cars Category

(a) (b) (c) (d)

Figure Supp.15: Specialization Score Per Layer for 30 seen category-viewpoint Combinations
for iLab, and 20 seen category-viewpoint Combinations for the Biased-Cars dataset. (a) and
(b) Median of the specialization score among neurons in ResNet-18 Separate and Shared with
splits made at different blocks of the network, for category and viewpoint classification tasks,
respectively. (c) and (d) Same as (a) and (b) for Biased-Cars dataset.

our experiments to study combinations of configurations, viewpoints and categories.
Furthermore, this analysis may also be extended to study the impact of object sym-
metries, which would alter the effective number of visually distinct object viewpoints.

Also, we have considered selectivity and invariance of individual neurons as a model
for understanding generalization to OOD combinations. This model is limited in
several ways as it only considers the properties of individual neurons, and assumes
that selectivity to one single category (or viewpoint) is needed alongside invariance
to viewpoint (or category) to achieve generalization. There could be other ways to

304



achieve generalization not taken into account by the model. Also, the evidence pre-
sented here is correlational and based on the average neural activity for a set of im-
ages. Nonetheless, the model has been shown to be useful to explain in simple and
intuitive terms why the Separate architecture outperforms the Shared one, and how
these generalize as more category-viewpoint combinations are seen.

305



a

b

Figure Supp.16: Accuracy heatmaps: alternative ’seed’ orientations. (a) ’Seed’ orientations
include −0.25 ≤ α ≤ 0.25,−0.25 ≤ γ ≤ 0.25,−1/2π ≤ β < 1/2π. (b) ’Seed’ orientations include
−0.1 ≤ β ≤ 0.1,−0.25 ≤ γ ≤ 0.25,−1.8π ≤ α < −1.3/π.

306



a

20 Fully Seen 30 Fully Seen 40 Fully Seen
b

20 Fully Seen 30 Fully Seen 40 Fully Seen

Figure Supp.17: Accuracy heatmaps: effect of data diversity - alternative object categories.
Increasing number of fully-seen instances, with different object classes. (a) Shepard-Metzler
Objects. (b) Cars.

307



a

b

Figure Supp.18: Accuracy heatmaps: alternative training conditions - pretraining and aug-
mentation. (a) ResNet-18 pretrained on ImageNet314, finetuned on our learning paradigm
with airplanes. Network behavior isn’t meaningfully altered. (b) All data (both from fully-
seen and partially-seen instances) were augmented with random 2D image rotations. This
effectively expands the in-distribution set to include all generalizable orientations. This results
in generalizable orientations with high accuracy.

308



a

b

Figure Supp.19: Accuracy heatmaps: alternative backbone architectures. Network’s backbone
used (in place of ResNet-18): (a) DenseNet. (b) CORnet.

re
sn

et
18

de
ns

en
et

12
1

co
rn

et
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

-.2
0.0
0.2
0.4
0.6
0.8
1.0

re
sn

et
18

de
ns

en
et

12
1

co
rn

et
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

re
sn

et
18

de
ns

en
et

12
1

co
rn

et
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

re
sn

et
18

de
ns

en
et

12
1

co
rn

et
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

' Model Component
Random
Uniform
In-Distribution
Small-Angle
In-Plane
Small-Angle
+ In-Plane
All
Components

re
sn

et
18

de
ns

en
et

12
1

co
rn

et
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

0.0

0.2

0.4

0.6

0.8

1.0

re
sn

et
18

de
ns

en
et

12
1

co
rn

et
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

re
sn

et
18

de
ns

en
et

12
1

co
rn

et
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

re
sn

et
18

de
ns

en
et

12
1

co
rn

et
Pre

tra
ine

d
Au

gm
en

te
d

Ha
lf-D

at
a

In-Plane
Component
# Fully Seen

10
20

30
40

Pe
as

on
 C

or
re

la
tio

n 
Co

ef
fic

ie
nt

Figure Supp.20: Modeling generalization patterns for OoD orientations, continued. The same
analysis as Figs. 4.3b is applied to the controls introduced in Figs. Supp.18, Supp.19.

309



OoD Accuracy, ResNet, Base Experiments

Airplane SM Car Airplane

SM

SM

Airplane

0.00

0.15

0.30

0.45

0.60

Ac
cu

ra
cy

Airplane SM Car Airplane

SM

SM

Airplane

Airplane SM Car Airplane

SM

SM

Airplane

Airplane SM Car Airplane

SM

SM

Airplane

'Generalizable

10 20 30 40

Non-Generalizable

OoD Accuracy, Various Controls

re
sn

et
18

Pre
tra

ine
d

Au
gm

en
te

d
de

ns
en

et
12

1
co

rn
et

0.00

0.15

0.30

0.45

0.60

Ac
cu

ra
cy

re
sn

et
18

Pre
tra

ine
d

Au
gm

en
te

d
de

ns
en

et
12

1
co

rn
et

re
sn

et
18

Pre
tra

ine
d

Au
gm

en
te

d
de

ns
en

et
12

1
co

rn
et

re
sn

et
18

Pre
tra

ine
d

Au
gm

en
te

d
de

ns
en

et
12

1
co

rn
et

'

Figure Supp.21: OoD accuracy, split between generalizable and non-generalizable orientations
In Fig. 4.3a we report the average accuracy across all OoD orientations. As we note, however,
accuracy behavior is differentiated between generalizable and non-generalizable orientations.
Here we report the average accuracy for these two orientation groups. Gray horizontal lines
indicate chance performance of 2% and 10% (the latter relevant in the case where fully-seen
and partially-seen instances are of two different classes.) Generalizable accuracy is always
greater than non-generalizable accuracy. The former is always well above chance, while the
latter is below or at chance level. (a) The generalizable and non-generalizable average accu-
racy for the same set of experiments presented in Fig. 4.3a. (b) The average accuracies for
several other conditions. These other conditions are explained in Figs. Supp.18, Supp.19.

a b

0.4 0.5 0.6 0.7 0.8 0.9
Invariance Partially Seen

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Instance + Orientation
Fully Seen,
Generalizable
Fully Seen,
Non-Generalizable
Partially Seen,
Generalizable
Partially Seen,
Non-Generalizable

0.4 0.5 0.6 0.7 0.8 0.9
Invariance Full

0.4

0.5

0.6

0.7

0.8

0.9

In
va

ria
nc

e 
Pa

rti
al

Orientation
Generalizable
Non-Generalizable
Parity
Full = Partial
+/- 0.1 Deviation

Figure Supp.22: Invariance and Dissemination: controls. The same analysis as Figs. 4.4b, c is
applied to the controls introduced in Figs. Supp.18, Supp.19.

310



S7 Variation-base decomposition, invariance and selectivity scores

S7.1 Variation-base decomposition

We need αnmij , the averaged activity of a neuron over an object category i and an nui-
sance attribute category j, to obtain the invariance score and selectivity score intro-
duced by Madan et al.241. The set {αnmij }i∈I,j∈J is called the activations grid. In this
appendix, we first overview how to calculate αnmij from anm(x) ≥ 0, the activity of a
neuron corresponding to an image x. Fig. Supp.1 shows overview of calculation of ac-
tivations grid. Then we introduce the variation-base decomposition that enables us
to describe the activity anm(x) by the variation activity ãnm(x), scale factor ρnm, and
base activity bnm. This decomposition simplifies the formula regarding αnmij , and conse-
quently, the ones regarding the invariance and selectivity scores.

In the calculation process of the activations grid {αnmij }i∈I,j∈J , we first normalize
the activity anm(x) by the maximum activity over the population of images X as

anm(x)
maxx∈X anm(x)

. (Supp.7)

This value is then averaged over Xij = {x ∈ X |y = (i, j) }, the set of all images
belonging to the object category i and nuisance attribute category j, as follows:

average
x∈Xij

(
anm(x)

maxx∈X anm(x)

)
=

average
x∈Xij

anm(x)

maxx∈X anm(x)
. (Supp.8)

Then we regard its minimum value as the baseline of activity and subtract it from the
right hand side of Eq. Supp.8:

average
x∈Xij

anm(x)

maxx∈X anm(x)
−min

μ,ν

average
x∈Xμν

anm(x)

maxx∈X anm(x)
. (Supp.9)

Consider the situation that maxμ,ν
average
x∈Xμν

anm(x)

maxx∈X anm(x) − minμ,ν
average
x∈Xμν

anm(x)

maxx∈X anm(x) = 0 holds. This
means average

x∈Xμν

anm(x) takes the same value for all combinations of object and nuisance

attribute categories. We call such a neuron degenerated.
For non-degenerated neurons, we normalize Eq. Supp.9 so that it ranges from 0 to 1

311



and define the result as αnmij :

αnmij =

average
x∈Xij

anm(x)

maxx∈X anm(x) −minμ,ν
average
x∈Xμν

anm(x)

maxx∈X anm(x)

maxμ,ν
average
x∈Xμν

anm(x)

maxx∈X anm(x) −minμ,ν
average
x∈Xμν

anm(x)

maxx∈X anm(x)

. (Supp.10)

We reduce Eq. Supp.10 to

αnmij =

average
x∈Xij

anm(x)−minμ,ν average
x∈Xμν

anm(x)

maxμ,ν average
x∈Xμν

anm(x)−minμ,ν average
x∈Xμν

anm(x)
. (Supp.11)

This is the original definition of entries of activation grid αnmij .
Next, we define a decomposition of activity to the variation component and base

component to express αnmij in simple formula. Firstly, we divide Eq. Supp.11 into two
parts as follows:

αnmij =

average
x∈Xij

anm(x)−minμ,ν average
x∈Xμν

anm(x)

maxμ,ν average
x∈Xμν

anm(x)−minμ,ν average
x∈Xμν

anm(x)
(Supp.12)

=

average
x∈Xij

anm(x)

maxμ,ν average
x∈Xμν

anm(x)−minμ,ν average
x∈Xμν

anm(x)
−

minμ,ν average
x∈Xμν

anm(x)

maxμ,ν average
x∈Xμν

anm(x)−minμ,ν average
x∈Xμν

anm(x)
.

(Supp.13)

We define the scale factor ρnm as

ρnm = max
μ,ν

average
x∈Xμν

anm(x)−min
μ,ν

average
x∈Xμν

anm(x). (Supp.14)

Then we obtain

αnmij =

average
x∈Xij

anm(x)

ρnm
−

minμ,ν average
x∈Xμν

anm(x)

ρnm
. (Supp.15)

We define bnm as

bnm = min
μ,ν

average
x∈Xμν

anm(x), (Supp.16)

312



and call it the base activation. Using ρnm and bnm, αnmij is expressed as

αnmij = average
x∈Xij

(anm(x)/ρnm − bnm/ρnm). (Supp.17)

Let us define ãnm(x) by the following equation:

ãnm(x) = anm(x)/ρnm − bnm/ρnm. (Supp.18)

Now anm(x) can be expressed as follows:

anm(x) = ρnmãnm(x) + bnm. (Supp.19)

We call Eq. Supp.19 as the variation-base decomposition of anm(x). Using these defi-
nitions, we simplify Eq. Supp.11 as follows:

αnmij = average
x∈Xij

ãnm(x). (Supp.20)

Note that we need information on population of images to calculate specific values
of ãnm(x) and bnm. In practice, we use all images in the dataset to calculate actual
values.

Regarding a layer, we denote the activity of neurons in layer n as aaan(x) = [an1(x), . . . , anMn(x)]⊤,
where Mn denotes the number of neurons in a layer n. If there are no degenerated
neurons in this layer, we obtain the variation-base decomposition of aaan(x) based on
Eq. Supp.19 as follows:

aaan(x) = ρn ⊙ ãaan(x) + bbbnm, (Supp.21)

where ρn = [ρn1, . . . , ρnMn ]⊤, ãaan(x) = [ãn1(x), . . . , ãnMn(x)]⊤, and bbbn = [bn1, . . . , bnMn ]⊤.

S7.2 Invariance score and selectivity score

The invariance score and selectivity score introduced in241 have been shown effective
at analysing generalization beyond data bias. Because we need {αnmij }i∈I,j∈J to cal-
culate the invariance and selectivity scores, we continue focusing on non-degenerated
neurons. To calculate these scores, we first identify the object category that a neu-
ron is most active on average, i.e., i∗nm = argmaxi

∑
j αnmij . This is called the preferred

object category.
The invariance score Inm with respect to nuisance attribute category for the m-th

neuron in the n-th layer is defined as

Inm = 1− (max
j

αnmi∗nmj −min
j

αnmi∗nmj). (Supp.22)

313



It ranges from 0 to 1 and takes the maximum value in the case that the neuron out-
puts the same value for the preferred object category on average regardless of the nui-
sance attribute category.

The selectivity score Snm with respect to the object category for the m-th neuron in
the n-th layer is defined as

Snm =
α̂nm − ᾱnm

α̂nm + ᾱnm
, (Supp.23)

where α̂nm and ᾱnm are the average of αnmij over the preferred object category and the
remaining object categories defined as follows:

α̂nm =
1

#(J )
∑
j
αnmi∗nmj, ᾱnm =

∑
i̸=i∗nm

∑
j αnmij

#(J )(#(I)− 1)
. (Supp.24)

In the experiments, we only treated the cases where #(J ) = #(I). N is used to de-
note this number in the main body of our paper. This score also ranges from 0 to
1 and takes its maximum value in the case that the neuron only outputs a positive
value for the preferred object category.

S7.3 Summary of definitions

Here we summarize the definitions and results introduced in Sec. S7.1 and Sec. S7.2.
To simplify the descriptions, we refer the m-th neuron in the n-the layer as neuron
(n,m).

Definition 1 (Degenerated neuron / non-degenerated neuron). Let x denote an im-
age and anm(x) ≥ 0 denote the activity of a neuron (n,m) corresponding to x. Let
Xij denote the set of all images belonging to the object category i ∈ I and nuisance
attribute category j ∈ J .
We call the neuron (n,m) degenerated if it satisfies

max
i,j

average
x∈Xij

anm(x) = min
i,j

average
x∈Xij

anm(x), (Supp.25)

or equivalently

average
x∈Xij

anm(x) = a common constant across all (i, j) ∈ I × J . (Supp.26)

Otherwise the neuron is called non-degenerated. ◁

Definition 2 (Original definition of entries of activations grid). Let x denote an image
and anm(x) ≥ 0 denote the activity of a non-degenerated neuron (n,m) corresponding

314



to x. Let Xij denote the set of all images belonging to the object category i ∈ I and
nuisance attribute category j ∈ J .
Each entry of activativations grid {αnmij }i∈I,j∈J is defined as

αnmij =

average
x∈Xij

anm(x)−minμ,ν average
x∈Xμν

anm(x)

maxμ,ν average
x∈Xμν

anm(x)−minμ,ν average
x∈Xμν

anm(x)
. (Supp.27)

◁

Remark. Note that αnmij ranges from 0 to 1.

Definition 3 (Variation-base decomposition). Let x denote an image and anm(x) ≥ 0
denote the activity of a non-degenerated neuron (n,m) corresponding to x. Let Xij
denote the set of all images belonging to the object category i ∈ I and nuisance at-
tribute category j ∈ J .
The base activation bnm and the scale factor ρnm are defined as follows:

bnm = min
i,j

average
x∈Xij

anm(x), (Supp.28)

ρnm = max
i,j

average
x∈Xij

anm(x)−min
i,j

average
x∈Xij

anm(x) > 0. (Supp.29)

The variation of activity ãnm(x) is then defined as follows:

ãnm(x) = anm(x)/ρnm − bnm/ρnm. (Supp.30)

As a consequence, the activity anm(x) is expressed by ρnm, ãnm(x), and bnm(x) as fol-
lows:

anm(x) = ρnmãnm(x) + bnm. (Supp.31)

We call Eq. Supp.31 the variation-base decomposition of anm(x). ◁

Remark. Let us denote the activity of neurons in a layer n as aaan(x) = [an1(x), . . . , anMn(x)]⊤,
where Mn denotes the number of neurons in this layer. If there are no degenerated
neurons in this layer, aaan(x) is expressed as

aaan(x) = ρn ⊙ ãaan(x) + bbbnm, (Supp.32)

where ρn = [ρn1, . . . , ρnMn ]⊤, ãaan(x) = [ãn1(x), . . . , ãnMn(x)]⊤, and bbbn = [bn1, . . . , bnMn ]⊤.
We call Eq. Supp.32 the variation-base decomposition of aaan(x).

315



Corollary 4 (Entries of activations grid). Let x denote an image, anm(x) ≥ 0 denote
the activity of a non-degenerated neuron (n,m) corresponding to x, and anm(x) =
ρnmãnm(x) + bnm be the variation-base decomposition of anm(x). Let Xij denote the set
of all images belonging to object category i ∈ I and nuisance attribute category j ∈ J .
Each entry of activations grid {αnmij }i∈I,j∈J is equal to the averaged variation of activ-
ity over Xij, that is, the following relationship holds:

αnmij = average
x∈Xij

ãnm(x). (Supp.33)

Definition 5 (Preferred object category). Consider a non-degenerated neuron (n,m).
Let {αnmij }i∈I,j∈J be its activations grid. A preferred object category i∗nm is defined as

i∗nm = argmaxi
∑
j
αnmij . (Supp.34)

◁

Definition 6 (Invariance score). Consider a non-degenerated neuron (n,m). Let {αnmij }i∈I,j∈J
be its activations grid, and i∗nm be its preferred object category. The invariance score
with respect to nuisance attribute category for the neuron (n,m) is defined as

Inm = 1− (maxjαnmi∗nmj −minjαnmi∗nmj). (Supp.35)

◁

Remark. Note that Inm ranges from 0 to 1.

Definition 7 (Selectivity score). Consider a non-degenerated neuron (n,m). Let {αnmij }i∈I,j∈J
be its activations grid, and i∗nm be its preferred object category. The selectivity score
Snm with respect to object category for the neuron (n,m) is defined as

Snm =
α̂nm − ᾱnm

α̂nm + ᾱnm
, (Supp.36)

where α̂nm and ᾱnm are the average of αnmij over the preferred object category and the
remaining object categories defined as follows:

α̂nm =
1

#(J )
∑
j
αnmi∗nmj, ᾱnm =

∑
i̸=i∗nm

∑
j αnmij

#(J )(#(I)− 1)
. (Supp.37)

316



When #(I) = #(J ) = N, α̂nm and ᾱnm become

α̂nm =
1
N

∑
j
αnmi∗nmj, ᾱnm =

∑
i̸=i∗nm

∑
j αnmij

N(N− 1)
. (Supp.38)

◁

Remark. Note that Snm ranges from 0 to 1.

S7.4 Properties of non-degenerated neurons

Here we show two properties of non-degenerated neurons as lemmas. We use them in
the proof of theorems in Section S8.

Lemma 8. If the m-th neuron in the n-th layer is non-degenerated, there exist at least
one image x belonging to its preferred object category i∗nm satisfying

ãnm(x) ̸= 0. (Supp.39)

Proof. We use the method of proof by contradiction. Assume that ãnm(x) = 0 holds
for all x ∈ Xi∗nm . From the definition of i∗nm (Definition 5), we obtain

αnmij = 0 for all i and j. (Supp.40)

Based on Definition 2, this leads to

average
x∈Xij

anm(x) = min
μ,ν

average
x∈Xμν

anm(x) for all i and j. (Supp.41)

Then

max
i,j

average
x∈Xij

anm(x) = min
i,j

average
x∈Xij

anm(x) (Supp.42)

is satisfied, which means the neuron is degenerated. This is contradictory to non-
degeneracy of the neuron. Therefore there exists at least one x ∈ Xi∗nm satisfying
ãnm(x) ̸= 0.

Lemma 9. If the m-th neuron in the n-th layer is non-degenerated, there exists at least
one j ∈ J satisfying

αnmi∗nmj > 0, (Supp.43)

where i∗nm is the preferred object category of the neuron.

317



Proof. We use the method of proof by contradiction. From Corollary 4, the following
equation holds:

average
x∈Xi∗nmj

ãnmi∗nmj(x) = αnmi∗nmj. (Supp.44)

If αnmi∗nmj = 0 holds for all j, we have following equation from the definition of the pre-
ferred object category in Definition 5:

maxi
∑
j
αnmij = 0. (Supp.45)

From Definition 2, entries of the activation grid αnmij ranges 0 to 1. Thus have∑
j
αnmij = 0 for all i ∈ I. (Supp.46)

As a consequence, we obtain

αnmij = 0 for all i and j. (Supp.47)

This leads a contradiction in the same way as in the proof of Lemma 8 (see from
Eq. Supp.40 to the end of proof). Therefore there exists at least one j ∈ J satisfying
αnmi∗nmj > 0.

S8 Identical activity achieves the maximum value of invariance score and complementary
activity achieves the maximum value of selectivity score

In this section we introduce identical activity and complementary activity, which are
two types of neural activity of a layer. Then we provide the theorems showing that
the identical activity achieves the maximum value of invariance score and the comple-
mentary activity achieves the maximum value of selectivity score in all neurons in the
layer.

Definition 10 (Identical activity). Consider a layer n which consists of non-degenerated
neurons, and the variation-base decomposition of the activity of neurons in this layer,
aaan(x) = ρn ⊙ ãaan(x) + bbbn, given by Eq. Supp.32. Let Xi denote the set of all images
belonging to an object category i and x,x′ denote images. We call the neural activity
of layer n identical if the following condition holds for all i ∈ I:

ãaan(x) = ãaan(x′) for all x ∈ Xi and x′ ∈ Xi. (Supp.1)

318



input output

n-th layer

m
-th

 n
eu

ro
n

activations grid images grid 

ob
je

ct
 c

at
eg

or
y

nuisance attribute category

images of (2,2) in the images grid

Figure Supp.1: Overview of calculation of activations grid. The images grid is a dataset con-
sisting of all combinations of the object category and the nuisance attribute category. We
extract all images belonging to one combination and calculate the αnmij using their activity. We
do this for all combinations and calculate the activations grid. Figure shows one example of
calculation of the entry of activations grid αnm22 using all images belonging to the combination
of object category i = 2 and nuisance attribute category j = 2.

319



◁

Definition 11 (Complementary activity). Consider a layer n which consists of non-
degenerated neurons, and the variation-base decomposition of the activity of neurons
in this layer, aaan(x) = ρn⊙ ãaan(x)+bbbn, given by Eq. Supp.32. Let Xi denote the set of all
images belonging to an object category i and x,x′ denote images. We call the neural
activity of layer n complementary if the following condition holds for all i ∈ I:

ãaan(x)⊙ ãaan(x′) = 000 for all x ∈ Xi and x′ /∈ Xi, (Supp.2)

where ⊙ denotes the element-wise product of vectors. ◁

Theorem 12. Identical activity achieves the maximum value of the invariance score in
all neurons.

Proof. Eq. Supp.1 holds for the preferred object category i∗nm in particular:

ãnm(x) = ãnm(x′) for all x ∈ Xi∗nm and x′ ∈ Xi∗nm . (Supp.3)

We calculate entries of activations grid for every combination of (i∗nm, j) and (i∗nm, j′).
Because Xi∗nmj ⊂ Xi∗nm and Xi∗nmj′ ⊂ Xi∗nm , the following equation also holds:

ãnm(x) = ãnm(x′) for all x ∈ Xi∗nmj and x′ ∈ Xi∗nmj′ . (Supp.4)

Therefore we have

average
x∈Xi∗nmj

ãnm(x) = average
x′∈Xi∗nmj′

ãnm(x′). (Supp.5)

Due to Corollary 4, this is equivalent to

αnmi∗nmj = αnmi∗nmj′ . (Supp.6)

Eq. Supp.6 is satisfied for every combination of (i∗nm, j) and (i∗nm, j′). Hence,

maxjαnmi∗nmj = minjαnmi∗nmj. (Supp.7)

The above argument holds for all m. Thus the invariance score Inm = 1 − (maxjαnmi∗nmj −
minjαnmi∗nmj) becomes 1 in all neurons in the layer n.

Theorem 13. Complementary activity achieves the maximum value of the selectivity
score in all neurons.

Proof. Think about the complementarity condition Eq. Supp.2,

ãaan(x)⊙ ãaan(x′) = 0 for all x ∈ Xi and x′ /∈ Xi. (Supp.8)

320



This means

ãnm(x)ãnm(x′) = 0 for all x ∈ Xi and x′ /∈ Xi (Supp.9)

holds for every m in the layer n.
Firstly, we calculate ᾱnm in Definition 7 (the definition of selectivity score). Due to
Lemma 8, there exists at least one x ∈ Xi∗nm satisfying ãnm(x) ̸= 0. Therefore, we
obtain from Eq. Supp.9 the following equation:

ãnm(x′) = 0 for all x′ ∈ Xi ̸=i∗nm(= X \ Xi∗nm). (Supp.10)

From Corollary 4, entries of activations grid are calculated as

αnmij = 0 for all i ̸= i∗nm. (Supp.11)

By taking the sum over all combinations of (i, j) with i ̸= i∗nm, we have∑
i̸=i∗nm

∑
j
αnmij = 0. (Supp.12)

Dividing this by #(J )(#(I)− 1) = N(N− 1), we obtain

ᾱnm =

∑
i̸=i∗nm

∑
j αnmij

N(N− 1)
= 0. (Supp.13)

Next, we calculate α̂nm in Definition 7. Due to Lemma 9, there exists at least one j ∈
J satisfying αnmi∗nmj > 0. Therefore we have

α̂nm =
1
N

∑
j
αnmi∗nmj > 0. (Supp.14)

The selectivity score Smn is calculated as

Snm =
α̂nm − ᾱnm

α̂nm + ᾱnm
=

α̂nm

α̂nm
= 1. (Supp.15)

The above argument holds for all m. In conclusion, complementary activity achieves
Snm = 1 for all neurons in the layer n.

Given the importance of complementary activity with regard to the selectivity
score, we introduce the following score to measure how close a neural activity of a
layer is to the complementary activity.

321



Definition 14 (Mean overlap of Activation (moA)). Consider a layer n which consists
of non-degenerated neurons, and the variation-base decomposition of the activity of
neurons in this layer, aaan(x) = ρn⊙ ãaan(x)+ bbbn, given by Eq. Supp.32. Let Xr be a set of
randomly sampled pair of images (x,x′) belonging to different object categories. The
mean overlap of Activation (moA) is defined as

1− 1
#(Xr)

∑
(x,x′)∈Xr

#(ãaan(x′)⊙ ãaan(x)) ̸=0

#(ãaan(x))
. (Supp.16)

◁

Remark. This score takes a sufficiently large number of combinations of samples with
alternating object categories i, and uses the overlap of the activation as the indicator
of the complementarity. It ranges from 0 to 1, and the closer to 1, the better. In this
study, we set #(Xr) = 500, which we experimentally confirmed to be large enough for
our purpose.
Remark. We replaced orthogonal activity defined by Eq. 5 in the main body of our
paper by the complementary activity in Definition 11, because after the submission of
the main body we found that the orthogonality is not sufficient to achieve the maxi-
mum value of the selectivity score but the complementarity is. Yet, the mean overlap
of Activation (moA) works as a measure of the complementarity as it is, and the anal-
ysis in Sec. 4 in the main body is still valid.

S9 Invariance Enforcement Regularization (IER)

S9.1 Construction of the regularization term

In this section, we discuss how to construct a regularization term based on the identi-
cal activity and complementary activity. First, we think about the identical activity
given by Definition 10. From Eq. Supp.30, we have

ãnm(x)− ãnm(x′) =
anm(x)− bnm

ρnm
− anm(x′)− bnm

ρnm
(Supp.1)

=
anm(x)− anm(x′)

ρnm
. (Supp.2)

If anm(x) − anm(x′) = 0 is achieved, then Eq. Supp.2 becomes 0. If all neurons in
the layer n achieve this, the neural activity of this layer becomes identical, which is a
sufficient condition for the neurons to attain the maximum value of invariance score

322



(Theorem 12). From this analysis, we introduce the following regularization term:

R = ∥aaan(x)− aaan(x′)∥p (Supp.3)
= ∥fffin(x; θin)− fffin(x̂; θin)∥p, (Supp.4)

where ∥ · ∥p denotes the Lp norm. Based on the discussion above, adding this term
to the original loss function (with an appropriate weight) is expected to enforce the
invariance. We call the regularization technique using this term as Invariance Enforce-
ment Regularization (IER).

Next we think about the complementary activity given by Definition 11, which is a
sufficient condition for the neurons to attain the maximum value of selectivity score
(Theorem 13). From Eq. Supp.30, we have

ãnm(x)ãnm(x′) =
anm(x)− bnm

ρnm
anm(x′)− bnm

ρnm
(Supp.5)

=
anm(x)anm(x′)− bnmanm(x)− bnmanm(x′) + (bnm)2

ρnm
.(Supp.6)

Unfortunately we cannot calculate actual values of bnm in the training phase, and thus
it is difficult to derive a regularization term like Eq. Supp.4 directly from Eq. Supp.6.

Given that the complementary activity is difficult to use for constructing a regular-
ization term, we consider another type of neural activity.

Definition 15 (Sparse activity). Consider a layer n which consists of non-degenerated
neurons, and the variation-base decomposition of the activity of neurons in this layer,
aaan(x) = ρn ⊙ ãaan(x) + bbbn, given by Eq. Supp.32. We call the neural activity in layer n
sparse if the following condition holds:

#(ãaan(x)) ̸=0 ≪ #(ãaan(x)), (Supp.7)

where #(·) denotes the number of elements and #(·) ̸=0 denotes the number of non-
zero elements. ◁

We show in the next section that if a neural activity is sparse, it is highly probable
that the complementarity condition holds. While any norm in Eq. Supp.6 can work
to enforce invariant neural activity in principle, different norms may work differently
on sparseness, and thus differently on complementarity and selectivity. In this study,
we investigate the effects of different norms on sparseness, complementarity and se-
lectivity experimentally. For this purpose, we introduce another score to measure the
sparseness.

323



Definition 16 (Mean rate of Activation (mrA)). Consider a layer n which consists of
non-degenerated neurons, and the variation-base decomposition of the activity of neu-
rons in this layer, aaan(x) = ρn ⊙ ãaan(x) + bbbn, given by Eq. Supp.32. Let Xi denotes the
set of all images belonging to an object category i and x denote an image. The mean
rate of Activation (mrA) is defined as

1− 1
#(I)

1
#(Xi)

∑
i∈I

∑
x∈Xi

#(ãaan(x)) ̸=0

#(ãaan(x))
. (Supp.8)

◁

Remark. This score uses the ratio of activated neurons to all neurons as an indicator
of the sparseness. It ranges from 0 to 1, and the closer to 1, the better.

S9.2 Relationship between sparse activity and complementary activity

If neural activity of a layer n is sparse, i.e., follows Eq. Supp.7, then #(ãaanm(x)) ̸=0 is
small and it is highly probable that Eq. Supp.9 (element-wise expression of comple-
mentary activity) is satisfied. To obtain a more concrete and quantitative result, we
introduce the following definitions.

Definition 17 (Activation pattern). Consider a layer n which consists of non-degenerated
neurons, and the variation-base decomposition of the activity of neurons in this layer,
aaan(x) = ρn ⊙ ãaan(x) + bbbn, given by Eq. Supp.32. We define the activation pattern Pn

x as
follows:

Pn
x = {m | ãnm(x) ̸= 0}. (Supp.9)

That is, Pn
x is the set of indices of neurons activated by the image x. ◁

Remark. By definition, following relationship holds:

#(Pn
x ∩ Pn

x′) = #(ãaan(x′)⊙ ãaan(x)) ̸=0. (Supp.10)

Definition 18 (Set of activation patterns). Consider a layer n which consists of non-
degenerated neurons. Let Xi denote the set of all images belonging to an object cate-
gory i ∈ I. We define Pn

i , the set of activation patterns corresponding to the object
category i, as follows:

Pn
i = {Pn

x | x ∈ Xi}. (Supp.11)

◁

324



Definition 19 (Simple sparse activity). Consider a layer n which consists of non-degenerated
neurons. We call the activity of the layer n simple sparse if it satisfies the following
conditions.

1. Each activation pattern consists of exactly the same number of indices m. That
is,

#(Pn
x) = #(ãaan(x)) ̸=0 = a common constant for all x ∈ X . (Supp.12)

2. The number of activation patterns corresponding to each object category is one.
That is,

#(Pn
i ) = 1 for all i ∈ I. (Supp.13)

3. Each activation pattern is determined randomly and independently in training
phase.

◁

We have introduced the mean overlap of Activation (moA, Definition 14) as a
quantitative score to measure the complementarity, and the mean rate of Activation
(mrA, Definition 16) as a quantitative score to measure the sparseness. In the case of
simple sparse activity, we can derive an explicit relationship of these scores.

Theorem 20 (Relationship between mrA and moA for simple sparse activity). In the
case of simple sparse activity, the relationship between mrA and moA is given by the
following equation:

E[(moA)] = 2(mrA)− (mrA)2, (Supp.14)

where E[·] denotes the expected value.

Remark. Eq. Supp.14 means that the expected value of moA increases monotonically
according to mrA because mrA ranges from 0 to 1.

Proof. Let Xi denote the set of all images belonging to an object category i ∈ I. The
condition 1 in Definition 19 holds for x ∈ Xi in particular. Note that we can choose an
arbitrary i ∈ I. Note also that #(ãaan(x)) = Mn (the number of all neurons in layer n)
regardless of x. Therefore the following relation holds:

#(ãaan(x)) ̸=0

#(ãaan(x))
= a common constant for all x ∈ Xi and i ∈ I. (Supp.15)

325



We set this constant as τ. Then we can express mrA using τ as follows:

(mrA) = 1− 1
#(I)

1
#(Xi)

∑
i∈I

∑
x∈Xi

#(ãaan(x)) ̸=0

#(ãaan(x))
(Supp.16)

= 1− 1
#(I)

1
#(Xi)

∑
i∈I

∑
x∈Xi

τ (Supp.17)

= 1− τ. (Supp.18)

Conversely, τ can be expressed as

τ = 1− (mrA). (Supp.19)

Think about pairs of object categories different to each other: (i, i′), i ̸= i′. From the
conditions 2 and 3 in Definition 19, each category has only one activation pattern
and each pattern is determined randomly and independently in training phase. The
expected value of overlap rate of activated neurons of the patterns of Px for all x ∈ Xi
and Px′ for all x′ ∈ Xi′ is τ2. Therefore expected value of the number of overlapped
activated neurons is Mnτ2, that is,

E[#(Pn
x ∩ Pn

x′)] = Mnτ2. (Supp.20)

Due to Eq. Supp.10, this is equivalent to the following equation:

E[#(ãaan(x′)⊙ ãaan(x)) ̸=0] = Mnτ2. (Supp.21)

Recall the definition of moA (Definition 14):

(moA) = 1− 1
#(Xr)

∑
(x,x′)∈Xr

#(ãaan(x′)⊙ ãaan(x)) ̸=0

#(ãaan(x))
. (Supp.22)

By taking the expected value of both side, we have

E[(moA)] = E

1− 1
#(Xr)

∑
(x,x′)∈Xr

#(ãaan(x′)⊙ ãaan(x)) ̸=0

#(ãaan(x))

 (Supp.23)

= 1− 1
#(Xr)

∑
(x,x′)∈Xr

E[#(ãaan(x′)⊙ ãaan(x)) ̸=0]

#(ãaan(x))
(Supp.24)

= 1− 1
#(Xr)

∑
(x,x′)∈Xr

E[#(ãaan(x′)⊙ ãaan(x)) ̸=0]

Mn
(Supp.25)

326



From Eq. Supp.21, we obtain expected value of moA as follows:

E[(moA)] = 1− τ2. (Supp.26)

By substituting Eq. Supp.19 into Eq. Supp.26, we obtain the conclusion:

E[(moA)] = 1− (1− (mrA))2 (Supp.27)
= 2(mrA)− (mrA)2. (Supp.28)

S10 Details of implementation

S10.1 Learning algorithm with Invariance Enforcement Regularization (IER)

Algorithm 3 represents a learning algorithm with IER, where y(k) be the category la-
bel corresponding to an image x(k). In function T(D), we create a new mini-batch
{(x̂(k), ŷ(k))}Bk=1 for the regularization term apart from the original training mini-batch
{(x(k), y(k))}Bk=1. In this process, we sample (x(k), y(k)) randomly, and find correspond-
ing (x̂(k), ŷ(k)) with ŷ(k) = y(k). Note that the number of samples belonging to each set
Xi are randomly determined. Look at row 7 in Algorithm 3. We calculate two forward
paths, but the process corresponding to {(x̂(k), ŷ(k))}Bk=1 is just used for calculation of
R and we used gradients calculated only with {(x(k), y(k))}Bk=1, which is corresponding
to row 6. In our implementation we employed Cross-Entropy loss for Loss function in
row 6.

327



Algorithm 3 Learning algorithm with IER
1: Require:Training data D(train), Learning rate η, Regularization weight γ,

Epochsize, Batchsize B, Norm ∥ · ∥p
2: Ensure:Network parameters θ = (θin, θout)
3: while Epochsize do
4: {(x(k), y(k))}Bk=1,{(x̂(k), ŷ(k))}Bk=1 ← T(D(train))
5: R← 1

B
∑

k ∥fff
in(x(k); θin)− fffin(x̂(k); θin)∥p

6: L← 1
B
∑

k Loss(y(k), fffout(fffin(x(k); θin); θout)))
7: θ← θ− η∇θ(L+ γR)
8: end while
9: function T(D)
10: for k = 1, . . . , B do
11: (x(k), y(k)) ← sample from D
12: (x̂(k), ŷ(k)) ← sample from D with ŷ(k) = y(k)

13: end for
14: return {(x(k), y(k))}Bk=1,{(x̂(k), ŷ(k))}Bk=1
15: end function

Remark. The source codes are included in the zip file (/source_code).

S10.2 Calculation of invariance and selectivity scores

For the evaluation of invariance and selectivity scores, we calculate the entries of ac-
tivation grid αnmij , which is the averaged activation over the same category i and at-
tribute j using all images; namely, we do not technically conduct variation-base de-
composition. Then actual scores of invariance and selectivity are calculated.

S10.3 Calculation of mrA and moA

First of all, we calculate ρnm and anmij for all neurons using all images. To calculate
mrA and moA scores, we regard elements of ãnm > 0 are active and set them to be
ãnm = 1 and set others to be ãnm = 0. Then calculate mrA by taking average of
ãnm(x) for all x ∈ Xi and i ∈ I over all neurons and also calculate moA by taking
average of ãnm⊙ãnm over all neurons over all sampled pairs of images Xr (see definition
of mrA 16 and moA 14).

328



S10.4 Preparation of seen data and unseen data in bias-controlled experiments

In bias-controlled experiment, we prepare the seen data D(seen) that consists of images
with biased object and nuisance attribute combinations; we denote the complement
set of D(seen) as D(unseen).

Let x(k) be an image and y(k) = (i(k), j(k)) be the corresponding label. We divide our
dataset as follows.

First, we select certain combinations of object and nuisance attribute categories
S ⊂ I × J . Seen data is sampled as

D(seen) = {(x(k),y(k))|y(k) ∈ S}, (Supp.1)

while the sampling process is force to satisfy the conditions described below. Let us
define S|I ⊂ I and S|J ⊂ J as follows:

S|I = {i ∈ I | (i, j) ∈ S for at least one j ∈ J }, (Supp.2)
S|J = {j ∈ J | (i, j) ∈ S for at least one i ∈ I}. (Supp.3)

We impose conditions S|I = I and S|J = J to ensure that D(seen) contains all object
categories and all nuisance attribute categories (but not all combinations of them).
Training data is sampled from D(seen) so that each combination of object categories
and nuisance attribute categories has the same number of images. Validation data
(seen test data) is sampled from the rest of D(seen) in the same way.

Unseen data is defined as

D(unseen) = {(x(k),y(k))|y(k) /∈ S}. (Supp.4)

Unseen test data is sampled from D(seen) so that each combination of object categories
and nuisance attribute categories has the same number of images. The term unseen
test accuracy refers to the accuracy on the unseen test data constructed in this way.
We also define seen rate as s = #(S)/#(I × J ). To examine the dependency of the
generalization on seen rate, we vary seen rate and attribute combinations as

S ⊂ S ′ if s < s′, (Supp.5)

while keeping

#(D(seen)(S)) = #(D(seen)(S ′)). (Supp.6)

For each j ∈ J , we define S∗j ⊂ I as follows:

S∗j = {i ∈ I | (i, j) ∈ S}. (Supp.7)

329



We also define Si∗ ⊂ J for each i ∈ I:

Si∗ = {j ∈ J | (i, j) ∈ S}. (Supp.8)

This is not necessarily required but in our experiments, we only treat the cases where

#(I) = #(J ) (Supp.9)

and keep the following additional condition:

#(S∗1) = #(S∗2) = · · · = #(S∗#(J )) = #(S1∗) = #(S2∗) = · · · = #(S#(I)∗).

(Supp.10)

Then, seen rates are limited in the following form:

s =
#(S∗1)
#(I)

=
#(S∗2)
#(I)

= · · · =
#(S∗#(J ))

#(I)
=

#(S1∗)
#(J )

=
#(S2∗)
#(J )

= · · · =
#(S#(I)∗)

#(J )
.

(Supp.11)

For instance, if #(I) = #(J ) = 5, seen rate takes 1/5, 2/5, 3/5, 4/5. Fig. 1 of the
main body of the paper shows an example of #(I) = #(J ) = 5 and s = 2/5.

In each trial of the experiments, we first determined the seen rate s and then cre-
ated the set S randomly as long as it satisfied the constraints explained above. Then
D(seen), training data, validation data (seen test data), D(unseen), and unseen test data
were created accordingly. The actual numbers for each dataset are given in Sec. S12.

S11 Details of datasets

S11.1 MNIST-Positions

Starting with the MNIST dataset215, we created a dataset of 42×42 pixels with nine
numbers (0 to 8; 567378 images) by resizing images to 14×14 and placing them in one
of 9 possible positions in a 3×3 empty grid. We call it MNIST-Positions. Fig. Supp.1
shows the all categories and positions of MNIST-Positions. In our experiments, the
numbers are considered to be the object category set I and the positions where the
numbers are placed is considered as the nuisance attribute set J . Thus, it is written
as #(I) = #(J ) = 9.

S11.2 iLab-Orientations

iLab-2M is a dataset created from iLab-20M dataset? . The dataset consists of images
of 15 categories of physical toy vehicles photographed in various orientations, eleva-

330



Figure Supp.1: Sample images of MNIST-Positions dataset arranged in a grid pattern. Each
row indicates the number as the object category. MNIST-Poitions include nine numbers from
0 to 8. Each column indicates the positions as the nuisance attribute category. There are 9
positions in this dataset.

331



tions, lighting conditions, camera focus settings and backgrounds. It has 1.2M train-
ing images, 270K validation images, 270K test images, and each image is 256×256
pixels. We chose from the original iLab-2M dataset six object categories — bus, car,
helicopter, monster truck, plane, and tank as I and six orientations as J . We call it
iLab-Orientations. Fig. Supp.2 shows samples of the all object categories and orienta-
tions of iLab-Orientations dataset. The sample size is 471791.

S11.3 CarCGs-Orientations

CarCGs-Orientations is a new dataset that consists of images of ten models of cars
in various conditions rendered by Unreal Engine version 4.25.3107. The conditions
consists of ten orientations, three elevations, ten body colors, five locations and three
time slots. Fig. Supp.3 shows the all car models (object categories) and orientations
(nuisance attribute categories) in the grid form. The details of these two main at-
tributes are as follows.

• Object categories: CarCGs-Orientations dataset consists of images of the fol-
lowing cars — Nissan XTrail, Volkswagen Golf, BMW 2Series Coupe, Honda
Odyssey, Toyota Prius, Mercedes Benz A-Class, Lexus LS, Mercedes Benz E-
Class, Toyota Yaris and Volvo V40 (See Fig. Supp.4). We used the whole car
models as object categories I. Therefore the number of object categories is
#(I) = 10 in the experiments conducted in this study.

• Orientations (nuisance attribute categories): During the rendering process, the
virtual camera (camera actor) was rotated around the yaw axis of each car from
0 to 324 degrees in units of 36 degrees. Therefore, each car model appears in
the images with ten different azimuth orientations. All orientations are shown
in Fig. Supp.5. We used the whole orientations as nuisance attribute categories
J . Thus the number of the nuisance attribute categories is #(J ) = 10 in the
experiments conducted in this study.

To create variety of samples for each combination of the object categories (car mod-
els) and nuisance attribute categories (orientations), we added other attributes as
follows.

• Elevations: The virtual camera was located at three elevation angles, namely,
10, 15, and 30 degrees, during the rendering process. Sample images taken from
each angle are shown in Fig. Supp.6.

• Body colors: Each car model is rendered with ten colors, namely, black, light
blue, green, red, white, beige, dark blue, orange, plum, and silver by using Au-
tomotive Materials106 (a library for Unreal Engine). Fig. Supp.7 shows sample
images of Nissan XTrail rendered with these colors.

332



Figure Supp.2: Sample images of iLab–Orientations dataset arranged in a grid pattern. Each
row indicates the object category. iLab-Orientations include six object categories — bus, car,
helicopter, monster truck, plane, and tank. Each column indicates the orientations as the
nuisance attribute category. There are 6 orientations in this dataset.

333



Figure Supp.3: Sample images of each object category and orientation of CarCGs-
Orientations. Each row indicates object categories — Nissan XTrail, Volkswagen Golf, BMW
2Series Coupe, Honda Odyssey, Toyota Prius, Mercedes Benz A-Class, Lexus LS, Mercedes
Benz E-Class, Toyota Yaris and Volvo V40. Each column indicates the nuisance attribute
categories, orientations from 0 to 324 degrees. These categories and orientations in this figure
are used in our experiments.

Figure Supp.4: Sample images of ten object categories of CarCGs-Orientatoins — Nissan
XTrail, Volkswagen Golf, BMW 2Series Coupe, Honda Odyssey, Toyota Prius, Mercedes Benz
A-Class, Lexus LS, Mercedes Benz E-Class, Toyota Yaris and Volvo V40 are shown in this
figure from the top left to the bottom right. All attributes except object category are fixed in
this figure.

334



Figure Supp.5: Sample images of ten orientations (nuisance attribute categories) of CarCGs-
Orientations. Ten orientations from 0 to 324 degrees are displayed from the left to right. All
attributes except orientation are fixed in this figure.

Figure Supp.6: Sample images of the three elevation angles (10, 15, 30 degrees) of CarCGs-
Orientations. Left figure is the image whose elevation angle is 10 degrees. Middle figure is the
image whose elevation angle is 15 degrees. Right figure is the image whose elevation angle is
30 degrees.

Figure Supp.7: Sample images of cars painted in ten colors of CarCGs-Orientations. There
are images painted in black, light blue, green, red, white, beige, dark blue, orange, plum, and
silver from left to right.

(a) Sample images of each location from elevation angle of 10 degrees that CarCGs-
Orientations has.

(b) Sample images of each location from elevation angle of 15 degrees that CarCGs-
Orientations has.

Figure Supp.8: (a) is images of a car placed in five different locations taken from elevation an-
gle of 10 degrees. (b) is images taken from elevation angle of 15 degrees. There are differences
in texture of road and background.

335



• Locations: We used a sample environment of an urban park contained in City
Park Environment CollectionSilverTm. We chose five locations from the sample
environment and modified them for our experiments. Sample images taken at
each location are shown in Fig. ??.

• Time slots: We used Ultra Dynamic SkyEverett Gunther to synthesize the three
different times slots, namely, daytime, twilight, and midnight. Fig. Supp.9
shows the samples of these three time slots.

The number of images and the image size are as follows.

• Number of images and image size: The total number of images of this dataset
is 45K = 10 (object categories) × 10 (orientations) × 3 (elevations) × 10 (body
colors) × 5 (locations) × 3 (time slots). The images are rendered in 3840×2160
pixels and then resized to 1920×1080 pixels for the sake of anti-aliasing.

Remark. In addition to the figures in this Appendix, ten jpeg files are contained in
the zip file (/sample_images/CarCGs-Orientations).
Remark. After the submission of the main body of our paper, it turned out that 3.3%
of the car model labels were wrongly created. Both seen data and unseen data used
for the experiments contained these wrongly labeled images. Yet, the networks with
and without our proposed method were trained and tested with the same seen data
and unseen data, and the comparisons reported in the paper are still fair.

S11.4 MiscGoods-Illumination

MiscGoods-Illumination is a novel dataset constructed for this study. The dataset
consists of images of ten physical miscellaneous goods taken with five illumination
conditions, two object aspects, twenty object orientations, five camera angles. Figure
Supp.10 shows the all miscellaneous goods (object categories) and illumination condi-
tions (nuisance attribute categories) in the grid form. The details of these two main
attributes are as follows.

• Object Categories: As shown in Fig. Supp.10, MiscGoods-Illumination has ten
types of miscellaneous goods — stuffed dolphin, stuffed whale, metal basket,
imitation plant, cup, cleaning brush, winding tape, lace yarn, bottled imitation
tomatoes, and bottled imitation green apples. In this study, we selected the
following five miscellaneous goods as the object categories I — stuffed dolphin,
stuffed whale, metal basket, imitation plant and cup. Therefore the number of
object categories is #(I) = 5 in the experiments conducted in this study.

• Illumination conditions (nuisance attribute categories): As the nuisance at-
tribute categories, we created five illumination conditions (lighting conditions);

336



one is created with ceiling lights, and the rest are with a colored spotlight. All
illumination conditions are shown in Fig. Supp.10. For spotlight conditions, the
light source (G1S RGB Video Light) was placed 23 cm in front of the object
(See Fig. Supp.11). The parameters of the light source were H217/S141=8500k
(white light), H0/S100 (red light), H120/S100 (green light), and H240/S100
(blue light). These parameters were set so that the nuisance attribute of the il-
lumination makes a sufficient difference in the learning experiments. We used
whole illumination conditions as nuisance attribute categories J . Thus the
number of the nuisance attribute categories is #(J ) = 5 in the experiments
conducted in this study.

As we did for CarCGs-Orientations, we added other attributes to create variety of
samples for each combination of the object categories and nuisance attribute cate-
gories (illumination conditions) as follows.

• Object poses (aspects and orientations): In MiscGoods-Illumination, we placed
each object in two representative aspects for each lighting condition. Fig. Supp.12
shows the two aspects of all object categories. For additional diversity, we ro-
tated the object every 18 degrees from 0 to 342 degrees (Fig. Supp.13). In total,
there are 40 patterns in object pose conditions.

• Camera angles: To capture the images automatically, we created a robotic
image capture system (see Fig. Supp.11). A camera (Realsense D435 Intel) was
attached to a robot arm (COBOTTADENSO Wave), and the system captured
images from five camera angles for each lighting and object pose condition
(Fig. Supp.14). The postures were defined so that the acquired image shows
the entire object pose. The series of operations from robot control to image ac-
quisition is automated by utilizing ROS kinetic ros.

The number of images and the image size are as follows.

• Number of images and image size: The number of images of whole dataset is
10K = 10 (object categories) × 5 (illuminations) × 2 (aspects) × 20 (orienta-
tions) × 5 (camera angles), and each image size is 640 × 480 pixels.

Remark. In addition to the figures in this Appendix, ten jpeg images are contained in
the zip file (/sample_images/MiscGoods-Illumination).

S12 Details of experiments

ResNet-18163 is adopted as the network for all experiments. The source codes are
implemented based on Python v3.6.9, using TensorFlow v2.1.0 and NumPy v1.18.1.
They are included in the zip file (/source_code). The whole network architecture is

337



shown in Fig Supp.1 and Fig Supp.2. All neurons employ the rectified linear function
g(z) = max{0, z} and satisfy anm(x) ≥ 0. Glorot uniform initializer125 is adopted for
the network weights initialization for all experiments. We use BatchNormalization
to standardize the inputs to a layer for each mini-batch. We use it for stabilizing the
learning process and reducing the number of training epochs. We do not use any data
augmentations and regularizations except IER to measure the effect of IER in an ap-
propriate manner. IER is applied to the last fully-connected layer “activation_17”
with 512 neurons shown in Fig. Supp.1. Adam197 is employed as the optimization al-
gorithm. The cross-entropy loss is employed as the loss L.

The pixels of images are normalized within 0 to 1 as a preprocessing for all datasets.
The epoch size, learning rate, and batch size are confirmed to produce reasonable ac-
curacy in the vanilla case (i.e., without IER) for each dataset and we employ the same
values for all experiments with the same dataset. For example, we use 15, 0.001, and
128 as epoch size, learning rate and batch size, respectively, for MNIST-Positions.
The values of hyper-parameters are summarized in Table Supp..1.

Table Supp..1: Hyper-parameters used for each dataset

dataset epoch size preprocessing weights initialization learning rate batch size
MNIST-Positions 15 divide by 255 Glorot uniform initializer 0.001 128
iLab-Orientations 50 divide by 255 Glorot uniform initializer 0.001 256
CarCGs-Orientations 50 divide by 255 Glorot uniform initializer 0.0001 32
MiscGoods-Illumination 50 divide by 255 Glorot uniform initializer 0.00001 32

Average running time and confidence interval of learning of five trials with IER
using L2 norm have been measured to be 1956.2 (1885.2-2027.2) seconds, compar-
ing with 1172.4 (1090.8-1254.0) seconds of vanilla case. This evaluation has been
conducted using MNIST-Positions and parameters are same as the experiments re-
ported in Sec 4.1 (e.g. seen rate s = 4/9 and epoch size is 15). We have employed two
Quadro RTX 6000 GPUs for the experiments.

Regarding the invariance and selectivity scores, we use the median of the scores of
all neurons to represent the layer activity. Regarding the calculation of the confidence
intervals, Student-t test has been used. The preparation of training data, validation
data (seen test data), and unseen test data has been conducted as follows.

• MNIST-Positions: We used images of the original MNIST-Positions with image
size of 42 × 42 pixels. Seen data and unseen data were prepared in the way
described in Sec. S10.4 with seen rate s = 2/9, 3/9, 4/9, 5/9, 6/9, 7/9, 8/9 for the
experiments of weight dependency and s = 4/9 for the other experiments. The
number of seen data is #(D(seen)) = 110000. We use 100000 images for training

338



and 10000 for validation (seen test) for hyper-parameter tuning. The number of
unseen data is #(D(unseen)) = 10000. All of them were used for unseen test.

• iLab-Orientations: We reize the images to 64 × 64 pixels. Seen data and un-
seen data are prepared in the way described in Sec. S10.4 with seen rate s =
1/6, 2/6, 3/6, 4/6, 5/6 for the experiments of weight dependency and s = 3/6 =
1/2 for the other experiments. The number of seen data is #(D(seen)) = 78000.
We use 70000 images for training and 8000 for validation (seen test) for hyper-
parameter tuning. The number of unseen data is #(D(unseen)) = 8000. All of
them are used for unseen test.

• CarCGs-Orientations: We resize the images to 224 × 224 pixels. Seen data and
unseen data were prepared in the way described in Sec. S10.4 with seen rate s =
5/10 = 1/2. The number of seen data is #(D(seen)) = 3845. We use 3400 images
for training and 445 for validation (seen test) for hyper-parameter tuning. The
number of unseen data is #(D(unseen)) = 800. All of them are used for unseen
test.

• MiscGoods-Illumination: We resize the images to 224 × 224 pixels. Seen data
and unseen data are prepared in the way described in Sec. S10.4 with seen rate
s = 3/5. The number of seen data is #(D(seen)) = 1000. We use 800 images
for training and 200 for validation (seen test) for hyper-parameter tuning. The
number of unseen data was #(D(unseen)) = 200. All of them are used for unseen
test.

S13 Train accuracy and test accuracy on seen data

Training, seen test, and unseen test accuracy corresponding to Fig.4 in the main body
of our paper are available in Fig. Supp.3. The experiments for measuring accuracy
is exactly same as what we reported in the main body of the paper. The seen rate s
employs 4/9, 3/6, 5/10, and 3/5 for MNIST-Positions, iLab-Orientations, CarCGs-
Orientations, and MiscGoods-Illumination, respectively. The regularization weight
γ for L1, L2, and Linf norms are set at 0.001, 0.01, and 0.01, respectively. We con-
duct five trials and provide arithmetic means and 95% confidence intervals of seen
and unseen test accuracy. Accuracy of seen test of weight dependency corresponding
to Fig. 5(a)(b) in the main body of the paper are available in Fig. Supp.4. Moreover,
accuracy of seen test of weight dependency corresponding to Fig. 5(c)(d) in the main
body of our paper are available in Fig. Supp.5.

The most important point is that the dependency of unseen test accuracy on the
regularization weight γ shows the same trends as the dependency of seen test accuracy

339



on γ (Figs. Supp.5c to Supp.5f). This result implies that seen test accuracy can be
used to choose the regularization weight.

S14 For internal use

S15 List of symbols

• x: Image [k-th image = x(k)]

• y: Label [k-th label = y(k)]

• k: Sample index

• n: Layer index

• m: Neuron index

• Mn: Number of neurons in layer n

• anm(x): Activity of the m-th neuron in the n-the layer

• ãnm(x): Variation activity of the m-th neuron in the n-the layer

• ρnm: Scale factor of the m-th neuron in the n-the layer

• bnm: Base activity of the m-th neuron in the n-the layer

• αnmij : Entries of activations grid

• aaan(x): Layer activity [aaan(x) = [an1(x), . . . , anMn(x)]⊤]

• ãaan(x): Layer variation activity [ãaan(x) = [ãn1(x), . . . , ãnMn(x)]⊤]

• ρn: Layer scale factor [ρn = [ρn1, . . . , ρnMn ]⊤]

• bbbn(x): Layer base activity [bbbn = [bn1, . . . , bnMn ]⊤]

• θ: Network parameter [θ = (θin, θout)]

• fffin: Input side of neural network [aaan(x) = fffin(x; θin)]

• fffout: Output side of neural network

• I: Set of object categories

• J : Set of nuisance attribute categories

340



• N: Number of object category (N = #(I) = #(J ) in this study)

• i: Object category index (i ∈ I)

• j: Nuisance attribute category index (j ∈ J )

• Inm: Invariance score of the m-th neuron in the n-the layer

• Snm: Selectivity score of the m-th neuron in the n-the layer

• Xi: Set of images belonging th object category i

• L: Loss term

• R: Regularization term

• Loss(·, ·): Loss function

• #(·): Number of elements

• #(·) ̸=0: Number of non-zero elements

• B: Mini-batch size

• {(·, ·)}Bk=1: Mini-batch

• ∥ · ∥: Lp norm

• average
i

or averagei: Average with respect to i

• max
i

or maxi: Max value with respect to i

• min
i

or mini: Min value with respect to i

• argmax
i

or argmaxi: Argument i of maximum value

• ⊙: Element-wise product

• ⊘: Element-wise division

• Pnx: Activation Pattern (set of indices of neurons activated by an image x)

• Pi: Set of activation patterns corresponding to the object category i

• E[·]: Expected value

• D(seen): Seen data

• D(unseen): Unseen data

• s: Seen rate

341



Figure Supp.9: Sample images of each time slot of CarCGs-Orientations. Left figure is an
image of car taken in the daytime. Middle figure shows an image of a car taken in the twi-
light. The color of the car is different from that in the left and right ones. It is caused by the
twilight sunlight condition. Right figure shows an image of car taken at midnight. The color
of the car is also different from left and middle ones.

342



Figure Supp.10: Sample images of each object category and illumination condition of
MiscGoods-Illumination are shown in this figure. Each row indicates object categories —
stuffed dolphin, stuffed whale, metal basket, imitation plant, cup, cleaning brush, winding
tape, lace yarn, bottled imitation tomatoes, and bottled imitation green apples. Each column
indicates the nuisance attribute categories, illumination conditions — ceiling light, white spot-
light, red spotlight, green spotlight and blue spotlight. These five categories from the top and
five illumination conditions are used as object categories and nuisance attribute categories in
our experiments.

343



Figure Supp.11: Robotic image capture system for MiscGoods-Illumination. Dashed bidirec-
tional arrow indicates the robot motion.

344



Figure Supp.12: Sample images of MiscGoods-Illumination with two aspects. Each object has
these two aspects as an attribute. The shapes of these objects in an image are changed by
aspects conditions.

345



Figure Supp.13: Sample images of each orientation of MiscGoods-Illumination. 20 orientations
from 0 to 342 degrees that the dataset has are shown in this figure from the top left to the
bottom right.

Figure Supp.14: Sample images from each camera angles of MiscGoods-Illumination. There
are five angles in the dataset. The postures were defined so that the acquired image shows
the entire object pose. These five camera angles are related to postures of robot arm that the
camera is connected.

346



Figure Supp.1: This diagram shows the whole architecture of our implementation of ResNet-
18. The numbers in this diagram represent batchsize, height of image, width of image
and channels. Therefore they change depending on the dataset. Current numbers corre-
spond to MNIST-Positions. For instance, the numbers on the top of the diagram means
(batchsize, height,width, channels) = (128, 42, 42, 1). Conv2D, Dense and BasicBlock mean a
convolutional layer, a fully connected layer and a basic building block of ResNet, respectively.

347



Figure Supp.2: This diagram shows the architecture of BasicBlock in ResNet-18. Conv2D and
Add mean a convolutional layser and a layer that simply add the two input values.

348



vanilla L1 L2 Linf
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

train
seen
unseen

(a) Accuracy in MNIST-Positions
vanilla L1 L2 Linf

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

train
seen
unseen

(b) Accuracy in iLab-Orientations

vanilla L1 L2 Linf
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

train
seen
unseen

(c) Accuracy in CarCGs-Orientations
vanilla L1 L2 Linf

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

train
seen
unseen

(d) Accuracy in MiscGoods-Illumination

Figure Supp.3: The training accuracy, seen test accuracy, and unseen test accuracy in the
vanilla case and cases with IER: each subfigure shows the mean and 95% confidence inter-
val. The regularization weight γ for L1, L2, and Linf norms are set at 0.001, 0.01, and 0.01,
respectively. Note that training accuracy denotes accuracy on train data, seen test accuracy
denotes accuracy on seen data D(seen), and unseen test accuracy denotes accuracy on unseen
data D(unseen). In all cases the train accuracy and test accuracy have achieved values close
to 1.0. Also, in many cases the degradation of the accuracy from the seen test accuracy to
unseen test accuracy is less in cases with IER than vanilla cases.

349



2/9 3/9 4/9 5/9 6/9 7/9 8/9
seen rate

0.0

0.2

0.4

0.6

0.8

1.0

tra
in
 a
cc

ur
ac

y

vanilla
L1
L2
Linf

(a) Seen rate dependency of train accuracy
in MNIST-Positions

1/6 2/6 3/6 4/6 5/6
seen rate

0.0

0.2

0.4

0.6

0.8

1.0

tra
in
 a
cc

ur
ac

y

vanilla
L1
L2
Linf

(b) Seen rate dependency of train accuracy
in iLab-Orientations

2/9 3/9 4/9 5/9 6/9 7/9 8/9
seen rate

0.0

0.2

0.4

0.6

0.8

1.0

se
en

 te
st
 a
cc

ur
ac

y

vanilla
L1
L2
Linf

(c) Seen rate dependency of seen test accu-
racy in MNIST-Positions

1/6 2/6 3/6 4/6 5/6
seen rate

0.0

0.2

0.4

0.6

0.8

1.0

se
en

 te
st
 a
cc

ur
ac

y
vanilla
L1
L2
Linf

(d) Seen rate dependency of test accuracy
in iLab-Orientations

2/9 3/9 4/9 5/9 6/9 7/9 8/9
seen rate

0.0

0.2

0.4

0.6

0.8

1.0

un
se

en
 te

st
 a
cc

ur
ac

y

vanilla
L1
L2
Linf

(e) Seen rate dependency of unseen test
accuracy in MNIST-Positions

1/6 2/6 3/6 4/6 5/6
seen rate

0.0

0.2

0.4

0.6

0.8

1.0

un
se

en
 te

st
 a
cc

ur
ac

y

vanilla
L1
L2
Linf

(f) Seen rate dependency of unseen test
accuracy in iLab-Orientations

Figure Supp.4: The seen rate dependency of training, seen test, and unseen test accuracy for
the case of vanilla and with IER. The regularization weight γ for L1, L2, and Linf norms are
set at 0.001, 0.01, and 0.01, respectively. Note that training accuracy denotes accuracy on
training data and seen test accuracy denotes accuracy on seen data D(seen). In all cases, the
training accuracy and the seen test accuracy are very close to 1.0.

350



100 10−1 10−2 10−3 10−4

weight
0.0

0.2

0.4

0.6

0.8

1.0

tra
in
 a
cc
ur
ac

y

vanilla
L1
L2
Linf

(a) Weight dependency of train test accu-
racy in MNIST-Positions

100 10−1 10−2 10−3 10−4

weight
0.0

0.2

0.4

0.6

0.8

1.0

tra
in
 a
cc
ur
ac

y

vanilla
L1
L2
Linf

(b) Weight dependency of train test accu-
racy in iLab-orientations

100 10−1 10−2 10−3 10−4

weight
0.0

0.2

0.4

0.6

0.8

1.0

se
en

 te
st
 a
cc
ur
ac

y

vanilla
L1
L2
Linf

(c) Weight dependency of seen test accu-
racy in MNIST-Positions

100 10−1 10−2 10−3 10−4

weight
0.0

0.2

0.4

0.6

0.8

1.0

se
en

 te
st
 a
cc
ur
ac

y
vanilla
L1
L2
Linf

(d) Weight dependency of seen test accu-
racy in iLab-orientations

100 10−1 10−2 10−3 10−4

weight
0.0

0.2

0.4

0.6

0.8

1.0

un
se

en
 te

st
 a
cc
ur
ac

y

vanilla
L1
L2
Linf

(e) Weight dependency of unseen test
accuracy in MNIST-Positions

100 10−1 10−2 10−3 10−4

weight
0.0

0.2

0.4

0.6

0.8

1.0

un
se

en
 te

st
 a
cc
ur
ac

y

vanilla
L1
L2
Linf

(f) Weight dependency of unseen test accu-
racy in iLab-orientations

Figure Supp.5: The weight dependency of training, seen test and unseen test accuracy for the
case of vanilla and with IER. Note that train accuracy denotes accuracy on train data and
seen test accuracy denotes accuracy on seen data D(seen). IER has a drop in training accuracy
if the weight is too large. On the other hand, we find that tendency of seen test accuracy and
unseen test accuracy is consistent. Generally it is difficult to measure unseen test accuracy,
but if the seen test accuracy is high, we can expect unseen test accuracy to be the same.

351



S16 Domains

We present details for the ATARI PacMan, Pong and Breakout domains.

S16.1 PacMan

PacMan is set in a two-dimensional grid that contains food, walls, ghosts, and the
PacMan character. The game concludes with a +500 reward when all food pellets are
consumed, while encountering a ghost results in a -500 penalty and game over. Each
consumed food pellet awards +10 points, and PacMan incurs a -1 penalty for every
time step. The available actions for PacMan are moving Up, Down, Right, or Left.
The game’s state includes the location of PacMan, the position and direction of any
ghosts, and the distribution of food pellets. In this iteration of the game, ghosts move
according to some distributions.

S16.2 Pong

In this one-player version of Pong, the player competes against a computer-controlled
paddle. The game is set on a two-dimensional grid, with the player controlling one
paddle and the computer controlling the other. The game concludes with a +500 re-
ward when the ball reaches the grid boundaries on the computer controlled paddle
side, while if the grid boundary is reached on the agent’s side, a -500 penalty is ap-
plied and game over. The agent incurs a -1 penalty for every time step. The available
actions for the paddles are moving Right and Left or to Stop. The game’s state in-
cludes the location of the ball and the position and direction of any paddle. In this
iteration of the game, the computer controlled paddle moves according to some distri-
bution. Visualizations of the grids are presented in Supp.1.

S16.3 Breakout

In this version of Breakout, the agent competes against a wall of bricks using a horizontally-
moving paddle and a ball. The game is set on a two-dimensional grid, with the agent
controlling the paddle located at the bottom of the screen. The objective is to break
bricks by hitting them with the ball, which bounces back after each hit. The game
concludes with a +500 reward when all bricks are destroyed, but if the ball passes
the paddle and reaches the bottom grid boundary, a -500 penalty is applied, result-
ing in game over. Each hit brick awards +10 points, and the agent incurs a -1 penalty
for every time step. The available actions for the agent’s paddle are moving Right or
Left, or choosing to Stop. The game’s state includes the position of the ball, the lo-
cation of the paddle, and the configuration and status of the bricks. Visualizations of
the grids are presented in Supp.2.

352



S17 Training Parameters

In our experiments, parameters for Q-Learning and SARSA are inherited by54. In
particular, T = 1.5 α = 0.05, and λ = 0.9.

S18 Additional Graphs Non-Semantic Variations

In this section we present supplementary results showing the Generalization Agent
and Learnability Agent behavior for Semantic variations of grids throughout Pacman
and Pong.

S18.1 PacMan

Additional results showing the Generalization Agent and Learnability Agent behaviour
in Pacman for grids v2, v3, v4, are presented in the Supplementary figures. In partic-
ular, results for SARSA Agent with Boltzmann exploration strategy are presented in
Supp.3. Supp.4, Supp.5 show Q-learning Agent with Boltzmann and ε-greedy explo-
ration strategies respectively.

S18.2 Pong

Similarly, for Pong grids p1, p2 results are presented in the Supplementary figures
Supp.6 for SARSA Agent and Supp.7, Supp.8 for Q-learning Agent.

S18.3 Breakout

Analogously, for Breakout grids b1, b2, b3 results are presented in the Supplemen-
tary figures Supp.9, Supp.10 for SARSA Agent and Supp.11, Supp.12 for Q-learning
Agent.

S19 Additional Graphs Semantic variations

In this section we present supplementary results showing the Generalization Agent
and Learnability Agent behavior for Semantic variations of grids throughout Pacman
and Pong.

S19.1 PacMan

The behavior of the Generalization and Learnabilty Agents under semantic variations
of PacMan on grids v2, v3, v4 are presented in Supplementary figures Supp.13 for
SARSA Agent and Supp.14 and Supp.15 for Q-learning Agent.

353



S19.2 Pong

Similarly, for Pong grids p1, p2 results are presented in the Supplementary figures.
In particular, semantic variations featuring Directional Ghost p = 0.3 are presented
in Supp.16, Supp.17 for SARSA Agent and Supp.18, Supp.19 for Q-learning Agent.
While semantic variations featuring Directional Ghost p = 0.6 are shown in Supp.20,
Supp.21 for SARSA Agent and Supp.22, Supp.23 for Q-learning.

S20 Additional Graphs State-Action Pairs

This section shows the supplementary results for the exploration grid visualizing the
difference in State-Action (S-A) pairs explored by these agents (DLG) throughout the
analyzed domains.

S20.1 PacMan

Results of the exploration grid for PacMan v2, v3, v4 are shown in Supplementary
figures. In particular, for non-semantic grid variations, Supp.24 and Supp.25 report
grid exploration graphs for Q-learning Agent and Supp.26 and Supp.27 for SARSA
Agent. Additionally, for semantic games variations, Supp.28 and Supp.29 report grid
exploration graphs for Q-learning Agent and Supp.30 and Supp.31 for SARSA Agent.

S20.2 Pong

Similarly, for pong p1 and p2, Supp.32, Supp.33, Supp.34, and Supp.35 report grid
exploration graphs for non-semantic variations of Q-learning Agent and SARSA Agent
respectively, while Supp.36, Supp.37, Supp.38, and Supp.39 for semantic variations.

S20.3 Breakout

For Breakout grids b1,b2, and b3, exploration graphs for non-semantic variations of
Q-learning Agent and SARSA Agent are reported in Supplementary figures Supp.40,
Supp.41, Supp.42, and Supp.43.

354



(b)

Pong

p1 p2

(a)

Figure Supp.1: Grid variations for Pong.

(b)

Breakout

b1 b2

(c)(a)

b3

Figure Supp.2: Grid variations for Breakout.

355



0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Random Ghost

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.3

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.6

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Random Ghost

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.3

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.6

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Random Ghost

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.3

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.6

Figure Supp.3: SARSA Agent with Boltzmann exploration strategy: Results for PacMan v2,
v3, v4 grids reporting mean reward as a function of episode number. The agent is trained on
the non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1)
in Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).

356



0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Random Ghost

0 500 1000
Episodes

-500
-250

0
250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.3

0 500 1000
Episodes

-500
-250

0
250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.6

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Random Ghost

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.3

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.6

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Random Ghost

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.3

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.6

Figure Supp.4: Q-learning Agent with Boltzmann exploration strategy: Results for Pac-
Man v2, v3, v4 grids reporting mean reward as a function of episode number. The agent is
trained on the non-noisy version of the environment and tested on different level of noise
(δ ∼ N (0, 0.1) in Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).

357



0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Random Ghost

0 500 1000
Episodes

-500
-250

0
250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.3

0 500 1000
Episodes

-500
-250

0
250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.6

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Random Ghost

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.3

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.6

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Random Ghost

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.3

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.6

Figure Supp.5: Q-learning Agent with ε-greedy exploration strategy: Results for PacMan v2,
v3, v4 grids reporting mean reward as a function of episode number. The agent is trained on
the non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1)
in Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).

358



0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Following Paddle p: 0.6

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Following Paddle p: 0.6

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Following Paddle p: 0.6

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Following Paddle p: 0.6

Figure Supp.6: SARSA Agent with Boltzmann exploration strategy: Results for Pong p1, p2
grids reporting mean reward as a function of episode number. The agent is trained on the
non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1) in
Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).

359



0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Following Paddle p: 0.6

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Following Paddle p: 0.6

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Following Paddle p: 0.6

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Following Paddle p: 0.6

Figure Supp.7: Q-learning Agent with Boltzmann exploration strategy: Results for Pong p1,
p2 grids reporting mean reward as a function of episode number. The agent is trained on the
non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1) in
Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).

360



0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Following Paddle p: 0.6

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Following Paddle p: 0.6

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Following Paddle p: 0.6

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Following Paddle p: 0.6

Figure Supp.8: Q-learning Agent with ε-greedy exploration strategy: Results for Pong p1, p2
grids reporting mean reward as a function of episode number. The agent is trained on the
non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1) in
Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).

0 500 1000
Episodes

-500
-250

0
250

M
ea

n 
Re

wa
rd

Breakout: b1 Grid

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b2 Grid

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b3 Grid

Figure Supp.9: SARSA Agent with Boltzmann exploration strategy: Results for Breakout b1,
b2, b3 grids reporting mean reward as a function of episode number. The agent is trained on
the non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1)
in Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).

361



0 500 1000
Episodes

-500
-250

0
250

M
ea

n 
Re

wa
rd

Breakout: b1 Grid

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b2 Grid

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b3 Grid

Figure Supp.10: SARSA Agent with ε-greedy exploration strategy: Results for Breakout b1,
b2, b3 grids reporting mean reward as a function of episode number. The agent is trained on
the non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1)
in Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b1 Grid

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b2 Grid

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b3 Grid

Figure Supp.11: Q-learning Agent with Boltzmann exploration strategy: Results for Break-
out b1, b2, b3 grids reporting mean reward as a function of episode number. The agent is
trained on the non-noisy version of the environment and tested on different level of noise
(δ ∼ N (0, 0.1) in Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).

362



0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Random Ghost

0 500 1000
Episodes

-500
-250

0
250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.3

0 500 1000
Episodes

-500
-250

0
250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.6

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Random Ghost

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.3

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.6

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Random Ghost

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.3

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.6

Figure Supp.12: Q-learning Agent with ε-greedy exploration strategy Results for Pong p1,
p2 grids reporting mean reward as a function of episode number. The agent is trained on the
non-noisy version of the environment and tested on different level of noise (δ ∼ N (0, 0.1) in
Low-Noise and δ ∼ N (0, 0.5) in High-Noise settings).

363



0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.5

0 500 1000
Episodes

-500

-250

0

250
M

ea
n 

Re
wa

rd
PacMan: v3 Grid,

Teleporting Ghost p: 0.5

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.5

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.2

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.2

0 500 1000
Episodes

-500

-250

0

250
M

ea
n 

Re
wa

rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.2

Figure Supp.13: SARSA Agent with Boltzmann exploration strategy: Results for PacMan
v2, v3, v4 grids reporting mean reward as a function of episode number. The agent is trained
on the Random Ghost environment and tested on the Teleporting Ghost variation (p = 0.2,
p = 0.5)

364



0 500 1000
Episodes

-500
-250

0
250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.5

0 500 1000
Episodes

-500

-250

0

250
M

ea
n 

Re
wa

rd
PacMan: v3 Grid,

Teleporting Ghost p: 0.5

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.5

0 500 1000
Episodes

-500
-250

0
250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.2

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.2

0 500 1000
Episodes

-500

-250

0

250
M

ea
n 

Re
wa

rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.2

Figure Supp.14: Q-learning Agent with Boltzmann exploration strategy: Results for PacMan
v2, v3, v4 grids reporting mean reward as a function of episode number. The agent is trained
on the Random Ghost environment and tested on the Teleporting Ghost variation (p = 0.2,
p = 0.5)

365



0 500 1000
Episodes

-500
-250

0
250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.5

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.5

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.5

0 500 1000
Episodes

-500
-250

0
250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.2

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.2

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.2

Figure Supp.15: Q-learning Agent with ε-greedy exploration strategy: Results for PacMan
v2, v3, v4 grids reporting mean reward as a function of episode number. The agent is trained
on the Random Ghost environment and tested on the Teleporting Ghost variation (p = 0.2,
p = 0.5)

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

Figure Supp.16: SARSA Agent with Boltzmann exploration strategy: Results for Pong p1,
p2 grids reporting mean reward as a function of episode number. The agent is trained on the
Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.

366



0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

Figure Supp.17: SARSA Agent with ε-greedy exploration strategy: Results for Pong p1, p2
grids reporting mean reward as a function of episode number. The agent is trained on the
Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

Figure Supp.18: Q-learning Agent with Boltzmann exploration strategy: Results for Pong p1,
p2 grids reporting mean reward as a function of episode number. The agent is trained on the
Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

Figure Supp.19: Q-learning Agent with ε-greedy exploration strategy: Results for Pong p1,
p2 grids reporting mean reward as a function of episode number. The agent is trained on the
Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.

367



0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

Figure Supp.20: SARSA Agent with Boltzmann exploration strategy: Results for Pong p1,
p2 grids reporting mean reward as a function of episode number. The agent is trained on the
Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

Figure Supp.21: SARSA Agent with ε-greedy exploration strategy: Results for Pong p1, p2
grids reporting mean reward as a function of episode number. The agent is trained on the
Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

Figure Supp.22: Q-learning Agent with Boltzmann exploration strategy: Results for Pong p1,
p2 grids reporting mean reward as a function of episode number. The agent is trained on the
Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.

368



0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

0 500 1000
Episodes

0
100
200
300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

Figure Supp.23: Q-learning Agent with ε-greedy exploration strategy: Results for Pong p1,
p2 grids reporting mean reward as a function of episode number. The agent is trained on the
Directional Ghost (p = 0.3) environment and tested on the Random Ghost variation.

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Random Ghost

(a)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.3

(b)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.6

(c)

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Random Ghost

(d)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.3

(e)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.6

(f)

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Random Ghost

(g)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.3

(h)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.6

(i)

Figure Supp.24: Q-learning Agent with Boltzmann exploration strategy: The exploration grid
visualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for PacMan v2, v3, v4 grids, the agent is trained on non-noisy variations of different environ-
ments (reported in the headings) and tested in the Low-Noise regime. Rows in the right figure
represents agent’s actions Left, Right, Up, or Down.

369



0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Random Ghost

(a)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.3

(b)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.6

(c)

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Random Ghost

(d)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.3

(e)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.6

(f)

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Random Ghost

(g)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.3

(h)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.6

(i)

Figure Supp.25: Q-learning Agent with ε-greedy exploration strategy: The exploration grid
visualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for PacMan v2, v3, v4 grids, the agent is trained on non-noisy variations of different environ-
ments (reported in the headings) and tested in the Low-Noise regime. Rows in the right figure
represents agent’s actions Left, Right, Up, or Down.

370



0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Random Ghost

(a)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.3

(b)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.6

(c)

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Random Ghost

(d)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.3

(e)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.6

(f)

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Random Ghost

(g)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.3

(h)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.6

(i)

Figure Supp.26: SARSA Agent with Boltzmann exploration strategy: The exploration grid
visualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for PacMan v2, v3, v4 grids, the agent is trained on non-noisy variations of different environ-
ments (reported in the headings) and tested in the Low-Noise regime. Rows in the right figure
represents agent’s actions Left, Right, Up, or Down.

371



0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Random Ghost

(a)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.3

(b)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Following Ghost p: 0.6

(c)

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Random Ghost

(d)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.3

(e)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Following Ghost p: 0.6

(f)

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Random Ghost

(g)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.3

(h)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Following Ghost p: 0.6

(i)

Figure Supp.27: SARSA Agent with ε-greedy exploration strategy: The exploration grid vi-
sualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for PacMan v2, v3, v4 grids, the agent is trained on non-noisy variations of different environ-
ments (reported in the headings) and tested in the Low-Noise regime. Rows in the right figure
represents agent’s actions Left, Right, Up, or Down.

372



0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.2

(a)
0 500 1000

Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.2

(b)
0 500 1000

Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.2

(c)

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.5

(d)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.5

(e)
0 500 1000

Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.5

(f)

Figure Supp.28: Q-learning Agent with Boltzmann exploration strategy: The exploration grid
visualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for PacMan v2, v3, v4 grids, the agent is trained on Teleporting Ghost variation (p = 0.2,
p = 0.5) and tested in different environments (reported in the headings). Rows in the right
figure represents agent’s actions Left, Right, Up, or Down.

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.2

(a)
0 500 1000

Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.2

(b)
0 500 1000

Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.2

(c)

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.5

(d)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.5

(e)
0 500 1000

Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.5

(f)

Figure Supp.29: Q-learning Agent with ε-greedy exploration strategy: The exploration grid
visualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for PacMan v2, v3, v4 grids, the agent is trained on Teleporting Ghost variation (p = 0.2,
p = 0.5) and tested in different environments (reported in the headings). Rows in the right
figure represents agent’s actions Left, Right, Up, or Down.

373



0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.2

(a)
0 500 1000

Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.2

(b)
0 500 1000

Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.2

(c)

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.5

(d)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.5

(e)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.5

(f)

Figure Supp.30: SARSA Agent with Boltzmann exploration strategy: The exploration grid
visualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for PacMan v2, v3, v4 grids, the agent is trained on Teleporting Ghost variation (p = 0.2,
p = 0.5) and tested in different environments (reported in the headings). Rows in the right
figure represents agent’s actions Left, Right, Up, or Down.

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.2

(a)
0 500 1000

Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.2

(b)
0 500 1000

Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.2

(c)

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v2 Grid,
Teleporting Ghost p: 0.5

(d)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v3 Grid,
Teleporting Ghost p: 0.5

(e)
0 500 1000

Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

PacMan: v4 Grid,
Teleporting Ghost p: 0.5

(f)

Figure Supp.31: SARSA Agent with ε-greedy exploration strategy: The exploration grid vi-
sualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for PacMan v2, v3, v4 grids, the agent is trained on Teleporting Ghost variation (p = 0.2,
p = 0.5) and tested in different environments (reported in the headings). Rows in the right
figure represents agent’s actions Left, Right, Up, or Down.

374



0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

(a)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Following Paddle p: 0.3

(b)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Following Paddle p: 0.6

(c)

0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

(d)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Following Paddle p: 0.3

(e)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Following Paddle p: 0.6

(f)

Figure Supp.32: Q-learning Agent with Boltzmann exploration strategy: The exploration grid
visualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for Pong p1, p2 grids, the agent is trained on non-noisy variations of different environments
(reported in the headings) and tested in the Low-Noise regime. Rows in the right figure repre-
sents agent’s actions Left, Right, Stop.

0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

(a)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Following Paddle p: 0.3

(b)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Following Paddle p: 0.6

(c)

0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

(d)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Following Paddle p: 0.3

(e)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Following Paddle p: 0.6

(f)

Figure Supp.33: Q-learning Agent with ε-greedy exploration strategy: The exploration grid
visualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for Pong p1, p2 grids, the agent is trained on non-noisy variations of different environments
(reported in the headings) and tested in the Low-Noise regime. Rows in the right figure repre-
sents agent’s actions Left, Right, Stop.

375



0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

(a)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Following Paddle p: 0.3

(b)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Following Paddle p: 0.6

(c)

0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

(d)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Following Paddle p: 0.3

(e)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Following Paddle p: 0.6

(f)

Figure Supp.34: SARSA Agent with Boltzmann exploration strategy: The exploration grid
visualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for Pong p1, p2 grids, the agent is trained on non-noisy variations of different environments
(reported in the headings) and tested in the Low-Noise regime. Rows in the right figure repre-
sents agent’s actions Left, Right, Stop.

0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

(a)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Following Paddle p: 0.3

(b)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Following Paddle p: 0.6

(c)

0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

(d)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Following Paddle p: 0.3

(e)
0 500 1000

Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Following Paddle p: 0.6

(f)

Figure Supp.35: SARSA Agent with ε-greedy exploration strategy: The exploration grid vi-
sualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for Pong p1, p2 grids, the agent is trained on non-noisy variations of different environments
(reported in the headings) and tested in the Low-Noise regime. Rows in the right figure repre-
sents agent’s actions Left, Right, Stop.

376



0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

(a)
0 500 1000

Episodes
0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

(b)

0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

(c)
0 500 1000

Episodes
0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

(d)

Figure Supp.36: Q-learning Agent with Boltzmann exploration strategy: The exploration grid
visualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for Pong p1, p2 grids, the agent is trained on Directional paddle (p = 0.3 top, p = 0.6, bottom)
variation and tested in the Random paddle environment. Rows in the right figure represents
agent’s actions Left, Right, Stop.

0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

(a)
0 500 1000

Episodes
0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

(b)

0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

(c)
0 500 1000

Episodes
0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

(d)

Figure Supp.37: Q-learning Agent with ε-greedy exploration strategy: The exploration grid vi-
sualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results for
Pong p1, p2 grids, the agent is trained on Directional Paddle (p = 0.3 top, p = 0.6, bottom)
variation and tested in the Random Paddle environment. Rows in the right figure represents
agent’s actions Left, Right, Stop.

377



0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

(a)
0 500 1000

Episodes
0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

(b)

0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

(c)
0 500 1000

Episodes
0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

(d)

Figure Supp.38: SARSA Agent with Boltzmann exploration strategy: The exploration grid vi-
sualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results for
Pong p1, p2 grids, the agent is trained on Directional Paddle (p = 0.3 top, p = 0.6, bottom)
variation and tested in the Random Paddle environment. Rows in the right figure represents
agent’s actions Left, Right, Stop.

0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

(a)
0 500 1000

Episodes
0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p1 Grid,
Random Paddle

(b)

0 500 1000
Episodes

0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

(c)
0 500 1000

Episodes
0

100

200

300

M
ea

n 
Re

wa
rd

Pong: p2 Grid,
Random Paddle

(d)

Figure Supp.39: SARSA Agent with ε-greedy exploration strategy: The exploration grid visu-
alizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results for
Pong p1, p2 grids, the agent is trained on Directional Paddle (p = 0.3 top, p = 0.6, bottom)
variation and tested in the Random Paddle environment. Rows in the right figure represents
agent’s actions Left, Right, Stop.

378



0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b1 Grid

(a)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b2 Grid

(b)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b3 Grid

(c)

Figure Supp.40: Q-learning Agent with Boltzmann exploration strategy: The exploration grid
visualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for Breakout b1, b2, b3 grids, the agent is trained on non-noisy variations of different environ-
ments (reported in the headings) and tested in the Low-Noise regime. Rows in the right figure
represents agent’s actions Left, Right, Stop.

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b1 Grid

(a)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b2 Grid

(b)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b3 Grid

(c)

Figure Supp.41: Q-learning Agent with ε-greedy exploration strategy: The exploration grid
visualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for Breakout b1, b2, b3 grids, the agent is trained on non-noisy variations of different environ-
ments (reported in the headings) and tested in the Low-Noise regime. Rows in the right figure
represents agent’s actions Left, Right, Stop.

0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b1 Grid

(a)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b2 Grid

(b)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b3 Grid

(c)

Figure Supp.42: SARSA Agent with Boltzmann exploration strategy: The exploration grid
visualizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results
for Breakout b1, b2, b3 grids, the agent is trained on non-noisy variations of different environ-
ments (reported in the headings) and tested in the Low-Noise regime. Rows in the right figure
represents agent’s actions Left, Right, Stop.

379



0 500 1000
Episodes

-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b1 Grid

(a)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b2 Grid

(b)
0 500 1000

Episodes
-500

-250

0

250

M
ea

n 
Re

wa
rd

Breakout: b3 Grid

(c)

Figure Supp.43: SARSA Agent with ε-greedy exploration strategy: The exploration grid visu-
alizing the difference in State-Action (S-A) pairs explored by these agents (DLG). Results for
Breakout b1, b2, b3 grids, the agent is trained on non-noisy variations of different environ-
ments (reported in the headings) and tested in the Low-Noise regime. Rows in the right figure
represents agent’s actions Left, Right, Stop.

380



Figure Supp.44: Sample Images from dataset

381



(a) (b) (d)(c)

(a) (b) (d)(c)

(a) (b) (d)(c)

(a) (b) (d)(c)

Category: Piano,  Network: Anti-Aliased

Category: Guitar, Network: Anit-Aliased

Category: Pistol, Network: Truly Shift Invariant

Category: Airplane, Network: Truly Shift Invariant

Figure Supp.45: Camera Parameters that lead to misclassifications for multiple categories and
architectures. (a) Camera Position, (b) Camera Look At, (c) Up Vector, (d) Histogram of
Lens Field of View.

382



Tank Pickup Truck Train Street Car

LizardSnake Train Pickup Truck

Bear ChimpanzeeCup Tennis Ball

Hamster Sweet Pepper Turtle Beetle

Porcupine Raccoon PorcupineFish

Figure Supp.46: More examples of misclassified ImageNet-like images discovered by CMA-
Search combined with the single view MPI model.

383



S21 Synthetic Out-of-context Dataset (OCD)

S21.1 Environment setup for various contextual conditions:

We leveraged the VirtualHome environment295 developed in the Unity simulation en-
gine to synthesize images in indoor home environments within 7 apartments and 5
rooms per apartment. A maximum of 9 fixed view angles are captured for each target
object and location. Azimuth angles range from 0 to 320 degrees in steps of 40 de-
grees, fixed elevation angle of 19.5 degrees and radius of 1.5 meters. In some special
cases, the elevation angle is set to -19.5 degrees to prevent the camera location from
penetrating the ceiling.

In the gravity condition, the elevation angle of the camera is adjusted to center
the view on the floating target object. This causes the surrounding context to vary
slightly compared with the same configuration in the normal context condition. The
small difference in the number of images between the normal context and the gravity
condition is due to the removal of some images because of invalid camera positions
or target collisions with other objects after the targets are lifted up. In other out-
of-context conditions, same object and camera configurations remain as the normal
context conditions.

S21.2 Performance Evaluation

The object-to-context ratio is critical437 — context plays a larger role for smaller ob-
jects. Therefore, we split images into two groups: according to the target object sizes
in degrees of visual angle (dva), based on the psychophysics experiments (Figure 3d)):
(i) images ≤ 2 dva, and (ii) images > 2 dva. The pixel to dva conversion is based on
the human experiment setups of a display with 1024 × 1280 pixels and distance of 0.5
meters (actual size varies in MTurk depending on viewing conditions).

S21.3 Training on Synthetic (OCD) Data

If we train the models with natural images from COCO-Stuff48 and then evaluate
them on synthetic images from our OCD dataset, we face a domain gap. This domain
gap might play a role in influencing the comparison of the same model across different
context conditions and between different models. To evaluate the ability of closing the
domain gap for our CRTNet model, we first train CRTNet on the synthesized training
set in normal context conditions, and then we test CRTNet in the normal condition in
the test set as elaborated in the main paper.

To synthesize the training set in normal context conditions, for each object belong-
ing to the 36 object classes, its possible locations are uniformly arranged in a grid

384



over the entire supporting surfaces where these surfaces are typically determined ac-
cording to the co-occurrence statistics. The grid size is chosen relative to the target
object size (5 times the target object size) because a small location shift introduces
very little view variance for a larger object, e.g., , the view difference by moving a mi-
crowave 0.2 meters away is small compared with a cellphone moved by 0.2 meters.
For each target object location, we randomly sampled 12 camera views with the fol-
lowing parameters: azimuth angle from [0, 360] degrees with a step size of 2 deg, el-
evation angle from [-35, 90] degrees with a step size of 2 degrees, and radius of [0.5,
5] meters with a step size of 0.5 meters. To introduce variations and avoid overfitting
during training, we replace the target object’s texture with a random texture from333.
Collision checking and camera ray casting are enabled to prevent object collisions and
occlusions. We used 5 out of the 7 VirtualHome apartment scenes as training set and
the images from the remaining two apartments as validation set. CRTNet achieves an
accuracy as high as 80% in the normal context condition on our test set as elaborated
in the paper, compared to 88% accuracy on the validation set. This implies that our
CRTNet is capable of closing the domain gap.

S22 Cut-and-paste Dataset

The Cut-and-paste dataset437 is based on images from the COCO dataset233. In ad-
dition to normal context and minimal context (rectangular bounding box enclosing
the object and grey pixels outside the box) conditions, the target objects were cut
from a given image and pasted onto another one with either a congruent context
(context contains an object of the same class label) or incongruent context (context
taken from an image with different class label). The images are grouped into four bins
based on the target object sizes in degrees of visual angle (dva): Size 1 dva [16-32 pix-
els], Size 2 dva [56-72], Size 4 dva [112-144], and Size 8 dva [224-288].

S23 Visualization of Attention Maps

Visualizations of attention maps on example images (Supp Fig. S1a) show that CRT-
Net globally attends to image regions that are semantically relevant for classification
and that it narrows its focus as the information progresses over the hierarchy of the
network layers. For example, in row 1 where the target object is a knife, the atten-
tion map starts from the kitchen floor in layer 1, slowly expands to table surfaces and
eventually narrows down on the knife’s location.

385



(a) Visualization of attention maps over hierarchical transformer
decoding layers

(b) Similarity of position embeddings of
CRTNet

Figure Supp.47: CRTNet predicts meaningful attention maps and learns reasonable positional
embeddings for feature tokens. (a) Visualization of attention maps on four example images
(one example per row). The ground truth label of the target object (red box, column 1) is in
the bottom right. Over six transformer decoding layers (6 columns), we show the attention
map averaged over all attention heads within the same layer and overlaid the attention map
on the original image. The two top rows show examples from the test set of COCO-Stuff
dataset48 and the two bottom rows show examples from the test set of our OCD dataset. (b)
Each tile shows the cosine similarity between the position embeddings of the patch with the
indicated row and column and the position embeddings of all other patches. See color bar on
the right for cosine similarity values.

386



Figure Supp.48: Human performance across context conditions for 33 object classes. Different
colors denote context conditions (Sec. 4.2.1, Fig. 1). The trials are divided into two groups
based on target object sizes in degrees of visual angle (dva). Error bars denote standard
errors of the mean (SEM). This figure expands the results shown in the main text, which
corresponds to only the 16 classes that overlap with COCO-Stuff.

387



Figure Supp.49: Ablation - shared encoder. In this ablation, we enforced weight sharing be-
tween the two encoders Et(·) and Ec(·). Different colors denote context conditions (Sec. 4.2.1,
Fig. 1). Conventions and format follow Figure Supp.48.

388



Figure Supp.50: Ablation - target object only. In this ablation, we used yt (based only on
target information) instead of yp as the final prediction. Different colors denote context condi-
tions (Sec. 4.2.1, Fig. 1). Conventions and format follow Figure Supp.48.

389



Figure Supp.51: Ablation - contextualized only. In this ablation, we used the contextualized
prediction yt,c instead of the weighted prediction yp as the final prediction. Different colors
denote context conditions (Sec. 4.2.1, Fig. 1). Conventions and format follow Figure Supp.48.

390



Figure Supp.52: Ablation - joint training. In this ablation, we do not detach the gradient
corresponding to the cross-entropy loss with respect to yt, therefore allowing it to influence
training of the target encoder Et(·). Different colors denote context conditions (Sec. 4.2.1, Fig.
1). Conventions and format follow Figure Supp.48.

391



Figure Supp.53: CATNet performance across context conditions. Different colors denote
context conditions (Sec. 4.2.1, Fig. 1). Conventions and format follow Figure Supp.48.

392



Figure Supp.54: Faster R-CNN performance across context conditions. Different colors denote
context conditions (Sec. 4.2.1, Fig. 1). Conventions and format follow Figure Supp.48.

393



Figure Supp.55: DenseNet performance across context conditions. Different colors denote
context conditions (Sec. 4.2.1, Fig. 1). Conventions and format follow Figure Supp.48.

394



Figure Supp.56: OCD example images. Each row contains examples for one of the six context
conditions (normal, gravity, co-occurrence, co-occurrence+gravity, size, no context).

395



Figure Supp.57: Failure Examples for Psychophysics Experiments. The examples were
randomly sampled from the trials with lowest human recognition accuracy. Each row
shows examples for one of the six context conditions (normal, gravity, co-occurrence, co-
occurrence+gravity, size, no context). 396



S24 Examples of collected conversations

S24.1 Example of conversations: human-human

Here is an example conversation between two humans:
A: Hey! How are you doing?
B: Great! And you?
A: I am doing well! Any plan for the weekends?
B: Yeah, I think I’m going to visit the city. Want to come?
A: Wow yeah sure! any place you wanna visit?
B: I saw a park in the south that looks great. I think we can meet there and go for a
beer or something :)
A: yeah sure! what time shall we meet?
B: Maybe around 6-7??
A: Sure it might be already dark by then though. Saturday or Sunday?
B: Saturday better! We can go then a little earlier hahah 5?
A: haha sounds good! 5 works for me. We could even catch the sunset! Hope the
weather will be nice
B: yeeah I hope so :D What are you doing now?
A: I am replying to your text lol. I was checking twitter earlier
B: I was meaning a part from that :D I’m working now, do you want to go out also
later?
A: today? haha sure, where do you have in mind?
B: There is a jazz club they told me is really cool
A: oh wow a jazz club! Sure, I was just listening to jazz yesterday
B: Woo cool! I love jazz, what other type of music do you listen to?
A: Depends on what work I do haha, but usually classical
B: Nice! I usually listen also to chopin. Do you play any instrument?
A: wow nice. Unfortunately not. I tried to learn keyboard when I was young but
didn’t keep up with it.
B: Omg I’m a music freak :D I play the piano and I want to learn how to play the
guitar one day, but don’t have time :D
A: wow you play the piano! That’s so cool! I wish I knew how to play piano haha.
Yeah it’s hard to find time to learn. I am sure you will pick it up quickly though,
since you already know how to play piano
B: Yeah is hard to hahaha, but one day I will :) . So I have to go, see you later!

S24.2 Example of conversations: blenderbot-blenderbot

Here is an example conversation between two machines running blenderbot:
A: Hello! How is your day going so far?

397



B: Ok I suppose, my days always start off slow. How about you? Are you in school?
A: Not any more. I was once though. What do you do for a living? My days are

also pretty slow
B: I’m still in school, but it is summer break now so my days are very long and boring
A: At least its summer break. Your days will go by faster than you think! Where do
you live?
B: Ohio, what about you? Do you have any plans for the summer yet? School starts
again soon...
A: Florida! No plans really other than watching celebrity family feud on tv. It makes
me laugh and brightens my day
B: My mom loves Steve Harvey, she watches his morning show every morning before
work! Which one is your favorite celebrity to watch on family feud?
A: Probably the arnold swarchenegger team because he’s hilarious and has a great
sense of humor
B: Oh yeah he’s hilarious! The grumpy grandpa vibe he gives off is great haha. Do
you like big families or small ones better?
A: I don’t have a big family so I would say small ones are better. There’s more love
that way
B: Yeah that’s true, with a big family it can be hard to get close to everyone in the
same way as with a small one
A: Have you seen your family recently since it is summer break? How large is yours
anyway? Are they nice people lol
B: Just called my mother yesterday - she told me that we’re planning to visit them
this weekend. Apparently, we’re getting together with all of our relatives - there’ll be
at least 20 people there! Can’t wait to see them again :)
A: Wow that sounds like a lot of fun!! Will there be lots of kids running around too??
You must be excited
B: There will definitely be lots of kids running around haha. It should be fun though,
even if they can get annoying sometimes lol
A: Oh yes well at least they are young enough not to know how annoying they can be
lol!! Is your whole family coming or just some of them??
B: We’ll only see some of them this time around unfortunately - most of my extended
family lives out west and it’s too expensive for us to fly out there right now
A: Yes I understand that for sure!! Hopefully next time then!! So what else have you
been up to besides planning this trip??
B: That seems unlikely given our current financial situation haha - hopefully things
will improve soon though so we can travel more often again :) Other than planning
the trip, not much else really - just hanging out with friends mostly
A: Yes being young and poor sure does make things difficult sometimes!! But hang in
there because life gets better as time goes on!! Well that sounds like fun too!!! What
kind of stuff do yall do together??

398



B: Yes definitely agree with that haha :) Mostly just playing video games together or
going out for food/drinks etc

A: Fun!!! Do yall play online or split screen??? And where do yall go eat/drink
at??
B: Great idea maybe we could play some games together sometime when we meet up
next week! Maybe from party mode in mario kart

S24.3 Example of conversations: GPT3textdavinci002-GPT3davincidavinci002 -
successful

Here is an example of a successful conversation (i.e., not needing resampling
due to early exit or repetition of sentences or block of sentences) satisfying the
criteria between two machines running GPT3textdavinci002:
A: Hey! I’m so glad you’re here. Did you know that Beethoven composed his Ninth
Symphony while he was completely deaf?
B: Yeah, I did know that. He’s one of my favorite composers.
A: Really? I’m more of a fan of Bach myself.
B: I can see that. Bach is a great composer, but I think Beethoven’s passion for music
really comes through in his work.
A: That’s true, but I think Bach’s work is more complex and innovative.
B: I can see your point, but I think Beethoven’s work is more emotionally moving.
A: That’s a valid point. I think both composers are great in their own way.
B: Absolutely! I’m glad we can agree on that.
A: Me too. So, what kind of music do you like?
B: I like all kinds of music, but I’m particularly fond of classical and jazz.
A: That’s great! I like those genres too. Do you have any favorite composers or artists?
B: Yeah, I do. I really like Bach and Beethoven, as well as Miles Davis and John
Coltrane.
A: Wow, you have excellent taste in music! I’m a big fan of Bach and Beethoven too,
but I don’t know much about jazz.
B: Well, jazz is a great genre of music. It’s very complex and often improvisational.
A: That sounds interesting. I’d like to learn more about it.
B: I can recommend some good jazz albums if you’re interested.
A: That would be great! I’m always looking to expand my musical knowledge.
B: I’m sure you are. You have such a passion for music.
A: Yeah, I do. It’s one of the things that makes life worth living for me.
B: I know how you feel. Music is a very important part of my life as well.
A: I’m glad we can share that in common.
B: Absolutely. It’s always great to find someone who shares your interests.
A: I know. It’s one of the best things about life.

399



B: Well, I should probably get going. It was great talking to you.

S24.4 Example of conversations: GPT3textdavinci002-GPT3davincidavinci002 -
discarded

Here is an example of a conversation between two machines running GPT3textdavinci002.
This conversation was discarded. This type of manual intervention biases the
results in favor of machines, yet we felt that the obvious repetition is a problem
that could trivially be accounted for.
A: Oh, hi! I’m so glad to see you. I was just talking about books with my friend. Do
you like reading?
B: Yes, I love reading! What kind of books do you like?
A: I like all kinds of books, but I especially love fantasy and fiction. What about you?
B: I also like all kinds of books, but I especially love non-fiction and history.
A: Oh, I love history too! What are some of your favorite historical figures?
B: I love learning about all kinds of historical figures, but my favorites are probably
the Founding Fathers.
A: Oh, I love learning about the Founding Fathers too! What do you think made
them so great?
B: I think their dedication to liberty and justice made them great. What do you
think?
A: I think their dedication to liberty and justice made them great. What do you
think?
B: I think their dedication to liberty and justice made them great. What do you
think?
A: I think their dedication to liberty and justice made them great. What do you
think?
B: I think their dedication to liberty and justice made them great. What do you
think?
A: I think their dedication to liberty and justice made them great. What do you
think?
B: I think their dedication to liberty and justice made them great. What do you
think?
A: I think their dedication to liberty and justice made them great.
B: I think their dedication to liberty and justice made them great.
A: I think their dedication to liberty and justice made them great.
B: I think their dedication to liberty and justice made them great.
A: I think their dedication to liberty and justice made them great.
B: I think their dedication to liberty and justice made them great. What do you
think?

400



A: I think their dedication to liberty and justice made them great. What do you
think?

B: I think their dedication to liberty and justice made them great. What do you
think?
A: I think their dedication to liberty and justice made them great. What do you
think?
B: I think their dedication to liberty and justice made them great. What do you
think?

S24.5 Example of conversations: GPT3textcurie001-GPT3textcurie001 - successful

Here is an example of a successful conversation (i.e., not needing resampling
due to early exit or repetition of sentences or block of sentences) between two
machines running GPT3textcurie001:
A: Hey! What are you up to?
B: Just hanging out with my friends.
A: Do you like to read books?
B: Yeah, I do. What about you? Do you like to read books?
A: I do, but I also like to watch movies.
B: That’s cool! Reading is great, but sometimes it can be boring if you’re not into the
book. Movies let you see the story in a different way, and they can be more fun.
A: I can see that. Do you think movies are more educational than books?
B: I think they can be. Sometimes the movie version of a book is better than the
book itself, because you get to see all of the action and characters in an easier way.
A: That makes sense. Do you like to read for fun or to learn something?
B: I like to read for fun. But I also like to learn something, especially if the book is
interesting.
A: That makes sense. Do you have any favorite books?
B: Yeah, I do. One of my favorite books is The Hunger Games by Suzanne Collins.
It’s a great book and it’s really suspenseful.
A: I’ve read that book, and it’s really great. I also like The Maze Runner by James
Dashner. It’s a bit different than most books, but I think it’s really good.
B: I think you’re right. Those are both great books. Do you have any other favorite
books?
A: I do have other favorite books, but I don’t want to give them away. They’re all
personal favorites and I’m not sure if everyone would like them. But one of my fa-
vorites is The Catcher in the Rye by J.D. Salinger. It’s a really unique book that
B: I’ve read that book, and it’s really great. I also like The Maze Runner by James
Dashner. It’s a bit different than most books, but I think it’s really good.
A: I think you’re right. Those are both great books. Do you have any other favorite
books?

401



B: I do have other favorite books, but I don’t want to give them away. They’re all
personal favorites and I’m not sure if everyone would like them. But one of my fa-
vorites is The Catcher in the Rye by J.D. Salinger. It’s a really unique book that

A: I’ve read that book, and it’s really great. I also like The Maze Runner by James
Dashner. It’s a bit different than most books, but I think it’s really good.
B: That’s interesting. I’ve never read that book, but I’m definitely going to check it
out. Are there any other books you like that we haven’t talked about?
A: Yes, there are. I really like The Girl with the Dragon Tattoo by Stieg Larsson and
Gone Girl by Gillian Flynn. They’re both great books that have a lot of suspense and
mystery in them.
B: I’ve read both of those books, and they’re really good. They definitely have a lot
of suspense and mystery in them, which I love.
A: I can see that. Do you have any other favorite books?
B: Yes, I do. One of my favorite books is The Lord of the Rings by J.R.R Tolkien.
It’s a really great book and it’s really epic.

S24.6 Example of conversations: Human-Blenderbot

Here is an example of a conversation between a person and a machine running
Blenderbot. A is Blenderbot and B is a person.
A: Hi! What’s new with you?
B: Nothing much, how about yourself!
A: Well... My son was just accepted to the college of his dreams. I’m so proud of him!
B: Damn! That’s awesome. Congratulations :) Where’s he going
A: Thanks! He is going to michigan state. I will be sad when he leaves, but it’s a
good school.
B: It is! I’m from Wisconsin, so I’m all about the Midwest pick haha. Does he want
to do engineering?
A: He does! His dream job would be working for michigan tech in houghton, michi-
gan. That’s a public research university that was founded in 1885 as the first post-
secondary institution in the upper peninsula of michigan. Have you heard of it?
B: I haven’t! Michigan St is a really great school for engineering.
A: Nice, it seems like a lot of people go there and then end up working at michigan
tech because they have such good connections there.
B: Hey, it pays to know people, right. Everything else has been good for you?
A: Aside from being sad about my son leaving for college soon, things are pretty good
here at home. How about you? What have you been up to lately?
B: Oh, a little school, a little work. I recently moved so I’m just trying to keep my
head on my shoulders haha
A: Right on - where did you move from and where did you move to? Did your job let

402



you relocate or did you find something new after moving?
B: Just a move from one part of the city to another. I’m a grad student so I don’t

really have the luxury of leaving the city
A: Right - do you live near campus or somewhere else in town? Do they offer grad
housing or anything like that at your school?
B: They do, but I opted not to use it. I live close enough to walk in. I actually moved
farther away from the campus haha
A: Wow - what made you decide that living further away was better than living closer
and having access to grad housing if needed/wanted? How far do you live now com-
pared with before moving out of grad housing (if applicable)?
B: Yea, I never lived in grad housing. I moved from 1 off campus place to another.
Definitely the location. My old neighborhood was inundated with undergrads
A: Have any students come by your place since moving into your new neighborhood
yet? My nephew is starting college next year and we’re looking for some places near
campus for him
B: Cool! What school is going to. I’ve had a bunch of my friends (who are all grad
students haha) over.
A: All over really; we’re still deciding between ucla and ucsb but he wants something
warm since we’re coming from minnesota
B: I would not recommend anywhere near me then haha. The winters are cold (though
not as bad as Wisconsin). I’m actually not familiar with ucsb!
A: Isla vista killings were pretty bad though; california can be scary sometimes lol but
its also beautiful
B: Isla vista killings?? Is that like the golden state killer?

S24.7 Example of conversations: Human-GPT3textdavinci002

Here is an example of a conversation between a person and a machine running
GPT3textdavinci002. A is a person and B is the machine.
A: Do you play games?
B: Yes, I love playing games!
A: what game do you play?
B: I love playing all sorts of games!
A: I play video games alot, especially ARPG and MOBA. I also play board games.
what about you ?
B: I love playing games! I especially enjoy strategy games and games that require a
lot of thinking.
A: I like League of Legends and DOTA. In terms of ARPGS, I like Path of Exile and
Diablo. Board game wise, Coup and monopoly is pretty good. And you?
B: I love playing all sorts of games! I especially enjoy strategy games and games that
require a lot of thinking.

403



A: I like MOBA. MOBA is especially fun with 5 man stacks. POE and Diablo is fun
because I like the grind.

B: I love playing all sorts of games! I especially enjoy strategy games and games
that require a lot of thinking.
A: What kind of strategy games ?
B: I love playing all sorts of strategy games! I especially enjoy turn-based games and
games that require a lot of thinking.
A: Interesting ! Are you talking about some games like Civilization VI ?
B: Yes, I love playing Civilization VI! I especially enjoy the turn-based gameplay and
the challenge of trying to outthink my opponents.
A: How did you outthink your opponents ?
B: I love playing all sorts of strategy games! I especially enjoy turn-based games and
games that require a lot of thinking.
A: But how did you win the game ?
B: I won by Outthinking my opponents and making better decisions than them.
A: In the Civilization VI ?
B: Yes, in Civilization VI.
A: Sounds good. You must have played for hours.
B: Yes, I played for hours and hours, and I loved every minute of it!
A: Recently I downloaded a lot of games from the Stream. It cost me a lot to buy
games.
B: That sounds like a lot of fun! I love playing games, and I’m always happy to try
out new ones.

S24.8 Example of conversations: Human-GPT3textcurie001

Here is an example of a conversation between a person and a machine running
GPT3textcurie001. A is the machine and B is the person.
A: Hey! How are you?
B: Hey, I’m doing great. What about you???
A: I’m good. I just finished up work and am looking for something to do.
B: Did you go for work today???
A: Yeah, I went to the office.
B: We had vacation for a week and the amount of assignments are killing me
A: Yeah, I know. Is there anything you’re interested in doing?
B: Right now I’m very much occupied with my university’s thing that I don’t even
have time for other things but I’d love to spend some time learning Korean
A: Korean?
B: Yeah, the language
A: Oh, I see. That’s really interesting and something that I would like to learn too

404



one day. Would you like me to teach you?
B: Can you? I never knew you know Korean

A: I learned it while living in South Korea for a year. It’s not as hard to learn as peo-
ple think and I would be happy to teach you.
B: I’d love that! Where did you stay in South Korea?
A: I stayed in Seoul.
B: It’s so pretty!! I badly want to visit Seoul and attend BTS’s concert
A: You should! BTS is amazing. They’re my favorite group.
B: Omg!! Whom do you like the most in the band??
A: I really like Jin, Suga and J-Hope.
B: They’re awesome. Which our the bands you know??
A: I like EXO, BTS and 2NE1.
B: Have been to any concert??
A: No, I haven’t. But I’d love to go to one!
B: Where are you staying right now??

S24.9 Example of conversations: DialoGPT-DialoGPT

Here is an example dialog between two machines running DialoGPT:
A: Sure thing , anything in particular you need to know or want to talk about ?
B: What do you think your insecurities are and what do you think about people using
you ?
A: Please elaborate on this , since it’s going to sound very accusatory .
B: Alright , so i’m working on a project , and I’m going to make a post once i have
written one .
A: Thanks for the quick response ! I look forward to reading it .
B: Sure thing !
A: Happy to provide any feedback !
B: I’ve already put it on r LifeProTips , so you’ll be
A: Oooo
B: Thanks !
A: I’ll stop
B: honeste
A: Thank you
B: In the kid
A: Thanks !
B: So much

405



Figure Supp.58: Schematic illustration of data collection process for each task. A. Image cap-
tioning. We collected captions by asking participants to describe images, inspired by COCO
Captions data collection64. B. Word associations. Given a cue word, participants provided a
single word that they associated with the cue. There were two versions. In the free associa-
tion version (B1), participants were given a cue word and were asked to freely name a single
association word. In the prompt-guided version (B2), participants were given 3 cue-association
pairs and provided an association for a 4th cue word. C. Conversations. We collected conver-
sations between two agents (agent A and agent B). Each agent could be either a human or a
machine. Thus, there were 3 types of conversations: human-human (type 1), human-machine
(type 2), and machine-machine (type 3). For types 1 and 2, we collected live conversations
on popular chatting platforms, such as WhatsApp and Messenger. Participants did not know
whether they were conversing with another human or with a machine. See Methods for details
and Supplementary Section S24 for example conversations. D. Color estimation. Given an im-
age, participants selected the dominant color from a pop-up menu. E. Object detection. Given
an image, participants described three things they saw in the image. F. Attention prediction.
Participants freely viewed an image for 12 seconds. The circles denote fixations and the lines
denote eye movements between fixations.

406



Figure Supp.59: Different demographic groups showed similar results. Results are shown
separately for the Image captioning task (A-D), the Word association task (E-H), the Con-
versation task (I-L), the Object detection task (M-P), the Color detection task (Q-T), and
the Attention prediction task (U-X). A, E, I, M, Q, U. Distribution of participants’ gender
(indicated by different shades of gray). C, G, K, O, S, W. Distribution of participants’ edu-
cation level (indicated by different shades of gray). B, F, J, N, R, V. Imitation detectability
for human judges of different genders. A perfect imitator has an imitation detectability of 0.5
(horizontal dashed line) whereas a bad imitator has an imitation detectability of 1.0. Asterisks
above the horizontal bar denote statistically significant differences between genders (permu-
tation test, p < 0.01). Asterisks below the horizontal bar indicate statistically significant
differences between each bar and 0.5 (permutation test, p < 0.01). D, H, L, P, T, X. Imitation
detectability for human judges of different education levels.407



Figure Supp.60: Results of the Turing test for human judges conducted in various data col-
lection platforms. We collected in-person data (dark gray), Amazon Mechanical Turk (AMT)
data (light gray) and Prolific data for the Conversation task (medium gray). Results are
shown for the Image captioning task (A), Word association task (B), and Conversation task
(C). Error bars denote bootstrap standard deviations (see Methods, Data analyses). The
dashed line denotes a good imitator with imitation detectability at random level. The as-
terisks (∗) denote the statistical significance (p < 0.05). Red asterisks above the line denote
comparisons among the different platforms. Blue asterisks below the line denote comparisons
with perfect imitation.

408



Figure Supp.61: Full results of the Turing tests for each language task. Turing test results
for human judges (left, A, C, E) and AI judges (right, B, D, F) for image captioning (A, B),
word associations (C, D), and conversations (E, F). The confusion matrices follow the same
conventions as Figure 9.3. Note that F has fewer rows than E. The reason is that AI judges
take one single sentence as input; thus, there are no multiple exchanges from two speakers
involved. The colorbar in B is applicable for all the other panels.

409



Figure Supp.62: Results of the Turing test for human judges with ChatGPT in the Conver-
sation task. A. Confusion matrices following the conventions in Fig. Supp.61. B. Imitation
accuracy for conversations with ChatGPT. None of the imitation accuracies were statistically
different from 0.5. Error bars denote the bootstrap standard deviations. This figure follows
the format in Fig. Supp.59.

410



Figure Supp.63: Results of the Turing test for human judges on the NoCaps dataset in the
Image captioning task. Imitation accuracy in the Image captioning task for images in the No-
Caps dataset11. Images from the NoCaps dataset include in-domain (dark gray), near-domain
(medium gray), and out-of-domain images (light gray), reflecting the similarity to object
classes from the COCO dataset64, which was used for training the AI models. Asterisks (∗)
below the line denote statistically significant differences with respect to 0.5 (horizontal dashed
line, p < 0.05). Asterisks above the line denote statistically significant differences among
the three types of domains (in this case, none of the results showed statistically significant
differences).

411



Figure Supp.64: Length dependence of Turing test results for human judges in the Conversa-
tion task. A. Average fraction of sentences where human (H) agents are classified as humans
(black) or machine (M) agents classified as humans (gray) as a function of conversation length
across all conversation types. The dashed lines denote the average accuracy over all conversa-
tion lengths. B. Same as A for H-M conversations. C. Same as A for H-H conversations. D.
Same as A for M-M conversations. E Extension of D for different AI models. These results
are for human judges (the AI judges only take one entry at a time, see Methods, Conversa-
tions).

412



Figure Supp.65: Schematic illustration of the data collection process for conversation tasks in
classical Turing tests. A. Screenshot of instruction phase. At the beginning of every Turing
test, both the human judge and the human agent are presented with instructions informing
them of their identity, and the objective of that role. B. Screenshot of the actual Turing
test. The test always starts with a judge asking a question followed by both agents answer-
ing the questions. The number of remaining conversation exchanges is shown in orange (top
right). Each agent can only see the questions from the judges, but not the answers provided
by the other agent. C. Screenshot at the end of the Turing test. The judge has to make a
two-alternative forced choice decision based on the responses from both agents.

413



Figure Supp.66: Human and machine responses did not differ in basic low-level statistics.
The figure reports multiple statistics about position-of-speech and frequency for the Image
captioning task (A-I), the Word association task (J-K), and the Conversation task (L-T).
These statistics include the number of words (A, L), n-gram frequency (B,J), capitalization
(M), punctuation (C, N), determiners (D, O), adjectives (E, P), nouns (F, Q), adverbs (G,
R), verbs (H, S), prepositions (I,T), and letters per word (K). These properties are reported
per caption (A-I), per word ((J-K), or per conversation exchange (L-T). Error bars denote
bootstrap standard deviations.

414



Figure Supp.67: Extrapolation across models for machine judges. Expanding on Fig. 9.3D-F ,
here the machine judges are trained on data from only one model and tested on all the other
models (A, C, E), or trained on all models except for one and tested on that one model (B,
D, F). Imitation detectability is shown for the Image captioning task (A, B), the Word asso-
ciation task (C, E), and the Conversation task (E, F). The horizontal dashed line indicates
chance levels.

415



Figure Supp.68: One-shot and zero-shot Turing results in the Conversation task with large
language models as AI judges. We used the large language model ChatGPT7 as the AI judge
in the Turing test for the Conversation task. In the zero-shot case (A), we prompted the
model by directly presenting the conversations from the test sets with explicit instructions
to output the identities of the two agents. Similarly, in the one-shot case (B), we included
one additional conversation example with the ground truth identities of the two agents in the
prompt before presenting the conversation from the test sets followed by the identity predic-
tion questions as in the zero-shot case (see Methods for implementation details). The format
convention of the confusion matrices in A and B follow Fig. Supp.61.

416



Task Num.
Stimuli

Num.
Human
Agents

Num.
Human
Judges

Num.
Turing
Tests

Sources of
Datasets AI agents AI judges

Image
captioning 1,000 229 323 9,400

self-collect,
MSCOCO233,
nocaps11

GIT-Large398,
OFA-Huge399,
BLIP-Large227,
ClipCap-Transformer (beam search)259,
Microsoft’s Azure Cognitive Servicesmic

SVM-GPT-curie

Word
association 1,500 40 101 2,773 self-collect,

Word2Vec 288,
GPT2 302,
GPT3-embedding (davinci)43,
GPT3-prompt (text-curie-001)43,
GPT3-prompt (text-Davinci-002) 43

SVM-Word2Vec,
SVM-GPT2,
SVM-GPT3(davinci)

Conversation 2,460 150 367 7,717 self-collect,
Topical-Chat130

GPT3-text-davinci-002282,
GPT3-text-curie-001282,
Blenderbot338,
DialogPT130,
ChatGPT7,
GPT3.5-turbo-11067

SVM+BERT94,
ChatGPT-zero-shot,
ChatGPT-one-shot

Color
estimation 785 45 65 1,625 self-collect,

MSCOCO233

Google Vision API
Microsoft Azure Cognitive Servicesmic,
MMCQ37

SVM+VGG+BERT94

Object
detection 808 45 79 1,975 self-collect,

MSCOCO233

Google Vision API,
Microsoft Azure Cognitive Servicesmic,
Amazon Rekognition,
Detectron2411

SVM+BERT94

Attention
prediction 547 40 191 2,160

NatureDesign436,
FindingWaldo436,
NatureSaliency435

IVSN436,142,435,
DeepGaze3209,
GBVS152

SVM on 2D coordinates

Total 7,100 549 1,126 25,650 - 26 10

Table Supp..1: Specifications of six Turing tasks. Source datasets, number of Turing tests
conducted, number of stimulus, and number of AI models used to collect responses are listed
for each task. See Methods for task descriptions.

S25 Sample images from the HVD Dataset

We present additional images from the HVD dataset. Each figure shows change
in one scene parameter, while holding all others constant. In Fig. Supp.73 we
show images from two different light domains. Note that the first three rows in
Fig Supp.73 show different indoor lighting conditions controlled using indoor
light color and intensity sampled from disjoint chunks of the HSV space. The
last two rows show different outdoor lighting settings created by changing the
environment maps. Similarly, Fig. Supp.74 shows five different scenes from two
training domains with a material shift. Fig. Supp.75 shows viewpoint shifted
domains.

S26 Additional details for the creation of the Semantic iLab dataset

We show sample images from the Semantic iLab dataset in Fig. Supp.76 created
by modifying the existing iLab39 dataset. This is a multi-view dataset, and

417



hence already contains viewpoint shifted variations of the same objects. We
modify the dataset to also contain material and light shifts. To mimick light
shift, we modified the white balance of the original images, as shown in Fig. Supp.76(b).
For material shifts, we first run a foreground detector on these objects using
Google’s Cloud Vision API. We also run style transfer on these images using
AdaIn173. Then, we overlay the style transferred image on to the object mask
on the original image to mimick material shifts. Note that this is approximate,
and does not model the physics of material transfer in the same way as our
rendered HVD dataset which is far more photorealistic, as shown in Fig. Supp.74.
Material shifted Semantic iLab images are shown in Fig. Supp.76(c). As the
dataset is originally multi-view, we do not need to generate new viewpoints and
can use images of a different viewpoint from the original dataset as shown in
Fig. Supp.76(d).

S27 HDNet ablations with contrastive loss

We evaluate the contribution of the contrastive loss by training variations of
HDNet on HVD with and without the contrastive loss as shown in Eq. 10.2.
These numbers are reported in Table Supp..2. As can be seen, adding a contrastive
loss improves performance for all three semantic shifts, providing evidence for
its utility.

Semantic
Shift

Without
Contrastive

Loss

With
Contrastive

Loss
Viewpoint 0.79 0.82
Material 0.89 0.94
Lighting 0.98 0.98

Table Supp..2: Impact of removing contrastive loss. We evaluate the contribution of the
contrastive loss by training and testing HDNet on the HVD dataset with and without the
contrastive loss. The contrastive loss results in an improvement across all three semantic
shifts.

S28 Additional experiment for the role of context

Besides results on the role of context presented in Table 10.2 and Table 10.3,
we present here an additional control evaluating the contribution of scene context

418



Semantic
Shift

Target
only

Target
and

Context
Viewpoint 0.77 0.82
Material 0.85 0.94
Lighting 0.97 0.98

Table Supp..3: Training a two-stream HDNet with only target information. As a third control
for confirming the role of context, we train HDNet where both streams are passed just the
target object. Thus, it is forced to learn without scene context. This results in a drop in per-
formance for all semantic shifts, providing further evidence in support of the utility of scene
context.

Test
Dataset

ResNet
162

ViT
99

AND
Mask326CAD33COR

AL358 ERM390IRM19MTL34Self
Reg195VREx207HDNet

(ours)

ScanNet 0.35 0.29 0.43 0.40 0.42 0.48 0.46 0.46 0.53 0.42 0.61

Table Supp..4: Human visual diet improves generalization to larger real world dataset as well.
We curated a larger subset of ScanNet images, allowing more complex real world scenarios like
blurry images, clutter and occlusions. We report the capability of models to generalize from
synthetic HVD images to this more complex subset of ScanNet. HDNet leveraging human-like
visual-diet outperforms all baselines on this more complex dataset as well.

on generalization. For this, we train HDNet such that both streams are trained
with the target object. Thus, this modified version is forced to learn without
scene context. These results are shown in Table. Supp..3. For all semantic shifts,
forcing HDNet to learn with only the target results in a drop in accuracy. This
provides further evidence supporting the utility of scene context in enabling
generalization.

S28.1 Results with a larger, less controlled ScanNet test set.

We extend the generalization to real-world results presented in the main paper
by reporting these numbers on a larger test set created by annotating additional
images from ScanNet. As ScanNet was created by shooting video footage of 3D
scenes, many frames can be blurry. In the original, smaller test-set such blurry
frames were removed to ensure a higher quality test set. However, here we also
include additional images with lower fidelity to report numbers on a larger test
set. These numbers are reported in Table. Supp..4. The trend is consistent with

419



results reported on a smaller, more controlled subset in the main paper—HDNet
outperforms all other benchmarks by a large margin. As expected, including
these images in the test set results in a drop in accuracy across all methods. All
models were trained on synthetic images from HVD and were tested on a test
set of natural images from ScanNet.

S29 Hyperparameters

HDNet: As our model builds on top of CRTNet38 as backbone, we use the same
hyperparameters for the backbone as reported in the original paper. All models
were trained for 20 epochs with a learning rate of 0.0001, with a batch size of 15
on a Tesla V100 16Gb GPU.

Domain generalization: We used the code from Gulrajani et al.137 to train
and test domain generalization methods on our dataset. The code is available
here: https://github.com/facebookresearch/DomainBed. To begin, we ran all
available models and tried 10 random hyperparameter initializations. Of these,
we picked the best performing hyperparameter seed—24596. We also picked the
top performing algorithms as the baselines reported in the paper.

FasterRCNN: We used the code from Bomatter et al.38 to train and test the
modified FasterRCNN model for recognition. The code is available here: https:
//github.com/kreimanlab/WhenPigsFlyContext, and we used the exact hyperparameters
mentioned in the repo.

List of semantic categories in MacaqueITBench

Table Supp..5 reports a list of all semantic categories in MacaqueITBench. As
can be seen, the 8, 233 images correspond to over 300 categories.

bottleopener cupsaucer tractor bowtie
recordplayer corkscrew calculator shoe

duster lock scissors gift
guitar swissarmyknife pda servingpiece

ceilingfan nunchaku radio socks
sushi filingcabinet Other waterbottle
leaves watergun trumpet Big Animate
stove chocolate greenplant bones

necktie grapes cookpot windchime
cassettetape mattress fishbowl Non

420

https://github.com/facebookresearch/DomainBed
https://github.com/kreimanlab/WhenPigsFlyContext
https://github.com/kreimanlab/WhenPigsFlyContext


bench tongs microphone lunchbox
jacket bonzai bullet fan

cheesegrater watch cake stool
pasta sword shirt orientalplatesetting

typewriter backpack babushkadolls hat
headphone fork wallsconce hookah

boot toothpaste Gabor abacus
quilt short familiarObjects feather

fireplace beermug balloon crossbow
pen razor dollhouse carabiners

lightbulb keychain lawnmower Glove
broom headband golfbag garbagetrash

babyplayard manorha skateboard shovel
christmasstocking cooler exercise wineglassfull

camera cheese makeupcompact plate
gong cellphone showercurtain birdcage

tricycle carfront sleepingbag window
umbrella coatrack roadsign breadloaf
waxseal mathcompass dvdplayer Rodent
handgun binoculars hilighter icecreamcones

jack-o-lantern basket spoon shredder
camcorder christmastreeornamantball apple Face

log cookingpan scrunchie stapler
flashlight muffler candy orifan
golfball pokercard Bird collar
washer baseballcards perfumebottle babywalker

axe patioloungechair banana wig
cookie fish hook motorcycle sewingmachine

toy pizza lamp meat
tape tire decorativescreen musicstand
crib candleholderwithcandle grill battery

hammer compass lei hairdryer
giftbow wheelbarrow keyboard trunk
iceskates hanger bathsuit pill

Hand kettle microscope Big
fruitparfait Symbol eraser baseballbat

421



cage lightswitch laptop sodacan
beaker PPE extra kayak

sofa fishingpole microwave mailbox
snowglobe carseat Butterfly corset

doll rollerskates Fish frisbee
trophy saltpeppershake pacifier pezdispenser
rosary router airplane Cat

reportfile soapdispenser coffin yarn
dumbbell chessboard computer aircompressor
birdhouse Print pipe hotairballoon

doorknocker anchor bed cashregister
loom lipstick measuringtape chair
train remotecontrol toaster coffeemug
pants pie donut powerstrip

seasponge beanbagchair bike domino
glasses nailpolish cherubstatue knife
coin printer mp3player leatherman

Turtle flag Toy hairbrush
ladder bucket bell ringbinder

wineglass robot stamp spraybottle
mushroom dresser peppersonplate tent
bowlofchips videoGameController lantern candybar

cracker computermouse cane ambulance
toothbrush goggle scooter doorknob
gamesboard lighter tray backgammon

tv sink doorwayarch gamehandheld
wheelchair objects barbiedoll coffeemaker

bagel juice shotglass Mask
tablesmall highchair spoolofstring helmet
horseshoe telescope hourglass tweezer

ring Misc spicerack handmirror
cushion phone vase woodboxsmall

bowlingpin clock handbag globe
key muffin dynamite strainer

checkbook pillow sandwich scale
ball sippycup Starfish bottle

422



tupperware cigarettepack seashell handheldvacuum
tree earings vacuum suit

bullhorn ketchupbottle babycarriage necklace
fridge nest slinky curlingiron
desk suitcase pencilsharpener speakers

button rug bowl scroll
flask paintbrush bill tennisracquet

boppypillow rollingpin saddle frame
handkerchief toiletseat slate licenseplate
laudrybasket easteregg accordian crown
circuitboard Dog bongo barrel

rock pitcher

Table Supp..5: Images from MacaqueITBench.

Sample Images from MacaqueITBench

Fig. Supp.77 shows sample images which were presented to Macaques to collect
responses from the IT Cortex.

Additional results with Mid hold-out strategy

In the main paper, we presented results with two hold out strategies—high and
low. Here, we present results with the third hold-out strategy outlined in the
paper. We refer to this as the Mid hold out strategy as samples between the
42.5 and the 67.5 percentile of every OOD attribute are held out as the test set.
As shown in Fig. Supp.78, across all architectures and OOD attributes, models
suffer to generalize to OOD samples for the Mid hold out strategy.

Additional results with intermediate layers

In the main paper we presented results for models trained with intermediate
layers for the high hold out strategy. Here we provide additional results with
models that use intermediate layers of DNNs as feature extractors. In Fig. Supp.79
and Fig. Supp.80 we report results for the low and mid hold-out strategies respectively.

423



Figure Supp.69: Correlation between Imitation accuracy and standard performance metrics
in the Image captioning task. Four state-of-the-art image captioning models, GIT398 (red),
OFA399 (yellow), BLIP227 (blue), and ClipCap259 (green), are evaluated in terms of their
Imitation accuracy (y-axis) as a function of their BLEU score284 (A), and the CIDEr score399

(B). The BLEU score and the CIDEr score are standard evaluation metrics commonly used in
image captioning tasks to assess the quality of the generated captions given an image based
on n-gram overlaps. The higher the values, the better. The radius of the circles is propor-
tional to the AI model sizes in terms of the number of trainable network parameters. C.
Illustration of correct answers that do not necessarily imitate humans. In response to the
query “What do you see in this image?” GPT4 answered: “In this image, a man is sitting on
a sandy beach with his back to the camera, facing the ocean. Next to him, a child’s head is
visible, appearing to be buried in the sand up to their neck. The man has one arm extended,
resting his hand gently on the child’s head. The scene is serene with the calm sea and sky in
the background, creating a peaceful atmosphere. The combination of the man’s pose and the
child’s position in the sand creates a unique and slightly humorous visual effect, suggesting
a playful moment between the two.” While the answer is correct and remarkably articulate,
a human described the image differently: “In this curious and well-consrtucted image, we
cannot see the man’s head and it appears as if the boy’s head belongs to him and the man
took his own head off”.

424



Figure Supp.70: Schematic illustration of Turing tests for three vision tasks. See also Fig. 9.1
for Turing tests for the three language tasks. A. Color estimation. Participants were presented
with an image and a color and had to indicate whether the color selection was made by a
human or a machine. B. Object detection. Participants were presented with an image and a
noun and had to indicate whether the object description was made a human or a machine. C.
Attention prediction. Participants were presented with an image and a sequence of positions
(yellow circles) joined by lines and had to indicate whether those locations were the product
of human eye movements or machine attention predictions.

425



Figure Supp.71: Full results of the Turing test for each Vision task. Turing test results for
human judges (left, A, C, E) and AI judges (right, B, D, F) in the three Vision tasks: Color
detection (A,B), Object detection (C,D), and Attention prediction (E,F). The full confusion
matrices follow the same conventions as Fig. 9.3. See the color bar in B which applies to all
panels. The boxes with a black frame denote the best algorithm in terms of its ability to pass
as human, i.e., highest p(H|M).

426



Figure Supp.72: Comparison between free viewing and visual search in the Attention task.
Using the same format as in Fig. Supp.71, the results in Fig. Supp.71E are shown here sepa-
rately for free viewing (A) and visual search (C) and the results in Fig. Supp.71F are shown
here separately for free viewing (B) and visual search (D).

427



Figure Supp.73: Example images showing lighting tranformations. We show paired images
from different lighting transformation domains between the right and left column in each row.
All other parameters held constant.

428



Figure Supp.74: Example images showing material tranformations. We show paired images
from different material transformation domains between the right and left column in each row.
All other parameters held constant

429



Figure Supp.75: Example images showing viewpoint tranformations. We show paired images
from different viewpoint transformation domains between the right and left column in each
row. All other parameters held constant

430



(a) (b) (c) (d)

Figure Supp.76: Sample images from the Semantic-iLab dataset. (a) Original image of a
toy car placed on a turntable from the original iLab39 dataset. (b) Light shifted image from
Semantic-iLab created by modifying the white balance of the original image. (c) Material
shifted image from Semantic-iLab created by modifying the original image by first detecting
the foreground object mask, and overlaying the style transferred image on this mask. (d)
Viewpoint shifted image of the same object from the iLab dataset.

431



Figure Supp.77: Images from MacaqueITBench.

432



hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (a)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

InD Performance

Resnet18

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (b)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Resnet18_swsl

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (c)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Resnext101_32x16d_swsl

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (d)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Noisy_student_efficient

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (e)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Vit

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (f)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Bit

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (g)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Dinov2

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (h)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Clip

Figure Supp.78: Neural predictivity drops for Mid hold-out strategy as well. For all architec-
tures, across multiple OOD shifts, performance on OOD is worse than in-distribution samples
for the Mid hold-out strategy as well.

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (a)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce InD Performance

Resnet18
Layer4.0.downsample.0

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (b)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Resnet18_swsl
Layer4.0.downsample.0

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (c)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Resnext101_32x16d_swsl
Layer4.0.conv2

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (d)

0.0

0.2

0.4

0.6

0.8

1.0
R

at
io

 o
f O

O
D

 a
nd

 In
D

 
 P

er
fo

rm
an

ce

Noisy_student_efficient
Blocks.5.2.conv_dw

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (e)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Vit
Blocks.10.attn.qkv

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (f)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Bit
Stages.2.blocks.13.conv1

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (g)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Dinov2
Blocks.10.attn.qkv

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (h)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Resnet50_ssl
Layer4.0.downsample.0

Figure Supp.79: Neural predictivity drops for low hold-out strategy for intermediate layer
features as well. For all architectures, across multiple OOD shifts, performance on OOD is
worse than in-distribution samples for the low hold-out strategy for image features extracted
from intermediate DNN layers as well.

433



hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (a)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce InD Performance

Resnet18
Layer4.0.downsample.0

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (b)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Resnet18_swsl
Layer4.0.downsample.0

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (c)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Resnext101_32x16d_swsl
Layer4.0.conv2

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (d)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Noisy_student_efficient
Blocks.5.2.conv_dw

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (e)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Vit
Blocks.10.attn.qkv

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (f)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Bit
Stages.2.blocks.13.conv1

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (g)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Dinov2
Blocks.10.attn.qkv

hue
saturation

intensity
temperature

contrast

Out-Of-Distribution Attribute 

 (h)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f O
O

D
 a

nd
 In

D
 

 P
er

fo
rm

an
ce

Resnet50_ssl
Layer4.0.downsample.0

Figure Supp.80: Neural predictivity drops for mid hold-out strategy for intermediate layer
features as well. For all architectures, across multiple OOD shifts, performance on OOD is
worse than in-distribution samples for the mid hold-out strategy for image features extracted
from intermediate DNN layers as well.

434



References

[ama] Amazon rekognition. https://aws.amazon.com/rekognition/. Accessed: 2022-
10-30.

[vis] Google vision api. https://cloud.google.com/vision. Accessed: 2022-10-30.

[mic] Microsoft azure cognitive api. https://azure.microsoft.com/en-us/products/
cognitive-services/. Accessed: 2022-10-30.

[ros] Robot Operating System (ROS). http://www.ros.org.

[5] (2023). The cnbc news: Ai tools such as chatgpt are generating a mammoth
increase in malicious phishing emails. https://www.cnbc.com/2023/11/28/ai-
like-chatgpt-is-creating-huge-increase-in-malicious-phishing-email.html.

[6] (2023). The straits times news: Stem the scams: Beware the bots to avoid being
distraught. https://www.straitstimes.com/tech/stem-the-scams-beware-the-
bots-to-avoid-being-distraught.

[7] Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L.,
Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., et al. (2023). Gpt-4
technical report. arXiv preprint arXiv:2303.08774.

[8] Achille, A. & Soatto, S. (2018). Emergence of invariance and disentanglement in
deep representations. Journal of Machine Learning Research, 19(1), 1947–1980.

[9] Afifi, A. J., Hellwich, O., & Soomro, T. A. (2018). Simultaneous object clas-
sification and viewpoint estimation using deep multi-task convolutional neural
network. In Proceedings of the International Joint Conference on Computer Vi-
sion, Imaging and Computer Graphics Theory and Applications (VISIGRAPP)
(pp. 177–184).

[10] Aggarwal, C. C. & Yu, P. S. (2001). Outlier detection for high dimensional
data. In Proceedings of the 2001 ACM SIGMOD international conference on
Management of data (pp. 37–46).

435

https://aws.amazon.com/rekognition/
https://cloud.google.com/vision
https://azure.microsoft.com/en-us/products/cognitive-services/
https://azure.microsoft.com/en-us/products/cognitive-services/
http://www.ros.org


[11] Agrawal, H., Desai, K., Wang, Y., Chen, X., Jain, R., Johnson, M., Batra, D.,
Parikh, D., Lee, S., & Anderson, P. (2019). Nocaps: Novel object captioning at
scale. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (pp. 8948–8957).

[12] Aher, G., Arriaga, R. I., & Kalai, A. T. (2023). Using large language models to
simulate multiple humans and replicate human subject studies. arXiv.

[13] Ahmed, O., Träuble, F., Goyal, A., Neitz, A., Wüthrich, M., Bengio, Y.,
Schölkopf, B., & Bauer, S. (2020). Causalworld: A robotic manipulation bench-
mark for causal structure and transfer learning. CoRR, abs/2010.04296.

[14] Alcorn, M. A., Li, Q., Gong, Z., Wang, C., Mai, L., Ku, W.-S., & Nguyen, A.
(2019). Strike (with) a pose: Neural networks are easily fooled by strange poses
of familiar objects. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (pp. 4845–4854).

[15] Almazrouei, E., Alobeidli, H., Alshamsi, A., Cappelli, A., Cojocaru, R., Debbah,
M., Goffinet, É., Hesslow, D., Launay, J., Malartic, Q., et al. (2023). The falcon
series of open language models. arXiv preprint arXiv:2311.16867.

[16] Angtian, W., Kortylewski, A., & Yuille, A. (2021). Nemo: Neural mesh models
of contrastive features for robust 3d pose estimation. In Proc of the Int Conf on
Learning Representations.

[17] Anthropic (2024). Anthropic. claude 3 haiku: our fastest model yet.

[18] Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R., & Livingstone, M. S.
(2017). Seeing faces is necessary for face-domain formation. Nature neuro-
science, 20(10), 1404–1412.

[19] Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Paz, D. (2019). Invariant risk
minimization. arXiv preprint arXiv:1907.02893.

[20] Azulay, A. & Weiss, Y. (2019). Why do deep convolutional networks gener-
alize so poorly to small image transformations? Journal of Machine Learning
Research, 20(184), 1–25.

[21] Balaji, Y., Sankaranarayanan, S., & Chellappa, R. (2018). Metareg: Towards
domain generalization using meta-regularization. Advances in neural informa-
tion processing systems, 31.

[22] Bansal, Y., Ghorbani, B., Garg, A., Zhang, B., Cherry, C., Neyshabur, B., &
Firat, O. (2022). Data scaling laws in NMT: The effect of noise and architec-
ture. In Proceedings of the 39th International Conference on Machine Learning
(ICML) (pp. 1466–1482).

436



[23] Bapst, V., Sanchez-Gonzalez, A., Doersch, C., Stachenfeld, K. L., Kohli, P.,
Battaglia, P. W., & Hamrick, J. B. (2019). Structured agents for physical con-
struction. CoRR, abs/1904.03177.

[24] Barbu, A., Mayo, D., Alverio, J., Luo, W., Wang, C., Gutfreund, D., Tenen-
baum, J., & Katz, B. (2019). ObjectNet: A large-scale bias-controlled dataset
for pushing the limits of object recognition models. In Advances in Neural Infor-
mation Processing Systems (pp. 9448–9458).

[25] Bardes, A., Ponce, J., & LeCun, Y. (2021). Vicreg: Variance-invariance-
covariance regularization for self-supervised learning. arXiv preprint
arXiv:2105.04906.

[26] Bashivan, P., Kar, K., & DiCarlo, J. J. (2019). Neural population control via
deep image synthesis. Science, 364(6439), eaav9436.

[27] Battaglia, P., Pascanu, R., Lai, M., Rezende, D. J., et al. (2016). Interaction
networks for learning about objects, relations and physics. In Advances in neu-
ral information processing systems (pp. 4502–4510).

[28] Bau, D., Zhou, B., Khosla, A., Oliva, A., & Torralba, A. (2017). Network dis-
section: Quantifying interpretability of deep visual representations. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (pp. 6541–6549).

[29] Bäuerle, N. & Glauner, A. (2022). Distributionally robust markov decision pro-
cesses and their connection to risk measures. Mathematics of Operations Re-
search, 47(3), 1757–1780.

[30] Beery, S., Van Horn, G., & Perona, P. (2018). Recognition in terra incognita.
In Proceedings of the European Conference on Computer Vision (ECCV) (pp.
456–473).

[31] Belder, A., Yefet, G., Ben-Itzhak, R., & Tal, A. (2022). Random walks for ad-
versarial meshes. In ACM SIGGRAPH 2022 Conference Proceedings (pp. 1–9).

[32] Biedenkapp, A., Bozkurt, H. F., Eimer, T., Hutter, F., & Lindauer, M. (2020).
Dynamic algorithm configuration: Foundation of a new meta-algorithmic frame-
work. In Proceedings of the Twenty-fourth European Conference on Artificial
Intelligence (ECAI’20).

[33] Blanchard, G., Deshmukh, A. A., Dogan, U., Lee, G., & Scott, C. (2017a).
Domain generalization by marginal transfer learning. arXiv preprint
arXiv:1711.07910.

437



[34] Blanchard, G., Deshmukh, A. A., Dogan, U., Lee, G., & Scott, C. (2017b).
Domain generalization by marginal transfer learning. arXiv preprint
arXiv:1711.07910.

[35] Blanz, V., Tarr, M. J., & Bülthoff, H. H. (1999). What object attributes deter-
mine canonical views? Perception, 28(5), 575–599.

[36] Block, N. (1981). Behaviourism and psychologism. Philosophical Review, 90(5),
43.

[37] Bloomberg, D. S. & Leptonica (2008). Color quantization using modified me-
dian cut.

[38] Bomatter, P., Zhang, M., Karev, D., Madan, S., Tseng, C., & Kreiman, G.
(2021). When pigs fly: Contextual reasoning in synthetic and natural scenes.

[39] Borji, A., Izadi, S., & Itti, L. (2016). iLab-20M: A large-scale controlled object
dataset to investigate deep learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (pp. 2221–2230).
The dataset is available at https://bmobear.github.io/projects/viva/.

[40] Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., & Erhan, D. (2016).
Domain separation networks. In NeurIPS.

[41] Boyd, A., Bowyer, K. W., & Czajka, A. (2022). Human-aided saliency maps im-
prove generalization of deep learning. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (pp. 2735–2744).

[42] Bricolo, E., Poggio, T., & Logothetis, N. K. (1997). 3D object recognition: A
model of view-tuned neurons. In Advances in Neural Information Processing
Systems (pp. 41–47).

[43] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models
are few-shot learners. Advances in neural information processing systems, 33,
1877–1901.

[44] Bubeck, S., Lee, Y. T., Price, E., & Razenshteyn, I. (2019). Adversarial ex-
amples from computational constraints. In Proceedings of the International
Conference on Machine Learning (ICML) (pp. 831–840).

[45] Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular
fields and currents—eeg, ecog, lfp and spikes. Nature reviews neuroscience,
13(6), 407–420.

438

https://bmobear.github.io/projects/viva/


[46] Caballero, E., Gupta, K., Rish, I., & Krueger, D. (2022). Broken neural scaling
laws. arXiv preprint arXiv:2210.14891.

[47] Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krish-
nan, A., Pan, Y., Baldan, G., & Beijbom, O. (2020). nuScenes: A multimodal
dataset for autonomous driving. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (pp. 11618–11628).

[48] Caesar, H., Uijlings, J., & Ferrari, V. (2018). Coco-stuff: Thing and stuff classes
in context. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition (pp. 1209–1218).

[49] Canatar, A., Bordelon, B., & Pehlevan, C. (2021). Out-of-distribution gener-
alization in kernel regression. Advances in Neural Information Processing Sys-
tems, 34, 12600–12612.

[50] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S.
(2020). End-to-end object detection with transformers. In European Conference
on Computer Vision (pp. 213–229).: Springer.

[51] Carlucci, F. M., D’Innocente, A., Bucci, S., Caputo, B., & Tommasi, T. (2019).
Domain generalization by solving jigsaw puzzles. In CVPR.

[52] Caruana, R. (1997). Multitask learning. Machine learning, 28(1), 41–75.

[53] Casper, S., Boix, X., D’Amario, V., Guo, L., Schrimpf, M., Vinken, K., &
Kreiman, G. (2021). Frivolous units: Wider networks are not really that wide.
In Proceedings of the Association for the Advancement of Artificial Intelligence
(AAAI).

[54] Cederborg, T., Grover, I., Isbell, C. L., & Thomaz, A. L. (2015). Policy shaping
with human teachers. In International Joint Conference on Artificial Intelli-
gence.

[55] Chaman, A. & Dokmanić, I. (2021). Truly shift-invariant convolutional neural
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (pp. 3773–3783).

[56] Chaman, A. & Dokmanic, I. (2021). Truly shift-invariant convolutional neural
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (pp. 3773–3783).

[57] Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., & Yu, F. (2015a).
ShapeNet: An Information-Rich 3D Model Repository. Technical Report

439



arXiv:1512.03012 [cs.GR], Stanford University — Princeton University — Toy-
ota Technological Institute at Chicago.

[58] Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., & Yu, F. (2015b).
ShapeNet: An information-rich 3D model repository. Technical Report
arXiv:1512.03012 [cs.GR], Stanford University — Princeton University — Toy-
ota Technological Institute at Chicago.

[59] Chattopadhyay, P., Balaji, Y., & Hoffman, J. (2020a). Learning to balance
specificity and invariance for in and out of domain generalization. In ECCV.

[60] Chattopadhyay, P., Balaji, Y., & Hoffman, J. (2020b). Learning to balance
specificity and invariance for in and out of domain generalization. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part IX 16 (pp. 301–318).: Springer.

[61] Chen, D., Zhu, Y., Zhang, J., Du, Y., Li, Z., Liu, Q., Wu, S., & Wang, L.
(2024). Uncovering neural scaling laws in molecular representation learning.
Advances in Neural Information Processing Systems, 36.

[62] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2018).
Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis
and machine intelligence, 40(4), 834–848.

[63] Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework
for contrastive learning of visual representations. In International conference on
machine learning (pp. 1597–1607).: PMLR.

[64] Chen, X., Fang, H., Lin, T.-Y., Vedantam, R., Gupta, S., Dollár, P., & Zitnick,
C. L. (2015). Microsoft coco captions: Data collection and evaluation server.
arXiv preprint arXiv:1504.00325.

[65] Chen, X. & He, K. (2021). Exploring simple siamese representation learning.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 15750–15758).

[66] Choi, M. J., Torralba, A., & Willsky, A. S. (2012). Context models and out-of-
context objects. Pattern Recognition Letters, 33(7), 853–862.

[67] Choi, W. & Savarese, S. (2012). A unified framework for multi-target tracking
and collective activity recognition. In European Conference on Computer Vision
(pp. 215–230).: Springer.

440



[68] Chollet, F. (2019). On the measure of intelligence. arXiv.

[69] Clerkin, E. M., Hart, E., Rehg, J. M., Yu, C., & Smith, L. B. (2017). Real-
world visual statistics and infants’ first-learned object names. Philosophical
Transactions of the Royal Society B: Biological Sciences, 372(1711), 20160055.

[70] Cobbe, K., Hesse, C., Hilton, J., & Schulman, J. (2020). Leveraging procedural
generation to benchmark reinforcement learning.

[71] Cobbe, K., Klimov, O., Hesse, C., Kim, T., & Schulman, J. (2019). Quantifying
generalization in reinforcement learning.

[72] Cohen, T. S., Geiger, M., Köhler, J., & Welling, M. (2018). Spherical CNNs.
In Proceedings of the International Conference on Learning Representations
(ICLR).

[73] Cohen, T. S., Weiler, M., Kicanaoglu, B., & Welling, M. (2019). Gauge equiv-
ariant convolutional networks and the Icosahedral CNN. In Proceedings of the
International Conference on Machine Learning (ICML) (pp. 1321–1330).

[74] Colby, K. M. (1981). Modeling a paranoid mind. Behavioral and Brain Sciences,
4(4), 515–534.

[75] Colby, K. M., Weber, S., & Hilf, F. D. (1971). Artificial paranoia. Artificial
Intelligence, 2(1), 1–25.

[76] Collins, E. & Ghahramani, Z. (2021). Lamda: our breakthrough conversation
technology. The Keyword, May, 18.

[77] Community, B. O. (Accessed 2020). Blender - a 3D modelling and rendering
package. Blender Foundation, Stichting Blender Foundation, Amsterdam.

[78] Cooper, A., Boix, X., Harari, D., Madan, S., Pfister, H., Sasaki, T., & Sinha,
P. (2021). To which out-of-distribution object orientations are dnns capable of
generalizing? arXiv preprint arXiv:2109.13445.

[79] Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine learning,
20(3), 273–297.

[80] Croce, F., Rebuffi, S.-A., Shelhamer, E., & Gowal, S. (2023). Seasoning model
soups for robustness to adversarial and natural distribution shifts. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (pp. 12313–12323).

441



[81] Cui, Y., Yang, G., Veit, A., Huang, X., & Belongie, S. (2018). Learning to eval-
uate image captioning. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 5804–5812).

[82] Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., & Nießner, M.
(2017). Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proc.
Computer Vision and Pattern Recognition (CVPR), IEEE.

[83] Dalal, N. & Triggs, B. (2005). Histograms of oriented gradients for human de-
tection. In 2005 IEEE computer society conference on computer vision and
pattern recognition (CVPR’05), volume 1 (pp. 886–893).: Ieee.

[84] Damassino, N. (2020). The questioning turing test. Minds and Machines, 30(4),
563–587.

[85] Daw, N. & Wyatt, H. (1976). Kittens reared in a unidirectional environment:
evidence for a critical period. The Journal of physiology, 257(1), 155–170.

[86] De Winter, J. C. (2019). Using the student’s t-test with extremely small sample
sizes. Practical Assessment, Research, and Evaluation, 18(1), 10.

[87] DeNero, J., Klein, D., & Abbeel, P. (2014). Cs188: Berkeley pacman projects.
http://ai.berkeley.edu/home.html (Spring 2014).

[88] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Ima-
geNet: A large-scale hierarchical image database. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 248–
255).

[89] Deng, Z., Vahdat, A., Hu, H., & Mori, G. (2016). Structure inference machines:
Recurrent neural networks for analyzing relations in group activity recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (pp. 4772–4781).

[90] Denkowski, M. & Lavie, A. (2014). Meteor universal: Language specific trans-
lation evaluation for any target language. In Proceedings of the ninth workshop
on statistical machine translation (pp. 376–380).

[DENSO Wave] DENSO Wave. COBOTTA. https://www.denso-wave.com/en/robot/
product/collabo/cobotta.html.

[92] Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. (1984). Stimulus-
selective properties of inferior temporal neurons in the macaque. Journal of
Neuroscience, 4(8), 2051–2062.

442

https://www.denso-wave.com/en/robot/product/collabo/cobotta.html
https://www.denso-wave.com/en/robot/product/collabo/cobotta.html


[93] Devin, C., Abbeel, P., Darrell, T., & Levine, S. (2018). Deep object-centric
representations for generalizable robot learning. In 2018 IEEE International
Conference on Robotics and Automation (ICRA) (pp. 7111–7118).: IEEE.

[94] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

[95] Diochnos, D., Mahloujifar, S., & Mahmoody, M. (2018). Adversarial risk and
robustness: General definitions and implications for the uniform distribution. In
Advances in Neural Information Processing Systems, volume 31.

[96] Divon, G. & Tal, A. (2018). Viewpoint estimation—insights & model. In Pro-
ceedings of the European Conference on Computer Vision (ECCV) (pp. 252–
268).

[97] Divvala, S. K., Hoiem, D., Hays, J. H., Efros, A. A., & Hebert, M. (2009). An
empirical study of context in object detection. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on (pp. 1271–1278).: IEEE.

[98] Dohmatob, E. (2019). Limitations of adversarial robustness: strong no free
lunch theorem. In Proceedings of the 36th International Conference on Machine
Learning (ICML) (pp. 1646–1654).

[99] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-
terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J.,
& Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image
recognition at scale. In Proceedings of the International Conference on Learning
Representations (ICLR).

[100] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017).
CARLA: An open urban driving simulator. In Proceedings of the Annual Con-
ference on Robot Learning (CoRL) (pp. 1–16).

[101] Dou, Q., Castro, D. C., Kamnitsas, K., & Glocker, B. (2019). Domain general-
ization via model-agnostic learning of semantic features. In NeurIPS.

[102] Dulac-Arnold, G., Mankowitz, D. J., & Hester, T. (2019). Challenges of real-
world reinforcement learning. CoRR, abs/1904.12901.

[103] Dvornik, N., Mairal, J., & Schmid, C. (2018). Modeling visual context is key to
augmenting object detection datasets. In Proceedings of the European Confer-
ence on Computer Vision (ECCV) (pp. 364–380).

443



[104] Elhoseiny, M., El-Gaaly, T., Bakry, A., & Elgammal, A. (2016). A comparative
analysis and study of multiview CNN models for joint object categorization and
pose estimation. In Proceedings of the International Conference on Machine
Learning (ICML) (pp. 888–897).

[105] Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., & Madry, A. (2019). Explor-
ing the landscape of spatial robustness. In Proceedings of the International
Conference on Machine Learning (ICML) (pp. 1802–1811).

[106] Epic Games. Automotive Materials. https://www.unrealengine.com/
marketplace/ja/product/automotive-material-pack.

[107] Epic Games. Unreal Engine. https://www.unrealengine.com.

[108] Erfani, S., Baktashmotlagh, M., Moshtaghi, M., Nguyen, X., Leckie, C., Bailey,
J., & Kotagiri, R. (2016). Robust domain generalisation by enforcing distribu-
tion invariance. In Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence (IJCAI-16) (pp. 1455–1461).: AAAI Press.

[Everett Gunther] Everett Gunther. Ultra Dynamic Sky. https://www.unrealengine.
com/marketplace/product/ultra-dynamic-sky.

[110] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., &
Zisserman, A. (2012). The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[111] Fawzi, A., Fawzi, H., & Fawzi, O. (2018). Adversarial vulnerability for any clas-
sifier. In Advances in Neural Information Processing Systems, volume 31.

[112] Fawzi, A., Moosavi-Dezfooli, S.-M., & Frossard, P. (2016). Robustness of clas-
sifiers: from adversarial to random noise. In Advances in Neural Information
Processing Systems, volume 29.

[113] Filos, A., Tigas, P., McAllister, R., Rhinehart, N., Levine, S., & Gal, Y. (2020).
Can autonomous vehicles identify, recover from, and adapt to distribution
shifts? CoRR, abs/2006.14911.

[114] Ford, N., Gilmer, J., Carlini, N., & Cubuk, E. D. (2019). Adversarial examples
are a natural consequence of test error in noise. In Proceedings of the 36th
International Conference on Machine Learning (ICML) (pp. 2280–2289).

[115] Fox News (2024). Captain sully didn’t train for water landing before putting us
airways jet down in hudson river 15 years ago. Accessed: 2024-08-31.

444

https://www.unrealengine.com/marketplace/ja/product/automotive-material-pack
https://www.unrealengine.com/marketplace/ja/product/automotive-material-pack
https://www.unrealengine.com
https://www.unrealengine.com/marketplace/product/ultra-dynamic-sky
https://www.unrealengine.com/marketplace/product/ultra-dynamic-sky


[116] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., & Lempitsky, V. (2016). Domain-adversarial training of neural
networks. JMLR, 17(1), 2096–2030.

[117] Gao, C. A., Howard, F. M., Markov, N. S., Dyer, E. C., Ramesh, S., Luo, Y.,
& Pearson, A. T. (2022). Comparing scientific abstracts generated by chatgpt
to original abstracts using an artificial intelligence output detector, plagiarism
detector, and blinded human reviewers. bioRxiv.

[118] Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., & Bren-
del, W. (2018a). Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231.

[119] Geirhos, R., Temme, C. R., Rauber, J., Schütt, H. H., Bethge, M., & Wich-
mann, F. A. (2018b). Generalisation in humans and deep neural networks. Ad-
vances in neural information processing systems, 31.

[120] Ghiasi, G., Cui, Y., Srinivas, A., Qian, R., Lin, T.-Y., Cubuk, E. D., Le, Q. V.,
& Zoph, B. (2020). Simple copy-paste is a strong data augmentation method for
instance segmentation.

[121] Ghifary, M., Bastiaan Kleijn, W., Zhang, M., & Balduzzi, D. (2015). Domain
generalization for object recognition with multi-task autoencoders. In ICCV.

[122] Ghodrati, A., Pedersoli, M., & Tuytelaars, T. (2014). Is 2D information enough
for viewpoint estimation? In Proceedings of the British Machine Vision Confer-
ence (BMVC).

[123] Giles, C. L. & Maxwell, T. (1987). Learning, invariance, and generalization in
high-order neural networks. Applied Optics, 26(23), 4972–4978.

[124] Gilmer, J., Metz, L., Faghri, F., Schoenholz, S. S., Raghu, M., Wattenberg, M.,
& Goodfellow, I. (2018). The relationship between high-dimensional geometry
and adversarial examples. arXiv preprint, arXiv:1801.02774.

[125] Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In AISTATS.

[126] Goldstein, H., Poole, C., & Safko, J. (2002). Classical mechanics. Addison-
Wesley, 3rd edition.

[127] Gomez, P., Shutter, J., & Rouder, J. N. (2008). Memory for objects in canonical
and noncanonical viewpoints. Psychonomic Bulletin & Review, 15(5), 940–944.

445



[128] Gonfaus, J. M., Boix, X., Van de Weijer, J., Bagdanov, A. D., Serrat, J., &
Gonzalez, J. (2010). Harmony potentials for joint classification and segmen-
tation. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Con-
ference on (pp. 3280–3287).: IEEE.

[129] Goodfellow, I., Lee, H., Le, Q. V., Saxe, A., & Ng, A. Y. (2009). Measuring
invariances in deep networks. In Advances in Neural Information Processing
Systems (pp. 646–654).

[130] Gopalakrishnan, K., Hedayatnia, B., Chen, Q., Gottardi, A., Kwatra, S.,
Venkatesh, A., Gabriel, R., & Hakkani-Tür, D. (2019). Topical-Chat: Towards
Knowledge-Grounded Open-Domain Conversations. In Proc. Interspeech 2019
(pp. 1891–1895).

[131] Gopalan, N., Littman, M., MacGlashan, J., Squire, S., Tellex, S., Winder, J.,
Wong, L., et al. (2017). Planning with abstract markov decision processes.
In Proceedings of the International Conference on Automated Planning and
Scheduling, volume 27 (pp. 480–488).

[132] Goyal, V. & Grand-Clement, J. (2023). Robust markov decision processes: Be-
yond rectangularity. Mathematics of Operations Research, 48(1), 203–226.

[133] Grabner, A., Roth, P. M., & Lepetit, V. (2018). 3D pose estimation and 3D
model retrieval for objects in the wild. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR) (pp. 3022–3031).

[134] Graef, P. D. (1992). Scene-context effects and models of real-world perception.
In Eye movements and visual cognition (pp. 243–259). Springer.

[135] Greene, M. R. (2013). Statistics of high-level scene context. Frontiers in psy-
chology, 4, 777.

[136] Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A.
(2012). A kernel two-sample test. The Journal of Machine Learning Research,
13(1), 723–773.

[137] Gulrajani, I. & Lopez-Paz, D. (2020). In search of lost domain generalization.
arXiv preprint arXiv:2007.01434.

[138] Gunderson, K. (1964). The imitation game. Mind, 73(290), 234–245.

[139] Gunderson, K. (1985). Mentality and machines. U of Minnesota Press.

[140] Guo, B., Zhang, X., Wang, Z., Jiang, M., Nie, J., Ding, Y., Yue, J., & Wu, Y.
(2023). How close is chatgpt to human experts? comparison corpus, evaluation,
and detection. arXiv.

446



[141] Guo, J., Zhu, X., Zhao, C., Cao, D., Lei, Z., & Li, S. Z. (2020). Learning meta
face recognition in unseen domains. arXiv preprint arXiv:2003.07733.

[142] Gupta, S. K., Zhang, M., Wu, C.-C., Wolfe, J., & Kreiman, G. (2021). Visual
search asymmetry: Deep nets and humans share similar inherent biases. Ad-
vances in Neural Information Processing Systems, 34, 6946–6959.

[143] Guss, W. H., Codel, C., Hofmann, K., Houghton, B., Kuno, N., Milani, S., Mo-
hanty, S., Liebana, D. P., Salakhutdinov, R., Topin, N., et al. (2019). The min-
erl 2019 competition on sample efficient reinforcement learning using human
priors. arXiv preprint arXiv:1904.10079.

[144] Guzik, E. E., Byrge, C., & Gilde, C. (2023). The originality of machines: Ai
takes the torrance test. Journal of Creativity, 33(3), 100065.

[145] Hafner, D. (2021). Benchmarking the spectrum of agent capabilities. CoRR,
abs/2109.06780.

[146] Halder, S. S., Lalonde, J.-F., & Charette, R. d. (2019). Physics-based rendering
for improving robustness to rain. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (CVPR) (pp. 10203–10212).

[147] Hall, H. K. (2018). Deepfake videos: When seeing isn’t believing. Cath. UJL &
Tech, 27, 51.

[148] Hansen, N. (2016). The CMA evolution strategy: A tutorial. arXiv preprint,
arXiv:1604.00772.

[149] Hansen, N., Akimoto, Y., & Baudis, P. (2019). CMA-ES/pycma on Github.
Zenodo, DOI:10.5281/zenodo.2559634.

[150] Hansen, N. & Ostermeier, A. (1996). Adapting arbitrary normal mutation dis-
tributions in evolution strategies: The covariance matrix adaptation. In Pro-
ceedings of IEEE International Conference on Evolutionary Computation (pp.
312–317).

[151] Hansen, N. & Ostermeier, A. (2001). Completely derandomized self-adaptation
in evolution strategies. Evolutionary Computation, 9(2), 159–195.

[152] Harel, J., Koch, C., & Perona, P. (2006). Graph-based visual saliency. Advances
in neural information processing systems, 19.

[153] Harman, R. & Lacko, V. (2010). On decompositional algorithms for uniform
sampling from n-spheres and n-balls. Journal of Multivariate Analysis, 101(10),
2297–2304.

447



[154] Harnad, S. (1989). Minds, machines and searle. Journal of Experimental &
Theoretical Artificial Intelligence, 1(1), 5–25.

[155] Harnad, S. (1991). Other bodies, other minds: A machine incarnation of an old
philosophical problem. Minds and Machines, 1(1), 43–54.

[156] Harnad, S. (1994). Levels of functional equivalence in reverse bioengineering.
Artificial life, 1(3), 293–301.

[157] Harnad, S. (1999). Turing on reverse-engineering the mind. Journal of Logic,
Language, and Information.

[158] Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017).
Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245–258.

[159] Hayes, P. & Ford, K. (1995). Turing test considered harmful. In IJCAI (1) (pp.
972–977).: Citeseer.

[160] He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp. 9729–9738).

[161] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In Pro-
ceedings of the IEEE International Conference on Computer Vision (ICCV)
(pp. 2961–2969).

[162] He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (pp. 770–778).

[163] He, K., Zhang, X., Ren, S., & Sun, J. (2016b). Deep residual learning for image
recognition. In CVPR.

[164] Helm, H., Priebe, C. E., & Yang, W. (2023). A statistical turing test for genera-
tive models. arXiv.

[165] Henderson, J. M. (1992). Object identification in context: the visual process-
ing of natural scenes. Canadian Journal of Psychology/Revue canadienne de
psychologie, 46(3), 319.

[166] Hendrycks, D. & Dietterich, T. (2019). Benchmarking neural network robust-
ness to common corruptions and perturbations. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR).

448



[167] Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer, J., & Lakshmi-
narayanan, B. (2019). Augmix: A simple data processing method to improve
robustness and uncertainty. arXiv preprint arXiv:1912.02781.

[168] Hodge, V. & Austin, J. (2004). A survey of outlier detection methodologies.
Artificial intelligence review, 22, 85–126.

[169] Hold-Geoffroy, Y., Athawale, A., & Lalonde, J.-F. (2019). Deep sky modeling
for single image outdoor lighting estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp. 6927–6935).

[170] Hu, H., Zhou, G.-T., Deng, Z., Liao, Z., & Mori, G. (2016). Learning structured
inference neural networks with label relations. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (pp. 2960–2968).

[171] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely
connected convolutional networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (pp. 4700–4708).

[172] Huang, X. & Belongie, S. (2017a). Arbitrary style transfer in real-time with
adaptive instance normalization. In Proceedings of the IEEE international con-
ference on computer vision (pp. 1501–1510).

[173] Huang, X. & Belongie, S. (2017b). Arbitrary style transfer in real-time with
adaptive instance normalization. In Proceedings of the IEEE international con-
ference on computer vision (pp. 1501–1510).

[174] Hubel, D. H. & Wiesel, T. N. (1964). Effects of monocular deprivation in kit-
tens. Naunyn-Schmiedebergs Archiv für Experimentelle Pathologie und Phar-
makologie, 248, 492–497.

[175] Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., & Keutzer,
K. (2014). Densenet: Implementing efficient convnet descriptor pyramids. arXiv
preprint arXiv:1404.1869.

[176] Ilse, M., Tomczak, J. M., Louizos, C., & Welling, M. (2020). DIVA: Domain
invariant variational autoencoder. In MIDL.

[177] Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., & Madry, A.
(2019). Adversarial examples are not bugs, they are features. In Advances in
Neural Information Processing Systems.

[Intel] Intel. RealSense D435. https://www.intelrealsense.com/depth-camera-d435.

[179] Ito, P. (1980). 7 robustness of anova and manova test procedures. Handbook of
statistics, 1, 199–236.

449

https://www.intelrealsense.com/depth-camera-d435


[180] Jain, L., Chen, S., Wu, W., Jang, U., Chandrasekaran, V., Seshia, S., & Jha, S.
(2019). Generating semantic adversarial examples with differentiable rendering.
https://openreview.net/forum?id=SJlRF04YwB.

[181] Jannai, D., Meron, A., Lenz, B., Levine, Y., & Shoham, Y. (2023). Human or
not? a gamified approach to the turing test. arXiv.

[182] Jia, Y., Zhang, J., Shan, S., & Chen, X. (2020). Single-side domain generaliza-
tion for face anti-spoofing. In CVPR.

[183] Johnson, S. P. & Aslin, R. N. (1996). Perception of object unity in young in-
fants: The roles of motion, depth, and orientation. Cognitive Development,
11(2), 161–180.

[184] Jones, C. R. & Bergen, B. K. (2024). Does gpt-4 pass the turing test? arXiv.

[185] Joshi, A., Mukherjee, A., Sarkar, S., & Hegde, C. (2019). Semantic adversarial
attacks: Parametric transformations that fool deep classifiers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV) (pp.
4773–4783).

[186] Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C.,
Gao, Y., Henry, H., Mattar, M., et al. (2018). Unity: A general platform for
intelligent agents. arXiv preprint arXiv:1809.02627.

[187] Justesen, N., Torrado, R. R., Bontrager, P., Khalifa, A., Togelius, J., & Risi,
S. (2018). Illuminating generalization in deep reinforcement learning through
procedural level generation. arXiv preprint arXiv:1806.10729.

[188] Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learn-
ing: A survey. J. Artif. Intell. Res., 4, 237–285.

[189] Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S., Hudspeth, A. J.,
Mack, S., et al. (2000). Principles of neural science, volume 4. McGraw-hill New
York.

[190] Kang, K., Belkhale, S., Kahn, G., Abbeel, P., & Levine, S. (2019). General-
ization through simulation: Integrating simulated and real data into deep re-
inforcement learning for vision-based autonomous flight. In 2019 international
conference on robotics and automation (ICRA) (pp. 6008–6014).: IEEE.

[191] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R.,
Gray, S., Radford, A., Wu, J., & Amodei, D. (2020). Scaling laws for neural
language models. arXiv, preprint arXiv:2001.08361.

450

https://openreview.net/forum?id=SJlRF04YwB


[192] Karpinska, M., Akoury, N., & Iyyer, M. (2021). The perils of using mechanical
turk to evaluate open-ended text generation. arXiv preprint arXiv:2109.06835.

[193] Kasai, J., Sakaguchi, K., Dunagan, L., Morrison, J., Bras, R. L., Choi, Y., &
Smith, N. A. (2021). Transparent human evaluation for image captioning. arXiv
preprint arXiv:2111.08940.

[194] Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot,
A., Liu, C., & Krishnan, D. (2020). Supervised contrastive learning. Advances
in Neural Information Processing Systems, 33, 18661–18673.

[195] Kim, D., Yoo, Y., Park, S., Kim, J., & Lee, J. (2021). Selfreg: Self-supervised
contrastive regularization for domain generalization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (pp. 9619–9628).

[196] Kingma, D. P. & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[197] Kingma, D. P. & Ba, J. (2015). Adam: A method for stochastic optimization.
In Proc of the Int Conf on Learning Representations.

[198] Kingma, D. P. & Ba, J. (2017). Adam: A method for stochastic optimization.
arXiv preprint, arXiv:1412.6980.

[199] Kirk, R., Zhang, A., Grefenstette, E., & Rocktäschel, T. (2021). A survey of
generalisation in deep reinforcement learning. CoRR, abs/2111.09794.

[200] Kobatake, E. & Tanaka, K. (1994). Neuronal selectivities to complex object
features in the ventral visual pathway of the macaque cerebral cortex. Journal
of neurophysiology, 71(3), 856–867.

[201] Köhler, W. (1960). Dynamics in psychology. WW Norton & Company.

[202] Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010). Conceptual dis-
tinctiveness supports detailed visual long-term memory for real-world objects.
Journal of experimental Psychology: general, 139(3), 558.

[203] Krause, J., Stark, M., Deng, J., & Fei-Fei, L. (2013). 3D object representations
for fine-grained categorization. In Proceedings of the 4th International IEEE
Workshop on 3D Representation and Recognition (3dRR-13).

[204] Kreiman, G. (2021). Biological and Computer Vision. Cambridge University
Press.

451



[205] Kriegeskorte, N. (2015). Deep neural networks: a new framework for model-
ing biological vision and brain information processing. Annual review of vision
science, 1, 417–446.

[206] Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.
Technical report.

[207] Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A., Binas, J., Zhang, D.,
Le Priol, R., & Courville, A. (2021). Out-of-distribution generalization via
risk extrapolation (rex). In International Conference on Machine Learning (pp.
5815–5826).: PMLR.

[208] Kubilius, J., Schrimpf, M., Nayebi, A., Bear, D., Yamins, D. L. K., & DiCarlo,
J. J. (2018). CORnet: Modeling the neural mechanisms of core object recogni-
tion. bioRxiv preprint, 408385. We used the following implementation in our
experiments: https://github.com/dicarlolab/CORnet.

[209] Kümmerer, M., Bethge, M., & Wallis, T. S. (2022). Deepgaze iii: Modeling free-
viewing human scanpaths with deep learning. Journal of Vision, 22(5), 7–7.

[210] LaCurts, K. (2011). Criticisms of the turing test and why you should ignore
(most of) them. Official blog of MIT’s course: Philosophy and theoretical com-
puter science.

[211] Ladicky, L., Russell, C., Kohli, P., & Torr, P. H. (2010). Graph cut based infer-
ence with co-occurrence statistics. In European Conference on Computer Vision
(pp. 239–253).: Springer.

[212] Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An
empirical evaluation of deep architectures on problems with many factors of
variation. In Proceedings of the 24th international conference on Machine learn-
ing (pp. 473–480).

[213] Leclerc, G., Salman, H., Ilyas, A., Vemprala, S., Kapoor, A., & Madry, A.
(2021). 3DB: A framework for analyzing computer vision models with simulated
data. https://github.com/3db/3db.

[214] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11), 2278–
2324. The dataset is available at http://yann.lecun.com/exdb/mnist/.

[215] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11), 2278–
2324. The dataset is available at http://yann.lecun.com/exdb/mnist/ (Last
access: Oct. 1, 2020).

452

https://github.com/dicarlolab/CORnet
https://github.com/3db/3db
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


[216] Lewis, M. B. (2001). The lady’s not for turning: Rotation of the Thatcher illu-
sion. Perception, 30(6), 769–774.

[217] Li, C., Bai, J., & Hager, G. D. (2018a). A unified framework for multi-view
multi-class object pose estimation. In Proceedings of the European Conference
on Computer Vision (ECCV) (pp. 254–269).

[218] Li, C., Kreiman, G., & Ramanathan, S. (2024). Discovering neural policies to
drive behavior by integrating deep reinforcement learning agents with biological
neural networks. Nature Machine Intelligence, (pp. In Press).

[219] Li, C., Wang, J., Zhang, Y., Zhu, K., Hou, W., Lian, J., Luo, F., Yang, Q., &
Xie, X. (2023). Large language models understand and can be enhanced by
emotional stimuli. arXiv.

[220] Li, D., Yang, Y., Song, Y.-Z., & Hospedales, T. (2018b). Learning to generalize:
Meta-learning for domain generalization. In Proceedings of the AAAI conference
on artificial intelligence, volume 32.

[221] Li, D., Yang, Y., Song, Y.-Z., & Hospedales, T. M. (2017a). Deeper, broader
and artier domain generalization. In Proceedings of the IEEE international
conference on computer vision (pp. 5542–5550).

[222] Li, D., Yang, Y., Song, Y.-Z., & Hospedales, T. M. (2017b). Deeper, broader
and artier domain generalization. In Proceedings of the IEEE international
conference on computer vision (pp. 5542–5550).

[223] Li, D., Yang, Y., Song, Y.-Z., & Hospedales, T. M. (2018c). Learning to gener-
alize: Meta-learning for domain generalization. In AAAI.

[224] Li, H., Pan, S. J., Wang, S., & Kot, A. C. (2018). Domain generalization with
adversarial feature learning. In CVPR.

[225] Li, H., Pan, S. J., Wang, S., & Kot, A. C. (2018a). Domain generalization with
adversarial feature learning. In CVPR.

[226] Li, H., Pan, S. J., Wang, S., & Kot, A. C. (2018b). Domain generalization with
adversarial feature learning. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 5400–5409).

[227] Li, J., Li, D., Xiong, C., & Hoi, S. (2022). Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation. In ICML.

[228] Li, T.-M., Aittala, M., Durand, F., & Lehtinen, J. (2018c). Differentiable Monte
Carlo ray tracing through edge sampling. ACM Transactions on Graphics
(TOG), 37(6), 1–11.

453



[229] Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K., & Tao, D. (2018d).
Deep domain generalization via conditional invariant adversarial networks. In
Proceedings of the European conference on computer vision (ECCV) (pp. 624–
639).

[230] Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., & Chandraker, M. (2020a).
Inverse rendering for complex indoor scenes: Shape, spatially-varying lighting
and svbrdf from a single image. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (pp. 2475–2484).

[231] Li, Z., Yu, T.-W., Sang, S., Wang, S., Song, M., Liu, Y., Yeh, Y.-Y., Zhu,
R., Gundavarapu, N., Shi, J., et al. (2020b). Openrooms: An end-to-end
open framework for photorealistic indoor scene datasets. arXiv preprint
arXiv:2007.12868.

[232] Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for
dense object detection. In Proceedings of the IEEE international conference on
computer vision (pp. 2980–2988).

[233] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár,
P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In
European conference on computer vision (pp. 740–755).: Springer.

[234] Liu, H.-T. D., Tao, M., Li, C.-L., Nowrouzezahrai, D., & Jacobson, A. (2019).
Beyond pixel norm-balls: Parametric adversaries using an analytically differ-
entiable renderer. In Proceedings of the International Conference on Learning
Representations (ICLR).

[235] Logothetis, N. K. & Pauls, J. (1995). Psychophysical and physiological evidence
for viewer-centered object representations in the primate. Cerebral Cortex, 5(3),
270–288.

[236] Logothetis, N. K. & Sheinberg, D. L. (1996). Visual object recognition. Annual
review of neuroscience, 19(1), 577–621.

[237] Long, M., Cao, Y., Wang, J., & Jordan, M. (2015a). Learning transferable fea-
tures with deep adaptation networks. In ICML.

[238] Long, M., Cao, Y., Wang, J., & Jordan, M. I. (2015b). Learning transferable
features with deep adaptation networks. In ICML.

[239] Mack, S. C. & Eckstein, M. P. (2011). Object co-occurrence serves as a contex-
tual cue to guide and facilitate visual search in a natural viewing environment.
Journal of vision, 11(9), 9–9.

454



[240] Madan, S., Henry, T., Dozier, J., Ho, H., Bhandari, N., Sasaki, T., Durand, F.,
Pfister, H., & Boix, X. (2022a). When and how convolutional neural networks
generalize to out-of-distribution category–viewpoint combinations. Nature Ma-
chine Intelligence, 4(2), 146–153.

[241] Madan, S., Henry, T., Dozier, J., Ho, H., Bhandari, N., Sasaki, T., Durand, F.,
Pfister, H., & Boix, X. (2022b). When and how convolutional neural networks
generalize to out-of-distribution category–viewpoint combinations. Nature Ma-
chine Intelligence, 4(2), 146 – 153.

[242] Madan, S., Li, Y., Zhang, M., Pfister, H., & Kreiman, G. (2024). Improving
generalization by mimicking the human visual diet.

[243] Madan, S., Sasaki, T., Li, T.-M., Boix, X., & Pfister, H. (2021). Small in-
distribution changes in 3d perspective and lighting fool both cnns and trans-
formers. arXiv preprint arXiv:2106.16198.

[244] Madan, S., Sasaki, T., Pfister, H., Li, T.-M., & Boix, X. (2023). Adversarial
examples within the training distribution: A widespread challenge.

[245] Madan, S., You, L., Zhang, M., Pfister, H., & Kreiman, G. (2022c). What
makes domain generalization hard?

[246] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2018). Towards
deep learning models resistant to adversarial attacks. In Proceedings of the
International Conference on Learning Representations (ICLR).

[247] Mahendran, S., Ali, H., & Vidal, R. (2018). Convolutional networks for object
category and 3D pose estimation from 2D images. In Proceedings of the Euro-
pean Conference on Computer Vision Workshops (ECCVW) (pp. 698–715).

[248] Mahloujifar, S., Diochnos, D. I., & Mahmoody, M. (2019). The curse of con-
centration in robust learning: Evasion and poisoning attacks from concentration
of measure. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33 (pp. 4536–4543).

[249] Manhardt, F., Wang, G., Busam, B., Nickel, M., Meier, S., Minciullo, L., Ji,
X., & Navab, N. (2020). CPS++: Improving class-level 6D pose and shape
estimation from monocular images with self-supervised learning. arXiv preprint
arXiv:2003.05848.

[250] Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D.,
Fuka, V., Gehrke, K. F., Geletič, J., Giersch, S., et al. (2020). Overview of the
palm model system 6.0. Geoscientific Model Development, 13(3), 1335–1372.

455



[Maruf] Maruf, R. Google fires engineer who contended its ai technology was sentient.
CNN.

[252] Massa, F., Marlet, R., & Aubry, M. (2016). Crafting a multi-task CNN for
viewpoint estimation. In Proceedings of the British Machine Vision Conference
(BMVC) (pp. 91.1–91.12).

[253] Mathis, K. M. (1998). Does scene context automatically influence object recog-
nition? Evidence from an interference task. State University of New York at
Albany.

[254] McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold
approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426.

[255] Mei, Q., Xie, Y., Yuan, W., & Jackson, M. O. (2024). A turing test of whether
ai chatbots are behaviorally similar to humans. PNAS.

[256] Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker,
A. S., Bethge, M., & Brendel, W. (2019). Benchmarking robustness in ob-
ject detection: Autonomous driving when winter is coming. arXiv preprint
arXiv:1907.07484.

[257] Min, J., Lee, J., Ponce, J., & Cho, M. (2019). Spair-71k: A large-scale bench-
mark for semantic correspondence. arXiv preprint arXiv:1908.10543.

[258] Mintun, E., Kirillov, A., & Xie, S. (2021). On interaction between augmen-
tations and corruptions in natural corruption robustness. Advances in Neural
Information Processing Systems, 34.

[259] Mokady, R., Hertz, A., & Bermano, A. H. (2021). Clipcap: Clip prefix for image
captioning. arXiv preprint arXiv:2111.09734.

[260] Mondal, S. S., Dulberg, Z., & Cohen, J. (2022). Generalization to out-of-
distribution transformations.

[261] Moos, J., Hansel, K., Abdulsamad, H., Stark, S., Clever, D., & Peters, J.
(2022a). Robust reinforcement learning: A review of foundations and recent
advances. Machine Learning and Knowledge Extraction, 4(1), 276–315.

[262] Moos, J., Hansel, K., Abdulsamad, H., Stark, S., Clever, D., & Peters, J.
(2022b). Robust reinforcement learning: A review of foundations and recent
advances. Machine Learning and Knowledge Extraction, 4(1), 276–315.

456



[263] Morcos, A. S., Barrett, D. G., Rabinowitz, N. C., & Botvinick, M. (2018). On
the importance of single directions for generalization. In Proceedings of the
International Conference on Learning Representations (ICLR).

[264] Motiian, S., Piccirilli, M., Adjeroh, D. A., & Doretto, G. (2017). Unified deep
supervised domain adaptation and generalization. In Proceedings of the IEEE
international conference on computer vision (pp. 5715–5725).

[265] Mu, J., Qiu, W., Hager, G. D., & Yuille, A. L. (2020). Learning from synthetic
animals. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (pp. 12386–12395).

[266] Muandet, K., Balduzzi, D., & Schölkopf, B. (2013). Domain generalization via
invariant feature representation. In International conference on machine learning
(pp. 10–18).: PMLR.

[267] Mueller, P., Haegler, S., Ulmer, A., Schubiger, M., Müller Arisona, S., & Weber,
B. (Accessed 2020). Esri CityEngine - a 3D city modeling software for urban
design, visual effects, and VR/AR. Esri R&D Center Zurich.

[268] Naganuma, H. & Hataya, R. (2023). An empirical investigation of pre-trained
model selection for out-of-distribution generalization and calibration. arXiv
preprint arXiv:2307.08187.

[269] Nakkiran, P. (2019). Adversarial robustness may be at odds with simplicity.
arXiv preprint, arXiv:1901.00532.

[270] Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., & Sutskever, I.
(2020). Deep double descent: Where bigger models and more data hurt. In Pro-
ceedings of the International Conference on Learning Representations (ICLR).

[271] Neelakantan, A., Xu, T., Puri, R., Radford, A., Han, J. M., Tworek, J., Yuan,
Q., Tezak, N., Kim, J. W., Hallacy, C., et al. (2022). Text and code embeddings
by contrastive pre-training. arXiv preprint arXiv:2201.10005.

[272] Neil, H. & Dirk, W. (2020). Transformers for image recognition at scale. Online:
https://ai. googleblog. com/2020/12/transformers-for-image-recognitionat. html.

[273] Nilim, A. & El Ghaoui, L. (2005). Robust control of markov decision processes
with uncertain transition matrices. Operations Research, 53(5), 780–798.

[274] Oliva, A. & Torralba, A. (2006). Building the gist of a scene: The role of global
image features in recognition. Progress in brain research, 155, 23–36.

[275] Oliva, A. & Torralba, A. (2007). The role of context in object recognition.
Trends in cognitive sciences, 11(12), 520–527.

457



[276] Olshausen, B. A., Anderson, C. H., & Van Essen, D. C. (1993). A neurobi-
ological model of visual attention and invariant pattern recognition based on
dynamic routing of information. Journal of Neuroscience, 13(11), 4700–4719.

[277] OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B.,
Petron, A., Paino, A., Plappert, M., Powell, G., Ribas, R., Schneider, J., Tezak,
N., Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba, W., & Zhang, L.
(2019). Solving rubik’s cube with a robot hand. CoRR, abs/1910.07113.

[278] Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2015). Is object localization
for free?-weakly-supervised learning with convolutional neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 685–694).

[279] Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov,
V., Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., et al. (2023). Di-
nov2: Learning robust visual features without supervision. arXiv preprint
arXiv:2304.07193.

[280] Orhan, E., Gupta, V., & Lake, B. M. (2020). Self-supervised learning through
the eyes of a child. Advances in Neural Information Processing Systems, 33,
9960–9971.

[281] Osiński, B., Jakubowski, A., Zięcina, P., Miłoś, P., Galias, C., Homoceanu, S., &
Michalewski, H. (2020). Simulation-based reinforcement learning for real-world
autonomous driving. In 2020 IEEE international conference on robotics and
automation (ICRA) (pp. 6411–6418).: IEEE.

[282] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P.,
Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton,
F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., &
Lowe, R. (2022). Training language models to follow instructions with human
feedback.

[283] Ozuysal, M., Lepetit, V., & Fua, P. (2009). Pose estimation for category spe-
cific multiview object localization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (pp. 778–785).

[284] Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th annual
meeting of the Association for Computational Linguistics (pp. 311–318).

[285] Patil, P., Du, J.-H., & Tibshirani, R. J. (2024). Optimal ridge regularization for
out-of-distribution prediction. arXiv preprint arXiv:2404.01233.

458



[286] Penedones, H., Collobert, R., Fleuret, F., & Grangier, D. (2012). Improving
object classification using pose information. Technical Report Idiap-RR-30-2012,
Idiap Research Institute.

[287] Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., & Wang, B. (2019). Moment
matching for multi-source domain adaptation. In Proceedings of the IEEE/CVF
international conference on computer vision (pp. 1406–1415).

[288] Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP) (pp. 1532–1543).

[289] Peyre, J., Laptev, I., Schmid, C., & Sivic, J. (2017). Weakly-supervised learning
of visual relations. In ICCV.

[290] Pharr, M., Jakob, W., & Humphreys, G. (2016). Physically based rendering:
From theory to implementation. Morgan Kaufmann.

[291] Poggio, T. & Anselmi, F. (2016). Visual cortex and deep networks: learning
invariant representations. MIT Press.

[292] Ponce, C. R., Xiao, W., Schade, P. F., Hartmann, T. S., Kreiman, G., & Living-
stone, M. S. (2019). Evolving images for visual neurons using a deep generative
network reveals coding principles and neuronal preferences. Cell, 177(4), 999–
1009.

[293] Posten, H. O. (1982). Two-sample wilcoxon power over the pearson system and
comparison with the t-test. Journal of Statistical Computation and Simulation,
16(1), 1–18.

[294] Prato, G., Guiroy, S., Caballero, E., Rish, I., & Chandar, S. (2021). Scaling
laws for the out-of-distribution generalization of image classifiers. In ICML 2021
Workshop on Uncertainty and Robustness in Deep Learning.

[295] Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S., & Torralba, A. (2018).
Virtualhome: Simulating household activities via programs. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (pp. 8494–
8502).

[296] Purtill, R. L. (1971). Beating the imitation game. Mind, 80(318), 290–294.

[297] Qian, R., Meng, T., Gong, B., Yang, M.-H., Wang, H., Belongie, S., & Cui, Y.
(2021). Spatiotemporal contrastive video representation learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (pp. 6964–6974).

459



[298] Qiao, F., Zhao, L., & Peng, X. (2020). Learning to learn single domain general-
ization. In CVPR.

[299] Qiu, W. & Yuille, A. (2016). UnrealCV: Connecting computer vision to Un-
real Engine. In Proceedings of the European Conference on Computer Vision
(ECCV) (pp. 909–916).

[300] Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant
visual representation by single neurons in the human brain. Nature, 435(7045),
1102–1107.

[301] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sas-
try, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021).
Learning transferable visual models from natural language supervision. In Pro-
ceedings of the 38th International Conference on Machine Learning (ICML)
(pp. 8748–8763).

[302] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.
(2019). Language models are unsupervised multitask learners. OpenAI blog,
1(8), 9.

[303] Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2018). Do CIFAR-10 classi-
fiers generalize to CIFAR-10? arXiv preprint arXiv:1806.00451.

[304] Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2019). Do ImageNet classi-
fiers generalize to ImageNet? In Proceedings of the International Conference on
Machine Learning (ICML).

[305] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 779–788).

[306] Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y., Dirani, J.,
Michael, J., & Bowman, S. R. (2023). Gpqa: A graduate-level google-proof
q&a benchmark. arXiv.

[307] Ren, J., Liu, P. J., Fertig, E., Snoek, J., Poplin, R., Depristo, M., Dillon, J., &
Lakshminarayanan, B. (2019). Likelihood ratios for out-of-distribution detec-
tion. Advances in neural information processing systems, 32.

[308] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards
real-time object detection with region proposal networks. arXiv preprint
arXiv:1506.01497.

460



[309] Ren, Y. & Bashivan, P. (2023). How well do models of visual cortex generalize
to out of distribution samples? bioRxiv, (pp. 2023–05).

[310] Riesenhuber, M. & Poggio, T. (1998). Just one view: Invariances in inferotem-
poral cell tuning. In Advances in Neural Information Processing Systems (pp.
215–221).

[311] Rosenfeld, A., Zemel, R., & Tsotsos, J. K. (2018). The elephant in the room.
arXiv preprint arXiv:1808.03305.

[312] Ruff, H. A. (1982). Effect of object movement on infants’ decision of object
structure. Developmental Psychology, 18(3), 462.

[313] Rummery, G. A. & Niranjan, M. (1994). On-line Q-learning using connection-
ist systems, volume 37. University of Cambridge, Department of Engineering
Cambridge, UK.

[314] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision,
115(3), 211–252.

[315] Rust, N. C. & DiCarlo, J. J. (2010). Selectivity and tolerance (“invariance”)
both increase as visual information propagates from cortical area V4 to IT.
Journal of Neuroscience, 30(39), 12978–12995.

[316] Saito, K., Ushiku, Y., & Harada, T. (2017). Asymmetric tri-training for unsu-
pervised domain adaptation. In ICML.

[317] Saito, K., Watanabe, K., Ushiku, Y., & Harada, T. (2018). Maximum classifier
discrepancy for unsupervised domain adaptation. In CVPR.

[318] Sakai, A., Sunagawa, T., Madan, S., Suzuki, K., Katoh, T., Kobashi, H., Pfister,
H., Sinha, P., Boix, X., & Sasaki, T. (2021). Three approaches to facilitate dnn
generalization to objects in out-of-distribution orientations and illuminations:
late-stopping, tuning batch normalization and invariance loss. arXiv preprint
arXiv:2111.00131.

[319] Sakai, A., Sunagawa, T., Madan, S., Suzuki, K., Katoh, T., Kobashi, H., Pfis-
ter, H., Sinha, P., Boix, X., & Sasaki, T. (2022). Three approaches to facilitate
invariant neurons and generalization to out-of-distribution orientations and illu-
minations. Neural Networks, 155, 119–143.

[320] Savarese, S. & Fei-Fei, L. (2007). 3d generic object categorization, localization
and pose estimation. In 2007 IEEE 11th International Conference on Computer
Vision (pp. 1–8).: IEEE.

461



[321] Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., & Madry, A. (2018). Ad-
versarially robust generalization requires more data. In Advances in Neural
Information Processing Systems, volume 31.

[322] Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa,
E. B., Kar, K., Bashivan, P., Prescott-Roy, J., Geiger, F., et al. (2018). Brain-
score: Which artificial neural network for object recognition is most brain-like?
BioRxiv, (pp. 407007).

[323] Searle, J. R. (1980). Minds, brains, and programs. Behavioral and brain sci-
ences, 3(3), 417–424.

[324] Sejnowski, T. (2022). Large language models and the reverse turing test. arXiv
preprint arXiv:2207.14382.

[325] Shafahi, A., Huang, W. R., Studer, C., Feizi, S., & Goldstein, T. (2018). Are
adversarial examples inevitable? arXiv preprint, arXiv:1809.02104.

[326] Shahtalebi, S., Gagnon-Audet, J.-C., Laleh, T., Faramarzi, M., Ahuja, K., &
Rish, I. (2021). Sand-mask: An enhanced gradient masking strategy for the dis-
covery of invariances in domain generalization. arXiv preprint arXiv:2106.02266.

[327] Shama Sastry, C. & Oore, S. (2019). Detecting out-of-distribution examples
with in-distribution examples and gram matrices. arXiv e-prints, (pp. arXiv–
1912).

[328] Shamir, A., Melamed, O., & BenShmuel, O. (2021). The dimpled mani-
fold model of adversarial examples in machine learning. arXiv preprint,
arXiv:2106.10151.

[329] Shamir, A., Safran, I., Ronen, E., & Dunkelman, O. (2019). A simple expla-
nation for the existence of adversarial examples with small hamming distance.
arXiv preprint, arXiv:1901.10861.

[330] Shamsabadi, A. S., Sanchez-Matilla, R., & Cavallaro, A. (2020). Colorfool: Se-
mantic adversarial colorization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (pp. 1151–1160).

[331] Shankar, S., Piratla, V., Chakrabarti, S., Chaudhuri, S., Jyothi, P., & Sarawagi,
S. (2018). Generalizing across domains via cross-gradient training. arXiv
preprint arXiv:1804.10745.

[332] Shao, R., Lan, X., Li, J., & Yuen, P. C. (2019). Multi-adversarial discriminative
deep domain generalization for face presentation attack detection. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition
(pp. 10023–10031).

462



[333] Sharan, L., Rosenholtz, R., & Adelson, E. (2009). Material perception: What
can you see in a brief glance? Journal of Vision, 9(8), 784–784.

[334] Shepard, R. N. & Metzler, J. (1971). Mental rotation of three-dimensional ob-
jects. Science, 171(3972), 701–703.

[335] Shibli, A. M., Pritom, M. M. A., & Gupta, M. (2024). Abusegpt: Abuse of
generative ai chatbots to create smishing campaigns.

[336] Shin, D., Fowlkes, C. C., & Hoiem, D. (2018). Pixels, voxels, and views: A
study of shape representations for single view 3D object shape prediction. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 3061–3069).

[337] Shiohara, K. & Yamasaki, T. (2022). Detecting deepfakes with self-blended
images. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 18720–18729).

[338] Shuster, K., Xu, J., Komeili, M., Ju, D., Smith, E. M., Roller, S., Ung, M.,
Chen, M., Arora, K., Lane, J., Behrooz, M., Ngan, W., Poff, S., Goyal, N.,
Szlam, A., Boureau, Y.-L., Kambadur, M., & Weston, J. (2022a). Blenderbot 3:
a deployed conversational agent that continually learns to responsibly engage.

[339] Shuster, K., Xu, J., Komeili, M., Ju, D., Smith, E. M., Roller, S., Ung, M.,
Chen, M., Arora, K., Lane, J., et al. (2022b). Blenderbot 3: a deployed con-
versational agent that continually learns to responsibly engage. arXiv preprint
arXiv:2208.03188.

[340] Siddiqui, S. A., Krueger, D., & Breuel, T. (2023). Investigating the nature of 3d
generalization in deep neural networks. arXiv preprint arXiv:2304.09358.

[SilverTm] SilverTm. City Park Environment Collection. https://www.unrealengine.
com/marketplace/ja/product/city-park-environment-collection.

[342] Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Deep inside convolutional
networks: Visualising image classification models and saliency maps. In Pro-
ceedings of the International Conference on Learning Representations Workshop
(ICLRW).

[343] Sinha, A., Namkoong, H., Volpi, R., & Duchi, J. (2017). Certifying some dis-
tributional robustness with principled adversarial training. arXiv preprint
arXiv:1710.10571.

[344] Sinha, P. & Poggio, T. (1996). Role of learning in three-dimensional form per-
ception. Nature, 384(6608), 460–463.

463

https://www.unrealengine.com/marketplace/ja/product/city-park-environment-collection
https://www.unrealengine.com/marketplace/ja/product/city-park-environment-collection


[345] Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for few-shot
learning. Advances in neural information processing systems, 30.

[346] Sohn, K., Shang, W., Yu, X., & Chandraker, M. (2019). Unsupervised domain
adaptation for distance metric learning. In ICLR.

[347] Sokolic, J., Giryes, R., Sapiro, G., & Rodrigues, M. (2017). Generalization error
of invariant classifiers. In AISTATS.

[348] Spaak, E., Peelen, M. V., & de Lange, F. P. (2022). Scene context impairs per-
ception of semantically congruent objects. Psychological Science, 33(2), 299–
313. PMID: 35020519.

[349] Speer, R., Chin, J., Lin, A., Jewett, S., & Nathan, L. (2018). Luminosoin-
sight/wordfreq: v2.2.

[350] Squire, S., Tellex, S., Arumugam, D., & Yang, L. (2015). Grounding english
commands to reward functions. In Robotics: Science and Systems.

[351] Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid, A., Fisch, A.,
Brown, A. R., Santoro, A., Gupta, A., Garriga-Alonso, A., Kluska, A.,
Lewkowycz, A., Agarwal, A., Power, A., Ray, A., Warstadt, A., Kocurek,
A. W., Safaya, A., Tazarv, A., Xiang, A., Parrish, A., Nie, A., Hussain, A.,
Askell, A., Dsouza, A., Slone, A., Rahane, A., Iyer, A. S., Andreassen, A.,
Madotto, A., Santilli, A., Stuhlmüller, A., Dai, A., La, A., Lampinen, A.,
Zou, A., Jiang, A., Chen, A., Vuong, A., Gupta, A., Gottardi, A., Norelli, A.,
Venkatesh, A., Gholamidavoodi, A., Tabassum, A., Menezes, A., Kirubara-
jan, A., Mullokandov, A., Sabharwal, A., Herrick, A., Efrat, A., Erdem, A.,
Karakaş, A., Roberts, B. R., Loe, B. S., Zoph, B., Bojanowski, B., Özyurt, B.,
Hedayatnia, B., Neyshabur, B., Inden, B., Stein, B., Ekmekci, B., Lin, B. Y.,
Howald, B., Orinion, B., Diao, C., Dour, C., Stinson, C., Argueta, C., Ramírez,
C. F., Singh, C., Rathkopf, C., Meng, C., Baral, C., Wu, C., Callison-Burch,
C., Waites, C., Voigt, C., Manning, C. D., Potts, C., Ramirez, C., Rivera,
C. E., Siro, C., Raffel, C., Ashcraft, C., Garbacea, C., Sileo, D., Garrette, D.,
Hendrycks, D., Kilman, D., Roth, D., Freeman, D., Khashabi, D., Levy, D.,
González, D. M., Perszyk, D., Hernandez, D., Chen, D., Ippolito, D., Gilboa,
D., Dohan, D., Drakard, D., Jurgens, D., Datta, D., Ganguli, D., Emelin, D.,
Kleyko, D., Yuret, D., Chen, D., Tam, D., Hupkes, D., Misra, D., Buzan, D.,
Mollo, D. C., Yang, D., Lee, D.-H., Schrader, D., Shutova, E., Cubuk, E. D., Se-
gal, E., Hagerman, E., Barnes, E., Donoway, E., Pavlick, E., Rodola, E., Lam,
E., Chu, E., Tang, E., Erdem, E., Chang, E., Chi, E. A., Dyer, E., Jerzak, E.,
Kim, E., Manyasi, E. E., Zheltonozhskii, E., Xia, F., Siar, F., Martínez-Plumed,
F., Happé, F., Chollet, F., Rong, F., Mishra, G., Winata, G. I., de Melo, G.,

464



Kruszewski, G., Parascandolo, G., Mariani, G., Wang, G., Jaimovitch-López,
G., Betz, G., Gur-Ari, G., Galijasevic, H., Kim, H., Rashkin, H., Hajishirzi, H.,
Mehta, H., Bogar, H., Shevlin, H., Schütze, H., Yakura, H., Zhang, H., Wong,
H. M., Ng, I., Noble, I., Jumelet, J., Geissinger, J., Kernion, J., Hilton, J., Lee,
J., Fisac, J. F., Simon, J. B., Koppel, J., Zheng, J., Zou, J., Kocoń, J., Thomp-
son, J., Wingfield, J., Kaplan, J., Radom, J., Sohl-Dickstein, J., Phang, J., Wei,
J., Yosinski, J., Novikova, J., Bosscher, J., Marsh, J., Kim, J., Taal, J., Engel,
J., Alabi, J., Xu, J., Song, J., Tang, J., Waweru, J., Burden, J., Miller, J., Balis,
J. U., Batchelder, J., Berant, J., Frohberg, J., Rozen, J., Hernandez-Orallo,
J., Boudeman, J., Guerr, J., Jones, J., Tenenbaum, J. B., Rule, J. S., Chua,
J., Kanclerz, K., Livescu, K., Krauth, K., Gopalakrishnan, K., Ignatyeva, K.,
Markert, K., Dhole, K. D., Gimpel, K., Omondi, K., Mathewson, K., Chiafullo,
K., Shkaruta, K., Shridhar, K., McDonell, K., Richardson, K., Reynolds, L.,
Gao, L., Zhang, L., Dugan, L., Qin, L., Contreras-Ochando, L., Morency, L.-
P., Moschella, L., Lam, L., Noble, L., Schmidt, L., He, L., Colón, L. O., Metz,
L., Şenel, L. K., Bosma, M., Sap, M., ter Hoeve, M., Farooqi, M., Faruqui,
M., Mazeika, M., Baturan, M., Marelli, M., Maru, M., Quintana, M. J. R.,
Tolkiehn, M., Giulianelli, M., Lewis, M., Potthast, M., Leavitt, M. L., Hagen,
M., Schubert, M., Baitemirova, M. O., Arnaud, M., McElrath, M., Yee, M. A.,
Cohen, M., Gu, M., Ivanitskiy, M., Starritt, M., Strube, M., Swędrowski, M.,
Bevilacqua, M., Yasunaga, M., Kale, M., Cain, M., Xu, M., Suzgun, M., Walker,
M., Tiwari, M., Bansal, M., Aminnaseri, M., Geva, M., Gheini, M., T, M. V.,
Peng, N., Chi, N. A., Lee, N., Krakover, N. G.-A., Cameron, N., Roberts, N.,
Doiron, N., Martinez, N., Nangia, N., Deckers, N., Muennighoff, N., Keskar,
N. S., Iyer, N. S., Constant, N., Fiedel, N., Wen, N., Zhang, O., Agha, O., El-
baghdadi, O., Levy, O., Evans, O., Casares, P. A. M., Doshi, P., Fung, P.,
Liang, P. P., Vicol, P., Alipoormolabashi, P., Liao, P., Liang, P., Chang, P.,
Eckersley, P., Htut, P. M., Hwang, P., Miłkowski, P., Patil, P., Pezeshkpour,
P., Oli, P., Mei, Q., Lyu, Q., Chen, Q., Banjade, R., Rudolph, R. E., Gabriel,
R., Habacker, R., Risco, R., Millière, R., Garg, R., Barnes, R., Saurous, R. A.,
Arakawa, R., Raymaekers, R., Frank, R., Sikand, R., Novak, R., Sitelew, R., Le-
Bras, R., Liu, R., Jacobs, R., Zhang, R., Salakhutdinov, R., Chi, R., Lee, R.,
Stovall, R., Teehan, R., Yang, R., Singh, S., Mohammad, S. M., Anand, S.,
Dillavou, S., Shleifer, S., Wiseman, S., Gruetter, S., Bowman, S. R., Schoen-
holz, S. S., Han, S., Kwatra, S., Rous, S. A., Ghazarian, S., Ghosh, S., Casey,
S., Bischoff, S., Gehrmann, S., Schuster, S., Sadeghi, S., Hamdan, S., Zhou, S.,
Srivastava, S., Shi, S., Singh, S., Asaadi, S., Gu, S. S., Pachchigar, S., Toshni-
wal, S., Upadhyay, S., Shyamolima, Debnath, Shakeri, S., Thormeyer, S., Melzi,
S., Reddy, S., Makini, S. P., Lee, S.-H., Torene, S., Hatwar, S., Dehaene, S., Di-
vic, S., Ermon, S., Biderman, S., Lin, S., Prasad, S., Piantadosi, S. T., Shieber,
S. M., Misherghi, S., Kiritchenko, S., Mishra, S., Linzen, T., Schuster, T., Li,

465



T., Yu, T., Ali, T., Hashimoto, T., Wu, T.-L., Desbordes, T., Rothschild, T.,
Phan, T., Wang, T., Nkinyili, T., Schick, T., Kornev, T., Tunduny, T., Ger-
stenberg, T., Chang, T., Neeraj, T., Khot, T., Shultz, T., Shaham, U., Misra,
V., Demberg, V., Nyamai, V., Raunak, V., Ramasesh, V., Prabhu, V. U., Pad-
makumar, V., Srikumar, V., Fedus, W., Saunders, W., Zhang, W., Vossen, W.,
Ren, X., Tong, X., Zhao, X., Wu, X., Shen, X., Yaghoobzadeh, Y., Lakretz, Y.,
Song, Y., Bahri, Y., Choi, Y., Yang, Y., Hao, Y., Chen, Y., Belinkov, Y., Hou,
Y., Hou, Y., Bai, Y., Seid, Z., Zhao, Z., Wang, Z., Wang, Z. J., Wang, Z., &
Wu, Z. (2023). Beyond the imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv.

[352] Srivastava, S., Ben-Yosef, G., & Boix, X. (2019). Minimal images in deep neural
networks: Fragile object recognition in natural images. In Proceedings of the
International Conference on Learning Representations (ICLR).

[353] Standley, T., Zamir, A. R., Chen, D., Guibas, L., Malik, J., & Savarese, S.
(2020). Which tasks should be learned together in multi-task learning? In
Proceedings of the International Conference on Machine Learning (ICML).

[354] Stone, A., Ramirez, O., Konolige, K., & Jonschkowski, R. (2021). The distract-
ing control suite – a challenging benchmark for reinforcement learning from pix-
els.

[355] Stutz, D., Hein, M., & Schiele, B. (2019). Disentangling adversarial robustness
and generalization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (pp. 6976–6987).

[356] Su, H., Qi, C. R., Li, Y., & Guibas, L. J. (2015). Render for CNN: Viewpoint
estimation in images using CNNs trained with rendered 3D model views. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV)
(pp. 2686–2694).

[357] Sugiyama, M. & Kawanabe, M. (2012). Machine learning in non-stationary
environments: Introduction to covariate shift adaptation. MIT press.

[358] Sun, B. & Saenko, K. (2016). Deep CORAL: correlation alignment for deep
domain adaptation. CoRR, abs/1607.01719.

[359] Sun, J. & Jacobs, D. W. (2017). Seeing what is not there: Learning context to
determine where objects are missing. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 5716–5724).

[360] Super, H. & Roelfsema, P. R. (2005). Chronic multiunit recordings in behaving
animals: advantages and limitations. Progress in brain research, 147, 263–282.

466



[361] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Re-
thinking the inception architecture for computer vision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 2818–2826).

[362] Tanay, T. & Griffin, L. (2016). A boundary tilting persepective on the phe-
nomenon of adversarial examples. arXiv preprint, arXiv:1608.07690.

[363] Tang, H., Schrimpf, M., Lotter, W., Moerman, C., Paredes, A., Caro, J. O.,
Hardesty, W., Cox, D., & Kreiman, G. (2018). Recurrent computations for
visual pattern completion. Proceedings of the National Academy of Sciences,
115(35), 8835–8840.

[364] Tanmay, K., Khandelwal, A., Agarwal, U., & Choudhury, M. (2023). Probing
the moral development of large language models through defining issues test.
arXiv.

[365] Taylor, J. A. & Ivry, R. B. (2013). Context-dependent generalization. Frontiers
in Human Neuroscience, 7, 171.

[366] Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu, J., Soricut, R.,
Schalkwyk, J., Dai, A. M., Hauth, A., et al. (2023). Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805.

[367] Tellex, S., Kollar, T., Dickerson, S., Walter, M., Banerjee, A., Teller, S., & Roy,
N. (2011). Understanding natural language commands for robotic navigation
and mobile manipulation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 25 (pp. 1507–1514).

[368] Terhune, K. P., Liu, G. T., Modestino, E. J., Miki, A., Sheth, K. N., Liu, C.-
S. J., Bonhomme, G. R., & Haselgrove, J. C. (2005). Recognition of objects in
non-canonical views: A functional MRI study. Journal of Neuro-Ophthalmology,
25(4), 273–279.

[369] Thompson, P. (1980). Margaret Thatcher: a new illusion. Perception.

[370] Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal
of the Royal Statistical Society. Series B (Methodological), (pp. 267–288).

[Tiku] Tiku, N. The google engineer who thinks the company’s ai has come to life.
WashingtonPost.

[372] Torralba, A. (2003). Contextual priming for object detection. International
journal of computer vision, 53(2), 169–191.

467



[373] Torralba, A. & Efros, A. A. (2011). Unbiased look at dataset bias. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (pp. 1521–1528).

[374] Torralba, A., Murphy, K. P., & Freeman, W. T. (2005). Contextual models for
object detection using boosted random fields. In Advances in neural information
processing systems (pp. 1401–1408).

[375] Torralba, A., Murphy, K. P., Freeman, W. T., & Rubin, M. A. (2003). Context-
based vision system for place and object recognition. In Computer Vision, IEEE
International Conference on, volume 2 (pp. 273–273).: IEEE Computer Society.

[376] Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contex-
tual guidance of eye movements and attention in real-world scenes: the role of
global features in object search. Psychological review, 113(4), 766.

[377] Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., & Jégou, H.
(2021). Training data-efficient image transformers & distillation through atten-
tion. In Proceedings of the 38th International Conference on Machine Learning
(ICML) (pp. 10347–10357).

[378] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T.,
Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al. (2023). Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971.

[379] Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., & Madry, A. (2019). Ro-
bustness may be at odds with accuracy. In Proceedings of the International
Conference on Learning Representations (ICLR).

[380] Tucker, R. & Snavely, N. (2020). Single-view view synthesis with multiplane
images. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (pp. 551–560).

[381] Tulsiani, S., Carreira, J., & Malik, J. (2015). Pose induction for novel object
categories. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV) (pp. 64–72).

[382] Tulsiani, S. & Malik, J. (2015). Viewpoints and keypoints. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 1510–1519).

[383] Turing, A. M. (1950). : (pp. 23–65). Springer.

[384] Turk, A. M. (2012). Amazon mechanical turk. Retrieved August, 17, 2012.

468



[385] Ullman, S. (1996). High-level vision: Object recognition and visual cognition.
MIT Press.

[386] Ullman, S. (2019). Using neuroscience to develop artificial intelligence. Science,
363(6428), 692–693.

[387] Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M. J., Laptev, I., &
Schmid, C. (2017). Learning from synthetic humans. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[388] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. arXiv preprint
arXiv:1706.03762.

[389] Vedantam, R., Lawrence Zitnick, C., & Parikh, D. (2015). Cider: Consensus-
based image description evaluation. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 4566–4575).

[390] Vedantam, R., Lopez-Paz, D., & Schwab, D. J. (2021). An empirical investi-
gation of domain generalization with empirical risk minimizers. Advances in
Neural Information Processing Systems, 34.

[391] Venkateswara, H., Eusebio, J., Chakraborty, S., & Panchanathan, S. (2017).
Deep hashing network for unsupervised domain adaptation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5018–
5027).

[392] Volpi, R., Namkoong, H., Sener, O., Duchi, J. C., Murino, V., & Savarese, S.
(2018a). Generalizing to unseen domains via adversarial data augmentation. In
NeurIPS.

[393] Volpi, R., Namkoong, H., Sener, O., Duchi, J. C., Murino, V., & Savarese, S.
(2018b). Generalizing to unseen domains via adversarial data augmentation.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R.
Garnett (Eds.), Advances in Neural Information Processing Systems, volume 31:
Curran Associates, Inc.

[394] Wada, K. (2018). labelme: Image polygonal annotation with python. https:
//github.com/wkentaro/labelme.

[395] Walter, M. R., Hemachandra, S. M., Homberg, B. S., Tellex, S., & Teller, S.
(2013). : Robotics: Science and Systems.

[396] Wang, G., Han, H., Shan, S., & Chen, X. (2020). Cross-domain face presen-
tation attack detection via multi-domain disentangled representation learning.

469

https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme


In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 6678–6687).

[397] Wang, J., Pun, A., Tu, J., Manivasagam, S., Sadat, A., Casas, S., Ren, M., &
Urtasun, R. (2021a). AdvSim: Generating safety-critical scenarios for self-
driving vehicles. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (pp. 9909–9918).

[398] Wang, J., Yang, Z., Hu, X., Li, L., Lin, K., Gan, Z., Liu, Z., Liu, C., & Wang,
L. (2022a). Git: A generative image-to-text transformer for vision and language.
arXiv preprint arXiv:2205.14100.

[399] Wang, P., Yang, A., Men, R., Lin, J., Bai, S., Li, Z., Ma, J., Zhou, C., Zhou, J.,
& Yang, H. (2022b). Ofa: Unifying architectures, tasks, and modalities through
a simple sequence-to-sequence learning framework. In International Conference
on Machine Learning (pp. 23318–23340).: PMLR.

[400] Wang, Z., Loog, M., & Van Gemert, J. (2021b). Respecting domain relations:
Hypothesis invariance for domain generalization. In 2020 25th International
Conference on Pattern Recognition (ICPR) (pp. 9756–9763).: IEEE.

[401] Warde-Farley, D. & Goodfellow, I. (2016). Adversarial perturbations of deep
neural networks. In T. Hazan, G. Papandreou, & D. Tarlow (Eds.), Perturba-
tions, Optimization, and Statistics (pp. 311–342). Cambridge, MA, USA: MIT
Press.

[402] Watkins, C. J. C. H. & Dayan, P. (1992). Q-learning. Machine Learning, 8(3),
279–292.

[403] Watt, S. (1996). Naive psychology and the inverted turing test. Psycoloquy,
7(14), 463–518.

[404] Weizenbaum, J. (1966). Eliza—a computer program for the study of natural
language communication between man and machine. Communications of the
ACM, 9(1), 36–45.

[Wertheimer] Wertheimer, T. Blake lemoine: Google fires engineer who said ai tech
has feelings. BBC news.

[406] Westerlund, M. (2019). The emergence of deepfake technology: A review. Tech-
nology Innovation Management Review, 9(11).

[407] Wiles, O., Gkioxari, G., Szeliski, R., & Johnson, J. (2020). Synsin: End-to-end
view synthesis from a single image. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (pp. 7467–7477).

470



[408] Wood, J. N. & Wood, S. M. (2018). The development of invariant object recog-
nition requires visual experience with temporally smooth objects. Cognitive
Science, 42(4), 1391–1406.

[409] Wood, J. N. & Wood, S. M. W. (2022). The development of object recognition
requires experience with the surface features of objects. bioRxiv, (pp. 2022–12).

[410] Wu, K., Wu, E., & Kreiman, G. (2018). Learning scene gist with convolutional
neural networks to improve object recognition. In Information Sciences and
Systems (CISS), 2018 52nd Annual Conference on (pp. 1–6).: IEEE.

[411] Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., & Girshick, R. (2019). Detectron2.
https://github.com/facebookresearch/detectron2.

[412] Xiang, Y., Mottaghi, R., & Savarese, S. (2014). Beyond pascal: A benchmark
for 3D object detection in the wild. In Proceedings of the IEEE Winter Confer-
ence on Applications of Computer Vision (pp. 75–82).

[413] Xiang, Y., Schmidt, T., Narayanan, V., & Fox, D. (2018). PoseCNN: A con-
volutional neural network for 6d object pose estimation in cluttered scenes. In
Proceedings of the Robotics: Science and Systems (RSS).

[414] Xiao, C., Yang, D., Li, B., Deng, J., & Liu, M. (2019). Meshadv: Adversarial
meshes for visual recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (pp. 6898–6907).

[415] Xiao, W., Sharma, S., Kreiman, G., & Livingstone, M. S. (2024). Feature-
selective responses in macaque visual cortex follow eye movements during natu-
ral vision. Nature Neuroscience, (pp. 1–10).

[416] Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A. L., & Le, Q. V. (2020a). Ad-
versarial examples improve image recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp. 819–828).

[417] Xie, Q., Luong, M.-T., Hovy, E., & Le, Q. V. (2020b). Self-training with noisy
student improves imagenet classification. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp. 10687–10698).

[418] Xie, Q., Luong, M.-T., Hovy, E., & Le, Q. V. (2020c). Self-training with noisy
student improves imagenet classification.

[419] Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1492–
1500).

471

https://github.com/facebookresearch/detectron2


[420] Xu, Z., Liu, D., Yang, J., Raffel, C., & Niethammer, M. (2020). Robust and
generalizable visual representation learning via random convolutions. arXiv
preprint arXiv:2007.13003.

[421] Yalniz, I. Z., Jégou, H., Chen, K., Paluri, M., & Mahajan, D. (2019). Billion-
scale semi-supervised learning for image classification. CoRR, abs/1905.00546.

[422] Yamins, D. L. & DiCarlo, J. J. (2016). Using goal-driven deep learning models
to understand sensory cortex. Nature neuroscience.

[423] Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & Di-
Carlo, J. J. (2014). Performance-optimized hierarchical models predict neural
responses in higher visual cortex. In Proceedings of the National Academy of
Sciences.

[424] Yang, D., Xiao, C., Li, B., Deng, J., & Liu, M. (2018). Realistic adversarial
examples in 3d meshes. arXiv preprint arXiv:1810.05206, 2, 2.

[425] Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T., & Wang, X.-J.
(2019). Task representations in neural networks trained to perform many cogni-
tive tasks. Nature Neuroscience, 22(2), 297–306.

[426] Yao, J., Fidler, S., & Urtasun, R. (2012). Describing the scene as a whole: Joint
object detection, scene classification and semantic segmentation. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on (pp. 702–
709).: IEEE.

[427] Yoon, J. S., Kim, K., Gallo, O., Park, H. S., & Kautz, J. (2020). Novel view
synthesis of dynamic scenes with globally coherent depths from a monocular
camera. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (pp. 5336–5345).

[428] Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019). Cutmix:
Regularization strategy to train strong classifiers with localizable features. In
Proceedings of the IEEE/CVF international conference on computer vision (pp.
6023–6032).

[429] Zagoruyko, S. & Komodakis, N. (2016). Wide residual networks. In Proceedings
of the British Machine Vision Conference (BMVC) (pp. 87.1–87.12).

[430] Zaidi, S. S. A., Boix, X., Prasad, N., Gilad-Gutnick, S., Ben-Ami, S., & Sinha,
P. (2020). Is robustness to transformations driven by invariant neural represen-
tations? arXiv preprint, arXiv:2007.00112.

472



[431] Zeiler, M. D. & Fergus, R. (2014). Visualizing and understanding convolutional
networks. In Proceedings of the European Conference on Computer Vision
(ECCV) (pp. 818–833).

[432] Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., &
Choi, Y. (2019). Defending against neural fake news. Advances in neural infor-
mation processing systems, 32.

[433] Zeng, X., Liu, C., Wang, Y.-S., Qiu, W., Xie, L., Tai, Y.-W., Tang, C.-K., &
Yuille, A. L. (2019). Adversarial attacks beyond the image space. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (pp. 4302–4311).

[434] Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017a). mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412.

[435] Zhang, M., Armendariz, M., Xiao, W., Rose, O., Bendtz, K., Livingstone, M.,
Ponce, C., & Kreiman, G. (2022). Look twice: A generalist model predicts re-
turn fixations across tasks and species. PLoS Computational Biology, (pp. In
Press).

[436] Zhang, M., Feng, J., Ma, K. T., Lim, J. H., Zhao, Q., & Kreiman, G. (2018).
Finding any waldo with zero-shot invariant and efficient visual search. Nature
communications, 9(1), 3730.

[437] Zhang, M., Tseng, C., & Kreiman, G. (2020). Putting visual object recognition
in context. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (pp. 12985–12994).

[438] Zhang, M., Wang, T., Lim, J. H., Kreiman, G., & Feng, J. (2019a). Variational
prototype replays for continual learning. arXiv preprint arXiv:1905.09447.

[439] Zhang, Q., Guo, Q., Gao, R., Juefei-Xu, F., Yu, H., & Feng, W. (2021). Adver-
sarial relighting against face recognition. arXiv preprint arXiv:2108.07920.

[440] Zhang, R. (2019). Making convolutional networks shift-invariant again. In
Proceedings of the International Conference on Machine Learning (ICML) (pp.
7324–7334).

[441] Zhang, Y., Song, S., Yumer, E., Savva, M., Lee, J.-Y., Jin, H., & Funkhouser,
T. (2017b). Physically-based rendering for indoor scene understanding using
convolutional neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (pp. 5287–5295).

473



[442] Zhang, Y., Sun, S., Galley, M., Chen, Y.-C., Brockett, C., Gao, X., Gao, J.,
Liu, J., & Dolan, B. (2019b). Dialogpt: Large-scale generative pre-training for
conversational response generation. arXiv preprint arXiv:1911.00536.

[443] Zhao, J. & Itti, L. (2017). Improved deep learning of object category using pose
information. In Proceedings of the IEEE Winter Conference on Applications of
Computer Vision (WACV) (pp. 550–559).

[444] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2015). Object
detectors emerge in deep scene CNNs. In Proceedings of the International Con-
ference on Learning Representations (ICLR).

[445] Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2017). Places: A
10 million image database for scene recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

[446] Zhou, B., Sun, Y., Bau, D., & Torralba, A. (2018). Revisiting the importance of
individual units in cnns via ablation. arXiv preprint arXiv:1806.02891.

[447] Zhou, K., Liu, Z., Qiao, Y., Xiang, T., & Loy, C. C. (2021). Domain generaliza-
tion in vision: A survey. arXiv preprint arXiv:2103.02503.

[448] Zhou, T., Tulsiani, S., Sun, W., Malik, J., & Efros, A. A. (2016). View synthesis
by appearance flow. In Proceedings of the European Conference on Computer
Vision (ECCV) (pp. 286–301).

[449] Zhu, Y., Wong, J., Mandlekar, A., & Martín-Martín, R. (2020). robosuite:
A modular simulation framework and benchmark for robot learning. CoRR,
abs/2009.12293.

474


	I Preliminaries
	Introduction
	The past and the present of Out-Of-Distribution generalization
	The past 350 years
	The present: Formalizing data and the knowledge learned


	II Benchmarking generalization in AI
	When and How do CNNs generalize to Out-Of-Distribution data?
	Introduction
	Datasets for simultaneous category-viewpoint classification
	Factors affecting generalization behaviour
	Generalization through selectivity and invariance
	How do CNNs generalize to OOD combinations?
	Conclusions

	Emergent representations
	Introduction
	Results
	Discussion
	Methods

	Enforcing invariant representations to improve generalization.
	Introduction
	Method
	Datasets
	Experiments
	Limitations
	Conclusion

	Improving generalization in Reinforcement Learning.
	Introduction
	Related Works
	Experimental Details
	Results

	Are these machines even safe inside the distribution?
	Introduction
	Results on in-distribution robustness
	Discussion
	Methods


	III Benchmarking and Leveraging human generlization
	Contextual Reasoning in Synthetic and Natural Scenes
	Introduction
	Related Works
	Context-aware Recognition Transformer
	Experimental Details
	Results
	Conclusion

	Human or Machine? Turing tests for LLMs and Vision.
	Introduction
	Results
	Discussion
	Methods
	Main Figures

	Improving generalization by mimicking the human visual diet.
	Main
	Results
	Discussion
	Methods


	IV OOD Generalization capabilities of the brain
	OOD generalization capabilities of the models of the cortex
	Introduction
	Related Work
	MacaqueITBench
	Constructing out-of-distribution data splits
	Quantifying distribution shifts
	Model training and evaluation
	Results
	Conclusions
	Limitations

	Conclusion

	V Appendix
	Additional details on Datasets
	Selectivity and Invariance
	Experimental Details and Hyper-Parameters
	Additional Experiments:``When Do CNNs generalize to OOD combinations?''
	Additional Experiments for ``How Do CNNs Generalize to OOD Combinations?''
	Limitations
	Variation-base decomposition, invariance and selectivity scores
	Identical activity achieves the maximum value of invariance score and complementary activity achieves the maximum value of selectivity score
	Invariance Enforcement Regularization (IER)
	Details of implementation 
	Details of datasets
	Details of experiments
	Train accuracy and test accuracy on seen data
	For internal use
	List of symbols
	Domains
	Training Parameters
	Additional Graphs Non-Semantic Variations
	Additional Graphs Semantic variations
	Additional Graphs State-Action Pairs
	Synthetic Out-of-context Dataset (OCD)
	Cut-and-paste Dataset
	Visualization of Attention Maps
	Examples of collected conversations
	Sample images from the HVD Dataset
	Additional details for the creation of the Semantic iLab dataset
	HDNet ablations with contrastive loss
	Additional experiment for the role of context
	Hyperparameters

	References


