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SUMMARY

Inferring object identity from incomplete information is a ubiquitous challenge for the visual system. Here, we
study the neural mechanisms underlying processing of minimally recognizable configurations (MIRCs) and
their subparts, which are unrecognizable (sub-MIRCs). MIRCs and sub-MIRCs are very similar at the pixel
level, yet they lead to a dramatic gap in recognition performance. To evaluate how the brain processes
such images, we invasively record human neurophysiological responses. Correct identification of MIRCs
is associated with a dynamic interplay of feedback and feedforward mechanisms between frontal and tem-
poral areas. Interpretation of sub-MIRC images improves dramatically after exposure to the corresponding
full objects. This rapid and unsupervised learning is accompanied by changes in neural responses in the tem-
poral cortex. These results are at odds with purely feedforward models of object recognition and suggest a
role for the frontal lobe in providing top-down signals related to object identity in difficult visual tasks.

INTRODUCTION

Visual object recognition is robust to an extensive range of image

transformations that produce different retinal projections of the

same stimulus.1,2 For example, we can easily recognize an ob-

ject when presented in awide range of positions, scales, or view-

points.3,4 A particularly striking example of the robustness of

visual perception is the ability to recognize an object when only

a fragment of it is shown. Fragmented object views are ubiqui-

tous during natural vision due to occlusion or poor illumination.

In these cases, the visual representation of the objects is incom-

plete, and yet our visual system can quickly, and seemingly

effortlessly, compensate for the missing information.5–11

It has been proposed that objects in the visual scene have fea-

tures that can be reliably extracted across a wide variety of

viewing conditions and which support perception.2,12–15 Several

experimental methods that allow the identification of such infor-

mative features have been proposed. For example, Gosselin and

Schyns16 proposed a technique called Bubbles that consisted of

presenting objects through apertures to identify specific ‘‘critical

features’’ that can aid recognition17–19 and are represented in

neural signals.20,21 Other studies have used imageswith different

levels of fragmentation or occlusion10,22 to investigate frequency

bands or time points of the event-related potentials that are

enhanced during recognition.23–25

Recently, Ullman and colleagues extended the notion of crit-

ical features in a study that combined large-scale human psy-

chophysical experiments and computer vision.26 By sequentially

cropping and blurring images of objects and assessing their

recognition rates, the authors identified minimally recognizable

configurations (MIRCs). MIRCs consist of image fragments

recognized by human participants but rendered unrecognizable

upon the introduction of minimal changes (Figure 1). Small re-

ductions in an MIRC image along horizontal and vertical dimen-

sions lead to a sub-MIRC image, with recognition rates that drop

by many tens of percentage points.26 This dramatic drop in

recognition performance from MIRCs to sub-MIRCs cannot be

accounted for by state-of-the-art computer vision models26

and highlights a critical difference between biological vision

and current computational models of vision.27

Occlusion removes large parts of an object from view but often

has a limited impact on perceptual recognition. In contrast,

MIRC and sub-MIRC images are very similar in pixel space,

but they produce dramatically different recognition perfor-

mance. Thus, MIRC images offer a unique opportunity to probe

visual recognition processes in the presence of stimuli that are

very similar at the retinal level while eliciting dramatic differences

at the perceptual level.28 To understand the neural mechanisms

that lead to recognition of objects from fragments, we set out to

investigate the neurophysiological responses in the human brain
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while participants identified MIRC and sub-MIRC images. We

recorded invasive neurophysiological responses from patients

with epilepsy implanted with electrodes for clinical purposes

and investigated the neural correlates of object recognition

by comparing neural responses recorded during recognized

MIRCs versus unrecognized sub-MIRC images. Furthermore,

participants rapidly learned to recognize sub-MIRC images after

exposure to the full object images. Such learning was accompa-

nied by neural changes that distinguished between identical im-

ages when they were recognized versus when they were not

recognized.

RESULTS

We recorded intracranial field potentials (IFPs) from 1,752 elec-

trodes (Figures S1 and S7; Table S1) in 12 participants (5 males,

11–43 years old, Table S2) implantedwith subdural or deep intra-

cerebral electrodes to localize their epileptic seizure foci. Partic-

ipants viewed grayscale images for 1 s and were then asked to

identify them verbally (Figure 1A). Participants were given no

feedback about the correctness of their responses.

Participants rapidly learned to recognize images in an
unsupervised fashion
Visual stimuli were a subset of the images used by Ullman and

colleagues in a previous large-scale behavioral study.26 The

stimuli included images from 10 object categories (Figure 1B)

or degraded versions of those images obtained by iteratively

cropping or changing the resolution of the original image.26 In

the original study, Ullman and colleagues tested stimuli at

many different levels of degradation and observed that there

were critical levels of degradation that led to a sharp drop in per-

formance. They operationally defined MIRCs as image patches

that could be reliably recognized on average by human ob-

servers and for which further reduction in either size or resolution

made the patch unrecognizable. A non-recognizable descen-

dant of an MIRC image was called a sub-MIRC (Figure 1C).

In our experiments, we presented image patches at different

levels of degradation. To minimize potential adaptation effects,

stimuli were presented in a mini-block design paradigm. Within

each mini-block, images from 2 out of the 10 categories were

presented, starting from the most degraded stimuli (sub-MIRCs,

red in Figure 1C), followed byMIRCs (blue in Figure 1C), and then

the original (undegraded) images (object, black in Figure 1C). The

same sub-MIRC stimuli were shown again at the end of each

mini-block (sub-MIRC post, dashed red in Figure 1C). Each

participant completed 5 consecutive mini-blocks so as to pre-

sent stimuli from all 10 categories. The order of presentation of

the categories was randomized across participants.

Figure 1D shows recognition performance across our pool of

12 participants. Consistent with the experimental results in Ull-

man and coworkers’ study and with the definition above, there

was a large drop in performance between MIRCs and sub-

MIRCs (p << 0.01, paired t test). Notably, this drop was sharp

and similar to that measured in the general population (71%

drop in the general population,26 87% drop in Figure 1D).

Furthermore, here, we observed a substantial increase in perfor-

mance between the initial and the final sub-MIRC blocks

Figure 1. Experimental design and behav-

ioral performance

(A) Temporal unfolding of each trial. A trial started

either 3 s after the end of the previous trial or upon a

key press from the participant. A fixation cross was

first shown for 400ms, followedby an image shown

for 1 s. After the image disappeared, the participant

was asked to verbally identify the image.

(B) The 10 images of objects or objects parts used

as base stimuli.

(C) Temporal order of the conditions presented in

the experiments. MIRC (blue) and sub-MIRC (red)

stimuli were images obtained by cropping or

changing the resolution of the base images. MIRC

images were defined as image patches that are

reliably recognized by observers and for which

further reduction in either size or resolution makes

the patch unrecognizable. A non-recognizable

descendant of an MIRC image was called a sub-

MIRC.26 Object (black) stimuli were a subset of

the base images in (B). The sub-MIRCs post (red

dashed line) stimuli consisted of the same sub-

MIRC images from block 1, presented again at the

end of the experiment, after participants were

exposed to the MIRC and object images.

(D) Recognition performance (fraction correct) for

each stimulus condition (n = 12 participants).

Notice the sharp drop in performance between

MIRC (blue) and sub-MIRC (red) images and the

increased performance in the sub-MIRC post (red

stripes) compared to the sub-MIRC images. Error

bars represent standard error of the mean.
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(‘‘sub-MIRC’’ and ‘‘sub-MIRC post’’ conditions in Figure 1D,

78% increase, p << 0.01, paired t test). In other words, the

same images that were unrecognizable in the first block

(sub-MIRC condition) became recognizable, almost on par with

the MIRC images themselves, after exposure to the MIRC and

object images (sub-MIRC post condition). This result demon-

strates a rapid increase in recognition rates of the sub-MIRC im-

ages after presentation of MIRC and object images in the previ-

ous blocks. Taken together, the results of Figure 1D suggest that

our pool of patients, although necessarily smaller than the orig-

inal large cohort reported by Ullman et al., showed behavior

concordant with that of the general population. In addition, these

results demonstrate a rapid and substantial increase in the

recognition of sub-MIRC images, after exposure to their associ-

ated MIRC and undegraded versions.

Minimal image changes between MIRCs and sub-MIRCs
elicited large differences in neural responses
To investigate the neural representation of MIRC and sub-MIRC

stimuli, we implemented several changes in the experimental

paradigm compared to the original work by Ullman and col-

leagues26 (see STAR Methods): (1) while the original study was

based on across-participant averages, here, we focus on

within-participant comparisons; (2) because of the within-partic-

ipant design, we first determined the perceptual threshold be-

tween MIRC and sub-MIRC stimuli separately for each image

and participant; (3) to assess the reliability of neural responses,

each stimulus was repeated 10 times, (4) to ensure that we could

reliably measure neural responses to sub-MIRCs without any

learning, the sub-MIRC stimuli were presented before the

MIRC stimuli.

We first investigated the neural correlates of the perceptual

differences between the recognizedMIRC and the unrecognized

sub-MIRC stimuli. An electrode was considered to be visually

selective if it was responsive to either MIRC or sub-MIRC stimuli

and the IFPs elicited by the MIRC images were significantly

different from those elicited by the sub-MIRC stimuli for at least

50 consecutive milliseconds in the interval [50,550]ms after stim-

ulus onset (see STAR Methods).

Figure 2 shows a representative electrode located in the left

inferior frontal cortex (Figure 2A). Consistent with previous

neurophysiological recordings,29 this electrode showed strong

evoked responses shortly after presentation of the visual stimuli.

These responses were stronger for MIRC (blue) and object

(black) stimuli, as shown by the large change in IFPs after stim-

ulus onset with respect to the preceding baseline (see average

responses in Figure 2B and raster plots showing responses in in-

dividual trials in Figure 2C). Furthermore, the neural responses

were significantly different for MIRCs versus sub-MIRCs in the

time interval marked by the black horizontal line (Figure 2D)

Figure 2. Neural responses distinguished MIRCs from sub-MIRC images

(A) Example electrode in the triangular part of the left inferior frontal gyrus shown on a template brain (Montreal Neurological Institute [MNI] coordinates = [�53.4,

27.9, 11]).

(B) Neural responses of the example electrode in the four experimental conditions (Figure 1C): object (black), MIRC (blue), sub-MIRC (red), and sub-MIRC post

(red dashed line). The curves represent themean intracranial field potential (IFP) response in each condition, aligned to stimulus onset (t = 0, vertical black dashed

line) and averaged across all trials. The shaded area around each curve indicates standard error of the mean. The number of trials in the different conditions is

shown in the legend at the bottom. The gray rectangle marks the interval considered for the analysis of neural responses.

(C) Same responses as in (B), showing all individual trials as raster plots (see scale bar in color map on the right). The color of the border of each box indicates the

experimental condition.

(D and E) Responses to MIRC and sub-MIRC stimuli (D), and sub-MIRC post and sub-MIRC stimuli (E). The black horizontal line in (D) shows the interval in which

responses to MIRCs and sub-MIRCs were statistically different (p < 0.01, Mann-Whitney U test).
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and for object versus sub-MIRC in a similar interval (Figure 2B).

We also observed a trend toward a difference between sub--

MIRC post versus sub-MIRC stimuli that did not meet our strict

statistical criteria (Figure 2E). It is important to emphasize that

at the pixel level, the difference between the MIRC and sub-

MIRC stimuli is minimal (Figure 1C). However, the two stimuli

led to considerable differences at both the behavioral (Figure 1D)

and neural (Figure 2D) levels. Across the entire dataset, we

observed electrodes that distinguished MIRCs and sub-

MIRC images, like the example in Figure 2, over an extended

network mostly encompassing the temporal (n = 48, 20% of

responsive electrodes in that area) and frontal (n = 58, 29%

of responsive electrodes) cortices (Figure 3A). A small number

of selective electrodes were also found in the occipital (n = 11,

10% of responsive electrodes) and parietal (n = 9, 9% of respon-

sive electrodes) cortices.

We next evaluated the time at which differential responses be-

tween MIRCs and sub-MIRCs emerged. The median time of

emergence of selective responses for MIRC versus sub-MIRC

stimuli was shorter in the temporal lobe (median = 343 ms)

compared to the frontal lobe (median = 368 ms), with no statisti-

cally significant difference between the two areas (Figure 3B,

Mann-Whitney U test = 1,599, p = 0.19; STAR Methods). Exam-

ination of onset times for responses selective to MIRCs

compared to sub-MIRCs in frontal areas revealed that they

were not unimodally distributed (Hartigan’s dip test = 0.1, p =

0.000230). Indeed, the distribution of the times when selectivity

started across different electrodes revealed two components:

a first ‘‘early’’ component, with onset times smaller than

420 ms (n = 34 electrodes, median = 329 ms) and a second

‘‘late’’ component, with onset times larger than 420 ms (n = 24

electrodes, median = 478 ms; Figure S6). Interestingly, the me-

dian onset time of early responses in frontal regions (median =

329 ms) was significantly shorter than the median onset time in

temporal regions (Mann-Whitney U test = 580, p = 0.021), which

in turn was shorter than the median onset time of late frontal re-

sponses (Mann-Whitney U test = 1,029, p = 6.4 3 10�8). Due to

limited electrode sampling, this bimodality could be verified in

only a single participant when examining the onset of selective

responses at the individual participant level.

These results suggest that during recognition of MIRC stim-

uli, the emergence of selective responses in frontal areas can

precede that in temporal areas. To further investigate this

point, we used functional interaction analysis to evaluate the

temporal dynamics of the activation of temporal and frontal

areas during recognition of MIRC stimuli. To have sufficient

statistical power, we focused on the participants who had

more than one responsive electrode in both the temporal

and frontal lobes (n = 6 participants), and we used generalized

partial directed coherence (gPDC31,32) to assess the informa-

tion flow between the frontal and temporal lobes. gDPC pro-

vides a measurement of the directed linear relationship be-

tween pairs of time series, allowing us to quantitatively

compare the strength, directionality, and statistical signifi-

cance of interactions between areas (see STAR Methods).

The two curves in Figure 4A show the average of the gDPC

across subjects and pairs of frontal and temporal electrodes

(n = 3,639 electrode pairs), and thus of the information flow,

in the frontal to temporal (green curve) and temporal to frontal

(blue curve) directions, respectively, with red shaded areas

signifying time intervals when the two curves are significantly

different (p < 0.05 based on a bootstrapping analysis, see

STAR Methods). In the time interval immediately following

the presentation of MIRC stimuli, gPDC was significantly stron-

ger in the top-down fronto-temporal direction (red-shaded

areas in Figure 4A). This prevalence of a top-down fronto-tem-

poral directionality disappeared shortly after 300 ms after

MIRC presentation; after that time, the flow of information

was either significantly stronger in the opposite bottom-up

temporo-frontal direction or equally strong in the two direc-

tions (Figure 4A). Next, we computed, for each frontal elec-

trode, the time at which the functional interactions to and

from all paired temporal electrodes was significantly stronger

in either the frontal-temporal or temporal-frontal direction. As

shown by the two distributions in Figure 4B, the median onset

time at which the interactions were significantly stronger in

Figure 3. Selective responses to MIRCs

versus sub-MIRCs exhibited spatial and

temporal specificity

(A) Locations of electrodes exhibiting significantly

different responses between MIRCs and sub-

MIRCs (n = 156). Selective responses were mostly

located in the temporal (n = 48) and frontal (n = 58)

cortex. Each circle represents an electrode; the

color codes the time at which an electrode started

to differentiate between MIRCs and sub-MIRCs.

(B) Distribution of selectivity start times for the

MIRC versus sub-MIRC comparison in the frontal

and temporal lobes (median temporal lobe =

343 ms; median frontal lobe = 368 ms). The dis-

tributions of onset times for electrodes located in

the occipital and parietal cortices were not plotted

here since only n = 11 and n = 9 electrodes,

respectively, were found. The brain locations of

the remaining n = 30 electrodes could not be

determined.
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the frontal-temporal direction was significantly earlier than

when it was stronger in the temporal-frontal direction (median

frontal / temporal = 96 ms, median temporal / frontal =

312 ms; Mann-Whitney U test = 675, p = 0.028).

Neural changes accompanied learning to recognize sub-
MIRC images
Participants could not recognize sub-MIRC stimuli when pre-

sented in the first part of each mini-block. However, the same

stimuli became recognizable after exposure to theMIRC and ob-

ject images (Figure 1D). We next asked how this rapid increase in

recognition performance was reflected in the neural signals by

comparing the IFP responses to sub-MIRC post versus sub-

MIRC stimuli.

The example electrode in Figure 2 showed a significant differ-

ence between the responses to MIRCs versus sub-MIRCs (Fig-

ure 2D) and a trend toward a difference between the sub-MIRCs

post versus sub-MIRCs, which did not reach statistical signifi-

cance (Figure 2E). The example electrode in Figure 5, located

in the inferior temporal cortex (Figure 5A), exhibited strong

evoked responses during the presentation of MIRC (blue) and

also during the presentation of sub-MIRC post (dashed red)

stimuli (Figure 5B). Similar to the electrode in Figure 2, the elec-

trode in Figure 5 distinguishedMIRC from sub-MIRC stimuli (Fig-

ure 5D). In contrast to the example electrode in Figure 2, the elec-

trode in Figure 5 also exhibited a significantly different response

to sub-MIRC post versus sub-MIRC images (Figure 5E). These

differences were also evident in single trials (Figure 5C). Notably,

sub-MIRC post and sub-MIRC stimuli are identical. Thus, this

difference in neural responsiveness reflects the rapid and unsu-

pervised learning processes that made sub-MIRC post stimuli

recognizable.

A comparison of the neural responses to sub-MIRC post

versus sub-MIRC stimuli across all electrodes revealed selective

responses reflecting recognition primarily for electrodes located

in the temporal lobe (n = 17, 9% of responsive electrodes in that

area). A small number of selective electrodes were also found in

occipital (n = 6, 6% of responsive electrodes in that area), parie-

tal (n = 6, 10% of responsive electrodes in that area), and frontal

(n= 5, 5%of responsive electrodes in that area) lobes (Figure 6A).

The median onset times of selective responses to sub-MIRC

post versus sub-MIRC stimuli in the temporal lobe was 252 ms

(Figure 6B).

DISCUSSION

We recorded neurophysiological responses from the human

brain during recognition of MIRC images and sub-MIRCs.26

MIRCs and sub-MIRCs exhibit small differences at the pixel

level. However, the participants showed a dramatic perceptual

transition, recognizing MIRCs while failing to recognize sub-

MIRCs (Figure 1D). After exposure to the MIRC and object

stimuli, participants could recognize the same sub-MIRC

images that they could not recognize initially (Figure 1D). These

behavioral observations were accompanied by temporally and

spatially specific neural responses. Selective responses to

MIRCs emerged in frontal and temporal cortex, and the interac-

tions between these two areas switched from an earlier frontal to

temporal direction to a later temporal to frontal direction (Fig-

ures 3 and 4). Furthermore, the rapid increase in recognition of

sub-MIRCs was associated with the emergence of selective re-

sponses predominantly in the temporal lobe (Figures 5 and 6).

In our experiments, the frontal lobe appeared to have an

important role in the recognition of MIRC stimuli. A role of this

brain region in the perception, recognition, and categorization

of objects33 is supported by experiments in monkeys showing

that the frontal cortex contains neurons selective for complex

visual stimuli.33–40 In particular, frontal areas seem to be specif-

ically involved in the processing of challenging stimuli, such

as ambiguous, occluded, or masked objects.23,24,41–43 For

instance, monkey prefrontal cortex neurons are more activated

by occluded objects that are hard to identify44 and inactivation

of ventral prefrontal cortex impairs encoding and recognition of

challenging images.45,46 Furthermore, frontal areas seem to

Figure 4. Temporal dynamics of the func-

tional interactions between temporal and

frontal areas during the perception of

MIRC stimuli

(A) Strength, as assessed by generalized partial

directed coherence (gDPC31), of the temporal to

frontal (blue curve) and frontal to temporal (green

curve) functional interactions measured in partic-

ipants (n = 6) that had at least two responsive

electrodes in both the temporal and frontal lobes.

The curves represent the average gPDC obtained

from n = 3,639 pairs of frontal and temporal elec-

trodes, respectively. Standard errors are shown,

but they are too small to be visible. Red-shaded

areas mark intervals where the interactions in one

direction are significantly stronger than in the

opposite direction. The functional interactions are

initially stronger in the frontal to temporal direction and they subsequently (after approximately 400 ms) become either equally strong in the two directions or

stronger in the temporal to frontal direction.

(B) Distributions, across all examined frontal electrodes, of the onset times at which the functional interactions were stronger in the frontal to temporal compared

to the opposite temporal to frontal direction (green) or the other way around (blue). Themedians of the two distributions were significantly different (Mann-Whitney

U test = 675, p = 0.028. Frontal / temporal: median = 96 ms; temporal / frontal: median = 312 ms).
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have a role in the learning and retrieval of perceptual cate-

gories.47–52 MIRC images are, by definition, challenging to

recognize as they contain only minimal information about the de-

picted object, and their recognition entails long integration

times.53 In line with that, Figures 3 and 4 suggest that recognition

of MIRC stimuli is associated with an initial top-down functional

interaction from the frontal to the temporal lobe followed by a

later bottom-up interaction in the opposite direction. This result

is corroborated by a frequency-resolved gDPC analysis showing

that, in agreement with recent proposals,54–57 the initial frontal to

Figure 5. Selective responses to sub-MIRC post versus sub-MIRC images

(A) Example electrode in the left inferior temporal cortex (MNI coordinates = [�32.7, �27.1, �23.6]).

(B) Neural responses of the example electrode in the four experimental conditions (C): object (black), MIRC (blue), sub-MIRC (red) and sub-MIRC post (dashed

red). The curves represent the mean intracranial field potential (IFP) response in each condition, aligned to stimulus onset (t = 0, vertical black dashed line) and

averaged across all trials. The shaded area around each curve indicates standard error of the mean. The number of trials in the different conditions are shown in

the legend at the bottom. The gray rectangle marks the interval considered for the analysis of neural responses.

(C) Same responses as in (B), showing all individual trials as raster plots (see scale bar in color map on the right). The color of each box’s border indicates the

experimental condition.

(D and E) Responses to MIRC and sub-MIRC stimuli (D) and sub-MIRC post and sub-MIRC stimuli (E). This electrode showed a significantly different response

between sub-MIRC post and sub-MIRC (E) and between MIRC and sub-MIRC (D) stimuli. The black horizontal lines in (D) and (E) show the interval in which

neuronal responses were statistically different (p < 0.01, Mann-Whitney U-test).

Figure 6. Sub-MIRCs post stimuli elicited

selective responses in the temporal lobe

(A) Locations of electrodes exhibiting signifi-

cantly different responses between sub-MIRC

post and sub-MIRC images (n = 39). Selective

responses were mostly located in the temporal

cortex (n = 17).

(B) Distribution of start times for selective re-

sponses for the sub-MIRC post versus sub-MIRC

comparison in the temporal cortex (median =

252 ms). The distributions of onset times for

electrodes located in the frontal, parietal, and

occipital cortices are not shown since only n = 5,

n = 6, and n = 6 electrodes, respectively, were

found.
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temporal flow of information is carried by lower temporal fre-

quencies in the beta range, while the later temporal to frontal

flow of information is mainly carried out by higher temporal fre-

quencies in the gamma range (Figure S8). Interestingly, a func-

tional interaction analysis on the sub-MIRC trials revealed only

a feedforward flow of information from temporal to frontal areas

(Figure S3). This result might seem at odds with the intuition

that the unrecognized sub-MIRC stimuli could produce ‘‘hypoth-

eses’’ in the frontal cortex that are fed back to temporal areas

without reaching confirmation. However, the functional interac-

tions analysis reveals directed interactions between neural re-

sponses in frontal and temporal areas. In the case of sub-MIRCs,

there is a feedforward interaction between temporal and frontal

responses that is related to visual processing of these stimuli.

The opposite frontal to temporal interactions are missing,

perhaps because any activity in frontal areas related to ‘‘hypoth-

eses formulation’’ did not produce a corresponding recognition-

related activity in temporal areas given that sub-MIRC stimuli

were, by definition, not recognized.

The frontal lobe is also implicated in speech production.58 It

can be thus hypothesized that the selective responses that we

observed in frontal areas might be at least partially due to the

preparatory activity related to the task of verbally reporting their

percept that the participants had to carry out. Two reasonsmake

this interpretation of our results unlikely. First, our participants

had to verbally report their percept in all conditions. The results

of Figure 3 were obtained by contrasting IFPs produced by

MIRC stimuli with those produced by sub-MIRC stimuli, and

this contrast should thus discount potential neuronal activations

related to speech preparation that are common to the two con-

ditions. Second, the contrast sub-MIRC post versus sub-MIRC

(Figure 6) produced virtually no selective responses in frontal

areas. Participants had to verbally report their percept also in

these two conditions, and the recognition rates of sub-MIRC

post stimuli were also comparable to those of MIRC stimuli (Fig-

ure 1D), which produced instead widespread selective re-

sponses in the frontal lobe (Figure 3).

Perception of MIRC stimuli elicited widespread activations also

in the temporal lobe (Figure 3). This brain region has been impli-

cated in the recognition of occluded and ambiguous stimuli.

Indeed, studies have shown signals in the human inferior temporal

cortex that may reflect the processing of occluded stim-

uli.20,23,24,59–61 In thesamevein, studies inmonkeyshave identified

populationsofneurons in infero-temporal cortexwhose responses

correlated with the spatial extent of the occluder or that declined

with the degree of occlusion of a to-be-recognized shape.44,62–64

The selective responses for MIRCs that we found in the temporal

lobe might thus also reflect the activation of neural processes

involved in their recognition. Thisproposal is consistentwithaneu-

roimaging study in humans that showed, in agreementwith results

reported here, that the MIRCs versus sub-MIRCs contrast gener-

ated extensive activations in several regions of the temporal

lobe.65 Taken together, the pattern of activations during the

perception of MIRC stimuli suggests that their recognition might

rely on the dynamic interplay of fronto-temporal neural processes.

Participants quickly learned to recognize sub-MIRC images

after being exposed, in previous blocks and with no feedback,

to the associatedMIRC and object images (Figure 1D). This strik-

ing difference in recognition performance was correlated with

concomitant changes in the neural responses, predominantly

in the temporal lobe (Figures 5 and 6). Because the sub-MIRC

post stimuli are, by definition, identical to the sub-MIRC stimuli

presented initially, these neural responses reflect the partici-

pant’s distinct perceptual experience between the initial and

subsequent encounters with these complex stimuli. The results

are reminiscent of a very interesting study by Tovee et al.,66 in

which they found that a change in the responses of single units

in the macaque temporal lobe during the observation of

degraded visual stimuli before and after exposure to their unde-

graded and fully recognizable versions.

Consistent with the fact that MIRC and sub-MIRC images are

very similar at the pixel level,26 their contrast produced a low

number of selective responses in low-level visual areas in the oc-

cipital lobe (n = 11; Figure 3). In agreement with this observation,

an even lower number of selective responses in occipital cortex

was produced by the contrast sub-MIRC post versus sub-MIRC

(n = 6, Figure 6), where the presented stimuli were indeed the

same in both conditions. These results agree with the notion

that the occipital lobe is mainly involved in the processing of

low-level characteristics of visual stimuli67 and further strengthen

the conclusion that recognition of MIRC stimuli relies on high-

level, rather than low-level, mechanisms.

For both MIRC and sub-MIRC post stimuli, the median time at

which selective neural signals emerged in the temporal lobe was

around 250–350 ms (Figures 3 and 6), which is longer than the

typical latencies of 100–200 ms reported for the decoding of ob-

ject identity from population responses.29,68,69 At the behavioral

level, MIRC stimuli are known to produce long response times,

which might be the result of long integration processes.53,70

Here, we specifically focused on these recognition processes by

comparing IFPs elicited by recognized stimuli (MIRC or sub-

MIRC post) versus those elicited by the unrecognized sub-MIRC

stimuli in the interval from 50 to 550 ms after stimulus onset. In

contrast, many earlier studies focused on the neural responses

to easy-to-recognize stimuli69 in a shorter temporal window

(e.g., [50, 300]ms29,68) after stimulus onset. Thus, the longer me-

dian onset time that we found may be related to the accumulation

of evidence that is needed to recognize the challenging MIRC

stimuli and the relatively long search interval that we considered.

In line with this interpretation, long latencies, similar to those re-

ported here, have been reported in previous human studies that

investigated perceptual closure processes by contrasting, similar

to our approach, challenging-to-recognize stimuli versus unrec-

ognized stimuli20,59,60,71 or the timing of conscious percep-

tion72–75 in a large temporal window after stimulus onset. Indeed,

as shown in Figure S4, visual responses to MIRC stimuli (i.e.,

MIRC responses significantly different from baseline) in the [50,

350]ms interval exhibited a sensibly shorter median latency (me-

dian = 152 and 208 ms in the occipital and temporal lobe respec-

tively; Figure S4A) that are in line with previous decoding studies,

with several of these responses starting already before 100 ms

(Figure S4B).

Limitations of the study
In Ullman et al.’s original study onminimally recognizable config-

urations, each participant was exposed to a single stimulus for
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each category and was never tested again; thus, all the compar-

isons were between participants.26 Our study focused on the

neural responses to such stimuli, and therefore several changes

were introducedwith respect to the original experimental design.

Our study focuses on comparisons within participants, which

required presenting different levels of degradation of the original

images in sequential order. As shown in Figure 1D, participants

recognize sub-MIRC images after exposure to the MIRC and ob-

ject images. To ensure reproducibility, stimuli are repeated mul-

tiple times in contrast to the single presentations in the Ullman

et al. study (see STAR Methods).

All the neural data in our study come from patients with

pharmacologically resistant epilepsy. As a consequence, the

number and location of electrodes are dictated solely by clinical

criteria. Although we had extensive coverage of brain locations

(Figures S1 and S7; Table S1), this sampling was necessarily

not exhaustive. Thus, other regions, not sampled here, may

also contribute to processing MIRC, sub-MIRC, and sub-MIRC

post stimuli.

The age range in our study was limited by the availability of pa-

tients with pharmacologically resistant epilepsy. Previous devel-

opmental studies show that by age 11, visual object perception

has several adult-like behavioral characteristics.76,77 Addition-

ally, the behavioral results in Figure 1D are consistent with previ-

ous work.26 However, it is possible that a much larger sample of

patients at different ages could help better delimit the develop-

ment of interactions between ventral visual cortex and frontal

cortex regions during recognition of complex images.

Conclusions
There has been exciting progress in developing computational

models that provide a first-order approximation to the cascade

of computations along the ventral visual cortex during object

recognition.78–81 These models can capture aspects of visual

recognition behavior in monkeys and humans82 and can also

approximate neural responses along the ventral visual cortex.83

Despite these successes, multiple pieces of evidence have high-

lighted that these models fail to account for the whole repertoire

of visual behavior and neurophysiology.84,85 In particular, these

models fail to account for recognition of MIRC stimuli.26 Chal-

lenging stimuli like MIRCs, and especially the sharp transition

from sub-MIRC to MIRC in the neural and behavioral responses,

provide important constraints to develop future models that

incorporate recurrent computations hypothesized to be critical

for recognition.
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34. Wilson, F.A., Scalaidhe, S.P.Ó., and Goldman-Rakic, P.S. (1993). Disso-

ciation of Object and Spatial Processing Domains in Primate Prefrontal

Cortex. Science 260, 1955–1958. https://doi.org/10.1126/science.

8316836.

35. Meyer, T., Qi, X.-L., Stanford, T.R., and Constantinidis, C. (2011). Stim-

ulus Selectivity in Dorsal and Ventral Prefrontal Cortex after Training in

Working Memory Tasks. J. Neurosci. 31, 6266–6276. https://doi.org/

10.1523/JNEUROSCI.6798-10.2011.
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cier, M.R., Lado, F.A., Mehta, A.D., and Honey, C.J. (2017). iELVis: An

open source MATLAB toolbox for localizing and visualizing human intra-

cranial electrode data. J. Neurosci. Methods 281, 40–48. https://doi.org/

10.1016/j.jneumeth.2017.01.022.

88. Ojemann, G.A. (1997). Treatment of temporal lobe epilepsy. Annu. Rev.

Med. 48, 317–328. https://doi.org/10.1146/annurev.med.48.1.317.

89. Destrieux, C., Fischl, B., Dale, A., and Halgren, E. (2010). Automatic par-

cellation of human cortical gyri and sulci using standard anatomical

nomenclature. Neuroimage 53, 1–15. https://doi.org/10.1016/j.neuro-

image.2010.06.010.

90. Dykstra, A.R., Chan, A.M., Quinn, B.T., Zepeda, R., Keller, C.J., Cormier,

J., Madsen, J.R., Eskandar, E.N., and Cash, S.S. (2012). Individualized

localization and cortical surface-based registration of intracranial elec-

trodes. Neuroimage 59, 3563–3570. https://doi.org/10.1016/j.neuro-

image.2011.11.046.

91. Geweke, J. (1982). Measurement of Linear Dependence and Feedback

between Multiple Time Series. J. Am. Stat. Assoc. 77, 304–313. https://

doi.org/10.1080/01621459.1982.10477803.

92. Granger, C.W.J. (1969). Investigating causal relations by econometric

models and cross-spectral methods. Econometrica 37, 424–438.

93. Kami�nski, M., Ding, M., Truccolo, W.A., and Bressler, S.L. (2001). Evalu-

ating causal relations in neural systems: Granger causality, directed

transfer function and statistical assessment of significance. Biol. Cybern.

85, 145–157. https://doi.org/10.1007/s004220000235.

94. Wen, X., Rangarajan, G., and Ding, M. (2013). Is Granger causality a

viable technique for analyzing FMRI data? PLoS One 8, e67428.

https://doi.org/10.1371/journal.pone.0067428.

95. G€urkan, G., Akan, A., and Seyhan, T.Ö. (2014). Analysis of brain connec-
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants were 12 patients (5 male, 11–43 years old, see Table S2) with pharmacologically- resistant epilepsy treated at Children’s

Hospital Boston (CHB) or John Hopkins Hospital (JHH). There was no participant selection based on age or gender. All the patients

participated in the same experiments and there were no patients allocated to separate experimental groups. The patients were im-

planted with intracranial electrodes to localize seizure foci for potential surgical resection.29,88 All procedures were approved by each

hospital’s institutional review board and were carried out with the participants’ informed consent. Electrode types, numbers, and lo-

cations were driven solely by clinical considerations.

METHOD DETAILS

Psychophysics task
Participants had to identify grayscale images presented at the center of a Mac Pro 15-inch laptop’s screen placed in front of them.

Stimuli were presented with a uniform gray ([128, 128, 128]) background, at an estimated screen luminance of around 150 nits. The

sequence of events within each trial is shown in Figure 1A. Participants were first presented with a black fixation cross on a gray

screen. After 400ms, the fixation cross disappeared, and an image was presented at the center of the screen for 1s. Images were

200 3 200 pixels in size and subtended approximately 5 3 5 degrees of visual angle. Finally, patients were shown a blank screen

with a question mark and asked to report verbally with a single word what they recognized in the image. The experimenter compared

these single-word responses with a list of acceptable words for each image to assess correctness. The list of acceptable words was

created by asking a different set of participants in the lab to describe the full object images with single words using unlimited pre-

sentation time. The participants’ responses were recorded, and no feedback about their correctness was provided. In total, 5,444

images were presented across all participants.

Visual stimuli
The images presented in our experiment were a subset of those used in the original Ullman et al. study.26The images were generated

starting from a set of 10 images representing objects or object parts from ten different categories (Figure 1B: plane, ship, fly, eagle,

horse, bike, car, eye, eyeglasses, and suit). For each image, Ullman et al. generated five descendants belonging to two types ob-

tained by iteratively cropping it or resampling it at a lower resolution respectively. They operationally labeled an image a ‘‘MIRC’’

if ‘‘it could be reliably identified by a human observer and none of its five descendants could reach a recognition criterion of

50%’’.26 A non-recognizable descendant of a MIRC is referred to as ‘‘sub-MIRC’’. Images could thus only post-hoc be labeled as

MIRC or sub-MIRC. The combination of the similarity at the pixel with the dramatic difference in recognition rates of MIRC and

sub-MIRC stimuli make them ideal candidates to probe the differences in neural processes between recognized and unrecognized

stimuli.

Ullman et al.’s original behavioral experiment was run online on Amazon’s Mechanical Turk and sampled a large population of

approximately 14,000 participants.26 Comparisons were made across participants who were exposed to each image only once.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python 3.12.7 Python Software Foundation https://www.python.org/

MATLAB R2024 The MathWorks, Inc., Natick, MA https://www.mathworks.com

FreeSurfer 6 Dale et al.86 https://surfer.nmr.mgh.harvard.edu/

Intracranial Electrode Visualization

(iELVis) Toolbox

Groppe et al.87 https://github.com/iELVis/iELVis

generalized Directed Partial

Coherence (gDPC)

Baccala et al.31,32 N/A

Custom code for data analysis This study https://kreimanlab.com/code/mirc/

Zenodo data: https://doi.org/

10.5281/zenodo.14788055
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Our focus was to evaluate the neural responses to those images and we therefore introduced several modifications to the task. In

Ullman et al.’s experiments, each participant viewed only one image. In our experiments, each participant was presentedwith images

from all the 10 categories (‘‘object’’ condition in Figure 1D) together with three of its descendants at progressively higher levels of

degradation. To minimize adaptation effects, stimuli were presented in a mini-block design paradigm. Within each mini-block, we

presented stimuli belonging to two out of the ten stimulus categories starting from the most degraded to the undegraded images

(‘‘object’’ condition) (Figure 1C). Themost degraded stimuli were presented again at the end of themini-block (‘‘sub-MIRC post’’ con-

dition). Each participant underwent 5 consecutivemini-blocks so as to present all 10 stimulus categories. The order of presentation of

the 10 categories was randomized across participants. For subject 1, stimuli were presented in a standard block design with nomini-

blocks. In a separate psychophysics experiment with 7 participants without epilepsy, we verified that this modified experimental

design did not alter recognition performance and yielded results similar to the original study (Figure S2).

Following Ullman et al.,26for each category and participant, we labeled ‘‘MIRCs’’ all images whose recognition performance was

higher than 50%and ‘‘sub-MIRCs’’ all images that yielded a recognition rate smaller than 50%. This step defined, on a participant-by-

participant level, the threshold for which a recognizable visual stimulus (i.e., a MIRC) becomes unrecognizable (i.e., a sub-MIRC). For

each participant, image categories for which this was not possible (i.e., that produced a recognition rate consistently higher or lower

than 50% at all levels of degradation) were excluded from further analyses. In the ‘‘MIRC’’ and ‘‘sub-MIRC’’ blocks, each participant

was shown each image for 10 times for a total of 200 trials (10 categories x 2 conditions (MIRC and sub-MIRC) x 10 repetitions). In the

‘‘object’’ and ‘‘sub-MIRC post’’ blocks, each participant was shown each image for 5 times for a total of 100 trials (10 categories x 2

conditions (object and sub-MIRC post) x 10 repetitions). The original Ullman et al. study only defined MIRC and sub-MIRC on

average, across participants. However, for the evaluation of neural responses, it is essential to define whether a given participant

recognized an image or not. For example, a given sub-MIRC image could yield, say, 15% recognition and the corresponding

MIRC image could yield, say, 90% recognition, on average across participants, which would be consistent with the strong behavioral

effects reported in Figure 1D and in the original study. However, here we are particularly interested in whether a given individual

participant did or did not recognize a given image and it would thus not suffice to use the average behavioral assessments.

Neurophysiological recordings
Participants were implanted with either intracortical stereo electroencephalography (sEEG) depth electrodes or subdural electrocor-

ticography (ECoG) electrodes (Ad-Tech, Racine, WI, USA). Depth electrodes contained from 6 to 16 recording sites. Each subdural

grid or strip had from 4 to 128 recording sites with an inter-site distance of 1 cm. Each recording site was 2 mm in diameter. The

number of recording sites per participant ranged from 83 to 229, for a total of 1,752 sites across all participants (see Table S1 for

the electrodes for which brain location could be recovered). All data were collected during periods without seizures. Data were re-

corded using XLTEK (Oakville, ON, Canada) or BioLogic (Knoxville, TN, USA) with sampling rates of 1,000 Hz or 2,000 Hz, depending

on the hospital. For analysis purposes, all signals were down-sampled to 1,000 Hz.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data pre-processing
Data analyses were performed in Python. We followed the same pre-processing steps for the intracranial field potentials (IFPs) as in

previous studies.29 We first applied a notch filter at 60 Hz and harmonics, and we then low-pass filtered the signal at 100 Hz. We

excluded from further analysis electrodes that showed evidence of electrical noise. Finally, to remove potential movement artifacts,

we computed, on a per-electrode basis, the overall distribution of the total IFP power in all trials for each electrode (regardless of

experimental condition) and excluded from further analyses those trials whose power was more than 4 standard deviations from

the mean.

Electrode localization
Electrodes were localized by co-registering the preoperative magnetic resonance imaging (MRI) with the postoperative computed

tomography (CT) by means of the iELVis toolbox for Matlab.87 For each participant, the brain surface was reconstructed from the

MRI, corrected for post-implant brain shift, and assigned to one of 75 different regions in Freesurfer software86 based on the

2009 atlas.29,89,90 Depth electrodes were assigned either to a subcortical structure or to gyri/sulci. The location of electrodes for

which the brain location could be recovered together with their average Montreal Neurological Institute (MNI) coordinates is shown

in Table S1.

Data analysis
Comparison between conditions

We first sorted the instantaneous values of the IFPs at time t, IFPj(t), based on trial j and condition c (i.e., MIRC, sub-MIRC, object or

sub-MIRCpost). For each condition and participant, we normalized all trials by subtracting the average across trials of the IFPs during

the baseline interval ([-200 50] ms before stimulus onset). For each contrast between two conditions c1 and c2 (e.g., MIRC vs. sub-

MIRC), we first identified the set of responsive electrodes, defined as those electrodes whose IFPj(t) were statistically different from

baseline at a p < 0.01 level (Wilcoxon rank-sum test) for at least 50 consecutive time points for either condition c1 or condition c2. The
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length of this interval was selected so as to keep the experiment-wide false discovery rate below the p < 0.05 threshold throughout all

our analyses (see section ‘‘Bootstrapping analysis of the number of selective electrodes’’ and Figure S5). We defined visually selec-

tive electrodes within the responsive electrodes as those whose distributions IFPj,c1(t) and IFPj,c2(t) during conditions c1 and c2

respectively, were statistically different at a p < 0.01 level for at least 50 consecutive time points. The latency of stimulus selectivity

was defined as the first time point when the statistical test was significant. We focused on two comparisons: MIRC vs. sub-MIRC and

sub-MIRC post vs. sub-MIRC in the time interval [50 550] ms after stimulus onset.

Bootstrapping analysis of the number of selective electrodes

To estimate the null-hypothesis distribution of the number of significant electrodes yielded by a contrast between two conditions c1

and c2 we first randomly shuffled, within each participant, the labels of the trials belonging to the conditions and we then performed

the analysis as detailed above (‘‘Comparison between conditions’’). We repeated these steps for 500 times to estimate the null-hy-

pothesis distribution. Comparison of the number of selective electrodes obtained in the two contrasts described here (MIRC vs. sub-

MIRC: 156 electrodes, and sub-MIRC post vs. sub-MIRC: 39 electrodes) with these null-distributions shows that in both cases the

false discovery rate (FDR) was <0.05 (Figure S5).

Directional correlation

To assess the directional correlation between channels, we employed the time-varying generalized Partial Directed Coherence

(gPDC),31 which is an approach based on the Geweke-Granger causality framework.91,92 Among many directional correlation esti-

mation methods such as the Directed Transfer Function, the Partial Directed Coherence, and the multivariate Granger Causal-

ity,32,93,94 the gPDC has been proven to be the most effective estimator and to be robust with respect to the data normalization

method.32,95,96 Within the Granger causality framework, a time series x is directionally correlated to a time series y if the knowledge

of past samples of x reduces the prediction error for the current sample of y. The relation can be estimated by fitting, for each partic-

ipant, a time-varying multivariate autoregressive (MVAR) model on the set of available electrodes. In our analyses, the order of the

MVAR model was set to 40 (i.e., spanning a 40ms interval) to account for neurophysiologically plausible timing of interactions be-

tween areas. Among time-varying MVAR estimation methods, the GLKF outperformed other algorithms, such as the recursive least

square, the multivariate adaptive autoregressive estimator, the classic Kalman filter, and the dual extended Kalman filter.97–100 It

should be noted that we fitted the GLKF on the raw IFPs (i.e., not low-pass filtered), as spurious correlations can arise when time

series are filtered.101 For each participant, we then used the MVARmodel parameters to compute the gPDC between each possible

pair of electrodes in the temporal and frontal lobe. We discounted pre-stimulus connectivity by removing from each trial and fre-

quency the average connectivity estimated in the baseline interval. For each electrode pair, the gPDC is a function of time and fre-

quency. We averaged the gPDCs values in the frequency domain to deal only with broadband temporal signals. We then used a clus-

ter-based permutation test102 to quantitatively compare the strength of the directional correlation from the temporal to the frontal lobe

and vice versa across participants and channels. This analysis identified clusters of contiguous time points exhibiting consistent pat-

terns, and permutation testing was applied to determine whether these clusters represented statistically significant deviations from

chance.

Analysis of the latency of directional correlation

For each frontal electrode fi, we conducted a cluster-based permutation test102 to compare the mean directional correlation from all

temporal electrodes to fi against the mean directional correlation from fi to all temporal electrodes. The first time point at which this

difference was statistically significant, if present, represented the onset latency of a difference between the directed correlation to or

from fi. Latencies were then sorted into two sets, based on whether they corresponded to a higher gPDC from the temporal lobe to fi
or from fi to the temporal lobe (the two distributions in Figure 4B). A subsequent Mann-Whitney U test was employed to assess the

significance of the difference in latency distributions of the medians between these two sets.

14 Cell Reports 44, 115429, March 25, 2025

Article
ll

OPEN ACCESS



Cell Reports, Volume 44

Supplemental information

Neural correlates of minimal recognizable

configurations in the human brain

Antonino Casile, Aurelie Cordier, Jiye G. Kim, Andrea Cometa, Joseph R. Madsen, Scellig
Stone, Guy Ben-Yosef, Shimon Ullman, William Anderson, and Gabriel Kreiman



Supplementary Figures  

 

Figure S1 – Locations of recorded sites for which we could recover MNI coordinates across our cohort 
of patients (n=12, see also Table S1), Related to Figure 3, 6, and STAR Methods. 



  

 

Figure S2 – Results of a behavioral study with 7 participants without epilepsy, Related to Figure 1 
and STAR Methods. The format and conventions are as in Figure 1D.  



  

 

Figure S3 – Temporal dynamics of the functional interactions between temporal and frontal areas 
during the perception of sub-MIRC stimuli, Related to Figure 4. The panel shows the strength, as 
assessed by generalized Partial Directed Coherence (gDPC, Baccalá et al., 2007), of the temporal to 
frontal (green curve) and frontal to temporal (blue curve) functional interactions measured in 
participants (n=6) that had at least 2 responsive electrodes in both the temporal and frontal lobe. The 
curves represent the average gPDC obtained from n=3639 pairs of frontal and temporal electrodes 
respectively. Standard errors are shown but they are too small to be visible. Red-shaded areas mark 
intervals where the interactions in one direction are significantly stronger than in the opposite 
direction.  



  

 

Figure S4 – Visual responses to MIRC stimuli, Related to Figures 2 and 3. (A) Distribution of 
responsivity start times for the MIRC stimuli in the occipital (n=48 electrodes, median=152ms), 
temporal (n=78, median=208ms), parietal (n=47, median=206ms) and frontal (n=55, median=219ms) 
lobes. We deemed visually responsive to MIRC stimuli those electrodes whose responses during MIRC 
trials were statistically different from baseline at a p<0.01 level (Wilcoxon ranksum test) for at least 50 
consecutive time points (see Methods). Asterisks signify statistically different responses at the p<0.05 
level. (B) Neural responses of the 8 MIRC-responsive electrodes with shortest latency located in the 
occipital lobe. The response latency and brain area of each electrode are shown in the title. 



  

 

Figure S5 – Distributions of the False Discovery Rate (FDR) of the number of selective electrodes, 
Related to Figures 3, 6, and STAR Methods. The two panels show the distribution of the number of 
electrodes selective for MIRC versus sub-MIRC (A) and sub-MIRC post versus sub-MIRC (B) when the 
condition labels were randomly shuffled 500 times. In each panel, the red shaded area represents the 
top 5% tail of the distribution, and the vertical dotted line represents the number of selective electrodes 
found in the corresponding analysis (MIRC vs sub-MIRC: 156 electrodes, and sub-MIRC post vs sub-
MIRC: 39 electrodes). In both cases our analyses have FDR < 0.05. 



  

 

Figure S6 – Histograms of the selectivity start times of responses differentiating between MIRCs and 
sub-MIRCs in the frontal lobe, Related to Figure 3. The distribution was not unimodal (Hartigans’s dip 
test, p<0.005) and it appeared to consist of two components: an “early” and a “late” component, color 
coded in orange and green, respectively. The legend shows the median of the two distributions and the 
inset the anatomical locations of the electrodes. The distribution of onset times contains data from 5 
participants. At the single-participant level, due to sampling limitations, Hartigan’s dip test was 
significant in only one of our participants. 



 

Figure S7 – Location of electrodes in each of the 12 participants, Related to STAR Methods. 



  

 

Figure S8 – Results of a frequency-resolved generalized Directed Partial Coherence (gDPC) analysis 
during the perception of MIRC stimuli, Related to Figure 4 and Discussion. The two panels show the 
strength, as assessed by generalized Partial Directed Coherence (gDPC, Baccalá et al., 2007), of the 
temporal to frontal (blue curve) and frontal to temporal (green curve) functional interactions measured 
in participants (n=6) that had at least 2 responsive electrodes in both the temporal and frontal lobe 
during the observation of MIRC stimuli. The curves represent the average gPDC obtained from n=3639 
pairs of frontal and temporal electrodes respectively. The two panels show the directionality of the 
functional interactions obtained when the gDPC was integrated in the lower ([13-30]Hz; panel A) or 
higher ([30-100]Hz; panel B) temporal frequency range respectively. Standard errors are shown but 
they are too small to be visible. Red-shaded areas mark intervals where the interactions in one direction 
are significantly stronger than in the opposite direction. 



Supplementary Tables 

Region name # Electrodes Average MNI coordinates 

G_temporal_middle 112 -60.82 -28.94 -12.43 
G_front_middle 94 -37.68  30.46  32.94 

G_front_sup 93 -9.95 23.86 39.87 
G_temp_sup-Lateral 93 -60.7  -14.49  -4.11 
G_occipital_middle 83 -35.48 -70.6   19.95 

G_temporal_inf 67 -49.2  -26.57 -27.32 
G_front_inf-Opercular 

S_temporal_inf 
Pole_occipital 

G_pariet_inf-Supramar 
S_temporal_sup 

G_oc-temp_med-Parahip 
G_precentral 

S_front_inf 
G_front_inf-Triangul 

G&S_subcentral 
G_pariet_inf-Angular 

G&S_occipital_inf 
G_orbital 

G_postcentral 
S_front_sup 

G_insular_short 
S_circular_insula_inf 

S_collat_transv_ant 
Pole_temporal 

S_orbital-H_Shaped 
G&S_cingul-Ant 

S_circular_insula_sup 
G_oc-temp_lat-fusifor 
G&S_cingul-Mid-Ant 

S_oc-temp_lat 
G_temp_sup-Plan_tempo 

S_front_middle 
S_postcentral 

G_rectus 
G_temp_sup-Plan_polar 

S_pericallosal 
S_precentral-inf-part 

G&S_frontomargin 
G_occipital_sup 

Lat_Fis-post 
G&S_cingul-Mid-Post 

G_oc-temp_med-Lingual 
G_precuneus 

G_temp_sup-G_T_transv 
S_intrapariet&P_trans 

S_occipital_ant 
S_circular_insula_ant 

S_orbital_lateral 
G_Ins_lg&S_cent_ins 
S_orbital_med-olfact 

G&S_paracentral 
G_parietal_sup 

Lat_Fis-ant-Horizont 
Lat_Fis-ant-Vertical 

S_oc-temp_med&Lingual 
S_suborbital 

G&S_transv_frontopol 
G_cuneus 

G_front_inf-Orbital 
S_collat_transv_post 

S_interm_prim-Jensen 
S_calcarine 

S_central 
S_cingul-Marginalis 

S_oc_middle&Lunatus 
S_oc_sup&transversal 
S_temporal_transverse 

56 
53 
51 
50 
48 
47 
42 
37 
33 
31 
30 
29 
29 
29 
27 
26 
26 
26 
25 
23 
21 
20 
17 
15 
15 
13 
13 
13 
12 
11 
11 
11 
10 
10 
10 
9 
8 
8 
8 
8 
7 
6 
6 
4 
4 
3 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 

-48.92  12.29  10.84 
-49.73 -31.02 -17.01 
-38.39 -35.8   21.38 
-59.07 -35.03  30.91 
-46.44 -31.35  -2.51 
-27.73 -19.02 -19.4 
-53.13  -0.39  36.9 

-37.91  24.89  23.38 
-49.65  30.37   5.42 
-60.54  -4.83  15.96 
-44.01 -59.68  31.56 
-44.26 -60.85  13.45 
-30.64  29.09 -16.97 
-52.57 -18.91  49.71 
-27.75  21.35  39.98 
-37.45   6.43  -4.04 
-40.51  -7.9  -11.32 

-37.78 -18.28 -22.26 
-35.45   4.53 -39.32 
-36.44  35.96  -9.55 
-14.14  41.5    4.38 
-34.17   2.58   6.54 

-35.92 -45.83 -20.19 
-11.67  19.98  22.99 
-44.79 -28.   -22.56 
-56.33 -37.03   8.31 
-29.85  39.74  14.51 
-31.77 -37.65  46.61 
-6.01  48.56 -24.35 
-35.26   2.91 -21.76 
-14.76 -30.52  12.26 
-41.99   9.23  22.37 
-35.82  56.54  -8.87 
-20.03 -29.79  38.33 
-44.36 -31.54   9.66 
-6.15 -20.08  35.88 

-10.37 -75.97  -8.28 
-2.76 -46.64  43.85 
-47.18 -13.58   9.09 
-36.38 -49.21  42.74 
-40.67 -66.72  -1.82 
-42.21  15.35   3.26 
-53.85  32.58  13.59 
-34.72   1.59 -13.29 
-10.49  38.35 -16.48 
-13.69 -42.52  62.77 
-36.53 -44.6   50.28 
-32.23  33.54  -2.08 
-46.15  20.54  12.04 
-34.48 -31.46 -15.18 
-12.17  44.2  -10.19 

-9.95 68.48 -0.23 
-2.1  -82.47  11.71 

-45.57  32.29 -15.75 
-35.47 -82.49  -9.56 
-52.77 -52.5   28.19 
-10.39 -87.65   5.48 
-24.11 -32.65  43.7 
-5.2  -30.89  49.31 
 -28.2  -91.2    0.41 

-19.77 -91.18  17.07 
-50.2  -22.5    4.98 

Table S1 - Anatomical locations of all electrodes for which brain localization could be computed, Related 
to STAR Methods. 



  

Participant 
# Age Gender # Electrodes 

1 17 M 229 
2 25 M 190 
3 18 F 83 
4 15 F 212 
5 35 F 125 
6 26 F 104 
7 12 M 96 
8 43 F 181 
9 22 F 122 

10 11 F 158 
11 21 M 94 
12 12 M 158 

Table S2 - Information about the 12 patients that participated in the study, Related to STAR Methods. 



 

 

Participant 
# 

Object MIRC subMI
RC 

subMI
RC 
post 

1 25 50 50 20 
2 25 50 50 25 
3 30 60 60 30 
4 25 50 50 25 
5 30 60 60 20 
6 15 30 30 25 
7 25 50 50 15 
8 15 30 30 20 
9 30 60 60 30 
10 30 60 60 30 
11 30 60 60 35 
12 10 20 20 10 

Table S3 - Number of trials that we considered in our analysis per condition for each participant, 
Related to STAR Methods. 
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