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11

Abstract State-of-the-art computational models of vision largely focus on fitting trial-averaged12

spike counts to visual stimuli using overparameterized neural networks. However, a13

computational model of the visual cortex should predict the dynamic responses of neurons in14

single trials across different experimental conditions. In this study, we investigated trial-by-trial15

inter-areal interactions in the visual cortex by predicting neuronal activity in one area based on16

activity in another, distinguishing between stimulus-driven and non-stimulus-driven shared17

variability. We analyzed two datasets: calcium imaging from mouse V1 layers 2/3 and 4, and18

extracellular neurophysiological recordings from macaque V1 and V4. Our results show that19

neuronal activity can be predicted bidirectionally between L2/3 and L4 in mice, and between V120

and V4 in macaques, with the latter interaction exhibiting directional asymmetry. The21

predictability of neuronal responses varied with the type of visual stimulus, yet responses could22

also be predicted in the absence of visual stimulation. In mice, we observed a bimodal23

distribution of neurons, with some neurons primarily driven by visual inputs and others showing24

predictable activity during spontaneous activity despite lacking consistent visually evoked25

responses. Predictability also depended on intrinsic neuronal properties, receptive field overlap,26

and the relative timing of activity across areas. Our findings highlight the presence of both27

stimulus- and non-stimulus-related components in interactions between visual areas across28

diverse contexts and underscore the importance of non-visual shared variability between visual29

regions in both mice and macaques.30

31

Introduction32

To predict the activity of neurons in the visual cortex, multiple studies have focused on correlat-33

ing external stimuli with trial-averaged responses (Hubel and Wiesel, 1962; Pasupathy et al., 2020).34

Between the stimulus and cortical neurons, there is a complex signal processing cascade involving35

multiple processing stages. Therefore, computational models of visual processing typically gloss36

over most of the relevant biological machinery in an attempt to fit average firing rates from images37

(Serre et al., 2007a; Yamins et al., 2014). A mechanistic understanding of the factors that govern38

firing in the visual cortex requires models that can capture the trial-by-trial transformations across39

those processing stages. Moreover, neurons throughout the cortex fire “spontaneously” in the40
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absence of any visual input. Thus, by definition, any model predicting neuronal activity that is ex-41

clusively dependent on visual stimulation does not account for such fluctuations. Previous studies42

in mice have revealed significant non-visual influences in neuronal activity in cortex, even in V1,43

partly accounted for by movement (Stringer et al., 2019b; Avitan and Stringer, 2022; Polack et al.,44

2013; Niell and Stryker, 2010; Dadarlat and Stryker, 2017). These observations contrast with a re-45

cent macaque study which did not find the same motor-related spontaneous activity in either V1,46

V2, or V3 (Talluri et al., 2023). Nevertheless, variables that are not related to movement, such as47

attention, expectation, and arousal, also modulate stimulus- and non-stimulus driven neuronal ac-48

tivity in monkeys (Reynolds and Chelazzi, 2004; Gazzaley et al., 2007; Okazaki et al., 2008; Gilbert49

and Li, 2013), potentially adding to the response variability across stimulus repeats and to neuronal50

activity in the absence of visual stimuli.51

Neuronal interactions between visual areas occur in the presence and absence of visual stimuli52

(Chen et al., 2022; Stringer et al., 2019b;Wosniack et al., 2021; Ringach, 2009; Avitan and Stringer,53

2022). Therefore, such interactions can and should be studied both as a function of sensory inputs54

and contextual cues but also in the absence of external stimulation or task demands (Chacron55

et al., 2003; Hsu et al., 2004; Ringach, 2009). A paradigmatic example of inter-area interactions56

is the series of synaptically-connected laminar (e.g. layer 4 → layer 2/3) and cortical areas (e.g.57

V1→V2→V4→IT) within the ventral visual stream (Lee et al., 2016; Felleman and Van Essen, 1991;58

Markov et al., 2014; Douglas and Martin, 2004; Wang and Burkhalter, 2007; Consortium et al.,59

2021). Due to feedforward, feedback, and horizontal connections in the ventral visual stream, the60

inter-areal interactions could represent shared visual and non-visual reliable information. Several61

studies examined in vivo interactions between visual areas in mice and macaques, focusing on62

the entire population level (Semedo et al., 2019, 2022; Tang et al., 2023; Morales-Gregorio et al.,63

2024), trial-averaged responses removing transient fluctuations (Semedo et al., 2019), neuronal64

activity in response to only one image presentation (Semedo et al., 2019, 2022), or in the absence65

of any stimulus (Morales-Gregorio et al., 2024). Here we investigated interactions between areas66

in single trials at the level of cortical layers or brain areas across different stimulus types or in the67

absence of visual stimulation, across different species, and across different recording techniques68

and temporal resolutions. We focused on multiple simultaneously recorded areas of the ventral69

visual stream to assess the stimulus- and non-stimulus-driven variability shared between cortical70

subnetworks. We found that it is possible to reciprocally predict neuronal activity, both during71

visual stimulation but also during spontaneous activity, and that this predictability depends on the72

intrinsic properties of each neuron, the degree of receptive field overlap, and the relative timing73

of activity across areas.74

Results75

Layer 4 activity predicts layer 2/3 activity and V1 activity predicts V4 activity in76

single trials77

We studied neuronal activity from two open datasets: mouse neurons in V1 layer 4 and layers 2/378

(L4 and L2/3; calcium imaging; Figure 1A) (Stringer et al., 2019a), and macaque multiunit sites in79

areas V1 and V4 (extracellular electrophysiology; Figure 1B) (Chen et al., 2022). The mouse neu-80

ronal recordings we used for this experiment were based on approx. 5,500 per mouse (n=4, Ta-81

ble 1) responding to visual stimuli (drifting gratings or static natural black and white images; to-82

tal of 7 recording days), in addition to “spontaneous” activity during approximately 30 minutes of83

gray/black screen presentation on 6 of the 7 recording days. The macaque recordings were based84

on 688 out of the 1,024 channels (n=1, Table 2) responding to visual stimuli (full-size static checker-85

board image, small and thin bar slow-moving in a small clockwise square direction; large and thick86

bar fast-moving in a big clockwise square direction; total of 5 recording days) in addition to spon-87

taneous activity during gray screen presentation in all recording days. There was also a lights-off88

condition, where the head-fixed monkey was free to open or close eyes for approximately 25 min-89
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utes in 3 our of the 5 recording days. We omitted some of the 1,024 channels with signal-to-noise90

ratio of less than 2, or that were considered “spurious” by the authors of the ope dataset (Chen91

et al., 2022).92

We examined two types of interactions between areas: inter-laminar (Figure 1C; mouse V1)93

and inter-cortical (Figure 1D; macaque). We used linear ridge regression to predict neuronal ac-94

tivity in one area from activity in the other area in single trials (Figure 1E) (Semedo et al., 2019).95

Performance was evaluated using cross-validation over trials and quantified as squared Pearson’s96

r (hereafter, “explained variance” or EV, Methods). Figure 2A shows sample neuronal activity from97

three example mouse V1 L2/3 cells during image presentation (black traces). Overlaid, the figure98

also shows the predicted neuronal activity (red). The predicted neuronal activity is shown as a99

function of the actual activity in response to every image presentation for the same example cells100

in Figure 2C. The top cell illustrates a case where the predicted activity closely matches the actual101

actual activity ( 𝐸𝑉 = 0.67), the middle cell shows a typical case (𝐸𝑉 = 0.39), and the bottom cell102

illustrates a case where the predictions deviated from the actual neuronal activity (𝐸𝑉 = 0.07). We103

focused on neurons deemed “visually responsive” (∼17% of total L2/3 neurons; Table 1, Methods,104

see results for all neurons in Figure Supplement 1). The ridge regression model predicted single-105

trial L2/3 activity from L4 activity across both types of visual stimuli with an average EV of 0.28 ±106

0.16 (mean ± stdev. across neurons, Figure 2E) whereas the shuffle control mean EV was 0.004 ±107

0.002 (see results for individual mice in Figure Supplement 1).108

In the macaque, trial-to-trial variations in V4 activity were predicted from V1 activity across109

the three types of visual stimuli. Example recording sites are shown in Figure 2B, D. The ridge110

regressionmodel predicted the single-trial responses in V4 activity from V1 activity with an average111

EV of 0.34 ± 0.15 (Figure 2F whereas the shuffle control mean EV was 0.005 ± 0.005. There were112

few sites that were not visually responsive in macaques; EV results for all sites are shown in Figure113

Supplement 1).114

In sum, it was possible to provide estimates of neuronal activity in single trials in both species,115

across different layers within primary visual cortex inmice and across different visual cortical areas116

in monkeys.117

Inter-cortical predictions are asymmetrical118

In the previous section, we demonstrated the possibility of predicting L2/3 activity from L4 activity119

and V4 from V1. We asked whether we could also predict neuronal responses in the opposite direc-120

tion. To directly compare predictability between directions in mouse and macaque, we matched121

the number of predictors (i.e., number of neurons/sites used to predict activity) and the degree of122

self-consistency (split-half 𝑟 values) by randomly subsampling in each layer or cortical region prior123

to computing the predictability metrics (Figure 3A, C, Methods).124

Inmice, it was possible to predict L4 neuronal activity from the activity of populations of neurons125

in L2/3 and there was no statistically significant difference between the two directions (𝑝 > 0.05,126

hierarchical permutation test, Figure 3B). When using the entire layer populations to predict each127

other’s neural activity (923-2,369 cells in L4, 5,420-7,980 cells in L2/3), L2/3 could predict L4 better128

than the reverse direction (𝑝 < 0.05, Figure Supplement 2G).129

Inmacaques, while we could also predict V1 activity from the activity of a population of neurons130

in V4, when controlling for neuron number and split-half correlation values, the EV fraction in the131

V1→V4 direction was higher than in the V4→V1 direction (𝑝 < 0.001, Figure 3D). Even without con-132

trolling for the number of predictors or their respective split-half correlation values (627-688 sites133

in V1, 86-115 sites in V4), we found better predictability in the V1 to V4 direction than the reverse134

(𝑝 < 0.001, Figure Supplement 2I).135

Predictability of neuronal activity is dependent on the visual stimulus136

We evaluated whether the predictability of neuronal activity varied with the type of visual stimulus137

presented to the animal. In mice, we compared the inter-laminar prediction of neuronal activity of138
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visually responsive neurons in response to drifting gratings versus natural images (Figure 4A). We139

could predictmouse L4 and L2/3 activity under both stimulus conditions (𝑝 < 0.001, paired permuta-140

tion test of prediction vs. shuffled frames prediction). Predictability was higher for drifting gratings141

than natural images in the L4→L2/3 direction (Figure 4B; 𝑝 < 0.001, hierarchical permutation test).142

In macaques, we compared inter-cortical predictability of visually responsive site recordings in143

responses to a slow-moving small thin bar, fast-moving large thick bar, and a full-size checkerboard144

image (Figure 4C). We could predict V1 and V4 activity across all stimulus types (𝑝 < 0.001, paired145

permutation test of prediction vs. shuffled frames prediction). The predictability was the highest146

in both directions for neuronal activity in response to a full field checkerboard images (Figure 4D).147

In the V1→V4 direction, the EV fraction was higher when predicting a slow moving small thin bar148

compared to a fast moving large thick bar (Figure 4D, left), where as the opposite was true for the149

V4→V1 direction (Figure 4D, right).150

Neuronal activity could be predicted even during spontaneous activity151

Given the dependence on the visual stimulus, wenext askedwhether it would be possible to predict152

neuronal responses in the absence of any visual stimulus, during “spontaneous activity”. We com-153

pared the predictability of stimulus-evoked activity in mice (drifting gratings and natural images)154

versus the predictability of activity recorded during gray screen presentation. This comparisonwas155

conducted in both visually (SNR >2 & split-half 𝑟 >0.8) and non-visually (SNR <2 & split-half 𝑟 <0.8)156

responsive neurons (n=3 mice; mouse MP027 did not undergo 30 min. of gray screen presenta-157

tion). In visually responsive neurons, there was a significant reduction in EV during gray screen158

compared to visual stimulus presentation (Figure 5A left, 𝑝 < 0.001, hierarchical paired permuta-159

tion test). In contrast, for non-visually responsive neurons, predictability was higher during the160

gray screen condition (Figure 5A right, 𝑝 < 0.001, hierarchical paired permutation test). Addition-161

ally, there was no correlation between neuronal predictability in the responses to visual stimulus162

presentations and in the response to gray screen presentations in visually responsive neurons163

(Figure 5B) but there was a strong correlation for non-visually responsive neurons (Figure 5C). The164

difference in predictability in the absence of a stimulus could in principle change according to the165

directionality in inter-laminar interactions. There was no statistically significant difference in the166

EV fraction between laminar directions (L4→L2/3 vs. L2/3→L4) using the same control population167

as in Figure 3B (Figure 5A-C and Figure Supplement 2H).168

In macaques, we focused on visually responsive sites since the majority of the neuronal popu-169

lation was visually responsive (Figure Supplement 1D). Additionally, an SNR of less than 2 (one of170

the requirements to define non-visual neurons in the mouse data) most likely reflects artefactual171

issues with the electrode recording the multiunit site (Chen et al., 2022). We compared inter-areal172

prediction of stimulus presentation activity (checkerboard images and moving bars), gray screen173

presentation, and during lights-off. Similar to the conclusions drawn from themouse data, the pre-174

dictability of neuronal activity was higher in response to stimulus presentation than to gray screen175

presentations (Figure 5D for checkerboard presentations, Figure Supplement 4D for moving bars;176

𝑝 < 0.001, paired permutation test). However, the EV fraction in the lights-off condition was sig-177

nificantly higher than during the stimulus presentations in both directions. Eye closure and sleep178

can induce global oscillations (Hohaia et al., 2022) and therefore may correlate neuronal activity,179

causing an increase in predictability. To test this idea, we further separated the lights-off neu-180

ronal activity into periods where the macaque’s eyes were open or closed. The EV was higher than181

stimulus presentation activity only during the eyes-closed period (Figure 5D). Unlike the mouse,182

macaque correlation of visual predictability between stimulus presentation and spontaneous ac-183

tivity was high across all types of spontaneous conditions (Figure 5E, Figure Supplement 4C). When184

assessing the inter-cortical prediction directionality during spontaneous conditions, we found the185

same asymmetrical relationship as in Figure 3, where V1→V4 EV fraction was significantly higher186

than V4→V1 prediction in both gray screen (𝑝 < 0.01, permutation test) and lights-off (𝑝 < 0.001,187

permutation test) conditions (Figure Supplement 2G).188

4 of 28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2024. ; https://doi.org/10.1101/2024.12.05.626981doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.05.626981
http://creativecommons.org/licenses/by/4.0/


Receptive field overlap and neuronal response properties impact predictability189

We investigated which neuronal properties are related to the ability to predict responses by com-190

paring EV and key indicators of neuronal response reliability and receptive field properties, in both191

visually- and non-visually responsive neurons, during either visual presentations or spontaneous192

conditions. First, we considered the following properties: (i) max 𝑟2 value (i.e., maximum squared193

correlation between each neuron in the predictor population and the predicted neuron), (ii) 1-vs-194

rest 𝑟2 (the squared correlation of one neuron’s activity across all stimuli with the mean neuron195

activity of the rest of the population), (iii) SNR of the predicted neuron, (iv) variance across stim-196

uli (computed for mice only, given that there were 32 different stimuli presented in all stimulus197

recordings in mice; macaque stimulus recordings included repeating the same checkerboard im-198

age), and (v) split-half 𝑟 (Methods). We plotted EV against each of these variables (mouse: Figure 6B,199

macaque: Figure 6E) and report the correlation coefficient between EV and each variable in the y-200

axis in Figure 6A (mouse) and Figure 6D (macaque).201

In mice, during both stimulus presentation and gray screen presentation, the most correlated202

property with a neuron’s inter-areal predictability was the max 𝑟2 (Figure 6A). For the other 4 prop-203

erties, there was a strong distinction between stimulus presentation (dark bars) and gray screen204

presentation (light bars): All 4 properties were positively correlated with the neural activity pre-205

dictability EV fraction during stimulus presentation but they were slightly anticorrelated with their206

predictability EV fraction during gray screen presentation. Because the split-half correlation calcu-207

lation averages out the non-stimulus-dependent variability in both halves of the trials, it showed208

a weaker correlation with EV, which depends on trial-by-trial modulation. The one-vs-rest 𝑟2 met-209

ric, which also examines trial-by-trial modulation and does not average split-half trials, yielded a210

stronger correlation with EV.211

When examining the relationship between 1-vs-rest self-consistency and inter-laminar predic-212

tion EV in mice, we observed a bimodal distribution of neurons: one group of neurons showed213

high EV despite having low self-consistency and in the other group EV correlated well with self-214

consistency (Figure 6B third column). The responses of neurons with low self-consistency also215

showed high EV during gray screen presentation. This bimodality was present in two out of the216

three mice we tested (MP031 and MP032; self-consistency and EV fraction relationships across all217

mice can be seen in Figure Supplement 5A). To better understand the responses of neurons with218

low self-consistency we projected out the “non-visual ongoing neuronal activity" from the neuronal219

responses (Stringer et al., 2019a) (Methods). This non-visual ongoing activity is deemed to be in-220

fluenced by spontaneous behavior (Stringer et al., 2019b). Projecting out this non-visual activity221

largely led to a unimodal distribution (Figure 6C). Removing the non-visual ongoing activity also in-222

creased the correlation between self-consistency and inter-laminar predictability (Figure 6C). This223

observation could be because the responses of neurons with low self-consistency can no longer be224

predicted, or because the responses of those neurons became more reliable and therefore were225

highly predicted. To distinguish between these two possibilities, we compared both the 1-vs-rest226

self consistency and the prediction EV before and after removing the non-visual activity. Removing227

the non-visual ongoing activity increased the self-consistency value across the three mice (Figure228

Supplement 5C; 𝑝 < 0.001, paired permutation test). Interestingly, the inter-laminar EV fraction229

decreased in MP031 and MP032 mice, yet increased in MP033 (Figure Supplement 5D 𝑝 < 0.001,230

paired permutation test). When examining individual pairwise relationships in a fraction of highly231

predictable neurons, we found that some of the highly predictable neurons remained predictable232

after removing the non-visual activity whereas other highly predictable neurons dropped EV frac-233

tion dramatically.234

Inmacaques, one of the highest correlated propertywith inter-areal prediction EV across all con-235

ditions was also the max correlation value (Figure 6D, E first column). Other neuron properties like236

SNR, split-half correlation and one-vs-rest correlationwere also highly correlatedwith inter-cortical237

predictability EV(Figure 6D). Unlike the mouse, the split-half correlation was highly correlated with238
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EV fraction, although the relationship was highly non-linear (Figure 6D, middle column). Using the239

one-vs-rest squared correlation removed some of this non-linearity and further increased the cor-240

relation between it and the EV fraction (Figure 6D, third column). In addition, there was no bimodal241

distribution of neurons when relating one-vs-rest correlation and EV fraction.242

We conjectured that neurons that have overlapping receptive fields (RFs) should share more243

information, and therefore their responses would better predict each other than neurons with244

non-overlapping RFs. In addition, even when all neurons are exposed to the same stimulus (full245

field symmetrical checkerboard image, gray screen, darkness, etc), neurons with overlapping RFs246

may be more synaptically connected, resulting in better inter-cortical predictions. To test this hy-247

pothesis, we compared inter-cortical predictions in different ensemble of neurons with RFs that248

differed in their degree of overlap. This hypothesis was only tested in the macaque data because249

wedid not have access to RF estimates in themouse data. For each V4 sitewhose responseswe pre-250

dicted, we separated the predictors into two size controlled groups: one where all the V1 predictor251

sites had <10% RF overlap (sample of one V4 site, Figure 6F, top), and one where all the V1 pre-252

dictor sites had >80% RF overlap (sample of one V4 site, Figure 6F, bottom). A similar procedure253

was followed when predicting the activity of V1 neurons from V4 predictor neurons (Figure 6H).254

Inter-areal prediction was higher in the >80% RF overlap condition compared to the <10% RF over-255

lap ensembles in both directions and across all stimulus conditions (Figure 6G,I, 𝑛 = 110 total V4256

site recordings across all conditiosn, 𝑛 = 970 total V1 site recordings across all conditions). In most257

cases, predicting the >80% RF overlap ensembles was still lower than ceiling performance (when258

using all predictors with all types of overlap percentages; Figure 6E,F)259

Inter-areal predictability is both stimulus and non-stimulus driven260

The results in Figure 5 and Figure 6 pointed to components of the predictable responses that261

are stimulus driven and other components that are non-stimulus driven. To further examine the262

non-stimulus driven component, we reasoned that if the shared information between areas were263

strictly driven by the visual stimulus, then using the activity of a stimulus presentation repeat to264

one specific image could be used to predict the responses to any other stimulus repeat of the265

same image. On the other hand, if the shared activity does not have any stimulus response infor-266

mation, then the prediction model would not work when considering responses across repeated267

presentation of identical stimuli in different trials. To test these two opposing ideas, we compared268

the inter-areal prediction EV fractions using unshuffled versus shuffled trials. Shuffling was done269

across repeat trials of the same images (mice: Figure 7A, macaques: Figure 7D). In mice, one stimu-270

lus presentation was either a drifting grating or a natural static image. In macaques, one stimulus271

presentation was either the one checkerboard image, a large thick fast moving bar, or a small272

thin slow moving bar. In both species and in both directions, inter-areal prediction EV fraction per-273

sisted (𝑝 < 0.001, paired permutation test of shuffled trials prediction vs.shuffled frames prediction),274

yet the EV fraction decreased after shuffling stimulus repeats compared to before shuffling (Fig-275

ure 7B,E). In mice, neurons showed a bimodal distribution in terms of their response predictability276

in shuffled and unshuffled trials. For a subset of neurons, the EV fraction was still high in the shuf-277

fled condition, albeit their EV was still higher in the unshuffled case (Figure 7C; points below but278

near the diagonal line). For another subset of neurons the EV fraction during shuffled trials was279

much lower or even near zero. The responses of the latter group had the highest predictability dur-280

ing gray screen activity. In the macaque, there was no bimodal distribution, yet neurons farther281

away from the diagonal line also had a higher EV fraction during gray screen activity (Figure 7F). In282

addition, we examined whether shuffling repeat presentations of gray screen images (simulating283

spontaneous activity) would result in any prediction at all. We found a more profund decrease in284

inter-cortical performance (Figure Supplement 6B) with no neurons that remained as predictable285

during shuffled repeats compared to unshuffled repeats (Figure Supplement 6C,D).286
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Accounting for latency differences improves inter-areal activity predictions in287

macaque visual area sub-populations288

Given the latency differences in neuronal responses between V1 and V4 Schmolesky et al., 1998,289

we asked whether accounting for this latency could result in better inter-area prediction. To test290

this hypothesis, we offset the neuronal activity using different lags for each area (Figure 7G, H) and291

recalculated the ridge regression predictions. For each offset level, we calculated the percentage of292

neurons where the EV fraction peaked at that offset. For the checkerboard image, in the macaque293

V1→V4 predictions, the biggest percentage of neurons had a peak performance when there was294

no time offset between areas (Figure 7I, left). A substantial proportion of neurons had a peak295

performance for 25 ms or 50 ms offsets in the negative direction (i.e., V1 activity preceding V4296

activity). This distribution of peak EV valueswas only present during early visual responses (first 275297

ms of stimulus onset). In the macaque V4→V1 direction, there was a large proportion of neurons298

with peak EV when considering 25 ms to 50 ms offsets in the positive direction (i.e., V4 after V1,299

Figure 7I, right). These differences were apparent in the early part of the visual response, before300

250ms. When offsetting the neuronal responses to gray screen presentations, across all times and301

areas, the highest percentage of neurons with peak EV was when there was no time offset (Figure302

Supplement 6E,F).303

Discussion304

Neuronal activity in one brain region or layer within the visual cortex can be used to predict neu-305

ronal activity in another nearby and anatomically connected region or layer in single trials (Fig-306

ure 2). In monkeys, predictability was asymmetric: V1 activity better accounted for V4 activity than307

vice versa (Figure 3, Figure 7). This inter-areal prediction persisted across different stimuli (Figure 4)308

but also in the absence of a visual stimulus, during gray-screen and lights-off periods (Figure 5). The309

degree of predictability increased with signal-to-noise ratio, response variance, and the degree of310

overlap between receptive fields (Figure 6).311

In line with other studies in mice (Stringer et al., 2019b; Niell and Stryker, 2008; Andermann312

et al., 2011), we observed an approximately bimodal distribution of neuronal responses, with a313

large subset of neurons that do not show reliable responses to visual stimuli both in L4 and L2/3.314

Yet, even if these neurons are “non-visual”, at least within the set of stimuli and conditions ex-315

amined here, their activity remains highly predictable. This bimodal distribution dissipates when316

projecting out potential non-sensory ongoing activity (Stringer et al., 2019b, 2021). At the popu-317

lation level, neuronal encoding subspaces in mouse visual cortex have been shown to have little318

overlap between visual sensory and non-sensory (behavioral) information, with only one shared319

dimension (Stringer et al., 2019b). The visually unreliable, yet highly predictable, subset of neurons320

described here could be the neuronal group driving this orthogonality. As expected, the activity321

of “visual” neurons can be better predicted during visual presentation and is predicted almost at322

chance levels during gray screen presentation. In stark contrast, the activity of non-visual neurons323

can be predicted even better during gray screen presentation than during visual stimulation. There324

was no such bimodal distribution in the data from monkeys. One possibility is that there may be325

no (or very few) non-visual neurons in macaque V1 or V4. Indeed the overwhelming majority of326

neurons in V1 and V4 responded strongly to visual stimulation. Yet, the comparisons between the327

results in mice and monkeys reported here need to be interpreted with caution because the two328

datasets differ in terms of recording techniques (electrophysiology versus two-photon imaging),329

consequently also the temporal resolution (one millisecond versus hundreds of milliseconds), and330

the type of interaction studied (across areas versus across layers), in addition to any differences331

between species.332

In macaques, sites where the receptive fields (RF) of V1 and V4 overlap can better predict333

each other compared to other sites showing little RF overlap. This observation could reflect RF-334

dependent intrinsic connectivity between areas, but also RF-dependent shared inputs from other335
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areas like the thalamus. In the latter case, those putative shared inputs cannot be strictly depen-336

dent on visual inputs given that the effect of RF overlap persists even during gray screen conditions.337

Many computational models that aim to explain neuronal activity in visual cortex are based on338

feedforward signal propagation, with increased receptive field sizes, selectivity, and feature invari-339

ance along the visual hierarchy (Serre et al., 2007b; Kreiman, 2021; Connor et al., 2007). Consistent340

with this idea, we described an asymmetry in the degree of predictability, with V1 neurons explain-341

ing V4 responses better than the other way around. This observation persisted after controlling for342

neuronal count and split-half correlation values and was also apparent during the lights-off con-343

dition. In contrast, there was no asymmetry when comparing inter-laminar prediction directions344

in mice. The lack of asymmetry in inter-laminar prediction directions in mice could be due to the345

slow dynamics in calcium imaging, the lack of a clear inter-areal hierarchy, or differences between346

species.347

The asymmetry in directionality is also observed when implementing temporal delays to inter-348

areal prediction, consistent with processing delays across areas (Semedo et al., 2022;Gokcen et al.,349

2022; Schmolesky et al., 1998). A substantial proportion of neurons increased their inter-areal350

predictability when offsetting the times between areas, specifically in the direction that aligns their351

neuronal activities In contrast to the temporal delays associated with processing visual stimulation,352

during gray screen presentation, the majority of neurons was best predicted in the absence of353

any time offsets, suggesting that the internally generated neuronal activity during spontaneous354

conditions may be largely driven in a non-feedforward manner.355

Further evidence supporting the distinction between visually-driven and non-visually-driven in-356

teractions comes from the observation that trial repeat shuffling reduced, but did not eliminate,357

predictability in both mice and monkeys. In mice, when plotting shuffled vs. unshuffled activity,358

we encountered again a bimodal distribution, where a group of neurons was closer to the diago-359

nal line (their responses were predicted as well during the shuffled compared to the non-shuffled360

condition), and another group of neurons which were closer to the x-axis (their responses could361

not be predicted during the shuffled condition). The responses of the latter group were best pre-362

dicted during gray screen activity, suggesting that they mostly shared non-visual information. The363

predictive power in mouse V1 from layer 4 to layer 2/3 during spontaneous conditions has been364

recently shown in (Papadopouli et al., 2024), consistent with our findings. The overall area popula-365

tion decrease in predictability after shufflingmay be due to the influence of non-visual activity such366

as movement (Stringer et al., 2019b), especially since these non-visual stimulus effects have been367

shown to occur in the one-second timescale as in our study. In the macaque, context-dependent368

effects are likely not due to movement, since the monkey maintained fixation during the stimulus369

task, and visually-evoked activity is not driven by movement (Talluri et al., 2023).370

The results on the prediction of neuronal responses constitute a lower bound. First, we focus371

on linear predictability but other (non-linear) models could better capture neuronal activity. Sec-372

ond, and critically, the experimental data provide only a fraction of the inputs to a given neuron–373

excluding most (in macaque dataset) if not all (in mouse dataset) inhibitory inputs that are crucial374

for the organization of circuit andmicrocircuits in visual cortex (Jiang et al., 2015; Shen et al., 2020;375

Ibrahim et al., 2020; Schuman et al., 2021). Third, biophysical realistic models of the transforma-376

tion between inputs and outputs of a given neuron should include their dendritic locations and377

specific synaptic potentials (Park et al., 2019; Petousakis et al., 2023).378

We introduce a unifying method to evaluate inter-areal interactions in different types of neu-379

ronal recordings, timescales, and species. These interactions can be assessed in single trials, sep-380

arating visually-driven and non-visual contributions, and accounting for the directionality and dy-381

namics of neuronal responses. These efforts constitute an initial step towards systematically build-382

ing computational models that can account for the transformations from sensory inputs to their383

encoding in the cortex.384
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Methods385

Datasets. We used the mouse dataset from (Stringer et al., 2019a) containing calcium-imaging386

activity measurements from 43,630 neurons in layer 4 (L4) and 12,060 neurons in layers 2/3 (L2/3)387

in V1 of 4 mice during 32 different randomly interleaved presentations of either drifting gratings388

or gray-scale natural images (each one repeated more than 90 times), along with spontaneous ac-389

tivity during 30 minutes of exposure to a gray/black screen (Figure 1A, data acquisition details in390

(Stringer et al., 2019a,b)). Calcium imaging activity was recorded during stimulus presentations at391

a scan rate of 2.5 Hz or 3 Hz (each frame was acquired every 400 ms or 333 ms). The computed392

stimulus responses per stimulus presentation were averaged based on two frames immediately393

post stimulus onset. Cortical layers were determined using the 10-12 planar z-positions retrieved394

during themulti-plane calciumactivity acquisition. For stimulus-response and spontaneous record-395

ings, neuronal activity of each neuron was z-scored using its 30-minute gray screen spontaneous396

activity (mean gray-screen activity subtracted and divided by gray-screen activity standard devia-397

tion).398

We used the macaque monkey dataset from (Chen et al., 2022). This dataset consists of en-399

velope multiunit activity (MUAe) from 1,024 recording sites in one monkey in response to either400

multiple-day recordings of more than 60 repetitions of a full-size checkerboard image, moving401

small-thin or large-thick bars in 4 directions, gray screen presentations, or more than 30 minutes402

of baseline activity where the monkey was in a room with the lights off (Figure 1B). Neuronal ac-403

tivity was averaged over 25 ms non-overlapping bins. Activity duration was 300 ms, 400 ms, and404

1 s for gray screen, checkerboard, and moving bar presentations, respectively. For the recordings405

during visual stimulation, the neuronal activity was normalized by subtracting the mean activity406

during the gray screen presentations separately for each site.407

Visual responsiveness. A neuron or site was defined to be visually responsive if its signal-to-noise408

ratio (SNR) was 2 or higher and its split-half correlation value was 0.8 or higher. Due to the high409

number of repetitions of visual stimuli, the split-half correlation was skewed toward high values,410

which is whywe used a higher split-half correlation threshold than commonly used in other studies.411

In mice, the SNR for each neuron was calculated as:412

𝑆𝑁𝑅𝑚𝑜𝑢𝑠𝑒 =
< 𝑟𝑠𝑡𝑖𝑚 > − < 𝑟𝑠𝑝𝑜𝑛𝑡 >

𝑠𝑡𝑑(𝑟𝑠𝑝𝑜𝑛𝑡)
(1)

where<>denotesmean, std denotes the standard deviation, 𝑟𝑠𝑡𝑖𝑚 is the average activity in response413

to stimuli, and 𝑟𝑠𝑝𝑜𝑛𝑡 indicates the average activity over the 30-minute gray screen presentation414

activity.415

In monkeys, we followed the definition in (Chen et al., 2022) and calculated the SNR for each416

site as:417

𝑆𝑁𝑅𝑚𝑜𝑛𝑘𝑒𝑦 =
𝑚𝑎𝑥(< 𝑟𝑠𝑡𝑖𝑚 >)− < 𝑟𝑠𝑝𝑜𝑛𝑡 >

𝑠𝑡𝑑(𝑟𝑠𝑝𝑜𝑛𝑡)
(2)

using the peak activity during the checkerboard presentation for the signal, and the average gray418

screen neuronal activity as background (denoted as 𝑟𝑠𝑝𝑜𝑛𝑡).419

In mice, the split-half consistency was calculated by correlating the average activity for the 32420

stimuli in a randomly chosen half of the trials, with the average activity in the other half of the trials,421

followed by Spearman-Brown correction (used to correct for the division of trials by half). In mon-422

keys, during checkerboard presentations, the split-half consistency was calculated by correlating423

the average activity of the 16 timepoints (0–400 ms; 25 ms bins) of checkerboard presentation of424

25 random trial repetitions with the average activity of another non-overlapping 25 random rep-425

etitions, followed by Spearman-Brown correction. During moving bar presentations, the 40 time-426

points (0–1s; 25 ms bins) during 25 random trial repetitions were first concatenated across the 4427

directions (total of 160 timepoints), and then correlated to the concatenated averaged activity of428

another nonoverlapping 25 random trial repetitions, followed by Spearman-Brown correction. For429

all split-half consistency calculations, we randomly sampled trials 20 times.430
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Inter-areal regression. Let 𝐴𝑟𝑖,𝑡 be the activity of neuron or site 𝑖 in area 𝐴 at timepoint 𝑡, where 𝐴431

can be L4 or L2/3 in the mouse data and V1 or V4 in the monkey data. Neuronal activity from one432

area (e.g., mouse V1 L4 or macaque V1) was used to predict activity in the other area (e.g., mouse433

V1 L2/3 or macaque V4) using ridge regression (Figure 1E). The activity of each neuron 𝑖 in area A2434

was predicted from 𝑛𝐴1 neurons in area A1 as follows:435

𝐴2�̂�𝑖,𝑡 =
𝑛𝐴1
∑

𝑗=1
𝑤𝑖,𝑗 𝐴1𝑟𝑗,𝑡 + 𝑏𝑖 (3)

During fitting, we minimized the residual sum of squares (RSS), defined as:436

𝑅𝑆𝑆𝑖(w, 𝑏𝑖) =
𝑛𝑇
∑

𝑡=1
(𝐴2�̂�𝑖,𝑡 − 𝐴2𝑟𝑖,𝑡)2 + 𝛼

𝑛𝐴1
∑

𝑗=1
𝑤2

𝑗 (4)
wherew is the weight vector for predicting the activity of neuron 𝑖, 𝑛𝑇 is the number of images/time437

points and 𝛼 controls the regularization strength (𝛼 was tuned for each dataset with an indepen-438

dent sample and ranged from 103 to 105). Predictability for each neuron was evaluated using 10-439

fold cross-validation across trials and quantified as squared Pearson’s r, referred to as explained440

variance fraction (EV fraction) throughout.441

To remove temporal auto-correlation that would inflate the apparent prediction despite cross-442

validation, we removed training timepoints near the test timepoints closer than the decay window443

of the activity auto-correlation (mouse: 5 s; macaque: 1.5 s). The auto-correlation decay window444

was determined using time-series forecasting Ridge Regression (using 𝑟𝑡 to predict 𝑟𝑡+𝑑 , where 𝑑445

represents a delay). The delay was increased until the EV fraction approached chance.446

Prediction directionality. We compared predictability across layers in different directions (in447

mice: L4→L2/3 vs. L2/3→L4) and also predictability across areas in different directions (in448

macaques: V1→V4 vs. V4→V1) (Figure 3). To ensure that results were not dependent on the num-449

ber of neurons/sites, we randomly subsampled the number of neurons/sites of the area contain-450

ing the larger number of neurons/sites (L2/3 for mouse; V1 for macaques) to match the number451

of predictors in both directions (10 permutations, neuron count details in Table 1 and Table 2). To452

account for potential changes in intrinsic predictability, we ensured that the neurons from both ar-453

eas were matched in terms of the distribution of split-half correlation values so that the difference454

between individual area neurons/sites was less than 0.002. To assess the intrinsic predictability of455

neurons/sites in each region, the areas were used to predict themselves, where one neuron/site456

in the area was predicted by the remaining neurons in the same area. This “intra-areal” prediction457

was used to normalize EV fraction to compare directionality of prediction.458

Stimulus types and spontaneous activity comparison. We compared predictability for different459

stimulus conditions Figure 4, Figure 5). To compare inter-areal prediction across stimulus types460

and between the presence or absence of stimuli , the number of predictors (neurons or sites) and461

timepoints was sub-sampled to be the same across all datasets. In the macaque, the time spent462

recording the lights-off condition was much greater than during stimulus or gray screen presenta-463

tions. To account for the difference in time duration and therefore training size, we subsampled464

time periods to be the same across all stimulus, gray-screen, and lights-off, lights-off eyes open,465

and lights-off eyes closed conditions.466

Neuron properties. We compared different neuronal properties with predictability measure-467

ments (Figure 6). The SNR and split-half correlation has been defined above. The absolute max468

pairwise correlation value of each neuron/site 𝑖 in one area with all neurons in the other area was469

calculated as470

𝐴2𝑚𝑎𝑥𝑐𝑜𝑟𝑟𝑖 = 𝑚𝑎𝑥𝑗
(

|𝑐𝑜𝑟𝑟(𝐴2𝑟𝑖,𝐴1 𝑟𝑗)|
) (5)

where 𝐴2𝑟𝑖 represents the activity of neuron/site 𝑖 in area A2, which are correlated with the activity471

of every neuron 𝑗 in area A1 (denoted as 𝐴1𝑟𝑗 ).472

The one-vs-rest correlation was calculated as follows. In the mouse data, we correlated the473

activity for the 32 stimuli during 1 trial repetition with the averaged activity of the remaining trial474
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repetitions. In monkey, during checkerboard presentations, the one-vs-rest correlation was calcu-475

lated by correlating the activity of the 16 timepoints (0–400ms; 25ms bins) during 1 trial repetition476

with the averaged activity of the remaining trial repetitions. For moving bar presentations, the 40477

timepoints (0–1s; 25 ms bins) during 1 trial repetition were first concatenated across the 4 direc-478

tions (total of 160 timepoints), and then correlated to the concatenated, trial-averaged activity of479

the remaining trial repetitions. For all one-vs-rest correlation calculations, we held out each trial in480

turn and averaged across the samples.481

Receptive field overlap comparisons. In macaque, receptive field (RF) ellipses were calculated482

using center and edge locations in the dataset (Figure 6E, F). To calculate the percentage of RF over-483

lap between the neuronal sites to be predicted and the predictor, the intersection area between484

ellipses was retrieved using the Shapely python package, and divided by the area of the predicted485

site. Sites that had predictors that overlap both more than 80% and less than 10% were selected486

to compare inter-areal predictions. To control for predictor size, 14 random predictor sites from487

all the sites in each overlap type were subsampled (10 random samples without replacement).488

Trial repeat shuffling and time offset predictions. For the shuffled-trial experiments, we shuf-489

fled the predictor activity across repeat trials showing the same stimulus (Figure 7). (Thus, the490

stimulus order remained the same.) For the mouse time-offset analysis, the activity of predictor491

neurons was time-shifted in the positive or negative direction, with 1 bin corresponding to 1 stim-492

ulus presentation (800–900ms). For the monkey dataset, the predictor activity (400 or 1000ms per493

presentation, 16–50 bins of 25 ms each) was offset across time bins. We used sub-windows of 200494

ms to avoid window-length differences that would otherwise be introduced if we shifted the entire495

trial response.496

Data and code availability. All the computational models and data analysis code developed in497

this work is publicly available at this link: https://github.com/4sdch/inter-area-neural-prediction.git.498

All the data are publicly available for mouse: https://figshare.com/articles/dataset/Recordings_of_499

ten_thousand_neurons_in_visual_cortex_in_response_to_2_800_natural_images/6845348?file=500

12462734 (Stringer et al., 2019a) and for macaques: https://gin.g-node.org/NIN/V1_V4_1024_501

electrode_resting_state_data (Chen et al., 2022).502
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Figures and Tables 503

Figure 1. Predicting trial-to-trial and timepoint-to-timepoint neuronal activity between areas. A. Top: Experimental set-up to recordtwo-photon Calcium imaging activity data from layers 2/3 (L2/3) and layer 4 (L4) in rodent V1 upon presentation of gratings, natural stimuli orgray screen images (represented as 𝑖𝑚𝑔𝑛) (Stringer et al., 2019a). Deconvolved calcium imaging traces were z-scored using baseline activityduring 30 minutes of gray screen presentation before/after image presentation (Table 1). Bottom: Sample z-scored neuronal activity from 3different neurons in response to 100 presentations of drifting gratings (left) or gray screen presentations (right). Each activity value correspondsto one image presentation, and calculated as the average of two calcium imaging video frames (666 ms or 800 ms, see details in Methods). B.Top: Experimental set-up for the neuronal activity data from macaque V1 and V4 (Chen et al., 2022). Electrophysiological activity wassimultaneously recorded across 1,024 channels from 16 Utah arrays (Table 2). Bottom: Envelope multiunit spiking activity (MUAe) from 3different sites in response to multiple presentations of a repeated 400 ms full-field checkerboard image (left, baseline mean-subtracted), 200 msgray screen (middle), or during a lights-off condition (30 minutes total; right). Each value corresponds to aggregated MUAe activity in a 25 ms bin.
C. Overview of inter-laminar relationships examined in mouse V1. “lower-level" layer 4 (L4) neuronal activity is used to predict “higher level" layer2/3 (L2/3) activity (blue arrow) and vice versa (red arrow). D. Overview of inter-cortical relationships examined in macaque, where lower-level V1is used to predict higher-level V4 (blue arrow) and vice versa (red arrow). E. Illustration of linear ridge regression method used for inter-arealprediction. Neuronal activity in response to presentation number 𝑖 (labeled “𝑟𝑖”) at time 𝑡 from one area (e.g., mouse V1 L2/3 or macaque V1) wasused to predict activity in the other area (e.g., mouse V1 L4 or macaque V4) (Semedo et al., 2019). Predictability was evaluated using 10-foldcross-validation across presentation trials in mouse, and across 25 ms timepoints in macaque (Methods).
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Figure 2. Lower level activity can predict higher level activity in both rodent and primate brains. A. Example neuronal activity (z-scored,black) in response to stimulus presentations (drifting gratings) in mouse V1 L2/3 along with regression-model predictions (red) for a typical cell(2, middle), cell in the top 10% percentile of predictability (1, top), and bottom 10% percentile (3, bottom). B. Same as A for macaque MUAeactivity in response to a full-field checkerboard image in three V4 neuronal sites. C. Predicted neuronal activity versus actual neuronal activity inresponse to stimuli for the mouse L2/3 cells 1, 2, and 3 shown in A. Each point represents 800 ms corresponding to a stimulus presentation. 𝑟values (top left) indicate the correlation coefficient. D. Same as C for macaque V4 neuronal sites 1, 2, and 3. Each point represents one 25mstimepoint during the 400 ms presentation. E. Distribution of EV fraction in L4→L2/3 regressions of neural activity in response to visual stimuli incells that were deemed visually responsive in 4 mice and 7 recording days (𝑛 = 7, 265 neurons, Methods). Performance using 10-foldcross-validation across trials was quantified as squared Pearson’s r, referred to as explained variance (EV) fraction. The three vertical lines showthe 3 examples in part A, C. The blue solid shaded rectangle (here and throughout) represents the interquartile range (IQR) shuffle controlperformance, where the activity timepoints of one area were randomly shuffled. F. Distribution of EV fraction in V1→V4 regressions of neuralactivity in response to vistual stimuli in sites deemed visually responsive (One macaque, 5 recording days, 68–82 V4 sites recorded per day;
𝑛 = 376 total site recordings).
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Figure 3. Asymmetry in inter-cortical predictability in macaque but not inter-laminar predictability in mouse. A. Split-half reliability(Methods) for the 𝑛 = 298 neurons (per area) in mouse MP033 drifting gratings presentation recording of V1 L2/3 (green) and L4 (coral) used toperform directionality comparisons. Neurons were randomly sub-sampled to match the numbers and self-reliability in the two distributions.Here and throughout, asterisks indicate statistically significant differences using a hierarchical independent permutation test (10,000permutations): * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001; “n.s.” indicates 𝑝 > 0.05. B. Violin plots describing the distribution of EV fraction for L4→L2/3(green) and L2/3→L4 (coral) predictions across all 7 stimulus recordings (𝑛 = 1, 113 neurons per area). Violin plots (here and throughout)represent the distribution of neuron/site values, with width representing density and inner boxplot representing the interquartile range.Whiskers of innerbox represent range of the data. C. Split-half reliability for the 𝑛 = 74 sites (per area) in macaque checkerboard recording(date=090817) of V4 (green) and V1 (coral) used to perform directionality comparisons. D. Violin plots describing the distribution of EV fractionfor V1→V4 (green) and V4→V1 (coral) across all 5 stimulus recordings (𝑛 = 786 sites recordings per area).
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Figure 4. Stimulus type influences neuronal predictability. A. Illustration of the two types of stimuli (drifting gratings and static naturalimages) presented to the mouse during calcium imaging. B. Across-layer predictability in mouse V1 for each stimulus type (dark: driftinggratings, light: natural images) and prediction direction. C. Illustration of the three types of stimuli presented to the monkeys (Chen et al., 2022).The slow-moving small thin bar moved near the fixation point for 1 s in each of the four directions, while the fast moving large thick bar movedtowards the edges of the screen for 1 s in each of the four directions. The full-field checkerboard image was presented repeatedly (400 ms eachpresentation). D. Across-area predictability for each stimulus type (dark: slow bars, medium: fast bars, light: checkerboard) and direction.
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Figure 5. Spontaneous activity can also be predicted. A. EV fraction of neuronal activity in response stimulus presentation (dark violins) orgray screen presentation (light violins) for neurons deemed visually (left) or non-visually (right) responsive (Methods). B. Correlation between EVin responses to gray screen (y-axis) versus stimulus presentation (x-axis) in mouse V1 visually responsive neurons (L4→L2/3:left, green; L2/3→L4:right, coral). Diagonal line represents the line of equality (y=x). 𝑟 is the Pearson’s r coefficient. C. Same as B but for non-visually responsiveneurons. D. EV during stimulus presentations (checkerboard image, green), gray screen presentations (light green) or during lights off (darkgreen). The lights-off condition is further separated into periods when the eyes were open or closed. All lights-off conditions were sub-sampled(10 permutations) to contain similar training lengths as the stimulus and gray screen presentation recordings. E. Correlation between EV inresponses to gray screen (y-axis) versus stimulus presentation (x-axis) in macaque visually responsive neurons (V1→V4:left, green; V4→V1: right,coral). Diagonal line represents the line of equality (y=x). 𝑟 is the Pearson’s r coefficient. All recorded sites were pulled from the 3 recording daysof checkerboard presentations.
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Figure 6. neuronal predictability depends on SNR, stimulus response variance, and receptive field overlap. A. Correlation betweendifferent neuronal properties with the predictability of L2/3 (green) and L4 (coral) neuronal responses during the presence (dark color) orabsence (light color) of visual stimulus. Neuronal properties measured in mouse V1 include the correlation value of the most correlated pair toeach cell (max correlation value, squared), a modified metric of self-consistency (one-vs-rest correlation, squared), SNR, variance in the neuronalactivity in response to different stimuli, and the traditional metric of self-consistency (split-half correlation 𝑟) (Methods). B. Relationship betweenthree neuronal properties and their predictability in a randomly chosen sub-sample of neurons (𝑛 = 4, 000) for mouse L2/3 (green) and L4 (coral)neuronal responses from both drifting gratings and natural images conditions (combined). Hue represents the degree of predictability for thesame neurons during the 30 minutes of gray screen presentation (see color map on bottom right).C. 1-vs-rest square correlation relationshipwith predictability after projecting out dimensions of “non-visual" activity (using gray screen activity (Stringer et al., 2019a). D. Correlationbetween different neuronal properties with the predictability of monkey V4 (green) and V1 (coral) neuronal site recordings during the full-fieldcheckerboard presentation (dark color), gray screen presentation (light color), and lights-off condition (darkest color; solid, hatch lines, andhatch dots). Neuronal properties measured in the macaque visual cortex include the max correlation squared value, one-vs-rest squaredcorrelation, SNR, and split-half correlation 𝑟. E. Same as B for the macaque V1 and V4 neuronal sites. F. Top: Receptive fields of one sample V4neuronal site (green circle, array 2 electrode 187) and 14 randomly selected V1 neuronal sites as predictors (black circles), constrained on sitesthat share less than 10% receptive field overlap with the V4 site. Bottom: Receptive fields of the same neuronal site 187 and 14 randomlyselected V1 neuronal sites used as predictors, constrained on sites that share at least 80% receptive field overlap with the V4 site. G. Differencesin predictability of V4 neural activity (𝑛 = 110 site recordings) in terms of 14 V1 predictor sites with less than 10% RF overlap (light green), 14predictor sites with at least 80% RF overlap (green), and all predictors (dark green). Predictions were computed for recordings in response to thestimulus presentation (sliding bars and full-field checkerboard images), gray screen presentation, and lights off. H. Bottom and top left: Same as
F but for macaque sample V1 site 810. I. Same as D, but for V1 (𝑛 = 970 site recordings).
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Figure 7. Predicting neuronal activity across time reveals shared stimulus- and non-stimulus driven information in both mouse and
macaque visual cortex, along with latency and non-latency specific correlations in macaque V1/V4. A. Shuffled-trial-repeat experimentset-up for comparing unshuffled vs. shuffled prediction in mouse V1 L2/3 and L4. Neuronal activity in response to stimulus repeats was shuffledwithin their respective image. B. EV fraction for unshuffled (dark) and shuffled (light) trials in the L4→ L2/3 (green) and L2/3→ L4 (coral)directions. C. Relationship between shuffled (y-axis) and unshuffled (x-axis) trial repeat EVs in the mouse L4→ L2/3 (left, green) and L2/3→ L4(right, coral) directions. Hue represents EV fraction during gray screen activity. D. Shuffled-trial-repeat experiment set-up comparing unshuffledvs. shuffled prediction in macaque data. Neuronal activity (including all timepoints) in response to stimulus repeats were shuffled within theirrespective image. Since checkerboard presentation was only one stimulus, visualization of experiment only applies to the “Stimulus A" portion.
E. Same as B for macaque V1→ V4 (green) and V4→ V1 (coral). F. Same as C for macaque V1→ V4 (green) and V4→ V1 (coral). G. Illustration oftime offsets applied to macaque neuronal activity for inter-areal predictions. Instead of neuronal activity prediction between areas being doneon simultaneous activity (middle coral and bottom green box), the V4 neuronal activity (green) at time 𝑡𝑚 was predicted using V1 neuronalactivity (coral) at time 𝑡𝑚±offset, were offset represents 1–8 timebins (25 ms per timebin) before (if negative; left coral box) or after (if positive; rightcoral box) time 𝑡𝑚. Time offset experiment was done in both prediction directions (V1→ V4 and V4→ V1). H. Experimental set-up example forpredicting neuronal activity in V4 using V1 neuronal activity from 25 ms prior to V4 activity. Neural activity is in response to a repeatedcheckerboard image. A 200 ms section of the cortical area was used to represent the image presentation response, and was offset -1 timebin(25 ms) to predict a 200 ms target cortical area. During the prediction experiments, the 200 ms window was slid across the entire duration of thestimulus I. Time offset prediction results across both V1→V4 (left,green) and V4→V1 (right, coral) prediction directions. Each square correspondsto the fraction of neuronal sites whose neural activity were best predicted during that offset period and time window.
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Table 1. Mouse neuron counts used for inter-layer prediction and analyses. A total of 7 recordings were usedto perform prediction experiments. Each row corresponds to a recording day, containing the datasetrecording type (Mouse Dataset), total number of neurons, and visually responsive neurons (see Methods).Fourth column: In the directionality prediction experiments, the area containing more neurons (L2/3) wasfurther subsampled to match the number of L4 neurons. The dataset recording type names contain either“ori32” or “natimg32”, in addition to the mouse name (MP0-). “natimg32” represents dataset of the 32 naturalimage presentation. “ori32” represents dataset of the 32 drifting gratings.
Layer 2/3 Layer 4

Mouse Dataset Total visually
responsive

Subsampled
(directionality)

Total visually
responsive

natimg32 MP031 6615 1248 219 2367 219
natimg32 MP032 7980 1549 96 1441 96
natimg32 MP033 6646 1467 164 2010 164
ori32 MP027 6264 1029 211 2346 211
ori32 MP031 5423 455 78 1382 78
ori32 MP032 5420 274 47 923 47
ori32 MP033 5277 1243 298 1588 298
Total 43625 7265 1113 12057 1113

Table 2. Monkey site counts used for inter-cortical prediction and analyses. Dates 090817,100817,250717correspond to neuronal activity in response to checkerboard presentations, gray screen presentations, andlights off condition. Date 260617 corresponds to small thin moving bars presentation. Date 280617corresponds to large thick moving bars presentation. Fourth column: In the directionality predictionexperiments, the area containing more sites (V1) was further subsampled to match the number of V4 sites.
V1 V4

Date Total visually
responsive

Subsampled
(directionality)

Total visually
responsive

090817 627 553 74 96 74
100817 688 589 81 112 81
250717 645 537 71 86 71
260617 645 593 82 86 82
280617 645 518 68 86 68
Total 3250 2829 376 469 376

504

505
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Supplemental Material

Figure Supplement 1. EV fraction in mouse L4 neurons and macaque V1 neuronal sites and comparison between visual
and non-visual neurons/sites. A. Distribution of EV fraction in L2/3→L4 regressions in cells deemed visually responsive in 4mice
and 7 recording days. B. Same as A, but for macaque V4→V1 neuronal site regressions. C Distribution of visually (purple) and
non-visually (gray) responsive neurons in mouse L2/3 and L4. In mouse, we used a conservative criterion to select neurons to be
visually responsive, based on an average signal to noise ratio of over 2 and a split-half correlation value of at least 0.8 (more details
in Methods). D. Same as C but for V1 and V4 sites in macaque. E. Differences in EV fractions using filtering methods to determine
visually responsive neurons in mouse L2/3 and L4 across the 4 mice. Both a SNR of over 2 along with a split-half correlation value
of over 0.8 was used to determine a neuron to be visually responsive. F. Same as E, but for the one macaque V1 and V4 sites.
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Figure Supplement 2. Neuronal property differences between areas inmouse andmonkey. Differences in self-consistency
(A), SNR (B), andmax correlation value (C) between entire visually responsive neuronal populations inmouse L2/3 and L4 (indepen-
dent permutation test, here and throughout figure). D–F Same as A–C but for macaque V4 and V1. G. Differences in inter-laminar
predictability directions in mouse when using all predictors in their respective L2/3 and L4 layers. H. Differences in inter-laminar
predictability directions in mouse during gray screen presentation neuronal activity. I. Same as G, but for macaque V1 and V4. J.
Differences in inter-cortical predictability betweenmacaque V1 and V4 neuronal activity in response to gray screen presentations
and during lights off conditions.

24 of 28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2024. ; https://doi.org/10.1101/2024.12.05.626981doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.05.626981
http://creativecommons.org/licenses/by/4.0/


Figure Supplement 3. neuronal activity properties for different stimulus types. A. Sample stimuli for mouse drifting grating
and static natural images. B-D. Split-half correlation (B), SNR (C), and maximum correlation values (D) for each mouse layer and
stimulus type (see color scheme in part A. E. Sample stimuli for monkeys: full-size checkerboard, slow and fast moving bars. F-H.
Same as B-D for macaque V1 and V4 (see color map for each stimulus condition in E.
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Figure Supplement 4. Comparing stimulus presentation vs. gray screen activity predictions in mouse and macaque. A.
Differences in inter-laminar predictability between stimulus presentation and gray screen presentation neuronal activity in L2/3
across the three different mice (MP027 did not undergo gray screen presentation recordings). Left: visually responsive L2/3
neurons. Right: non-visually responsive L2/3 neurons. B. Same as A, but for mouse L4. C. Correlation coefficient values between
checkerboard presentation and gray screen and lights off conditions in macaque inter-cortical predictability. D. Differences in
inter-cortical predictability between moving bar presentation and gray screen activity in macaque V1 and V4 (paired permutation
test).
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Figure Supplement 5. Bimodal distributions of visual and nonvisually active inter-laminar predictability across mice. A.
Relationship between 1-vs-rest squared correlation and EV fraction in L2/3 (top, green) and L4 (bottom, coral) neurons across
all mice. B. Same relationship between 1-vs-rest squared correlation and EV performanc, but after projecting out “non-visual
ongoing” activity (Stringer et al., 2019a). C.Differences in 1-vs-rest squared correlation values between including and not including
non-visual ongoing activity dimensions across three mice (paired permutation test). D. Differences in inter-laminar predictability
between including and not including non-visual ongoing activity dimensions in L2/3 (top, green) and L4(bottom, coral) across three
mice. Sample subset of neurons with initial prediction values of over 0.4 visualized with lineplots.
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Figure Supplement 6. Predictability across time using gray screen neuronal activity. A. Sample averaged raw MUAe activity
in macaque V1 and V4 across the three different conditions. B. Differences in EV fraction between unshuffled and shuffled trial-
repeat activity during gray screen presentations (paired permutation test). Visualization of relationship between unshuffled and
shuffled EV fraction in V4 (C) and V1(D) during gray screen presentations. E. Percentage of neurons with max performance across
predictor time offsets in V1→V4 (E) and V4→V1 (F) directions during gray screen presentations.
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