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Abstract

We present the Brain Treebank, a large-scale dataset of electrophysiological neural
responses, recorded from intracranial probes while 10 subjects watched one or
more Hollywood movies. Subjects watched on average 2.6 Hollywood movies, for
an average viewing time of 4.3 hours, and a total of 43 hours. The audio track for
each movie was transcribed with manual corrections. Word onsets were manually
annotated on spectrograms of the audio track for each movie. Each transcript was
automatically parsed and manually corrected into the universal dependencies (UD)
formalism, assigning a part of speech to every word and a dependency parse to
every sentence. In total, subjects heard over 38,000 sentences (223,000 words),
while they had on average 168 electrodes implanted. This is the largest dataset of
intracranial recordings featuring grounded naturalistic language, one of the largest
English UD treebanks in general, and one of only a few UD treebanks aligned to
multimodal features. We hope that this dataset serves as a bridge between linguistic
concepts, perception, and their neural representations. To that end, we present an
analysis of which electrodes are sensitive to language features while also mapping
out a rough time course of language processing across these electrodes. The Brain
Treebank is available at https://BrainTreebank.dev/

1 Introduction

A single theory of language understanding that encompasses how our brains process language,
how linguists understand language, and how machines process language is still beyond our reach.
Despite numerous attempts to understand how the brain processes language through investigations of
compositionality [1–4], semantic categories [5–7], and surprisal [8–12], a mechanistic understanding
is still lacking. Our hypothesis is that this is in part because studies often focus on small data regimes,
since gathering large-scale neural recordings is extremely laborious. Yet NLP and ML research in
general has shown that scale matters. In particular, even probing experiments on artificial networks
require a fairly large scale to produce reliable results, certainly larger than a few hundred sentences
[13, 14]. NLP would not have progressed without large-scale resources, so to enable the same kind
of progress, we collect a new large-scale neuroscience dataset, which has naturalistic stimuli, is
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Data Quantity Data Quantity
Total subjects 10 Total sentences 38,572
Total hours 43.5 Unique sentences 30,244
Total electrodes 1,688 Avg. words per sentence 6.5
Avg. electrodes per subject 16 Total words 223,068
Total movies 21 Unique words 12,412
Unique movies 26 Unique speakers 937
Number of scenes 46,935 Unique part of speech labels 17

Table 1: Quantitative overview of Brain Treebank

multimodal, and uses intracranial recordings — a high-spatial and high-temporal resolution recording
method.

The Brain Treebank is foremost a treebank, like the Penn Treebank, and is annotated in the universal
dependencies (UD) format. What distinguishes it, is that it is accompanied by both multimodal
annotations and by neural recordings collected from 10 subjects who heard 223,068 annotated words
while they watched Hollywood films. Subjects watched a total of 26 films (43.5 hours) as data was
recorded from a total of 1,688 electrodes. To this, we add manual and automated annotations.

Scene labels: every scene in the movie was labeled according to the Places365 schema, [15],
resulting in 46,935 scenes total. Word onsets and offset: while automatic speech recognition
performs acceptably, errors are common, which were manually corrected. In addition, automated
systems are simply not trained to offer extreme accuracy, at the millisecond level, when determining
the start and end of words. Word onsets had to be manually annotated on spectrograms for every word
to ensure alignment with the neural recordings. Part of speech (POS) tags and parses: Sentences
were automatically parsed into the Universal Dependencies framework and then each part of speech
tag and dependency relationship was manually corrected. While POS tagging is fairly accurate,
numerous parser errors existed. Speaker identity: A unique identifier, which can be traced back to a
given character, was given to every speaker in every movie. This was done manually, as no automated
system exists to do so with any reasonable accuracy. Finally, we also curated a list of 16 automated
video, audio, and language features that we provide to save computing time (see Table 4). We release
all our data with a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

Large scale stimuli for the neuroscience of language and multimodal understanding can enable natural
experiments: the kind of post-hoc analysis of large-scale datasets that has propelled NLP and machine
learning in general forward. In the long term we hope that treebanks such as ours, coupled with
neural recordings, will help the creation of theories of language understanding that span linguistics,
neuroscience, and NLP. To demonstrate the utility of the dataset, in addition to providing the raw
data, we also take new steps toward understanding language in the brain; our contributions are:

1. A dataset of intracranial recordings across 26 different movie viewings (43.5 hours total).
2. Localization of electrode positions and alignment with common brain atlases.
3. Multiple layers of manual annotations to enable numerous experiments: scene labels, word

onsets and offsets, part of speech tags, parses in universal dependencies format, and speaker
identity.

4. Multiple automated annotations for 16 other language, audio, and visual features.
5. Quantitative results that show neural responsiveness to word onset and differential activation

based on the position of a word within a sentence.

2 Related work

Previous works have studied language processing in the context of Magnetoencephalography (MEG)
[17, 18], Electroencephalography (EEG) [19, 20], and functional magnetic resonance imaging (fMRI)
[21–26]. In this work, we present Stereoelectroencephalography (sEEG) data with both high temporal
resolution and naturalistic stimuli.

Recording the brain’s response to naturalistic stimuli is critical to neuroscientific progress [27]. There
exist fMRI datasets for naturalistic speech [28–30], vision [31, 32], and movies [33, 34]. And similar
data has been collected for the EEG modality (speech [35], vision [36], and movies [37]). There
are also movie datasets that cover both modalities [38]. However, when it comes to intracranial
recordings, which provide better temporal resolution, but require invasive surgery to implant probes,
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Figure 1: Schematic of the approach. Top: A film (a-b) was presented as visual and audio stimulus
to the subject. Invasive neural recordings were performed while subjects watched the movie. A
transcript of speech in the film is aligned to both the audio (b) and neural (c) signals. Shown here
is a short signal segment from an exemplar electrode in the left superior temporal gyrus aligned
to sentence onset at t = 0 ms. Word locations are shown as shaded regions between dashed lines.
Bottom: Schematic overview of selected visual (d), audio (e), and language (f-g) features used for
the General Linear Model (GLM) for each word. See Table 4 for a full list and description of features.
Visual features (d) include the number of faces (yellow boxes), and the magnitude and angle of optical
flow (green arrows). Audio features (e) include the average pitch (top) and volume (bottom) during
each word (shaded gray regions between dashed lines). Word features (f) include part-of-speech and
the position of each word’s dependency head. A surprisal feature, (g), computed using GPT-2 [16], a
large language model, is the negative log probability of the word given the preceding context.

data is much more sparse. There exist intracranial datasets for pose [39], speech production [40], and
parts of speech [41], but none of these involve the complex natural language and concomitant visual
inputs available from movie stimuli. The most similar work to our dataset, Berezutskaya et al. [42],
presents participants with vastly less stimuli: a 6.5 minute short movie, compared to our average of
4.3 hours of movie per patient.

Already, the brain-recordings themselves, without annotation have proven useful for representation
learning, as we show in Wang et al. [43]. And combined with the transcribed audio tracks, these have
allowed for successful study of multimodal integration in the brain, as we show in Subramaniam et al.
[44]. Now, for the first time, we release the complete annotated recordings for all subjects, as well as
the accompanying Universal Dependency parse trees.
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3 Data

Dataset construction Stereoelectroencephalography (sEEG) neural recordings were collected from
10 subjects (5 male, 5 female), aged 4-19 years (µ ≈ 11.9, σ ≈ 4.6), under treatment for epilepsy at
Boston Children’s Hospital (BCH); see supplementary Table 2 for per-subject statistics. All subjects
were implanted with intracranial electrodes to localize seizure foci for potential surgical resection. All
experiments were approved by BCH/Harvard IRB and were carried out with the subjects’ informed
consent. IRB documents are available upon request, but are otherwise sensitive. Electrode types,
number, and position were driven solely by clinical considerations. Recorded data was anonymized,
and identifying patient information was redacted.

Task and stimuli Stimuli consisted of 21 recent animated/action Hollywood movies; see supple-
mentary Table 3 for per-movie statistics. On average, movies were 2.07 hours long (σ ≈0.68) and
contained 1,443 sentences (σ ≈333), 8,966 total words (σ ≈2068), 1,749 unique words (σ ≈315),
1,328 unique lemmas (σ ≈251), 1,218 nouns (σ ≈271), 610 unique nouns (σ ≈126), 1,343 verbs
(σ ≈293), and 508 unique verbs (σ ≈98). Each subject was given a choice of which movies to watch,
viewing an average of 2.6 movies (σ ≈1.7) corresponding to 4.3 hours (σ ≈3.6). For further details,
see Appendix A.3.

Data acquisition and signal processing Clinicians implanted subjects with intracranial stereo-
electroencephalographic (sEEG) depth probes containing 6-16 0.8 mm diameter 2 mm long contact
electrodes recording Intracranial Field Potentials (IFPs). Each subject had multiple (12 to 18) such
probes implanted in locations determined by clinical concerns entirely unrelated to the experiment,
informed by a functional analysis [45]. The number of electrodes per subject ranged between 106
and 246 (µ ≈167, σ ≈38) for a total of 1,688 total electrodes; see supplementary Table 2 for a
per-subject breakdown. Data collected during periods of seizures or immediately following a seizure
was discarded. For each electrode, a notch filter was applied at 60 Hz and harmonics before analysis.
No other processing (downsampling, filtering specific frequency bands, etc.) was performed on the
neural recordings. For further details, see Appendix A.4. Finally, the location of all electrodes was
identified and mapped to the common brain atlases (Desikan et al. [46] and Destrieux et al. [47]). For
the purposes of region analyses, electrodes in white matter are projected to the grey-white boundary
and assigned to the closest atlas region. Region analyses in this paper are given with respect to the
Desikan-Killiany atlas. See Appendix A.5 for further details.

Audio transcription and alignment For each movie, the timestamps for all words in the audio
were transcribed and timestamps for each word were found programmatically and then manually
corrected by trained annotators (see Appendix A.1 for further details). The pipeline developed for
this audio transcription and alignment effort is an independently useful source of annotated stimuli,
which can now be used for further experiments. We described this pipeline more completely in a
separate technical paper: Yaari et al. [48]. Part of speech tags and dependency parses were manually
corrected and speaker identity and scene labels were manually annotated from scratch by an in-house
expert hired at MIT.

Feature annotation To model the neural responses during the complex movies, we considered a
series of 16 features (Table 4). These features include 5 visual attributes (pixel brightness, global
optical flow magnitude, optical flow magnitude, optical flow angle, and number of faces, Figure 1d), 4
auditory attributes (volume, pitch, delta volume, and delta pitch, Figure 1e), and 6 language attributes
(GPT-2 surprisal, word time length, word time difference, index in sentence, word head, and part of
speech tag, Figure 1f-g). All of these features were aligned to and computed for each word. Table 4
provides a brief description of each feature, and their calculation is described in Appendix A.2.
Additionally, scenes and speakers were labeled for each movie. Scenes were extracted based on
camera cuts using PySceneDetect [49]. Each scene was labeled based on the corresponding image
environment and labels were extracted from the Places365 dataset [15]. Finally, for each sentence in
the audio transcript, the speaker identity was manually annotated (see Appendix A.2).

4 Quantitative analyses of language function with the dataset

Word onsets triggered strong neural responses After aligning the neurophysiological data to the
occurrence of words (Figure 1a-c), we assessed whether the neural responses were modulated by
word onset by comparing the mean activity in 5 pairs of consecutive windows of 100ms duration
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Figure 2: Alignment to word onsets reveals strong neural responses. a. Raster (top) and mean
(bottom) plots of neural activity aligned to word onsets (t = 0 ms) for an exemplar electrode (inset;
shown in red) in the left superior temporal sulcus. Each line in the raster is a separate word (> 6,000
words) in the movie. Shading in the mean plot indicates standard error. Asterisks indicate the
significance (double-tailed paired t-test) of the response, measured by comparing mean activity in pre-
and post- word-onset intervals (see Section 4). A GLM was fitted to predict the average response in
the 500ms window after word onset (Section 4). The magnitude of the beta coefficients for all features
is shown for the same example electrode (b) and averaged across all electrodes in the temporal lobe
(c). Features are shown colored by category (blue: language, orange: audio, purple: visual). Asterisks
indicate statistical significance of the beta coefficient for the example electrode (see Section 4).
Neural responses are shown from the same example electrode separated by (d) index in sentence, (e)
part of speech, (f) word length, (g) GPT-2 surprisal. Asterisks on horizontal brackets indicate the
significance of the neural response, i.e., the difference between pre- and post- word-onset activity, as
in (a). Vertical brackets show the differences in mean sub-sampled activity (see Section 4). In h, the
fraction of electrodes per regions for which a significant word-onset response can be observed even
after sub-sampling for visual and audio features is shown. The precise location of these electrodes is
shown in i.
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before (-500 ms to 0 ms) versus after (500 to 1000ms) word onset. We defined an electrode to be
word-responsive if it yielded a statistically significant difference in at least one of the 5 pairs (paired
t-test, p<0.05, Bonferroni corrected, see Appendix A.6). Figure 2a shows the neural responses of
an example electrode located in the left superior temporal sulcus (Figure 2a inset). The raster plot
(top) and average activity (bottom) show strong activation triggered by the onset of each word. This
activity can be readily appreciated for almost every word in the more than 7,000 words (raster plot)
of a single movie. Interestingly, the activity of this electrode begins to show a slight deviation from
baseline before the onset of words at time 0. The complex nature of natural stimuli like the movie
implies that multiple variables could in principle drive the neural responses. Indeed, the responses
to individual words in Figure 2a show a strong degree of heterogeneity. To gain insight into what
could drive these diverse responses, we considered a set of 16 visual, auditory, and language features
(Table 4, Figure 1d-g). We built a Generalized Linear Model (GLM) that included all 16 features. The
absolute value of the coefficients for each feature indicated how much each annotation contributed
to explaining the neural responses (Figure 2b). For this example electrode, auditory and language
features both showed a statistically significant contribution to explaining the neural response. Among
the strongest contributors were the four language features shown in Figure 2d-g. The average of all
coefficients across the 339 electrodes in the temporal lobe is shown in Figure 2c, for which we note
that the features with the highest averaged coefficients were the index in sentence, part of speech, and
delta volume (further regions shown in Figure 9).

To better understand the contribution of the language features with the largest coefficients for the
example electrodes, we plotted the neural responses for words that had different values for those
features. In Figure 2d, we separated the words of a movie into those that appeared early in a sentence
(quartile with lowest index in sentence, light gray) and those that appeared late in a sentence (quartile
with highest index, dark gray). The average neural responses for this example electrode revealed
notable differences between these two groups. Common to both groups, there was a deflection from
baseline well before t=0. Words with high indices led to reduced voltages and words with low indices
led to high voltages after t=0. In a similar fashion, we observed responses separated by nouns versus
verbs (Figure 2e), high and low word length (Figure 2f), and high and low GPT-2 surprisal (Figure 2g).
In all of these cases, words elicited neural responses across different features even as the neural
responses were modulated by those features. Similar conclusions for this electrode can be drawn
when considering auditory (supplementary Figure 8a) or visual features (supplementary Figure 8b).

Next, we asked whether the neural responses are due purely to language, and whether an audio and/or
visual explanation can be ruled out. Across all electrodes, we found that there exist 244 (≈ 16%)
electrodes for which there was a significant (p < 0.05, Bonferroni corrected) word response, after
controlling for all audio and visual features. The fraction of such electrodes per region is shown in
Figure 2h and the locations of these electrodes are shown in Figure 2i.

Sentence position modulates neural activity The results for the example electrode in Figure 2d
suggest that the position of a word within a sentence can have a strong impact on the neural responses.
To systematically evaluate whether neural signals are dependent on word position, we first categorized
words according to their linear position (Figure 3a), separating them into sentence onsets, sentence
offsets, and sentence midsets, which are the words that occur in between. Figure 3a shows the neural
responses from an example electrode located in left superior temporal gyrus. This electrode showed
stronger responses to sentence onsets (left) compared to midsets (middle) and offsets (right). These
differences were evident even in single words (raster plots, top), as well as in the average responses
(bottom) and are summarized in Figure 3b, which shows the mean neural activity for onsets, midsets,
and offsets in a 100ms window. Similar to our analysis in the previous section, we evaluated mean
neural activity at five evenly spaced 100ms windows, starting from the word onset. The activity
shown in Figure 3b was taken from the window with the most significant difference between onset,
midset, and offset activity (f-test, p < 0.05, Bonferroni corrected). Asterisks in Figure 3b denote the
significance of this difference.

It might be the case that sentence onsets could be associated with a confounding feature, such as
increased volume. We therefore separately plotted the responses to words in different sentence
positions for cases with high and low volume. The strong modulation by part of sentence persisted
across different volume levels (Figure 3c-d). Next, in addition to volume, we considered all the 16
features that we annotated in the movie, using a GLM model as illustrated in the previous section.
The feature with the third highest coefficient in the GLM model was the index in sentence (Figure 3e).
Running the GLM analysis for all electrodes revealed 235 electrodes (≈ 15% of total electrodes) for
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Figure 3: Neural signals distinguish between different positions within the sentence. a. Raster
(top) and mean (bottom) neural responses for an example electrode in the left superior temporal
gyrus (see electrode location on right) for words occurring at sentence onset (left), offset (right), or in
between (midset, middle). The format and conventions follow Figure 2a. The box-plots (b) show
the mean activity in a 100ms window. Asterisks show the significance of the difference between
activities (f-test, Bonferroni corrected). c. Neural responses from the same electrode separated by
trials with high volume (dark grey) or low volume (light grey). Vertical brackets and asterisks show
the difference between the two conditions (two-tailed t-test). In both cases, the difference due to
sentence position persists (shown by horizontal brackets and asterisks in d). e. Beta coefficients from
a fitted GLM for all features, colored by category (format as in Figure 2b). Coefficients shown here
are for the same electrode as in (a). f. Per region, the fraction of electrodes (shown as blue bars)
in each region for which there is a significant (p < 0.05, Bonferroni corrected) beta coefficient for
position in sentence and the fraction of electrodes (white bars) which exhibit a significant (p < 0.05,
f-test, Bonferroni corrected) difference in activity due to sentence position after controlling for
all confounds. g. The exact location of the electrodes from (f), shown as blue and white points
respectively, projected onto the surface of the brain.
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Figure 4: Sentence onsets are linearly decodable. A linear decoder is trained to classify portions
of the movies according to whether or not a sentence onset is occurring, based on the corresponding
neural activity. This decoding is done for activity in 0.25s windows, shifted in 0.1s increments, from
-1s before the sentence onset to 1s after the sentence onset. The peak decoding performance for an
electrode is the max ROC-AUC achieved across all increments. a. The spatial distribution of peak
decoding scores. b. Decodability, as a function of time for an electrode in the banks of the superior
temporal sulcus on the right hemisphere. c. The time course of decodability on the test set, for the
top 10 electrodes that had the highest peak ROC-AUC score on the train set, in the temporal lobe
and the frontal lobe. The test set is balanced between positive and negative examples so that chance
performance is 0.5. Together, these curves reveal that for sentence onsets, information is processed
before word onset enters the decoding window (dashed grey line). Error bars show a 95% confidence
interval over performance per electrode. Comparing the curves reveals the mirrored time course of
language processing in the frontal and temporal lobes. See supplementary Figure 6 for the same
analysis, performed for word-onsets.

which the sentence position feature has a significant (p < 0.05, Bonferroni corrected) beta coefficient
in the fitted GLMs (Figure 3f, Figure 3g blue dots).

Among these electrodes which we identified to be modulated by position in sentence, we also used a
different, more stringent test to determine the influence that the position in sentence has on mean
activity. For each of these electrodes, the analysis that was discussed previously with respect to
Figure 3c-d was repeated for all features. Across these electrodes, controlling for all co-occurring
features, revealed 114 electrodes (≈ 7% of total electrodes) that showed a significant modulation
by sentence position (f-test, p < 0.05, Bonferroni corrected). These electrodes were predominantly
located in the transverse temporal cortex and the banks of the superior temporal sulcus (Figure 3f-g).

The temporal-course of speech decodability reveals the dynamics of language processing We
also used a linear decoder to answer questions about when and where certain language induced
activity is available in the neural signal. To that end, we fitted a linear regression for every 250ms
interval in a [-1000ms,1000ms] window. As discussed in the previous sections, we had observed
language responses to be stronger at sentence onsets, so we first considered the case of trying to
decode whether or not a sentence onset was occurring. However, the case for generic word onsets
was also considered (see supplementary Figure 6), and is discussed below as well.

For each electrode, we created a training dataset of neural activity (see Appendix A.9). Positive
examples consisted of sentence onsets and negative examples were taken from portions of the movie
where no dialogue is occurring. We fit a regression on the train data, validate using 5-fold cross
validation, and report the ROC-AUC on the test set. Figure 4a. shows the peak decoding performance
per electrode. Here, the peak performance is the maximum performance achieved over the course
of the entire considered time interval. Figure 4c shows the test-set performance per time interval in
the temporal and frontal lobe, averaged across the 10 electrodes that had the highest peak decoding
performance on the train set. In the frontal region, decoding peaked later than in the temporal region
(300ms vs 100ms). We performed the same decoding for generic word onsets (see Figure 6). Here

8



we found a similar pattern as in figure Figure 4. Decoding in the temporal lobe reached a peak at
200ms, compared to 300ms in the frontal lobe.

Finally, we also attempted to linearly decode the noun vs. verb distinction in the brain (supplementary
Figure 7). We saw that the noun vs. verb distinction is most decodable in the frontal lobe, where
decoding performance peaks after word onset (t = 400ms).

5 Conclusion

The Brain Treebank has a unique combination of large scale, high temporal resolution, high spatial
resolution, naturalistic stimuli, and many layers of manual annotation. Because naturalistic stimuli
contain many uncontrolled co-occurring features, scale is critical in order to find natural experiments
with controls post-hoc. We demonstrate two such an experiments: first, how response to words and
sentences can be identified, even after controlling for co-occurring features, and second, how linear
decoding reveals the time course of word and sentence processing. This only begins to explore what
can be done with these data and annotations, and it remains to be seen what is detectable if more
powerful decoding tools are applied.

Limitations Subjects only watched each movie once, thus one cannot simply average over repetitions
of exactly the same stimulus. Although, each movie does repeat the same words and often shows the
same characters, naturalistic stimuli are harder to work with than controlled experiments. Subjects all
saw different movies, making the cross-subject analysis more difficult. At the same time, this means
that there are more opportunities to find interesting phenomena because of the diversity of the movies
that subjects saw. As with all studies that involve naturalistic stimuli, controlling for confounds
can be difficult. Intracranial recordings are only possible because subjects require neurosurgery for
some condition, in this case epilepsy; it is possible that this could result in some sampling bias.
Additionally, the corpus includes only movies in English, although we are adding Spanish movies
and subjects shortly. In this vein, we are actively working on collecting more data and hope that
others who intend to collect data can collect it for the movies we have annotated here. Tools and
techniques to run experiments on naturalistic data are much newer and more limited at the moment.

We have not begun to scratch the surface of the kinds of analyses possible with the Brain Treebank.
For example, we have never used the speaker identities and hardly exploited multimodality, nor have
we made use of the parses aside from the POS tags. We hope that the Brain Treebank will enable the
development of new tools and new kinds of neuroscientific experiments at scale with natural stimuli,
as well as bring the neuroscience, NLP, and linguistics communities closer together with a shared
resource that has components from each.
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A Appendix

A.1 Audio transcription and alignment

The audio track of each movie was first annotated by commercial services (Rev.com and
HappyScribe.com depending on the movie) and manually corrected by trained annotators. A
custom tool was developed to refine the alignment via an auditory spectrogram of 4 seconds at a
time and slowed-down audio track. Annotators were instructed to adjust the onset and offset of every
word to align with the spectrogram and their perception of when the word started and ended. The
audio annotation tool automatically played the audio segment corresponding to each word to allow
annotators to verify their work. As the audio was played a line marked the location of the audio
sample in the spectrogram in real time.

Since speech recognizers often misused or missed critical punctuation marks, these were inserted
by annotators manually. Sentences were then manually segmented. Annotators were instructed not
to use abbreviations, even if they are common. Annotators marked audio segments that consisted
of overlapping speech or signing. These were removed from the dataset. All foreign language
was marked and removed from the dataset. Annotators were instructed to transcribe literally, i.e,
contractions were used in the transcript only when spoken as such. Similarly, foreshortened words,
e.g., goin’ vs going, were transcribed as such when used by speakers. Cardinal numbers were spelled
out. Longer numbers were spelled out as spoken, including conjunctions such as “and”. All overheard
words were transcribed, even when they could not easily be localized on the spectrogram, for example,
short words such as “to” can sometimes be heard but no specific segment of the spectrogram seems
to correspond uniquely to such words. In this case annotators were asked to mark their onset and
offset as they heard the words. Transcripts are as spoken, without correction, even when the speaker
erred omitting a word or using a word inappropriately.

A.2 Feature annotation

We extract 16 features that were included in the analyses (see Supplementary Table 4). Visual and
auditory features are computed over a fixed 500ms window after word onset.

Visual features The visual scene scalar features were extracted from the middle frame presented
during a word utterance via OpenCV 4.4.0 [50]. Brightness was quantified as the average pixel HSV
value channel. Flow vectors were computed as dense optical flow over grey-scale frames via the
OpenCV calcOpticalFlowFarneback function (pyramid scale 0.5, 5 levels, window size 11, 5
iterations, pixel neighborhood of 5, and smoothing of 1.1). Number of faces per-frame was estimated
via the OpenCV CascadeClassifier function with the Haar cascade frontal face default classifiers
over gray-scale frames (scale factor: 1.1, minimum neighbours: 4).

Auditory features The auditory scalar features were collected with the Python Librosa package
(0.7.2) [51], an open source audio analysis library. Sound intensity and mean frequency of the audio
track during word utterance were estimated, as well as their change relatively to the preceding 500ms
window. The average intensity of the audio segment was computed as the root-mean-square (RMS)
(rms function, frame and hop lengths 2048 and 512 respectively) of that segment. Pitch was extracted
using Librosa’s piptrack function over a Mel-spectrogram (sampling rate 48,000 Hz, FFT window
length of 2048, hop length of 512, and 128 mel filters).

Language features We used a state-of-the-art syntactic parser, Stanford NLP Group’s Stanza [52],
to parse every sentence. POS tags were recorded for every word. Surprisal was quantified as the
negative-log word probability. Word probabilities were estimated by a transformer model. GPT-2
probabilities were computed via GPT-2 large using the Hugging Face Transformers 3.0.0 library [53].
Word particle surprisal were combined by summation.

All Universal Dependency features were inferred using the standard English model of the Stanza
Natural Language Processing toolkit [52] and then manually corrected via a single trained annotator
over the course of a year.
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Speaker annotation Annotators doing speaker identification were instructed to use the characters’
full names, insofar as they are known. If a character is unnamed, the annotator may identify them
with a brief description of their role.

Occasionally, a character had another identity that they went by. In Spider-Man: Homecoming, the
AI in Peter’s suit is known for more than half the movie as “suit lady,” until Peter finally decides to
give her the name “Karen.” In such situations, the annotator marked both identities, with whichever
identity they decide is primary listed first, and the secondary identity in parentheses. So, in the above
example, Peter’s AI is annotated as “Karen (suit lady)”

Because of our data set, we deal with quite a lot of super heroes with secret identities. If a super
hero was in costume, annotators identified them by their super hero name. Out of costume, they
were identified by their birth name. When they are partially in costume (say, they’re in costume, but
they’ve taken off their mask), annotators identified them by their super hero name, followed by their
birth name, separated by a forward slash: e.g. Spider-Man / Peter Parker

In situations where one character is pretending to be another, the guidelines bear some resemblance
to the guidelines for heroes that are partially in costume. Annotators identified them by the person
being imitated, followed by the true identity of the character, separated by a percent symbol. So,
for a good part of the movie Megamind, the titular character is pretending to be a museum curator
named Bernard. Dialog spoken by him during these moments should be annotated as “Bernard %
Megamind.”

Lines that had problems and therefore that need special attention can be identified using an asterisk.
Two of the most common situations where this cropped up were when multiple characters were
speaking in unison, or when a “sentence” actually contains utterances from multiple characters. In
the former situation, these were identified with the line with * multiple speakers. In the latter
situation, both speakers were annotated, with an asterisk between them e.g. “Peter Parker * Tony
Stark,” and an asterisk was added to the line of dialog at the point where one of them stops speaking
and the other begins.

A.3 Task and stimuli

Movies were extracted from DVDs and are unchanged other than being re-encoded to a fixed frame
rate (23.976 fps). Transcripts, and all annotations described in this work will be made publicly
available. Due to copyrights prohibiting the release of the raw stimuli (movies) source material,
multiple audio-visual sample clips and tools allowing users to verify alignment of their own movie
copies will be publicly provided.

Movies were shown in full to each subject. Movies were displayed via a custom video player created
in Matlab 2018b. The player ensured that the presentation was at a fixed frame rate to keep the audio
and video synchronized. The presentation of movies was accompanied by regular electrical triggers
sent to the neural recording system to enable accurate temporal alignment between the movie and the
neural data. A 15.4 inch (resolution 2880×1800) Apple MacBook Pro Retina was placed 60-100cm
in front of the subject. Subjects adjusted the volume and paused/resumed the movie as needed. The
movie was paused by the experimenter any time someone entered the room or when subjects were
distracted and was resumed when subjects could direct their full attention back to the movie. Subjects
could freely change position, but were instructed by the experimenter, who watched the movies with
the subjects, to remain focused on the stimulus or pause the movie. Subjects did not speak during the
presentation of the movie nor did they overhear any other speech other than that found in the movie.

A.4 Data acquisition and signal processing

Clinicians implanted subjects with intracranial stereo-electroencephalographic (sEEG) depth probes
containing 6-16 0.8 mm diameter 2 mm long contact electrodes (Ad-Tech, Racine, WI, USA)
recording Intracranial Field Potentials (IFPs) with 1.5 mm separation. Each subject had multiple such
probes implanted in locations determined by clinical concerns entirely unrelated to the experiment.
Data was recorded using XLTEK (Oakville, ON, Canada) and BioLogic (Knoxville, TN, USA)
hardware with a sampling rate of 2048 Hz.

During movie presentation, triggers were sent to a separate channel on the neural recording device
via a USB connection to a dedicated trigger box (Measurement Computing USB-1208FS) using the
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Psychtoolbox 3 Matlab package. Each pulse was logged with both its wall-lock timestamp and its
movie timestamp. Individual triggers were sent every 100ms. Specific events (movie start, pause,
resume, and end) were marked by bursts of triggers (10, 8, 9, and 11 respectively) separated by 15ms.
All triggers consisted of a 15ms electrical burst at a magnitude of 80mV. An automated tool found
triggers and aligned the movie and neural data.

A.5 Cortical surface extraction and electrode visualization

For each subject, pre-operative T1 MRI scans without contrast were processed with FreeSurfer’s
recon-all function with -localGI, which performed skull stripping, white matter segmentation,
surface generation, and cortical parcellation [54–73]. iELVis [74] was used to co-register a post-
operative fluoroscopy scan to the preoperative MRI. Electrodes were manually identified using
BioImageSuite [75], and then assigned to one of 68 regions (according to the Desikan-Killiany atlas
[46]) using FreeSurfer’s automatic parcellation. The alignment to the atlas was manually verified for
each subject. One subject (subject 5) had a large frontal lesion in the right hemisphere that prevented
alignment to an atlas. Electrodes from this subject were included in all analyses except for region
analyses and they were not plotted on the brain.

Corrupted signal electrodes (n = 114) with extensive durations of static signal recordings were manu-
ally removed from consideration prior to any downstream analysis. When determining significance,
Bonferonni correction was done according to the remaining number of electrodes.

Depth electrodes in the white matter were projected to the nearest point on that boundary, and were
labeled as coming from that region (for the purposes of region significance analyses). Of the 1,688
total electrodes, 1,504 of the electrodes were able to placed in this way into a particular region. The
relevant region analyses are shown in Figure 2h-i, Figure 3f-h, Figure 15e-f, Figure 4b, Figure 6b,
Figure 7b, Figure 10e.

This procedure is very similar to the post brain-shift correction methods used for electrocorticography
electrodes [76]. For visualization purposes, all electrodes identified to lie in the gray matter or on the
gray-white matter boundary were first projected to the pial surface (using nearest neighbors), and
then mapped to an average brain (using Freesurfer’s fsaverage atlas) for the visualizations shown in
the main text.

Example electrodes The electrode shown in Figure 2 is LT1bIb6 from Subject 2. The electrode
shown in Figure 3 is T1b2 from Subject 3. The electrode shown in Figure 4 is T1cIf8 from Subject
10. The electrode shown in supplementary Figure 15 is T1bIc6 from Subject 1.

A.6 Word responsiveness

To determine the word responsiveness of an electrode, we compared pre-onset windows to post-
onset windows (Figure 13). Precisely, we compared the mean activity in a 100ms window before
word onset to the activity in a 100ms window after word onset with a two-tailed paired t-test.
The windows were separated by an interval of 1s. This test was performed for absolute offsets of
[−0.5s,−0.4s,−.3s,−.2s,−.1s] (Figure 13). This is done to account for the fact that any one offset
may “miss” the neural response by chance (see Figure 13). An electrode is word responsive if at least
one of the tests shows a significant (after correction for multiple comparisons) difference between pre-
and post- onset activity. In such cases, we report the significance of the t-test with the lowest p-value.

A.7 Testing difference between conditions

When determining the significance of the difference between two conditions (Figure 2c, Figure 3b,
Figure 15a,c,d), we used a two-tailed t-test to compare the mean activity in a 100ms window for
the two conditions. Five t-tests are performed, at absolute offsets of [0s,0.1s,0.2s,0.3s,0.4s] and we
say that the two conditions result in different neural responses if there exists a test for which there
is a significant difference, after correction for multiple comparisons. In such cases, we report the
significance of the tests with the lowest p-value. As in the above section, this is done to account for
the fact that any one of the tests may miss the difference between the two conditions by chance.

18



A.8 GLM Analysis

GLM analysis was done for using pymer4 [77]. The input dataset consisted of a feature vector for
each word (token) in the movies that the subject watched. The feature vector consisted of the 16
visual, auditory, and language features listed in Table 4 that co-occurred with each word. All features
were normalized across the movie in which they occurred. The target was the mean neural response
in a 500ms window after word onset. For subjects that watched many movies, linear mixed effect
modeling was used, where the movie was taken to be a random effect.

A.9 Linear decoding

Model The model is a logistic regression.

Data pre-processing Neural data is decimated by a factor of 10. Data is normalized to 0 mean and
unit standard deviation. Normalization is done such that no data-leakage occurs (see below).

Dataset The sentence-onset decoding task requires the model to distinguish between neural activity
from an interval in the movie during which a sentence is beginning versus an interval during which
no speech is occurring. To obtain positive examples, for every sentence onset, we extract 2s of neural
activity, centered on the sentence onset. To obtain negative examples, we divide the movies into 3s
segments, and filter for segments that do not overlap with any speech time-stamps. The size of 3s
guarantees that there is at least a 500ms buffer between every positive example and every negative
example (see below). The dataset is balanced so that an equal number of negative and positive
examples occur. Data is drawn from all recorded movies per subject.

Training We are interested in answering the question, how does decodability vary across time? To
this end, we divide each example into 250ms intervals. Per each time interval, per electrode, we fit
a regression. Training was done on a single NVIDIA Titan RTXs (24GB GPU Ram) with 80 CPU
cores.

Evaluation Per electrode, we create an 80/20 train/test split. The model performance is reported on
the test set. Train/test splits are shared between electrodes in the same subject. In Figure 4b-c and
supplementary Figure 5, we select the top 10 electrodes with the highest score on the train-set (5-fold
cross-validation) per region, and report the performance of these electrodes on the test set. The same
is done in supplementary Figure 6b,d-e and supplementary Figure 7b,d-e.
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A.10 Part of speech modulates activity

Parts of speech are of particular importance for their fundamental role in linguistics and natural
language processing (NLP). Indeed, the two word classes, nouns and verbs, are widely recognized
to be among the few linguistic universals [78, 79]. Part-of-speech was a significant predictor in the
example electrodes shown in Figure 2 and Figure 3. Given their importance in language, we directly
compared the responses to nouns versus verbs (Figure 15). Figure 15a shows the responses of an
example electrode located in the left superior temporal gyrus (inset) which showed stronger responses
to verbs compared to nouns.

The GLM analysis showed that there were no electrodes which exhibited activity exclusively modu-
lated by part-of-speech. Instead, the neural activity was captured by multiple features as shown in the
previous examples. Figure 15b shows that the main feature for this electrode is the index in sentence,
followed by the part-of-speech and volume. Indeed, after separating the responses according to
the position in the sentence, there was a small but significant difference between nouns and verbs
for sentence offsets but not for sentence midsets and onsets (Figure 15c). The differences between
nouns and verbs persisted across high and low volumes (Figure 15d). There were no electrodes for
which a difference in part-of-speech was observed across all sub-samplings for all features. But there
were 69 electheretrodes for which part of speech has a significant (p < 0.05, Bonferroni corrected)
beta coefficient in the GLM analysis. Figure 15e shows the exact location of these electrodes and
Figure 15f shows the fraction, per region, of the part of speech significant electrodes. We also
found that the noun-verb distinction is linearly decodable (see Figure 7), with significant decoding
performance distributed across the brain (Figure 7a), and with the highest decoding performance
observed in the frontal lobe and cingulate (Figure 7b-e).

Finally, we observed a difference in the magnitude and timing of the peak neural response between
nouns and verbs (Figure 17). For each electrode, we computed the mean of the neural response,
averaged across all words. Restricting our attention to those electrodes which show at least a moderate
neural response (Cohen’s d > 0.1), we can compute the peak of that mean response (Figure 17b)
and observe that it is lower in the case of verbs at sentence onsets (µ ≈ 32.8,σ = 26.7 µV for verbs,
µ ≈ 36.7,σ = 29.4 µV for nouns), but higher in the case of verb midsets (µ = 33.4,σ = 23.7 µV for
verbs, µ = 31.6,σ = 25.1 µV for nouns). We also find the timing (Figure 17c) of the sentence midset
peaks and observe that it is later in the case of verbs (µ ≈ 188,σ = 313 ms for verbs, µ ≈ 77,σ = 360
ms for nouns).
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B Supplementary figures

Subj. Age Sex Movies Time (h) # Sent. # Words # Lemmas # Elec. # Probes
1 19 M 7, 18, 19 5.6 4372 27424 4489 154 13
2 12 M 2, 3, 4, 8, 9, 17, 21 13.5 9870 57731 9164 162 47
3 18 F 5, 11, 12 7.5 5281 31596 4547 134 12
4 12 F 10, 13, 15 3.7 4056 23876 4017 188 15
5 6 M 7 1.35 1282 7908 1481 156 12
6 9 F 6, 13, 20 2.8 3789 20089 3349 164 12
7 11 F 5, 13 3.08 3523 19068 2828 246 18
8 4 M 14 0.94 860 3994 537 162 13
9 16 F 1 1.80 1558 9235 1480 106 12

10 12 M 5, 16 3.08 3981 22147 3004 216 17
Table 2: All subjects language, electrodes and personal statistics. Columns from left to right are the
subject’s ID and information (age and gender), the IDs of the movies they watched (corresponding to
supplementaryTable 3), the cumulative movie time (hours), number of sentences, number of words
(tokens) and number of unique lemmas (canonical word forms), as well as the number of probes the
subject had and their corresponding number of electrodes.
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Unique Unique Unique
# Movie Year Length Sent. Words words Nouns nouns Verbs verbs
1 Antman 2015 7027 1558 9869 1944 1358 705 1545 580
2 Aquaman 2018 8601 1054 7233 1544 1069 520 1104 508
3 Avengers: Infinity

War
2018 8961 1523 8529 1750 1083 607 1317 495

4 Black Panther 2018 8073 1254 7580 1606 1093 553 1209 508
5 Cars 2 2011 6377 2051 11407 2037 1572 724 1664 577
6 Coraline 2009 6036 997 5433 1232 784 409 805 348
7 Fantastic Mr. Fox 2009 5205 1282 8461 1864 1229 681 1227 484
8 Guardians of the

Galaxy 1
2014 7251 1174 8295 1779 1096 603 1250 529

9 Guardians of the
Galaxy 2

2017 8146 1290 9405 1824 1224 626 1370 532

10 Incredibles 2003 6926 1521 9430 1954 1226 652 1557 591
11 Lord of the Rings

1
2001 13699 1514 10566 1998 1473 679 1487 598

12 Lord of the Rings
2

2002 14131 1716 11041 2065 1588 743 1619 646

13 Megamind 2010 5735 1472 8891 1726 1172 602 1347 496
14 Sesame Street Ep.

3990
2016 3440 860 4220 787 717 231 706 217

15 Shrek the Third 2007 5568 1063 7226 1590 977 568 1071 422
16 Spiderman: Far

From Home
2019 7764 1930 12189 1969 1459 668 1785 560

17 Spiderman:
Homecoming

2017 8008 2196 12295 2066 1583 777 1808 572

18 The Martian 2015 9081 1570 11374 2192 1757 812 1677 622
19 Thor: Ragnarok 2017 7831 1583 9683 1789 1195 599 1419 548
20 Toy Story 1 1995 4863 1320 7216 1510 1019 548 1027 395
21 Venom 2018 6727 1379 7937 1513 897 507 1217 433

Table 3: Language statistics for all movies. Columns from left to right are the movie’s ID, name, year
of production, length (seconds), number of sentences, number of words (tokens), number of unique
words (types), number of nouns, number of unique nouns, number of verbs and number of unique
verbs.
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# Feature Category Description
1 Pixel brightness Visual The mean brightness computed as the

average HSV value over all pixels
2 Global optical flow magnitude Visual A camera motion proxy. The maximal

average dense optical flow vector mag-
nitude

3 Global optical flow angle Visual As above, averaged over orientation (de-
grees) and selected by maximal magni-
tude

4 Optical flow magnitude Visual A large displacement proxy. The maxi-
mal optical flow vector magnitude

5 Optical flow angle Visual The orientation (degrees) of the above
flow vector

6 Number of faces Visual The maximal number of faces per frame
7 Volume Auditory Average root mean squared watts of the

audio
8 Pitch Auditory Average pitch of the audio
9 Delta volume Auditory The difference in average RMS of the

500ms windows pre- and post- word on-
set

10 Delta pitch Auditory The difference in average pitch of the
500ms windows pre- and post- word on-
set

11 GPT-2 surprisal Language Negative-log transformed GPT-2 word
probability (given preceding 20s of lan-
guage context)

12 Word time length Language Word length (ms)
13 Word time difference Language Difference between previous word off-

set and current word onset (ms)
14 Index in sentence Language The word index in its context sentence
15 Word head Language The relative position (left/right) of the

word’s dependency tree head
16 Part of speech tag Language The word Universal Part-of-Speech

(UPOS) tag
Table 4: Extracted visual, auditory, and language features used to model the neural responses.
All features were used as regressors in the GLM analysis and controls in mean activity t-tests and
f-tests. The difference between 2 and 4 is that 2 is the magnitude of the averaged optical flow vector,
with the average being taken over all optical flow vectors on the screen, whereas 4 is the magnitude
of the largest individual optical flow vector on the screen.
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Figure 5: Decodability of sentence onsets per region. After decoding sentence onsets per electrodes
(see Figure 4), we find distribution of the peak test ROC-AUC scores in each region, for the 10
electrodes in each region with the highest cross-validation (kfolds = 5) ROC-AUC on the train set.
Boxes show quartiles and whiskers show 1.5× the interquartile range. Outliers shown as points
beyond the whiskers.
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Figure 6: Word onsets are linearly decodable and reveal the time course of language processes
in the brain. We perform the same analysis as shown in Figure 4, but for word-onsets, instead of
sentence-onsets only. A linear decoder is trained to classify portions of the movies according to
whether or not speech is occurring, based on the corresponding neural activity. This decoding is
done for activity in a 0.25s window, which shifts in 0.1s increments from -1s before word-onset to
1s after word-onset. The spatial distribution of decoding scores, shown in (a) and (b), after a max
has been taken over all windows, shows that word onsets are most decodable in the temporal and
frontal lobes. Decodability, as a function of time, shown in (c), (d), and (e), reveal that some word
onset information is processed before word onset enters the decoding window (dashed grey line).
Averaging over time across the top 10 electrodes per region, as in (d) and (e), reveals the mirrored
time course of language processing.
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Figure 7: Part of speech information is linearly decodable. We perform the same analysis as shown
in Figure 4 for nouns and verbs. A linear decoder is trained to classify words as either nouns or verbs,
based on the corresponding neural activity. This decoding is done for activity in a 0.25s window in
0.1s increments. The spatial distribution of decoding scores, shown in (a) and (b), after a max has
been taken over all windows, shows that part of speech is most decodable in the frontal, cingulate,
insula, and temporal regions. Decodability, as a function of time, shown in (c, for an electrode in the
superior temporal lobe), (d), and (e), reveal that some part of speech information is processed before
word onset enters the decoding window (dashed grey line). Averaging over time across the top 10
electrodes per region, as in (c) and (d), reveals the time course of processing.
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Figure 8: Neural responses to word onsets are observable, even after controlling for visual and
audio features. a. Mean response to word onsets, after controlling for audio features for the same
example electrode as shown in Figure 2. The same conventions as Figure 2c are followed. Vertical
brackets and corresponding asterisks show the difference between conditions. Horizontal brackets
and asterisks show the significance of the word onset response. b. Mean response to word onsets,
after controlling for visual features. In both (a) and (b), significant response to word onset can be
observed, even after controlling for audio and visual features respectively.

Figure 9: Magnitude of beta coefficients, averaged per region.
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Figure 10: Neural responses distinguish high and low surprisal. a. Raster and mean plots aligned
to word onsets for an example electrode in the right superior temporal gyrus (see inset in d; this is the
same electrode as shown in Figure 15) separated by high and low surprisal. The difference between
high and low surprisal words remains even after controlling for other features, such as part of speech
(b) and position in sentence (c). GLM analysis reveals that activity in this electrode is modulated
in part by surprisal, as well as by other features (d). There are 29 electrodes where surprisal has a
significant beta-coefficient; these are all located in the superior temporal lobe (e).
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Figure 11: The (absolute value) of Pearson’s r between input features, averaged across movies.
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Figure 12: Neural response decreases as a function of position in the sentence. Making a more
fine-grained examination of sentence position, we observed a trend in which mean activity decreased
monotonically with the index in the sentence. (a) The neural response per index in sentence is shown
for the first eight sentence positions for an electrode in the left temporal lobe (same electrode as
shown in Figure 15). (b) The mean activity for this same electrode (location shown in inset) is taken
for a [0ms,500ms] window after word onset. The box shows the quartiles, while the whiskers show
1.5 × the interquartile range, over all words at a given position. (c) Taking the mean of the magnitude
over this same window for all word responsive electrodes shows the same trend. Error bars show
a 95% confidence interval over electrodes. A word-responsive electrode is defined, as in Figure 2,
as an electrode that shows a significant difference between pre- and post- onset activity. Here we
restrict our attention to those electrodes (n = 116, locations shown in inset) for which this difference
has at least a moderate effect size (Cohen’s d > 0.1). Note that we do not believe this result stands
in opposition to previous findings, such as in [80], foremost because we consider a much different
distribution of sentences in our work. The sentences shown to subjects in this work cover a wide
variety of forms, and importantly, are usually part of a longer dialogue. To make a direct comparison
with previous studies of sentence processing, a more fine-grained inventory of sentence types should
be made over the movie transcripts.
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Figure 13: Schematic of word-responsiveness testing procedure. We test for word responsiveness
at five different points (i-v). The grey line shows mean neural response, averaged across a movie.
Shading shows standard error. At each point, a two-tailed paired t-test is performed between the
mean activity in a pre-onset (green) and a post-onset (red) window of 100ms. We use multiple tests
to account for the fact that sometimes the difference in activity may be 0 simply due to the absolute
offset of the windows (this is the case for iii). We say that an electrode is word-responsive, if there is
at least one test for which there is a significant difference between pre- and post- onset activity, after
correcting for multiple comparisons.

Figure 14: Unimodal responsive electrodes. We categorize features as either visual, audio, or
language. For each electrode, we use the GLM analysis to determine whether a given electrode’s
activity has a significant (after Bonferroni correction) response for features from a single category, to
the exclusion of the other categories.
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Figure 15: Neural responses distinguish nouns and verbs. a. Raster and mean plots aligned to
word onsets for an example electrode in the left superior temporal gyrus (see inset) separated by
nouns (bottom in raster plot, dark grey in mean plot) and verbs (top in raster plot, light grey in mean
plot). b. GLM analysis reveals that activity in this electrode is modulated by part of speech, as well
as by other features. c. For this electrode, a significant difference between nouns and verbs does
not remain for the sentence onsets condition, after sub-sampling over sentence position. d. But, a
difference does remain for all sub-sampled conditions, when controlling for other features, such as
volume. Using the GLM analysis, allows us to judge the influence of part-of-speech on a per-word
basis. e. The fraction of electrodes, per region, of electrodes where part of speech has a significant
beta-coefficient (total n = 69); these are mainly located in the temporal and frontal lobes. f. The
exact location of these electrodes (blue) projected onto the surface of the brain.
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Figure 16: The other factors which influence activity in part-of-speech-sensitive electrodes.
An electrode is said to be sensitive to part-of-speech if a GLM fitted to mean neural activity has
a significant beta coefficient (p < 0.05, after corrections for multiple comparisons) for the part-of-
speech feature. Among all such part-of-speech sensitive electrodes (n = 69), the number of electrodes
that have other significant beta coefficients is shown.

33



Figure 17: Noun vs. verb peak amplitude and timing.. For each electrode, we consider the mean
signal. See, for example, (a) which shows the mean activity for an electrode in the STG (the same
electrode shown in Figure 15). For an electrode, we find the amplitude (horizontal lines) of the peak
mean activity and the timing of the peak (vertical lines). Across many electrodes, we observe a
difference in the peak amplitudes such that nouns induce a higher response than verbs for sentence
onsets, while verbs induce a higher response for offsets and midsets. The electrodes in (b) and (c) are
those electrodes which respond to language (see Figure 2d), with the additional condition that the
language response have at least moderate effect size (Cohen’s d > 0.1).
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C Data documentation

The brain recordings and annotations are released at the subject level, and can be thought of as the
raw source, from which derivative machine learning datasets may be created. An example of a dataset
derivation could be: segmenting the audio track by word boundaries and then training a decoding
model to map for neural recordings to word identity. Another example could involve segmenting
the recording into uniform intervals and then training a decoding model to predict average color on
screen. We release the recordings in their entirety to allow for this flexibility.

The website contains the following assets:

1. quickstart.ipynb A quickstart IPython notebook
2. localization.zip Spatial position of electrodes
3. subject_timings.zip Wall clock time of triggers used for synchronization with movie
4. subject_metadata.zip Movie metadata
5. electrode_labels.zip Semantic ID for electrodes
6. speaker_annotations.zip Speaker IDs for movie audio
7. scene_annotations.zip Scene cut annotations for movies
8. transcripts.zip Pre-computed features for movies
9. trees.zip Universal Dependency parse trees for movie dialogue

10. sub_<sub_id>_trial<trial_id>.h5.zip Neural recordings in HDF5 format

D Responsibility, License, Hosting Plan

Authors bear all responsibility in case of privacy violations. Authors release the data under a CC BY
4.0 license.

Data will be hosted on MIT CSAIL servers and will be accessible at the url https://
braintreebank.dev/. Backups will be kept across multiple machines. Hardware will be main-
tained by the MIT CSAIL Infrastructure Group: https://tig.csail.mit.edu/.
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