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Open multi-center intracranial 
electroencephalography dataset 
with task probing conscious visual 
perception
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We introduce an intracranial EEG (iEEG) dataset collected as part of an adversarial collaboration 
between proponents of two theories of consciousness: Global Neuronal Workspace Theory and 
Integrated Information Theory. The data were recorded from 38 patients undergoing intracranial 
monitoring of epileptic seizures across three research centers using the same experimental protocol. 
Participants were presented with suprathreshold visual stimuli belonging to four different categories 
(faces, objects, letters, false fonts) in three orientations (front, left, right view), and for three durations 
(0.5, 1.0, 1.5 s). Participants engaged in a non-speeded Go/No-Go target detection task to identify 
infrequent targets with some stimuli becoming task-relevant and others task-irrelevant. Participants 
also engaged in a motor localizer task. The data were checked for its quality and converted to Brain 
Imaging Data Structure (BIDS). The de-identified dataset contains demographics, clinical information, 
electrode reconstruction, behavioral performance, and eye-tracking data. We also provide code to 
preprocess and analyze the data. This dataset holds promise for reuse in consciousness science and 
vision neuroscience to answer questions related to stimulus processing, target detection, and task-
relevance, among many others.
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Background & Summary
Since the 1930s, intracranial electroencephalography (iEEG) has been the gold standard in identifying epilep-
togenic areas for surgical resections and other targeted treatment techniques1. IEEG recording strategies vary 
across centers, ranging from the use of cortical grid and strip electrodes (Electrocorticography, ECoG) to the 
exclusive use of stereotactic depth electrodes (Stereoelectroencephalography, sEEG), or a combination of both2. 
Using iEEG, clinicians and scientists alike can characterize and localize signals acquired directly from the brain. 
During lulls in clinical care, willing research participants may choose to volunteer for studies that analyze signals 
acquired via iEEG3. Beyond their significant clinical utility, these signals provide a valuable tool for investigating 
the neurophysiology of cognition4–7.

These recordings, completed as part of the clinical standard of care, are rare, primarily due to the small 
number of patients requiring this procedure to begin with7,8. In addition, the clinical nature of iEEG data neces-
sitates taking greater precautions when sharing them openly to prioritize the privacy of the participants, com-
pared to more typical non-invasive techniques such as functional magnetic resonance imaging (fMRI) or scalp 
electro- and magneto-encephalography (EEG and MEG) used to investigate cognitive processes. However, iEEG 
recordings offer much better spatio-temporal resolution over non-invasive neuro-imaging and non-invasive 
electrophysiology9, which makes them critical to accelerating cognitive neuroscience research4. These circum-
stances emphasize the importance of creating larger datasets for public availability and reuse, which is further 
amplified by the difficulty in collecting these data.

Importantly, data must be shared with sufficient background information such that they can be easily 
reused by other researchers, in line with the FAIR (Findable, Accessible, Interoperable, Re-usable) principles10. 
Achieving this goal is particularly challenging in the case of iEEG recordings due to the high diversity and 
variability of data types associated with iEEG3 as well as experimental setups. The placement of the iEEG elec-
trodes is solely determined based on clinical needs and therefore varies greatly from participant to participant. 
Furthermore, a single participant dataset consists of electrophysiological recordings, neuro-imaging data, elec-
trode localization, behavioral files, clinical information and additional metadata files. Therefore, there can be 
significant variability in file format, labeling and directory structure from center to center for each of the data 
types associated with iEEG recordings11. In addition, the data are usually collected within the patient hospital 
bedroom, leading to a high variability in the experimental conditions under which the data were collected, 
which is rarely documented. Finally, there is ample variability between participants, associated with their age, 
disease diagnosis and clinical history. With this wealth and diversity of relevant information comes the challenge 
of effectively organizing data to enable reusability. Brain imaging data structure (BIDS)12 provides a solution to 
some of these issues by providing a standardized nomenclature for file naming, organization, and documenta-
tion. BIDS defines file formats for each type of data, naming conventions for each file, folder structure for all the 
data, as well as which data and metadata are mandatory or optional for an iEEG data set11. However, the BIDS 
specifications are currently under-specified for documenting the clinical information of the participants3, but 
also the experimental context in which the research took place.

In this article, we directly address these challenges by openly sharing a comprehensive iEEG dataset from 38 
participants13. The experimental paradigm and associated data shared here were collected as part of a large-scale 
international adversarial collaboration testing key contradictory predictions of two prominent theories of 
Consciousness:14 Global Neuronal Workspace Theory (GNWT)15–19 and Integrated Information Theory (IIT)20–23.  
In this study, participants were exposed to foveally presented, suprathreshold stimuli varying in their category 
(faces, objects, letters and false fonts) orientation (left view, right view, front view), and duration (0.5, 1.0, and 
1.5 seconds). Those manipulations aimed to model the richness of conscious perception, and in doing so ena-
bled testing key theoretical predictions of GNWT and IIT with respect to the brain areas claimed necessary for 
consciousness. Critically, to dissociate neural profiles of responses associated with consciousness from other 
confounding factors related to, for instance report and/or task performance, participants were asked to detect 
infrequent targets from two stimulus categories while the other categories remained task-irrelevant (coun-
terbalanced across blocks). As such, the same categories were sometimes task-relevant, while in other blocks 
task-irrelevant. In contrast, both stimulus orientation and duration were always task-irrelevant. Multiple brain 
imaging modalities were collected in different groups of human participants. In addition to the iEEG dataset 
shared here, functional magnetic resonance imaging (fMRI) and simultaneous electroencephalography and 
magnetoencephalography (MEG) were also collected in an independent sample of neurotypical participants. 
These additional datasets will be shared in separate publications.

Beyond its primary goal of adjudicating between these theories, the paradigm enables the investigation of 
a range of other cognitive and perceptual phenomena. For example, by including distinct categories of visual 
stimuli, it allows for the exploration of how different types of visual information are processed and how they 
are affected by task manipulations. Stimuli are presented for varying durations, providing an opportunity to 
examine how the temporal characteristics of a stimulus influence the persistence and continuity of conscious 
experience, thereby shedding light on the dynamics of sustained perception24–27. The inclusion of orientation in 
the experimental paradigm allows for the examination of how neural representations of visual stimuli remain 
consistent or adapt across spatial transformations, independently of task demands28. Additionally, by defining 
task relevance through explicit instructions to detect certain stimuli as targets, the paradigm enables a systematic 
investigation of how task goals influence neural responses, allowing the dissociation of task-related processing 
from neural activations associated with visual perception29.

This paper focuses solely on the iEEG data, including behavioral, eye tracking, iEEG recordings, and rich 
metadata specifications. The primary goal of sharing this dataset is to provide researchers with a meticulously 
curated repository of standardized high-quality iEEG recordings collected from three academic medical centers 
with the same experimental protocol ensuring generalization across populations, recording systems, experi-
menters, and patient populations.
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The dataset also includes metadata going beyond the minimum standards established by BIDS by incorpo-
rating extensive details ranging from data collection specification to clinical information, as recommended by 
Mercier et al.3 and Zheng et al.30. This effort represents a strong foundational commitment to fostering scientific 
inquiry and advancing the frontiers of our understanding of the human brain. We aim to empower our peers 
with this robust collection, and hope it supports future innovative studies that enable the scientific community 
to delve deeper into the neural basis of visual cognition (Fig. 1).

Methods
Participants. Data from 38 pharmaco-resistant epilepsy patients are shared. The dataset includes: iEEG 
recordings, vital signs (EKG, for a subset of patients, see supplement Table 1), eye-tracking data, behavioral data, 
wiring diagrams for equipment used at each site (summarized in Fig. 1 and in supplement Fig. 1), standard oper-
ating procedures (SOPs) for data collection, and clinical background information for every patient. They were all 
collected at the Comprehensive Epilepsy Center at New York University (NYU) Langone Health, Brigham and 
Women’s Hospital, Boston Children’s Hospital (Harvard Medical School), and University of Wisconsin School of 
Medicine and Public Health (WU).

The experiment and associated data collection devices were reviewed and approved by each of the site’s 
independent institutional ethics committees (NYU Langone Health Institutional Review Board (IRB), Boston 
Children’s Hospital IRB, Brigham and Women’s Hospital IRB, and University of Wisconsin-Madison IRB). 
Before obtaining consent, all participants were confirmed to have the cognitive capacity to provide informed 
consent by a member of the patient’s clinical care team. Upon receiving confirmation of cognitive capacity, 
all participants provided oral and written informed consent before beginning study procedures. They were 
informed that participation was strictly voluntary, and would not impact their clinical care. Participants were 

Fig. 1 Experimental setup from one of the recording sites. Intracranial EEG (iEEG) data were transmitted 
from electrodes in the head, using touch-proof connectors to the data amplifier, and then to the base unit. 
Simultaneously, eye-tracking data, and behavioral data were collected via an eye-tracker and response box, 
respectively. The experimental PC sent photodiode pulses through the amplifier to the base unit. Extra efforts 
were made to standardize the acquisition setups and experimental context across the three laboratories. To 
that end, the same experimental setup was used across three laboratories, albeit with different amplifiers 
and eye-trackers. A shared standard operating procedure enabled comparable acquisition conditions across 
experimenters and labs. The above diagram corresponds to the experimental setup at Boston Children’s Hospital 
and Brigham and Women’s Hospital (Harvard Medical School). To ensure participants remained isolated 
from power sources, all computer systems (including eye-tracking equipment) were powered via an isolator 
box (NYU), an isolated ground outlet (WU), or a battery (HU). Wiring diagrams and further details for each 
laboratory are summarized in supplementary figures.
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informed that they were free to withdraw participation in the study at any time, and that their data would be 
shared publicly following de-identification protocols. When recruiting minors, assent was obtained from minors 
and informed consent for data collection and data sharing was obtained from a parent or legal guardian. All 
study procedures were conducted in accordance with the Declaration of Helsinki (Table 1).

Inclusion criteria. We recruited 38 participants (23 female) between the ages of 10 and 65 years (M = 29.89, 
SD = 13.06). Adults provided both written and oral informed consent, while children provided written assent, 
accompanied by written and oral informed consent from a parent or legal guardian. Participants had an IQ of 
>70, with self-reported normal hearing, normal or corrected-to-normal vision, and cognitive and language 
abilities within or above the normal range in formal neuropsychological testing performed before surgery, when 
available. The study team postponed testing in cases where participants experienced an electrographic seizure 
within 3 hours of scheduled testing, until the patient was comfortable proceeding with the experiment, and 
no clinical contraindications to completing the experiment were identified. When available, information con-
cerning language dominance as assessed by the intracarotid sodium amobarbital (WADA31,32) is reported (see 
Table S1). Given the clinical context of the study, participants completed testing at various points during their 
surgical admission and therefore may have been on a range of medications including, but not limited to, steroids, 
antibiotics, pain relievers, or medications used to treat unrelated conditions. While anti-seizure medications are 

Participant ID Gender Age Handedness Electrode Scheme # electrodes Hemispheric electrode placement

CE103 F 49 left sEEG 58 bilateral

CE106 F 18 right sEEG 118 left

CE107 M 24 right sEEG 168 left

CE108 F 16 right sEEG 108 left

CE109 F 50 right sEEG 104 bilateral

CE110 F 15 right sEEG 186 right

CE112 F 17 right sEEG 158 right

CE113 F 26 ambidextrous sEEG 60 bilateral

CE115 M 17 right sEEG 88 right

CE118 M 11 right sEEG 164 left

CE119 M 29 right sEEG 104 bilateral

CE120 M 12 left sEEG 164 left

CE121 M 20 right sEEG 191 left

CF102 F 30 right ECoG & sEEG 133 left

CF103 M 24 right ECoG & sEEG 189 left

CF104 F 23 right ECoG & sEEG 116 left

CF105 M 31 right ECoG & sEEG 176 left

CF106 M 17 right ECoG & sEEG 156 left

CF107 F 31 right ECoG & sEEG 242 right

CF109 F 30 left ECoG & sEEG 102 right

CF110 F 17 right ECoG & sEEG 174 left

CF112 M 23 right ECoG & sEEG 180 bilateral

CF113 F 38 right ECoG & sEEG 132 right

CF116 M 43 left sEEG 166 bilateral

CF117 M 28 right sEEG 174 bilateral

CF119 M 37 right ECoG & sEEG 104 left

CF120 F 61 right sEEG 79 left

CF121 F 50 right sEEG 75 right

CF122 F 27 right sEEG 104 right

CF124 F 33 right sEEG 146 bilateral

CF125 F 23 right sEEG 138 left

CF126 F 23 right sEEG 122 left

CG101 M 40 right sEEG 104 bilateral

CG102 M 49 right sEEG 86 bilateral

CG103 F 57 right sEEG 76 bilateral

CG104 F 48 right sEEG 72 bilateral

CG105 F 24 right sEEG 70 bilateral

CG106 F 25 ambidextrous sEEG 76 bilateral

Table 1. iEEG patients demographics. Abbreviations: (F) female, (M) male, (ECoG) electro-corticography, 
(sEEG) stereo electro-encephalography. CE, CF, and CG denote the medical center in which the data were 
acquired.
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typically titrated down during the monitoring period, this process occurs gradually over several days, meaning 
the exact medication status and dosage varies across participants.

Exclusion criteria. Participants who were unable to complete a sufficient number of trials due to excessive mus-
cular artifacts, movement, noisy recordings, or a decision by the participant to terminate the experiment were 
excluded. Out of the 42 recorded datasets, 38 met the inclusion criteria and were included in the shared sample, 
while 4 were excluded (one participant had only a single block recorded, another contained corrupted data, and 
two were recorded without triggers).

Experimental design. IEEG data were collected on two tasks: a finger localizer task, and a Go/No-Go detec-
tion task. First, participants took part in a finger localizer task, which was aimed at identifying relevant motor 
areas associated with finger movements, particularly those motor responses executed during the Go/No-Go task. 
This control task ensures that neural responses associated with motor responses in the Go/No-Go task are cor-
rectly localized. During this task, participants were presented with four circles outlined in different colors match-
ing the colors of the buttons on the response box (Fig. 2). Arranged in a row from left to right, these colors were: 
white, yellow, blue, and pink. In each trial, a different circle would fill with the color of its outline, signaling them 
to press the corresponding colored button on the response box as soon as possible. The colored buttons on the 
response box were arranged in the same order as the circles presented on the laptop screen during the task. The 
filled circle persisted throughout the duration of the response period, followed by an additional delay of 200 mil-
liseconds. Inter-Trial Intervals (ITIs) followed a uniform distribution, averaging 0.55 seconds and ranging from 
0.40 to 0.70 seconds. This experiment consisted of 80 trials, evenly distributed across the four colors (20 trials per 
color), in a randomized sequence.

In the main experiment, participants performed a visual Go/No-Go matching task with five critical experi-
mental manipulations implemented in a factorial design. Stimuli were (1) of different categories (faces, objects, 
letters, and false-fonts), (2) identities (20 per category), and were presented (3) in different orientations (front, 
left and right views) and (4) for different durations (0.5, 1.0, and 1.5 sec, see Fig. 3b). The fifth factor, task rel-
evance, had three levels: targets (which participants had to remember and press a button when appearing on 
the screen), task-relevant non-targets (of the same category as the target stimuli, but of a different identity) and 
task-irrelevant stimuli (of a different category than the targets, see Fig. 3a).

Stimuli. Stimuli covered approximately 6 × 6° of visual angle area on the screen. Faces were created with 
FaceGen Modeler 3.1; letter and false font stimuli were generated with MAXON CINEMA 4D Studio (RC - R20) 
20.059; object stimuli were selected from the Object Databank33. All stimuli were gray-scaled and scaled for equal 
luminance and size using the SHINE toolbox34. To aid target identification, faces varied in hairstyle, ethnicity and 
gender. Stimulus orientation was balanced such that half of each category had a side view (equally facing either 
left by 30° or right by −30°). The remaining half were front views.

Experimental procedure. The Go/No-Go task was divided into 20 blocks, with breaks between blocks 
paced by the participant. At the beginning of each block, two target stimuli were presented: a face and an object or 
a letter and a false font. Participants were instructed to press a button whenever they detected the occurrence of a 
target stimulus (face/object or letter/false font). Targets did not repeat across blocks. The blocks were ordered in 
an AABB sequence, where two consecutive face-object blocks were always followed by two consecutive letter-false 
font blocks and the pairing order was counterbalanced across the experiment.

All stimuli were presented foveally for one of three durations (0.5, 1.0, and 1.5 seconds). Next, a blank screen 
was presented to extend each trial to 2.0 sec, followed by an additional jitter lasting for an average duration of 0.4 s 
(truncated exponential distribution between 0.2 and 2.0 s, median absolute deviation≈0.1 s). This resulted in a 
mean trial length of 2.4 s. Participants were instructed to maintain focus on a central fixation cross in between trials.

Within each mini-block, half of the stimuli were task-relevant (i.e., they belonged to the same faces-object  
or letters-false fonts categories as the targets) and half task-irrelevant (i.e., they were from the two other catego-
ries). The stimulus identity varied randomly while appearing equally across trial durations and task conditions 
(Fig. 3).

Data collection harmonization. To minimize discrepancies between data collection sites, experimental 
devices were standardized across sites to the extent possible. The same response box (Millikey LH-8) was used 
across sites. For HU and NYU, the same laptop was used (Dell Precision 5540 laptop, with a 15.6” Ultrasharp 
screen), while a Dell D29M PC with an Acer 19.1” screen was used in WU. Across all three sites, we used the same 
custom photodiode device, positioned at a corner of the display to record luminance changes in a small square 
that switched from black to white. This captured the exact frame of each stimulus onset and offset. The photodi-
ode signals were recorded alongside the iEEG channels, enabling offline extraction of event onsets to synchronize 
the recorded signals with on-screen events presentation. Except for three participants at WU (whose amplifier 
defaulted to a TTL output), the photodiode signal was recorded as an analog input. An audio/USB trigger system 
was available as a backup. Before data collection, a procedure similar to that described in Lepauvre et al.35 was 
applied in each data acquisition site to ensure consistent timing and experimental design across sites.

At WU, clinical constraints prevented recording the photodiode on the same amplifier as the iEEG channels, 
as such the photodiode was recorded on a separate amplifier (Blackrock for the first three datasets, analog; 
Neuralynx for subsequent datasets, TTL). Because separate amplifiers run on different clocks, a subset of iEEG 
channels was duplicated onto those amplifiers, allowing the two recordings to be aligned via cross-correlation. 
This additional step precisely synchronized the photodiode signal with the main iEEG recordings (see technical 
validation).
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To mitigate potential procedural differences across sites, we developed a standardized operating proce-
dure (SOP) outlining instructions for conducting experiments and which is shared alongside the data (https://
cogitate-consortium.github.io/cogitate-data/08_links/#links-and-reference-materials, iEEG SOP). The SOP 
encompassed participant instructions, setup guidelines, and general experiment protocols. Although the 
instructions to participants and the way the task was conducted remained consistent across sites, the SOP also 
accommodated logistical differences specific to each location—such as the source of necessary equipment, how 

Fig. 2 Schematic of the Finger Localizer task. During each trial, participants viewed four outlined circles 
(white, yellow, blue, and pink) arranged in a row. One circle filled with its corresponding color, signaling 
participants to press the matching colored button on the response box as quickly as possible. In this example, 
the blue circle is filled, indicating the correct response on the response box would be the blue button.

Fig. 3 Experimental design and datasets summary. (a) Overview of the experimental paradigm, showing two 
example blocks of trials: At any moment, no more than one high-contrast stimulus was present at fixation. In 
each trial, participants were asked to detect target stimuli: either a face and an object or a letter and a false font 
in any of the three different orientations. Thus, each trial contained three stimuli types: targets (depicted in 
orange), task-relevant stimuli (belonging to the same categories as the targets, depicted in yellow), and task-
irrelevant stimuli (belonging to the two other categories, depicted in purple). Colored frames are used here 
for illustration purposes only and did not appear in the experiment. The pictorial stimuli (faces/objects) were 
task-relevant in half of the blocks (upper row), while the symbolic stimuli (letters/false fonts) were relevant in 
the other half of the blocks (lower row), and vice versa. Blank intervals between stimuli were also included but 
are not depicted here. (b) The stimulus properties we manipulated were category (objects, faces, letters and false 
fonts), identity (each category contained 20 different exemplars), orientation (left, right, and front view), and 
duration (0.5, 1.0, and 1.5 seconds). Example stimuli used in the study are shown here; for the full stimulus set 
see here. (c) Distribution of behavioral sensitivity scores (d’) separate for each of the three data acquisition sites. 
Horizontal black lines depict average d’ per site, and dots depict individual participants’ d’s. Average accuracy: 
M = 95.52 (SD = 7.58). Average reaction time (RT): M = 0.64 s (SD = 0.14). (d) Average fixation (Eyelink)/gaze 
coordinates (Tobii) heat maps computed over a 0.5 s window after stimulus onset, zoomed into the stimulus area 
for each recording site.
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to configure power connections (e.g., using a battery at Harvard versus an isolated socket at WU), and the 
processes for data storage and retrieval after each session. This comprehensive approach to quality assurance 
not only involved technical considerations but also extended to the establishment of standardized procedures, 
ensuring that the data collected across diverse sites could be reliably compared and utilized for meaningful 
scientific investigations.

Data acquisition. Behavioral data acquisition. The task was run on Matlab (The MathWorks Inc., 2019, 
Harvard: R2020b; NYU: R2020a, WU: 2021a)36 using Psychtoolbox v.3.437. NYU and Harvard used a Dell 
Precision 5540 laptop, with a 15.6″ screen and WU used a Dell D29M PC with an Acer 19.1″ V196WL screen. 
Participants responded using an 8-button response box (Millikey LH-8; response hand(s) varied) using the but-
ton of their choice for targets.

Eye tracking data acquisition. Eye tracking and pupillometry data were collected using an EyeLink 1000 Plus on 
remote mode, sampled monocularly at 500 Hz (from the left eye at WU, and from the left or right eye depending 
on the setup at Harvard), or on a Tobii-4C eye-tracker, sampled binocularly at 90 Hz (NYU, see Table 2). Eye track-
ers were calibrated at the beginning of the task (using a 13 points calibration for HU and WU, 9 points for NYU), 
and could be recalibrated as needed before every fourth block. For the eyelink eye trackers, the eyetracking record-
ings were synchronized with the behavioral tasks using triggers, which were sent via an ethernet protocol from the 
experimental computer to the Eyelink computer to mark each critical event. In the case of the Tobii eye-tracker, as 
the data were recorded directly on the experimental computer, no further synchronization was required.

IEEG data acquisition. Intracranial brain activity was recorded using varying combinations of the following 
platinum-iridium electrodes depending on the recording site: subdural grids embedded SILASTIC sheets, or 
depth stereo-electroencephalographic, or Ad-Tech macro-micro depth electrodes (3 to 5.5 mm spacing, micro 
wires data were not collected for the shared tasks). Grids had 8 × 8 contacts with 10 mm center-to-center spac-
ing, 8 × 16 contacts with 3 mm spacing; or hybrid macro/micro 8 × 8 contacts with 10 mm inter-contact dis-
tance, and 64 embedded microcontacts with 5 mm inter-contact distance. Linear strips had 4–12 contacts with 
10 mm inter-contact distance, and depth electrodes had 8 to 12 contacts with 1.5 to 2.43 mm inter-contact dis-
tance. Macro grids, micro grids, strips and stereo EEG electrodes were acquired using 256-channels NATUS 
amplifier systems across all recording sites (Table 2), with a sampling frequency varying between 512 and 
2048 Hz across participants, and are shared at their original sampling rate. The data includes a total of 4771 
electrodes across 38 participants (1238 surface, 3533 depths).

Electrodes reconstruction. Across all sites, post-implant computed tomography (CT) images were co-registered 
with the pre-implant T1 MRI images using FLIRT38 as implemented in FSL39. Individual pial surfaces were 
reconstructed based on T1 MRI using the Freesurfer image analysis suite (‘recon-all’). Electrode T1 coordi-
nates were obtained by localizing the electrodes on the CT scan using site-specific custom algorithms and 
pipelines that reflect each site’s standard practices. For NYU participants, electrode labels were assigned 
semi-automatically or manually using FLSView39,40. For surface electrode grids, three corner electrodes were 
localized manually and the remaining electrode coordinates were then automatically interpolated along the 
shared plane using the known inter-electrode distances. A custom algorithm estimates the surface under each 
grid along the curve of a sphere larger than the brain. The algorithm then iteratively adjusted the projection of 
the grid plane, minimizing the error between the projected and known electrode locations. Electrode locations 
were then adjusted for estimated brain shift/swelling41. Subdural strips were localized manually. If sEEG depths 
did not follow a straight trajectory, they are localized manually. For WU participants (sEEG only), electrode 
labels were assigned manually or semi-manually using the SubNuclear toolbox (https://github.com/ckovach/
SubNuclear). For Harvard participants (sEEG only), individual depth electrode contacts were labelled manually 
from CT using BioImageSuite’s Electrode Editor tool42, and converted to coordinates within T1 MRI-space with 
the iELVis toolbox41,43. For all sites, electrodes were converted from subject-specific T1 space to a common MNI 
space using either surface-based (cortical surface electrodes) or a linear-based transformation (depths) using the 
freesurfer average brain (fsaverage, MNI30544, Fig. 4) (Table 2).

Data Records
Data release formats/naming conventions. The raw and BIDS (Brain Imaging Data Structure) for-
mats of the data are available in two ways: (1) Archival Format (Bundles in a zip format on our website https://
www.arc-cogitate.com/data-release45,46), and (2) XNAT (eXtensible Neuroimaging Archive Toolkit at http://cog-
itate-data.ae.mpg.de/47). We chose to make the data available in two different ways to cater to various users and 
their various degrees of proficiency with digital tools.

Data bundles. Raw format. Raw data bundles45 follow the below naming convention. The project root is 
organized in sub-folders, where each participant’s data is stored in a dedicated folder. The participant code is in 
the format “CX???”, where the two first letters reflect the site where the data were collected and the question marks 
represent the participant ID. The participant directories consist of various sub-directories along with a metadata 
folder that contains CRF (Case Report Form, containing notes taken by the experimenter during the recordings) 
and EXQU (Exit Questionnaire, containing the participants’ responses to the feedback questionnaire provided 
at the end of the experiment). Each subfolder follows the naming pattern SUBJECT_PARADIGM_MODALITY. 
SUBJECT refers to the participant ID. PARADIGM refers to the experimental paradigm used to collect the data, 
and MODALITY refers to the data type stored within the folder. For each participant, we recorded CT scans 
(CT), MR scans (MR), behavioral data (i.e., participants’ responses, BEH), eye-tracking data (ET), and iEEG data 
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(ECOG) from the experimental task. Additionally, we collected event-related behavioral data (FingerLoc_BEH) 
and iEEG data (FingerLoc_ECOG) during the Finger Localization task. The dataset also includes files related to 
electrode coordinates, labels, and other metadata containing essential information about events and channels, 
all of which can be found in the ElecCoords directory. The CT and MR scans were acquired to obtain anatomical 
data of the participant’s brain and to localize iEEG electrodes; no experimental paradigm was used for these 
scans. The MR and CT data are shared in their native, DICOM format. The PARADIGM is therefore left empty 
for MR and CT scans. In addition, the root directory also contains a metadata folder that includes several key 
files: a link to the analysis code (analysis_ECOG.json), a list of devices used for data acquisition (devices_ECOG.
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Fig. 4 Summary of electrodes coverage. (a) Participants’ demographic information including summary reports 
of distribution of (self-reported) gender, handedness, primary language and age across participants.  
(b) Summary of electrode counts and implantation schemes. The left pie chart depicts the total number of 
cortical (ECoG) and stereo-electrodes (sEEG) in the data set. The middle Venn diagram (implants) represents 
the number of participants implanted with only sEEG or both ECoG and sEEG. The right Venn diagram 
(scheme) represents the number of participants with electrodes located in the left hemisphere, right hemisphere 
or both hemispheres. (c) ECoG channels localization are depicted in white on fsaverage template brain.  
(d) sEEG channels localization are depicted in yellow on fsaverage template brain. (e) Number of electrodes  
in each region of interest based on the Destrieux cortical parcellation (74 labels per hemisphere).

iEEG ET MR (T1 pre-op) CT (post-op with electrodes)

HU NATUS Amplifier System Eyelink 1000 Plus n/a* n/a*

NYU NATUS Amplifier System Tobii Eye tracker 
(IS4LPOO1)

SIEMENS 3 T
Biograph_mMR SIEMENS SOMATOM Force

WU NATUS Amplifier System Eyelink 1000 Plus GE MEDICAL SYSTEMS 1.5 T (Optima Artist, 
Optima MR450w), 3 T (Optima Architect)

Canon Medical Systems 
Aquilion ONE

Table 2. List of devices used to record iEEG data, eye-tracker (ET) data, structural MR scans (MR) and CT  
data across the different sites. *MRI and CT scans from Harvard University are not included in the data release 
as those could not be openly shared.
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json), information on the labs involved in data collection along with other relevant details (labs.json and projects.
json), a manifest of MR and CT datasets (sessions_manifest_ECOG.json), the experimental protocol for the task 
(protocols_ECOG.json), participants’ demographic data (subjects_demographics_ECOG.json), descriptions of 
the experimental paradigm (tasks_EXP1_ECOG.json), details of the Finger Localizer task (tasks_FingerLoc_
ECOG.json), and a wiring diagram showing how the devices were connected (wirings_ECOG.pdf). Figure 5 
illustrates the directory structure for raw data and the format for each type of data is detailed in Table 3.

BIDS data. The raw data were also converted to BIDS using the MNE-bids package48. The BIDS root46 (Fig. 6) 
contains a subfolder for each participant, using the format “sub-CX???”. The participant’s folder contains a 
nested folder structure, with the highest level referring to the session the recording was collected from (ses-1),  
followed by the main iEEG data folder (ieeg) and MR scans data folder (anat). The data files are located at the 
lowest level of the directory structure (see Table 4). The iEEG data are stored in the BrainVision format named 
sub-CX???_ses-1_task-PARADIGM_ieeg. The events associated with the experimental task are stored in a tsv 
file format under the name sub-CX???_ses-1_task-PARADIGM_events.tsv and are accompanied by a json 
file of the same name containing information about the events. Electrode localization is stored in the tsv file 
sub-CX???_ses-1_space-fsaverage_electrodes.tsv in MNI space (fsaverage), as described in the associated 
sub-CX???_ses-1_space-fsaverage_coordsystem.json file (see electrodes reconstruction section). In addition, the 
sub-CX???_ses-1_task-Dur_channels.tsv file contains additional information about each channel in the recording, 
such as the type of electrode (seeg or ecog), online filtering used during data collection, and sampling frequency. 
In addition, we provide a status description for each electrode, containing annotations about the epileptic activity 
characterized by an epileptologist (only available for NYU data, participants CF102-CF126 in Table 1) and about 
noise levels based on visual inspection. For further specification, consult the BIDS specification for iEEG11. Finally, 
the Laplace mapping json files contain the scheme to be used for Laplace re-referencing, subtracting activation of 
neighboring electrodes of a given electrode. Additional metadata (case report forms, exit questionnaires, subject 

Fig. 5 Raw data bundles folder structure.
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demographics, information related to the experimental setup etc.) and CT scans are included along with the BIDS 
data under derivatives/additional_metadata and derivatives/ct respectively (Fig. 6 and Table 4)

XNAT. Raw format. To simplify data downloading and offer more flexibility for accessing specific data, 
the raw data is also available on the XNAT platform47. A key advantage of the XNAT release is that it enables 
searches over the data based on predefined criteria (e.g., gender, age, etc) in addition to the separate download 
of the data based on those predefined criteria. While the data content is identical to that of the raw bundles 
(which only allows for download of the complete dataset), it is organized in a different structure. The raw data is 
arranged as follows: In the project directory, a list of participants along with demographic information is avail-
able. Under the ‘Resources’ section, project-level metadata such as demographics (for all participants), devices, 
analyses, protocols, and more can be found. Within each subject folder, EyeTracker and iEEG data are located 
under ‘Experiments’. Subject-specific demographics are available under the subject’s ‘Resources’. Inside the iEEG 
experiment folder, data files such as BEH and BEHFingerLoc are stored under ‘Resources’. Additionally, meta-
data files, including CRF and EXQU, are present in this directory. MR and CT scans are available in two formats: 
NIFTI and DICOM. NIFTI scans can be found within the directory, while DICOM scans are organized as sepa-
rate sessions, alongside ECOG and ET data, under ‘Experiments’.

BIDS converted raw data. The BIDS format of the data follows a similar structure and file organization as the 
BIDS data bundles.

technical Validation
Data were collected by three independent laboratories to ensure generalization across patient populations, 
recording systems, and experimenters. The exact timing of the stimulus presentation was recorded with the pho-
todiode. Response boxes used by all laboratories have reported an average of one-millisecond latency (Millikey, 
LabHakkers).

The data were checked at three levels (based on the principles described in Gorska-Klimowska*, Hirschhorn* 
et. al., in preparation). Firstly, we ensured that the data contained all expected files (see Table 1), that they were of 
consistent naming conventions (see Table 3), and that all personal information had been removed. Personal infor-
mation was removed through on-site programmatic editing of the files headers. Additionally, programmatic veri-
fication was implemented on our shared data repository (XNAT) to reject any data with improper anonymization. 
Secondly, we established that our task manipulations were effective by testing behavior and eye-tracking data. This 
revealed that patient performance was relatively high (hit rate 94.89%, SD = 4.22, false alarm rate 2.39% SD = 2.02; 
Fig. 3c), with only three participants having hit rates <70% and false alarm rates >30%. Moreover, fixations 
remained relatively stable for all the participants throughout the entire experiment duration (Fig. 3d). Finally, we 
checked the quality of the neural data. Channels localized within the epileptic onset zone were marked at NYU and 
WU by a certified epileptologist, and two independent validators marked contacts that were either damaged (flat or 
noisy) or implanted outside the brain tissue. This information was stored in the sub-CE103_ses-1_task-Dur_chan-
nels.tsv files. Overall noise in the data was assessed by computing the summary spectra before and after notch fil-
tering. Participants’ data were excluded in cases of technical issues during recording (missing photodiode triggers 
or corrupted data preventing proper file reading) or if they completed only a single block, which was insufficient 
for analysis. As a result, four datasets were excluded from the data release (three from NYU, one from WU).

Localization of the electrode contacts was validated by multiple steps of visual inspection by two independent 
validators. The location of each electrode contact was checked with respect to the individual anatomy. Individual 
labels were checked for their accordance with atlases, and atlas mapping in BIDS was further compared with the 
initial atlas outputs. Finally, to verify alignment, we plotted the time intervals between consecutive triggers in the 
neural recordings against the intervals between corresponding events in the log file, ensuring a precise match. 
Notably, the WU site required a cross-correlation procedure (using variable-sized kernels and detecting peaks 

Data type Folder File naming conventions Data formats

CT scan CX???__CT
CX???_CT_1.nii.gz
or
CX???__CT/*.dcm

DICOM or NIFTI

Behavioral data CX???_EXP1_BEH CX???_Beh_1_RawDurR? CSV

iEEG data CX???_EXP1_ECOG CX???_ECoG_1_DurR? EDF

Eye-tracking data CX???_EXP1_ET CX???_ET_1_DurR? ASC or CSV

MR scan CX???__MR CX???_MR_1.nii.gz or
CX???__MR/*.dcm DICOM or NIFTI

iEEG data for the Finger Localizer task CX???_FingerLoc_ECOG CX???_ECOG_1_FingerLoc EDF

Behavioral data for the Finger Localizer task CX???_FingerLoc_BEH CX???__FingersLocalizer_LOG CSV

Electrode coordinates and additional data files CX???_ElecCoords

CX???_ses-1_atlas-desikan_labels
CX???_ses-1_atlas-destrieux_labels
CX???_ses-1_laplace_mapping_ieeg
CX???_ses-1_space-fsaverage_electrodes
CX???_ses-1_space-fsaverage_coordsystem
CX???_ses-1_task-Dur_channels
CX???_ses-1_task-Dur_events

TSV and JSON

Table 3. Naming conventions and data formats.
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above the mean correlation SD; see code for details) due to triggers being recorded on non-clinical amplifiers 
(see Data collection harmonization section above). The data being shared contains data where triggers have been 
aligned and further verified with the tests above. Pre-alignment data can be available upon request.

Usage Notes
The data can be accessed via our live XNAT database (http://cogitate-data.ae.mpg.de/47) which offers a web 
interface to navigate through the existing data and selectively download specific data (of specific participants, 
sessions, etc.). An API is also available to download the data programmatically (https://wiki.xnat.org/doc-
umentation/the-xnat-api). Alternatively, data bundles can be downloaded from our website in a zip format  

Fig. 6 BIDS data bundles folder structure.
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(https://www.arc-cogitate.com/data-release45,46). In both cases, users must create an account before gaining 
access to the downloading interfaces. More detailed information is available on our documentation website 
(https://cogitate-consortium.github.io/cogitate-data/).

We further provide code to preprocess the data, identify onset responsive channels and perform temporal decod-
ing of categorical information (e.g., faces vs. objects), illustrated in a Jupyter notebook (notebooks/ieeg-data-release.
ipynb). Additionally, pipeline scripts with default parameters are available for analyses on all channels and partici-
pants. All provided pipelines are fully customizable through JSON files (docs/config-default.json).

The preprocessing pipeline, based on Cogitate et al.13, includes the removal of line noise (60 Hz), identify-
ing and excluding defective channels based on visual inspection and clinical annotations, re-referencing using 
a Laplace scheme, computing high gamma power (70–150 Hz) and event-related potentials (ERPs, 0–30 Hz), as 
well as epoching around stimuli onsets and offsets. Standard iEEG analysis pipelines are provided for identify-
ing onset-responsive channels and decoding categorical information (e.g., faces vs. objects). For instance, onset 
response detection compares high gamma activation pre- (−0.3 to 0 sec) and post-stimulus (0.05 to 0.350 sec), 
using a paired t-test. Cross-temporal generalization49,50 for decoding faces vs. objects employs support vector 
machines and 5-fold cross-validation. We also demonstrate how anatomical electrode labels from Freesurfer 
reconstruction atlases can be used to constrain analyses spatially, enabling investigating neural dynamics in spe-
cific brain regions. Finally, a Jupyter notebook (ieeg-single-participant-report.ipynb) generates a comprehensive 
report for each participant, preprocessing data and computing onset responsiveness, with results displayed on the 
fsaverage brain.

Code availability
The Matlab code used to run the experiment is available at https://github.com/Cogitate-consortium/cogitate-
experiment-code. The code implementing the preprocessing pipeline and analysis scripts is accessible at https://
github.com/Cogitate-consortium/iEEG-data-release51. All code is implemented in Python using MNE-python 
v.1.752 and Matlab. The repository’s README file provides an overview of the codebase and instructions on 
how to set up the environment. While the README offers an overall guide, we recommend that users consult 
the Jupyter notebook (ieeg-data-release.html) available in the repository for detailed usage instructions. This 
notebook showcases how to download the data from our repository, implement the described analyses, and 
provides additional information on interacting with the dataset, including selecting specific conditions and 
customization options. Extensive information about the experimental paradigm, recording modalities and more 
can be found on the accompanying wiki: https://cogitate-consortium.github.io/cogitate-data/.
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