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ABSTRACT 
 
Humans can swiftly learn to recognize visual objects after minimal exposure. Integrating new 
information with existing knowledge requires forming enduring neuronal representations to enable 
future recognition. Yet, the neuronal mechanisms in the human brain underlying such rapid 
perceptual changes remain unclear. We recorded single-neuron activity in occipital (OC) and 
medial temporal lobe (MTL) regions as participants rapidly learned to recognize degraded images. 
OC and MTL neurons modulated their activity to encode newly learned visual information and 
reshape perception. Population decoding revealed that OC neurons required additional 
processing time to resolve the identity of learned images, delaying neuronal responses in the 
MTL. Our findings indicate that OC supports recognition after rapid learning via extensive 
recurrent processing, potentially involving higher-order neocortical areas, without relying on 
feedback from MTL. These results provide mechanistic constraints for biologically plausible 
models of visual recognition and few-shot visual learning. 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 5, 2025. ; https://doi.org/10.1101/2025.08.04.668333doi: bioRxiv preprint 

mailto:marcelo.armendarizgil@childrens.harvard.edu
mailto:gabriel.kreiman@childrens.harvard.edu
https://doi.org/10.1101/2025.08.04.668333


 

2 

INTRODUCTION 
 
Humans and other primates display a remarkable ability to visually recognize objects. The main 
family of models to describe visual recognition capabilities is based on hierarchical deep neural 
networks1–6. Current instantiations of such networks are typically trained via backpropagation 
through millions of examples when learning from scratch but also when fine tuning an existing 
pre-trained network 7–10. 
 
In stark contrast to such long training processes, humans can swiftly learn to recognize visual 
objects with just one or a few exposures. A striking example of rapid learning is the sudden 
recognition of a degraded black-and-white image of an object (Mooney image, Figure 1a)11. 
These degraded Mooney images tend to be unrecognizable initially. However, Mooney images 
become easily interpretable after a brief exposure to the original intact version of the image12–14 
(Figure 1b). This perceptual ability for rapid learning develops gradually in late childhood (7-9 
years) and is crucial for integrating new information with prior knowledge15,16. Rapid learning 
necessitates the formation of enduring neuronal signatures to enable subsequent recognition. 
Thus, newly acquired experience embedded in neural circuits dramatically shapes the perception 
of future incoming visual stimuli15,17–19. Despite extensive behavioral characterization, the 
neuronal mechanisms underlying perceptual changes induced by rapid learning in the human 
brain are not well understood. 
 
Previous neurophysiological recordings in monkeys showed that neurons in the temporal visual 
cortex can adapt their selectivity to represent recently learned degraded versions of objects such 
as Mooney images20. Based on non-invasive methods, rapid learning in humans is thought to 
modulate activity in a broad range of neocortical regions, including visual areas and frontoparietal 
regions21–24. However, little is known about the mechanisms underlying how individual neurons 
modify their response patterns after learning and how rapid and all-or-none perceptual changes 
are orchestrated by the neuronal dynamics across different regions. 
 
Here we recorded the spiking activity of 1,104 single neurons in medial occipital and temporal 
regions of the human brain in patients with pharmacologically-resistant epilepsy while 13 
participants learned to rapidly recognize novel Mooney images. Participants demonstrated the 
hallmark characteristics of essentially all-or-none perceptual changes triggered by one or a few 
exposures to grayscale counterparts to the Mooney images. Neurons in both the OC and MTL 
modulated their responses to encode newly learned Mooney images. OC neurons required 
additional time to process the identity of learned Mooney images compared to intact grayscale 
images, with MTL neurons showing delayed responses. The learning-induced dynamics in OC 
may indicate the need for extensive recurrent processing, potentially involving top-down feedback 
from higher cortical areas, before information reaches MTL. 
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RESULTS 
 
Rapid learning during image recognition and single neuron recordings 
 
We designed an image recognition task to investigate changes in perception following rapid 
learning. Thirteen participants were shown sequences of images and were instructed to report 
whether they recognized the identity of the depicted objects. Images consisted of two-tone black 
and white pictures (Mooney images, Figure 1a) and their corresponding grayscale counterparts 
(Figure 1b). In each trial, an image was shown for 500 milliseconds, followed by a blank screen 
for 1,300 milliseconds (Figure 1c). Participants were first exposed to the Mooney versions of the 
images, which they did not recognize (Figure 1d, red). After exposure to the Mooney images, 
brief learning segments were introduced. These segments involved presenting participants with 
the original grayscale image followed by the corresponding Mooney version of that image (Figure 
1d, turquoise). After exposure to these learning segments, participants were shown the same 
Mooney images again (Figure 1d, blue). Additional grayscale images were also presented, 
though no longer back-to-back with the corresponding Mooney images. Different Mooney and 
grayscale images were interleaved throughout the task. Using this design, we defined three trial 
categories: Pre-learning, where Mooney images were presented before learning occurred; 
Grayscale, where the original grayscale images were presented; and Post-learning, where 
Mooney images were presented after the learning process. Mooney image recognition rapidly 
and drastically grew from almost none before learning to high levels after learning (Figure 1e), 
requiring only one or a few learning segments (on average, 1.8 ± 1). Overall, Grayscale images 
were highly recognizable, with participants performing on average at 93 ± 5% accuracy (mean ± 
s.d. across sessions, n = 34 sessions; Figure 1f). For the Mooney images, recognition was poor 
in the Pre-learning condition with an accuracy of 4 ± 2% and greatly improved for the Post-learning 
condition, reaching 83 ± 15%. Performance was statistically different between conditions (Gray 
vs Pre, P = 10-12; Gray vs Post, P = 10-4; Pre vs Post, P = 10-12; two-sided Wilcoxon signed-rank 
test). Additionally, we measured reaction times from stimulus onset to participants’ responses 
(Figure 1g). Response times were longer for recognized Mooney images (Post-learning: median 
= 0.53 s, IQR = 0.44–0.57 s; mean = 0.52 s) than for Grayscale images (median = 0.48 s, IQR = 
0.41–0.52 s; mean = 0.48 s) (Post vs Gray, P = 10-5; two-sided Wilcoxon signed-rank test), 
suggesting that interpreting the learned Mooney stimuli required additional cognitive effort. 
Unrecognized Mooney images (Pre-learning) elicited the slowest responses overall (median = 
0.60 s, IQR = 0.49–0.72 s; mean = 0.63 s) (Pre vs Gray, P = 10-7; Pre vs Post, P = 10-7 two-sided 
Wilcoxon signed-rank test). 
 
During this task, we recorded spiking activity from a total of 1,104 single neurons in medial 
occipital and medial temporal brain areas in 34 sessions from 13 patients with pharmacologically-
resistant epilepsy who were chronically implanted with hybrid macro- and microelectrodes for 
seizure monitoring (Figure 1h; Supplementary Table 1). The recordings included 163 neurons 
from the medial occipital cortex, 212 in the parahippocampal cortex, 49 in the entorhinal cortex, 
343 in the hippocampus, and 337 in the amygdala (Supplementary Table 2). 
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We characterized eye movements during the task in 13 sessions across 10 healthy participants. 
These participants exhibited similar recognition patterns to the 13 epilepsy patients, with high 
recognition of Mooney images only after learning, and longer reaction times for recognized 
Mooney images compared to Grayscale images (compare Supplementary Figure 1 and Figure 
1). In the majority of trials (~83%), participants did not make any saccades during image 
presentation (0–500 ms). In the subset of trials with saccades (~17%), the latency to the first 
saccade from image onset was 267 ± 33 ms. There were no significant differences across 
conditions in either the proportion of trials with saccades (Gray vs Pre, P = 0.17; Gray vs Post, P 
= 0.52; Pre vs Post, P = 0.38; two-sided Wilcoxon signed-rank test) or the timing of the first 
saccade (Gray vs Pre, P = 0.49; Gray vs Post, P = 0.99; Pre vs Post, P = 0.49; two-sided Wilcoxon 
signed-rank test). 
 
Neuronal latency and selectivity reflect hierarchical processing across brain regions 
 
We first identified visually responsive neurons. A neuron was considered responsive if its firing 
rate showed significant modulation to any of the presented images, during the interval from 200 
to 700 ms after image onset, compared to the baseline period (-500 to 0 ms before image onset). 
Significance was determined using a permutation test (1,000 iterations) with a threshold P-value 
< 0.05, corrected for false discovery rate (FDR). We identified 318 visually responsive neurons 
(29% of the total). Of these, 105 were located in the medial occipital cortex (OC, 64% of the total 
number of neurons in this area), 90 in the parahippocampal cortex (PHC, 42%), 53 in the 
hippocampus (15%), 59 in the amygdala (17%), and 11 in the entorhinal cortex (22%) (Figure 
2a). We will refer to the neurons in the hippocampus, amygdala, and entorhinal cortex together 
as the medial temporal lobe (MTL), comprising 123 visually responsive neurons. Representative 
examples are shown in Supplementary Figure 2a-d. For instance, Supplementary Figure 2a 
illustrates the responses of a hippocampal neuron to a specific image in its Pre Mooney, 
Grayscale, and Post Mooney versions. This neuron exhibited distinct response patterns across 
conditions, with highest responses observed in the Grayscale condition. Subsequent analyses 
were based only on visually responsive neurons.  
 
We next estimated the onset latencies for responsive neurons. Response latency was defined as 
the first significant change in the neuron's firing rate relative to the baseline period after stimulus 
onset for the grayscale images (Methods). Response latencies significantly differed between 
areas with the fastest responses in the OC (median = 155 ms, interquartile range IQR = 129–204 
ms), followed by the PHC (median = 161 ms, IQR = 138–248 ms), and the MTL (median = 322 
ms, IQR = 272–392 ms) (P = 10-10, Kruskal–Wallis test, Figure 2b).  
 
Next, we evaluated the degree of visual selectivity of responsive neurons. We assessed response 
selectivity based on the number of distinct grayscale images a neuron responded to. MTL neurons 
showed the highest degree of selectivity with 87% of responsive neurons selective to only one 
stimulus, followed by neurons in PHC (45%) and OC (40%) (Figure 2c). Figure 2d-i shows the 
spiking activity (top, raster plots; bottom, mean firing rates) of two example neurons in response 
to different images (color-coded, Images 1-4) and across conditions. Figure 2d-f illustrates a 
highly selective neuron in the hippocampus. In the Grayscale condition, this neuron responded 
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only to Image 1 (turquoise, Figure 2e). A second example, Figure 2g-i, shows the spiking activity 
of a neuron in the medial occipital cortex that responded to multiple images. This neuron exhibited 
firing rate modulation depending on the image and condition. For instance, responses to images 
1 (turquoise) and 4 (purple) were higher in the Grayscale condition (Figure 2h) compared to the 
Mooney conditions (Figure 2g,i). However, for image 3 (yellow) firing rates were slightly lower in 
the Grayscale condition compared to the Mooney conditions. Additional example neurons are 
shown in Supplementary Figures 2 and 3. Overall, these results suggest a hierarchical 
organization in visual processing, where both selectivity and latencies increase as neural signals 
flow from the occipital region to the medial temporal lobe.  
 
Neuronal activity is modulated by learning at the single neuron level and in single trials 
 
Modulation in the responses to grayscale images compared to their Mooney counterparts (Figure 
2e vs. Figure 2d,2f; Figure 2h vs. Figure 2g,i; Supplementary Figure 3b vs. Supplementary 
Figure 3a,c; Supplementary Figure 3e vs. Supplementary Figure 3d,f) could be expected and 
may reflect the large differences between the two types of images at the pixel level. Remarkably, 
these differences were also accompanied by modulation in firing rates between the identical Post- 
and Pre-learning Mooney images. The hippocampal neuron in Figure 2 remained unresponsive 
to all Mooney images before learning (Figure 2d), but its firing rate was selectively modulated in 
response to Mooney Image 1 after learning (Figure 2f). Similarly, the occipital neuron in Figure 
2 did not respond to Mooney Image 4 (purple) before learning (Figure 2g) but increased its firing 
rate in response to this Mooney image after learning (Figure 2i). See Supplementary Figure 2 
for four examples showing a direct comparison between the responses to specific images across 
conditions and Supplementary Figure 3 for further examples in the same format of Figure 2. 
 
We systematically examined whether neurons modulated their activity after learning compared to 
before learning, as indicated by differences in firing profiles between Pre- and Post-learning 
Mooney conditions. Both conditions utilized the same stimuli, providing identical visual input. 
However, the latter occurred after learning and thus the depicted image identity could be readily 
recognized while the former elicited no recognition (Figure 1d,e,f). We hypothesized that these 
perceptual differences would be reflected in changes of firing patterns of individual neurons. To 
test this hypothesis, we first trained linear decoders (support vector machine with linear kernel, 
bin size = 250 ms and step size = 25 ms; Methods) separately for each neuron to discriminate 
between response patterns for Pre- and Post-learning trials across time (Figure 3a). On average, 
the single-neuron classifier could decode between the two conditions (P = 0.001, permutation 
test), evidencing the modulating effects of learning at the single neuron level and in single trials 
during image recognition.  
 
We next assessed the decoding ability of pseudopopulations consisting of groups of single 
neurons across all participants25,26 (Methods). We pooled all responsive neurons to create a 
pseudopopulation and built linear decoders using the responses of single neurons as features 
(bin size = 250ms, step size = 25ms; Methods). The classifier discriminated between Pre- and 
Post-learning images with an accuracy of up to 75% at 550 ms (Figure 3b). Reliable decoding 
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started during image presentation (175-500ms) and continued after stimulus offset (500-900ms) 
(P < 0.05, permutation test versus empirical null distribution, chance = 50%).  
 
Next, we investigated whether learning-induced modulation of neuronal activity was localized to 
specific brain regions. Neuronal pseudopopulations in the OC, PHC, and MTL could discriminate 
between Mooney images before versus after learning (Figure 3c). Decoding started during image 
presentation (P < 0.05, permutation test versus empirical null distribution), and peaked briefly 
after stimulus offset in the three regions. Taken together, these results show that newly acquired 
experience induces changes in neuronal activity, evident even in single trials, across brain areas 
spanning the human medial occipital and temporal lobes, commencing during stimulus 
presentation and continuing beyond the stimulus offset. 
 
Learning aligns neuronal patterns for Mooney images to Grayscale images 
  
We further investigated the nature of learning-induced firing rate modulation by comparing 
neuronal response patterns for Pre- and Post-learning Mooney images with those of the 
Grayscale images. Given the distinct stimuli for Mooney images compared to Grayscale images, 
one might expect dissimilar neuronal patterns purely due to visual input differences. On the other 
hand, since participants could recognize both Grayscale and Post-learning Mooney images but 
not Pre-learning ones (Figure 1f), we hypothesized that learning-induced response modulation 
might align firing rates of Post-learning Mooney images with those of Grayscale images to support 
recognition. Such alignment would result in less discriminability between neuronal patterns for 
Post-learning and Grayscale images compared to discriminability between Pre-learning and 
Grayscale images. Examination of the example neurons in Figure 2, Supplementary Figure 2, 
and Supplementary Figure 3, is consistent with this idea. The hippocampal neuron in Figure 
2d-f responded only to Image 1 both for the Grayscale (Figure 2e) and Post-learning Mooney 
images (Figure 2f), but not for the Pre-learning Mooney image (Figure 2d). The occipital neuron 
in Figure 2g-i responded to Image 4 only for the Grayscale (Figure 2h) and Post-learning Mooney 
images (Figure 2i). 
 
To test the hypothesis of response alignment across all neurons, we first trained linear decoders 
at the single neuron level to discriminate Grayscale images from Mooney images, separately for 
Pre- and Post-learning conditions. On average, neurons could reliably discriminate between 
Grayscale and Mooney images in both Pre- (Figure 3d) and Post-learning (Figure 3e) conditions 
(P = 0.001, permutation test). Consistent with the hypothesis, average decoding accuracy was 
overall higher for the Pre-learning condition compared to the Post-learning condition, both during 
image presentation and after image offset (Supplementary Figure 4). A pseudopopulation 
analysis using all neurons as features reinforced these findings (Figure 3f). Neuronal response 
patterns between Mooney and Grayscale images were rapidly (125 ms) and highly decodable 
(98%, P < 0.05, permutation test versus empirical null distribution), and lasted longer for the Pre-
learning condition compared to the Post-learning condition. The dynamics of decoding profiles 
were similar for Pre- and Post-learning conditions during image presentation. The difference 
between Pre- and Post-learning conditions, evident in Supplementary Figure 4 during stimulus 
presentation, may be obscured in Figure 3f due to an accuracy ceiling effect. Decoding 
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accuracies at the pseudopopulation level began to diverge shortly after the stimulus disappeared 
from the screen, exhibiting a significant decrease in discriminability for the Post-learning condition 
relative to the Pre-learning condition (P < 0.05, permutation test versus empirical null distribution). 
In line with the proposed hypothesis, the drop in decoding for the Post-learning Mooney images 
indicates that neuronal response patterns evoked by the Post-learning images tended to align to 
those evoked by Grayscale images. 
  
We repeated these analyses separately for each brain region (Figure 3g). OC and PHC showed 
high discriminability between Grayscale and both Pre- and Post-learning Mooney conditions 
during the image presentation phase, with divergent decoding profiles after stimulus offset (P < 
0.05, permutation test versus empirical null distribution). In the MTL, the Gray-vs-Pre and Gray-
vs-Post decoding profiles began to diverge consistently earlier during image presentation, but 
significant differences only emerged after image offset. For both profiles, discriminability between 
Grayscale and Mooney images was observed earlier in the OC and PHC (125-175 ms) compared 
to the MTL (300ms). Overall, following learning, neurons changed their firing patterns in response 
to Mooney images to resemble those of the Grayscale images across all three brain regions.  
  
Neuronal patterns for Grayscale images generalize to Mooney images after learning 
 
To further understand the content encoded by neuronal populations before versus after learning, 
we assessed whether activity patterns elicited by Grayscale images generalized to two-tone 
Mooney images. If neurons changed their firing patterns after learning to reflect image identity, 
then patterns encoding Grayscale images would be expected to generalize to Mooney images 
after learning, but not (or to a lesser extent) before learning. To test this hypothesis, we employed 
a cross-condition decoding approach in which classifiers were trained on one condition and tested 
on another across time (Figure 4a-f). At each time point and for every pair of conditions, decoders 
predicted image identity from neuronal activity patterns. Because different sessions used distinct 
subsets of images, we chose the top three images from each session based on their responses 
in the Grayscale condition and labeled the selected images of each session as Image 1-3 to build 
three-class decoders (Methods; chance = 33%). 
  
We examined generalization of neuronal responses for Grayscale to Mooney images (Gray-to-
Post and Gray-to-Pre) separately for each region. Figure 4a shows Gray-to-Post generalization 
for neurons in the OC. Each entry at time x, y indicates the mean decoding accuracy for two train-
test configurations: first, the classifier was trained with the responses to Grayscale images at time 
y and tested with the responses to Post-learning Mooney images at time x; second, the classifier 
was trained with the responses to Post-learning Mooney images at time x and tested with the 
responses to Grayscale images at time y. OC neurons showed significant Gray-to-Post 
generalization (P < 0.05, versus empirical null distribution; chance = 33%; Figure 4a), and weaker 
generalization for Gray-to-Pre (Figure 4b). Decoding accuracies were higher for Gray-to-Post (up 
to 62%) than for Gray-to-Pre (49%), and remained significant for ~200 ms after image offset for 
the Post-learning Mooney images. We next evaluated generalization in MTL neurons, which 
showed significant transfer of image identity information only after learning, with decoding 
accuracy reaching 50% for Gray-to-Post (P < 0.05; Figure 4d), and chance-level performance for 
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Gray-to-Pre (Figure 4e). Finally, generalization analyses in the parahippocampal cortex revealed 
no significant decoding across conditions (Supplementary Figure 5). 
  
Additionally, we asked whether neural responses would generalize from Pre- to Post-learning 
Mooney images, given that the visual input was identical despite the change in perception, from 
unrecognized to recognized. We found that Pre-to-Post generalization was significant in OC 
neurons (up to 65%; Figure 4c), with decoding mostly confined to the image presentation interval. 
In contrast, MTL neurons showed no significant Pre-to-Post generalization, with decoding 
remaining at chance level (Figure 4f). 
 
Generalization of neuronal responses for Grayscale to learned Mooney images is delayed 
in OC and MTL 
 
We further analyzed the temporal dynamics of the cross-condition generalization matrices (Figure 
4a-f). Entries along the diagonal reflect generalization from Grayscale images to Post-learning 
Mooney images at matched time points, while entries above or below the diagonal indicate cross-
time generalization. 
  
In the OC, the Gray-to-Post generalization matrix exhibited an asymmetric profile with a prominent 
off-diagonal peak (Figure 4a). We quantified this asymmetry by estimating the probability density 
function of peak decoding times via resampling (Methods). The decoding peak deviated 125 ms 
from the diagonal (P < 0.05, empirical distribution versus the diagonal; Figure 4g), indicating that 
neuronal patterns in response to Grayscale images at 175 ms most closely resembled those for 
Post-learning Mooney images at 300 ms (Supplementary Figure 6a). To evaluate whether 
generalization favored early or late neuronal responses, we compared decoding accuracies 
above and below the diagonal. Decoding accuracy was significantly higher at later compared to 
earlier time points in the Gray-to-Post case (Supplementary Figure 7a,d). By contrast, the 
generalization profiles for Gray-to-Pre and Pre-to-Post were centered on the diagonal and no 
difference was observed between early and late decoding stages (Figure 4h,i, Supplementary 
Figure 6b,c, Supplementary Figure 7b,c,e,f). 
  
As in the occipital region, the Gray-to-Post generalization profile in MTL was also asymmetric, 
with higher accuracies falling below the diagonal and the decoding peak was 100 ms off-diagonal 
(Figure 4j). Thus, neuronal patterns in response to Grayscale images at 325 ms were most similar 
to those for learned Mooney images at 425 ms (Supplementary Figure 6d), and generalization 
was again higher at later stages (Supplementary Figure 8). Gray-to-Pre and Pre-to-Post 
generalization profiles in the MTL showed no significant asymmetry with respect to the diagonal 
(Figure 4k,l, Supplementary Figure 6e,f). 
  
Together, these findings uncovered key neuronal dynamics induced by learning. Consistent with 
the behavioral findings, Grayscale-to-Mooney generalization emerged only after learning. The 
more pronounced below-diagonal decoding indicates that neuronal patterns for Grayscale images 
predominantly generalize to Post-learning Mooney images at a late processing stage. Thus, with 
additional processing time, responses to learned Mooney images evolve to resemble those 
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elicited by Grayscale images. For Pre-to-Post Mooney generalization, where images are identical, 
the observed on-diagonal decoding in OC might reflect shared low-level visual representations. 
  
Finally, we summarized the timing of Gray-to-Post generalization in OC and MTL (Figure 4m,n). 
Consistent with hierarchical processing, generalization occurred earlier in OC (175 ms and 300 
ms, in Grayscale and Post-learning Mooney conditions, respectively) than in MTL (325 ms and 
425 ms). The generalization delays were comparable across regions (125 ms in OC and 100 ms 
in MTL), suggesting that the temporal lag observed in OC may propagate to MTL, with MTL not 
contributing additional delays. 
 
Neurons in MTL respond later to learned Mooney images compared to Grayscale images 
 
Both OC and MTL neuronal populations showed delayed generalization from Grayscale to 
Mooney images after learning. To determine whether this generalization delay was reflected in 
the timing of individual neuronal responses, we computed response latencies to Grayscale and 
Post-learning Mooney images in OC and MTL (Figure 5a,b). In OC, response times did not differ 
between conditions (Figure 5a,c). In contrast, MTL neurons responded significantly later to Post-
learning Mooney images than to Grayscale images (time difference = 110 ms; P = 10-3, two-sided 
Wilcoxon signed-rank test; Figure 5b,c). These results suggest that MTL neurons fire only after 
earlier stages have devoted additional processing time to resolving the identity of the learned 
Mooney images. 
 
DISCUSSION 
  
We investigated how the neuronal dynamics induced by rapid learning in the human brain reshape 
perception using degraded two-tone Mooney images11. Mooney images are unrecognizable 
before learning. However, after brief exposure to the corresponding Grayscale images, 
recognition of Mooney images increases dramatically11,12,14,16,21. Participants in our study showed 
essentially all-or-none recognition of Mooney images mediated by rapid learning. Additionally, 
recognizing Mooney images after learning required additional processing time compared to 
Grayscale images. 
  
Medial occipital neurons showed lower selectivity and faster responses, while MTL neurons 
showed higher selectivity and slower responses (Figure 2), reflecting hierarchical processing 
from the ventral visual pathway to downstream areas in the medial temporal lobe27–30. The time 
required for visual signals to reach the human MTL was longer compared to other primates31–33. 
Rapid learning led to changes in firing patterns in neurons in medial occipital and temporal 
regions. Despite the identical visual input, neurons within these areas discriminated between Pre- 
versus Post-learning Mooney images (Figures 2, 3). Previous studies in monkeys showed that 
neurons in inferior temporal cortex, known for their role in representing objects and faces, change 
their activity in response to Mooney images after exposure to their intact versions20, following 
learned associations34–36, and while building size-invariant object representations37. In humans, 
neuroimaging studies have revealed learning-related effects on the representation of Mooney 
face and object images in high-level visual cortex, including the occipital and fusiform areas, as 
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well as in the precuneus and adjacent parietal regions implicated in top-down attention21,24,38. 
Moreover, single-shot associative memories of unrelated concepts are represented by neurons 
in the human medial temporal lobe39. Linking the work in monkeys and humans, our results 
demonstrate that the effects of recently acquired experience are reflected in neuronal activity in 
both visual cortex and MTL regions. 
 
Following learning, neurons modulated their responses to Mooney images to resemble the 
responses to Grayscale images (Figures 2, 3). Consistently, neuroimaging studies suggested 
that the representation of Mooney images is more similar to the representation of intact images 
after learning22,23. Decoding Mooney images after learning required additional processing time 
compared to processing of intact Grayscale images (Figure 4), consistent with behavioral results 
showing slower response times for Post-learning Mooney images (Figure 1g). The generalization 
delays for degraded Mooney images (~125 ms) are reminiscent of those previously reported in 
human visual areas (110-160 ms) when participants had to recognize highly occluded objects 
compared to whole objects26. Furthermore, studies in monkeys have shown that objects that are 
harder to recognize take longer to be reliably decoded from neurons in the primate ventral 
stream40. These delays may reflect the need for recurrent processing, involving signals from other 
visual areas as well as top-down feedback from areas in the frontal and temporal lobes41–44. Unlike 
these studies, our work used learning to facilitate recognition. Learning transformed an essentially 
impossible recognition task (Pre Mooney) into a challenging but solvable task (Post Mooney) 
enabling the brain to reconstruct visual objects from impoverished images. In contrast to learning 
new images – which may require neocortical neurons to expand their tuning to encode novel 
objects45 – recognizing Mooney images may rely on learning figure-ground segregation and 
image completion processes. The effects of learning in our study may manifest through extensive 
recurrent processing to solve object identity in the human brain, which might involve top-down 
feedback from higher-order cortical areas19,46,47.  
 
Our analyses reveal that key neuronal dynamics that support recognition after learning occur 
faster in OC than in MTL highlighting their distinct roles in learning-induced visual recognition 
across the processing hierarchy. Pre-to-Post generalization in OC (Figure 4) and the early low 
Pre-vs-Post discriminability (Figure 3) may reflect shared processing of visual features of Mooney 
images, independent of recognition. However, once the Mooney images are learned, neuronal 
representations evolve to integrate the visual input with newly acquired knowledge. As a result, 
these dynamics lead to decoding object information in OC within 300 ms. In contrast, chance 
decoding observed for Pre-to-Post generalization in MTL suggests limited or no involvement in 
the processing of low-level visual features of the images. Instead, MTL appears to be more 
involved in abstract-level representations related to image identity, resolving object identity of 
learned Mooney images within 425 ms. Late representations after image offset (Figure 3) might 
reflect non-content-specific processing related to Mooney images after recognition23. Together, 
changes in neuronal patterns observed in OC encode rapidly learned visual information, 
reshaping perception through further recurrent processing before forwarding the signal to 
downstream areas. This process may account for the delayed neuronal responses in MTL. 
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Experience-driven synaptic changes in neuronal circuits are fundamental to learning48 and 
engage multiple processes and brain regions49. Rapidly storing memory traces is often attributed 
to MTL structures18,28,39,50, which facilitate memory reinstatement in neocortical regions via 
feedback18,34. However, whether all forms of rapid learning require the participation of the MTL 
remains unclear. A recent study14 showed that memory-impaired patients with lesions in the MTL 
showed performance similar to healthy control participants on a rapid one-trial perceptual learning 
task, suggesting cortical changes may occur independently of the MTL. Although the perceptual 
effects persisted for several days, the patients’ memory of the test was impaired, arguing against 
the involvement of associative memory13,14. The spatiotemporal dynamics presented here indicate 
that recognition after rapid perceptual learning may rely on neocortical processing without 
requiring feedback from MTL. 
 
The last decade has seen remarkable progress in the development of successful Artificial 
Intelligence (AI) algorithms. Such algorithms are typically trained with very large amounts of data, 
often in a supervised fashion. Humans can use few-shot and unsupervised cues to rapidly learn, 
as strikingly demonstrated by recognition of impoverished two-tone Mooney images. Our single-
neuron data characterize how learning-induced spatiotemporal dynamics encode new visual 
information reshaping perception. Unlike other forms of fast learning that require recruiting the 
MTL, rapid perceptual changes may primarily rely on neocortical processing. The current study 
provides initial steps towards understanding the dynamic interplay between visual cortex and 
medial temporal lobe memory structures to instantiate rapid and unsupervised learning and 
provide constraints for developing computational models that include recurrent computations for 
rapid learning. 
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Figure 1. Experimental design, behavior, and recording sites. a, Examples of Mooney 
images. b, Examples of Grayscale images. c, Example trial displaying stimulus and blank screen 
durations. Participants reported whether they recognized the object on the screen via button press 
('yes' or 'no'). d, Illustration of the learning process for Mooney images. The sequence depicts 
Mooney images before learning (Pre-learning, red frame) and after learning (Post-learning, blue 
frame), with the learning phase marked by a turquoise double-headed arrow. Pre-learning 
Mooney images are unrecognizable, as indicated by the response 'no' shown beneath the image. 
After multiple presentations of Pre-learning Mooney images, Grayscale and a Mooney image 
depicting the same object are shown back-to-back to facilitate learning of the Mooney image. 
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During the learning sequence, both the Grayscale and Mooney images are recognized ('yes' 
beneath the images). Following the learning sequence, Mooney images can be recognized. The 
colored frames were added for illustration purposes and were not visible during the task. Note 
that this panel illustrates a sequence for a single image (camel); the full sequence included 
multiple images interleaved throughout the session, as indicated by the ellipses between stimuli 
(see Methods). e, Proportion of Mooney images recognized across trials during an example 
session. Trials are aligned with respect to the learning event (trial 0), indicated by a downward 
arrow. Mooney image recognition rapidly and drastically grew from almost none to almost perfect 
after learning. Post-learning trials (positive numbers, blue dots) show proportion of Mooney 
images recognized after learning. Pre-learning trials (negative numbers, red dots) show that later-
recognized Mooney images were not recognized before learning, even though the images were 
identical. f, Behavioral performance during the recognition task across all sessions. Before 
learning (Pre, red), participants exhibited low performance (4%). Grayscale images (Gray, gray) 
and Mooney images after learning (Post, blue) were highly recognizable (93% and 83%, 
respectively). Each dot represents a session (N=34). g, Response times (RT) relative to image 
onset. Participants responded faster to Post-learning Mooney images compared to Pre-learning 
Mooney images, and the fastest responses were those to Grayscale images. Box plots show the 
median and interquartile range of the response time distributions. Asterisks (*) in f and g show 
statistically significant differences between conditions (P < 0.05, two-sided Wilcoxon signed-rank 
test). h, Electrode locations across all participants. Each dot represents a microwire bundle 
location, mapped onto a standardized MNI152 brain template (left) and a 3D brain model (right). 
All dots are displayed in the same hemisphere for visualization purposes only. The color of each 
dot denotes the microwire bundle location.  
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Figure 2. Neurons show different response latencies and visual selectivity across brain 
regions. a, Proportion (and count) of visually responsive neurons across human brain regions. 
OC refers to the occipital cortex, and PHC to the parahippocampal cortex. Neurons in the 
hippocampus (Hipp.), amygdala (Amyg.), and entorhinal cortex (Ento.) are collectively referred to 
as the MTL from here on. Visually responsive neurons showed statistically significant modulation 
of their firing rates during image presentation (Grayscale or Mooney) compared to the baseline 
period (P < 0.05, FDR corrected, permutation test, 1,000 iterations). The ring chart shows the 
number of visually responsive neurons (dark gray segments) relative to the total number of 
recorded neurons (colored segments). Percentages indicate the proportion of responsive neurons 
within each brain region (reported in aggregate for the MTL). b, Distribution of neuronal response 
latencies across brain regions. Response latency was defined as the time from stimulus onset to 
the first significant change in firing rate relative to baseline (Methods). c, Proportion of neurons 
across brain regions that selectively responded to 1, 2 or 3+ distinct grayscale images. d,e,f, 
Example of a highly selective neuron in the hippocampus. Panels show the spiking activity in 
response to different images (Images 1-4) in the Pre-learning Mooney (d), Grayscale (e), and 
Post-learning Mooney (f) conditions. This neuron responded only to Image 1 (turquoise) for the 
Grayscale (e) and Post-learning Mooney (f) images, but not in the Pre-learning condition (d). 
Raster plots (top) show spiking activity (each dot represents a spike event) across trials (rows) 
and over time. Colors correspond to different images. Responses are shown for a subset of four 
images that were presented during the task. Trials are grouped by image for visualization. The 
light gray rectangle in the background indicates the image presentation interval. Mean firing rates 
(bottom) are shown separately for each image (solid colored lines; bin size is 250 ms and step 
size is 10 ms). Shaded areas represent s.e.m. across trials. Firing rates for the Mooney images 
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increased after learning (f) compared to before learning (d). g,h,i, Spiking activity of an example 
neuron in the medial occipital cortex, shown with the same conventions as in d-f. This neuron 
responded to multiple stimuli (Images 1-4) and exhibited firing rate modulation depending on the 
image and condition.  
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Figure 3. Neuronal activity is modulated by learning. a, Decoding accuracy for Pre- (red 
frame) versus Post-learning Mooney (blue frame) images. Each row corresponds to the decoding 
accuracy of the responses of single neurons in the medial occipital cortex (OC, top), 
parahippocampal cortex (PHC, middle) and the medial temporal lobe (MTL, bottom). See color 
scale on bottom right. b, Population decoding accuracy including the responses of all neurons in 
a as features. The dashed line is chance (50%). The solid line below the curves represents time 
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points significantly above chance (P < 0.05, versus empirical null distribution). In this and following 
panels, time zero indicates image presentation onset and the shaded gray area represents the 
stimulus presentation period. c, Population decoding accuracy using neurons in a as features for 
each brain region separately. d, Decoding accuracy for Grayscale (gray frame) vs. Pre-learning 
Mooney images and e, Grayscale vs. Post-learning Mooney images. Same conventions and color 
scale as in a. f, Population decoding accuracy including the responses from all neurons in d (Gray 
vs Pre, red) and e (Gray vs Post, blue) as features. Same conventions as in b. The solid turquoise 
line below the curves represents the time points with statistically significant difference between 
the two decoding profiles (P < 0.05, versus empirical null distribution). g, Population decoding 
accuracy using the responses of neurons in d as features for each brain region separately. Same 
conventions as in f. In b, c, f, and g, the shaded area around the chance line represents the 95% 
confidence interval of the empirical null distribution obtained by shuffling the labels (500 
iterations). Decoders were binary linear classifiers (support vector machine; chance = 50%) using 
sliding windows of 250 ms and a step size of 25 ms. 
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Figure 4. Generalization to learned Mooney images is delayed in OC and MTL. a-c, 
Generalization matrices in OC for: (a) Grayscale to Post-learning Mooney (Gray-to-Post), (b) 
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Grayscale to Pre-learning Mooney (Gray-to-Pre), and (c) Pre-learning to Post-learning Mooney 
(Pre-to-Post). Generalization was assessed by training a decoder with one condition and testing 
with the other, including the responses of neurons as features. Each matrix entry x,y indicates the 
mean decoding accuracy of image identity for the two train-test configurations across conditions, 
as follows: first, we computed decoding accuracy by training with the Grayscale at time y and 
testing with the Mooney condition at time x; second, we computed decoding accuracy by training 
with the Mooney at time x and testing with the Grayscale condition at time y; third, the mean of 
these two values correspond to entry x,y. Accuracies correspond to three-class decoders (chance 
is 33%) of top three images chosen based on their responses in the Grayscale condition 
(Methods). The x- and y-axes indicate time points of neuronal activity for the corresponding 
conditions. Time zero marks image onset. The small pictures above the matrices indicate the 
conditions included in the generalization matrix (gray frame for Grayscale, blue frame for Post-
learning Mooney, and red frame for Pre-learning Mooney). The black dashed line represents the 
matrix diagonal, where conditions were trained and tested at the same time points. The dashed 
line square represents the image presentation interval. Red solid lines delineate statistically 
significant decoding (P < 0.05, permutation test versus empirical null distribution). d,e,f, 
Generalization in MTL. Panels and data follow the same conventions as in a-c. g,h,i, 
Generalization asymmetry corresponding to decoding profiles in a, b, and c. We quantified the 
deviation of peak decoding from the diagonal to measure generalization asymmetry. Deviation of 
the distribution to the right indicates that neuronal patterns for Grayscale images generalize to 
later activity for the Post-learning Mooney images. Asterisks (*) indicate statistically significant 
deviation from the diagonal (P < 0.05, empirical distribution versus the diagonal). n.s indicates no 
statistically significant deviation from the diagonal. j,k,l, Generalization asymmetry in MTL 
corresponding to the decoding profiles in d, e, and f, respectively. Data use the same conventions 
as in g-i. Results for the OC are color-coded in purple, and MTL in green. m, Comparison of Gray-
to-Post generalization in the OC and MTL. The ellipses illustrate generalization asymmetry in the 
OC (purple) and MTL (green), corresponding to panels a and d, respectively. In both cases, peak 
generalization falls below the diagonal, occurring earlier in the OC than in the MTL. The ellipses 
span the interquartile range of the probability density functions of peak generalization 
(Supplementary Figure 6a,d). The shaded gray area with dashed lines delineates the stimulus 
presentation period. n, Summary of generalization times for Gray-to-Post. Downward arrows and 
numbers indicate the median peak generalization times for Grayscale (gray box) and Post-
learning Mooney (blue box) images in the OC (top, purple background) and MTL (bottom, green 
background). Box plots represent the interquartile range of the marginals of the probability density 
functions (Supplementary Figure 6a,d). The vertical dashed line at time zero indicates image 
presentation onset, and the shaded gray area in the background represents the presentation 
period. 
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Figure 5. Neurons in MTL respond later to learned Mooney images compared to Grayscale 
images. a, b. Scatter plots of neuronal response latencies for Grayscale (y-axis) versus Post-
learning Mooney images (x-axis) in the OC (a) and MTL (b). Each dot represents the response 
latency of a neuron to an individual image. The tilted distribution represents the differences 
between latencies for Grayscale and Post-learning Mooney images. The distribution centered at 
zero indicates no latency difference (n.s.) between conditions. The asterisk (*) in b denotes 
significant latency differences (P = 0.001, two-sided Wilcoxon signed-rank test) between 
Grayscale and Post-learning Mooney images in MTL. Thus, dots largely falling below the diagonal 
(dashed line) indicate that neuronal responses to Post-learning Mooney images are delayed with 
respect to responses to Grayscale images. c, Summary of neuronal response latencies. 
Downward arrows and accompanying numbers indicate the median latency for Grayscale (gray 
box) and Post-learning Mooney (blue box) images in the OC (top, purple background) and MTL 
(bottom, green background). In the OC, latencies did not differ between the two conditions (150 
ms for Post Mooney, and 155 ms for Grayscale), and arrows overlapped. Box plots represent the 
interquartile range of the latency distributions in a and b. The vertical dashed line at time zero 
indicates image presentation onset, and the shaded gray area in the background represents the 
presentation period. 
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MATERIALS AND METHODS 
  
Participants 
  
The participants undergoing neuronal recordings were 13 adult patients (34 sessions; 5 female; 
aged 25 to 50 years; Supplementary Table 1) with epilepsy who were implanted with hybrid 
macro- and microelectrodes for epilepsy monitoring and evaluation for treatment of drug-resistant 
epilepsy, at the Freiburg Epilepsy Center in Freiburg im Breisgau, Germany. Electrode placement 
was solely determined by the need to localize epileptogenic regions. The electrode locations were 
determined using post-implantation computed tomography co-registered with preoperative MRI. 
These locations were then transformed into standardized MNI152 space and plotted on a 
template brain for visualization purposes only (Figure 1h). All participants volunteered for this 
study and gave informed consent. The study adhered to the ethical guidelines established by the 
University Hospital Freiburg's ethics committee in Freiburg im Breisgau, Germany. 
 
Experimental task 
  
Participants performed an image recognition task (Figure 1). They were shown sequences of 
images and instructed to report whether they recognized the identity of the depicted objects with 
a button press. When recognized, participants were asked to verbally report the identity of the 
image. Responses were marked as incorrect if participants did not identify the image content. The 
images included animals, objects, and people, presented as grayscale pictures (Figure 1b) and 
their corresponding two-tone Mooney counterpart version (Figure 1a)11. At the beginning of each 
session, participants received instructions and were shown an example of a grayscale and the 
corresponding Mooney picture side by side to illustrate the images in the task. Images were 
presented in blocks of 60 trials, and participants completed on average 16.6 ± 3.3 blocks (mean 
± s.d.) per session (Supplementary Table 1 shows the number of sessions for each participant). 
Sessions stopped when a maximum of 25 blocks were reached, or earlier if a participant wanted 
to stop. In each trial, a grayscale or Mooney image (5° × 5° visual angle) was presented at the 
center of the screen for 500 ms followed by a blank screen for 1,300 ms (Figure 1c). 
 
Participants were first exposed to the Mooney versions of the images (Pre-learning Mooney 
images, Figure 1d, left, red frame), which were largely unrecognized (Figure 1e-f). Different 
Mooney images were randomly interleaved over the sequence. Each Pre-learning Mooney image 
was presented for 30 trials before a corresponding learning segment was shown. If participants 
recognized the identity of a Mooney image prior to learning, that image was no longer presented, 
and the learning sequence for that image was not presented either. After Pre-learning Mooney 
images, participants were presented with a learning sequence in which an original grayscale 
image followed by the corresponding Mooney version of that image were used to facilitate learning 
(Figure 1d, middle, turquoise frame). If the participant recognized both the grayscale and Mooney 
versions of the image, that image was marked as learned. Otherwise, the learning segment was 
presented multiple times until both versions of the image were recognized. Once an image was 
marked as learned, no additional learning segments for that image were presented. For images 
that were recognized during the learning sequence, Mooney images were shown again multiple 
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times (Post-learning Mooney images, Figure 1d, right, blue frame). Additionally, grayscale 
images were randomly interleaved with the Mooney images over the task. Different images from 
the three experimental conditions (Pre-learning Mooney, Grayscale, and Post-learning Mooney) 
were strategically distributed across the session to balance the number of trials per image and 
condition. Thus, each block within a session included an interleaved combination of all three 
conditions. The number of distinct images presented in each session varied depending on the 
number of blocks completed by participants, ranging from 4 to 10. Participants who completed 
multiple sessions were presented with different images in each session. Participant performance 
was measured as the proportion of recognized images per condition (Figure 1e,f). We also 
measured the response times as the time between stimulus onset and the participant’s button 
press indicating recognition. 
 
Eye tracking 
 
To assess eye movements during visual recognition, we conducted the image recognition task 
described above in an independent cohort of healthy participants (13 sessions across 10 
individuals; aged 24 to 65 years). Eye position was recorded using an infrared-based eye tracker 
(EyeLink 1000, SR Research) sampling at 500 Hz. Calibration was performed at the beginning of 
each session using a standard nine-point grid and was accepted only when the validation error 
was less than 1° of visual angle (mean validation error: 0.35°). The Eyelink system’s default 
settings were used to define fixation and saccade onsets. Visual stimuli and trial structure 
matched those used in the patient recordings. 
 
Neurophysiological recordings and spike sorting 
  
We conducted extracellular electrophysiological recordings in patients using Behnke-Fried 
electrodes (Ad-Tech, Oak Creek, Wisconsin), which contained 8 microwires (40 μm in diameter) 
located at the tip of the electrode shaft51–53. Microelectrode coverage included the occipital cortex, 
parahippocampal cortex, entorhinal cortex, hippocampus and amygdala (Supplementary Table 
2). We recorded broadband signals (0.1-9,000 Hz) at a sampling rate of 30 kHz using the 
NeuroPort system (Blackrock). Subsequently, these signals were filtered offline between 300-
3,000 Hz using a zero-phase digital filter. We performed spike detection and sorting for each 
microwire using the semiautomated template-matching OSort algorithm54. 
 
Single neuron analysis 
  
To identify visually responsive neurons, we compared firing rates during the interval from 200 to 
700 ms after image onset with the baseline period, defined as the -500 to 0 ms interval before 
image onset. Neurons were considered visually responsive if their firing rates significantly 
changed in response to at least one image (either Grayscale or Mooney). Significance was 
assessed using a permutation test (1,000 iterations) with a P-value < 0.05, corrected for false 
discovery rate (FDR). FDR correction involved shuffling the labels of firing rates and repeating 
the analysis 1,000 times to generate a null distribution of results. The P-value threshold for visual 
responsiveness was then adjusted to ensure that fewer than 5% of neurons were expected to be 
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identified as responsive by chance. Neurons in the hippocampus, amygdala, and entorhinal cortex 
were considered together as the medial temporal lobe (MTL). Subsequent analyses were based 
only on the visually responsive neurons (Figure 2a). 
  
We measured neuronal response latency as the time from stimulus onset to the first significant 
change in firing rate relative to the baseline period (Figure 2b). For each responsive neuron, we 
estimated the instantaneous firing rate by convolving its spike train with an asymmetric kernel 
function 55 and averaging across trials. Latency was determined as the time point where 
instantaneous firing rate exceeded 3 s.d. from the baseline for at least 100 ms. Latency 
distributions were compared across regions using the Kruskal–Wallis test. Response selectivity 
for each neuron was defined as the number of distinct grayscale images that elicited a significant 
response (Figure 2c).  
  
Decoding analysis 
  
Single-trial decoding analyses were conducted using neuronal responses as features either at 
the individual level (Figure 3a,d), or as a pseudopopulation (Figure 3b,c,f,g). Pseudopopulations 
were constructed by aggregating neurons recorded across sessions25,26,56. For each neuron, firing 
rates were first normalized by subtracting the baseline on a trial-by-trial basis and then z-scored. 
We used a support vector machine (SVM) with a linear kernel, as implemented by the fitcecoc 
function in MATLAB, performing five-fold cross-validation to estimate decoding performance. 
Decoding across time was assessed using a 250 ms sliding window, with steps of 25 ms. We built 
binary classifiers (chance = 50%) to discriminate between Pre- versus Post-learning conditions 
(Figure 3a-c), Grayscale versus Pre-learning (Figure 3d, f, g), and Grayscale versus Post-
learning (Figure 3e, f, g). Each classifier label included different images. For instance, the Pre-
learning label contained only Pre-learning Mooney images, but these depicted different objects, 
such as a camel, a tool, or people. Because different sessions contained varying numbers of 
images, we balanced the number of trials across sessions by randomly subsampling those with 
more images. We determined significance by comparing decoding performance to an empirical 
null distribution. The null distribution was generated by shuffling the conditions labels and running 
decoding for 500 iterations. Time points where decoding exceeded the 95th percentile of the null 
distribution for at least 250 ms were considered significantly different from chance. 
  
Generalization analysis 
  
We assessed generalization following a cross-condition population decoding approach, training 
decoders on one condition and testing them on another condition57,58. Support vector machines 
with a linear kernel were employed using a 250 ms sliding window with 25 ms steps. 
Pseudopopulations of neurons, pooled across sessions, were used to build classifiers. Classifiers 
were first trained to predict image identity from neuronal patterns in one condition. We then froze 
the classifier weights and tested predictions on neuronal patterns from a second condition. To 
account for differences in the number of images used across sessions, we chose three images 
from each session to build three-class decoders (chance = 33%). For each session, we sorted 
images based on how many neurons responded to them in the Grayscale condition and selected 
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the top three images. To pool images across sessions, we arbitrarily labeled images in each 
session as Image 1-3, and then grouped those with the same labels. This approach is suitable 
because the SVM algorithm requires that each class elicits distinct neuronal responses to 
separate patterns in a high-dimensional space, independent of image identity59. Using this 
procedure, we computed cross-time generalization profiles for Gray-to-Post (Figure 4a,d), Gray-
to-Pre (Figure 4b,e), Pre-to-Post (Figure 4c,f). For each case, we computed both possible train-
test combinations. For instance, in the Gray-to-Post generalization, we first trained on the 
Grayscale condition and tested on the Post-learning Mooney condition to estimate decoding 
accuracy at each time point. Then, we repeated this process in reverse order, training on the 
Post-learning Mooney condition and testing on the Grayscale condition. Each entry at time x, y in 
the generalization matrix (e.g., Figure 4a) represents the mean decoding of these two train-test 
combinations. Significance was assessed by comparing decoding performance to an empirical 
null distribution generated by shuffling conditions labels (200 iterations). Significant decoding was 
defined at P < 0.05 (cluster-size correction for multiple comparisons)59. 
  
We quantified deviation of the generalization profiles from the diagonal by computing the 
probability density function of peak decoding (Supplementary Figure 6). For each generalization 
profile, we resampled our data 200 times and ran our decoder as described above. Each iteration 
produced an x, y coordinate for peak decoding. Thus, each entry in the probability density function 
represents the frequency of that coordinate being identified as the maximum peak decoding. We 
then calculated the deviation from the diagonal (in ms) as the difference between x and y. We 
compared the distribution of deviations from the diagonal against the null hypothesis that these 
deviations are zero (Figure 4g-l). If 95% of the values in the distribution are greater (or lower) 
than zero, the deviation is considered significant. A positive deviation indicated that the patterns 
for the condition on the y-axis generalized to later times for the condition on the x-axis. A negative 
deviation indicated that the patterns for the y-axis condition generalized to earlier times for the x-
axis condition. We then statistically compared the mean decoding accuracies below and above 
the diagonal. For each generalization profile, we selected one cluster from each side of the 
diagonal and compared their mean decoding (Supplementary Figure 7, Supplementary Figure 
8). These clusters included all significant time points on both sides of the diagonal and their 
corresponding symmetric points. This process was repeated 200 times by resampling our data. 
We then employed a permutation test to compare the two distributions, determining significance 
at P < 0.05. 
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Supplementary Figure 1. Eye movements were similar across conditions. a, Performance 
during the recognition task with eye tracking. Participants exhibited poor image recognition for 
Mooney images before learning (Pre, red; 6%) and nearly perfect recognition for Grayscale 
images (Gray, gray; 99%). After learning, recognition for Mooney images improved to 95% (Post, 
blue). Each dot represents one session (N = 13, 10 healthy participants, compare to Figure 1f). 
b, Response times (RT) relative to image onset. Participants were slower to recognize Mooney 
images compared to Grayscale images. Asterisks in a and b indicate statistically significant 
differences between conditions (P < 0.05, two-sided Wilcoxon signed-rank test, compare to 
Figure 1g). c, Percentage of trials with saccades during the image presentation interval (0–500 
ms). Participants made no saccades in most trials (~83%) and the rates of saccades were 
comparable across conditions (P > 0.05, two-sided Wilcoxon signed-rank test). Error bars are 
s.e.m. d, Latency to first saccade from image onset. When saccades occurred, they happened 
on average at 267 ms, and there were no significant differences across conditions (P > 0.05, two-
sided Wilcoxon signed-rank test). Box plots show the median and interquartile range of the 
distribution. 
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Supplementary Figure 2. Examples of visually responsive neurons. Spiking activity of 4 
example neurons in response to individual images. Raster plots (top) show spiking activity (each 
dot represents a spike) for an image across trials (rows) and over time. Colors correspond to 
spiking activity of an image across the three different conditions: Pre-learning Mooney (red), 
Grayscale (gray), and Post-learning Mooney (blue). The corresponding Mooney and Grayscale 
images are shown above the raster plots. Trials are grouped by condition for visualization. The 
light gray rectangle indicates the image presentation interval. Mean firing rates (bottom) are 
shown separately for each condition (solid colored lines; bin size is 250 ms and step size is 10 
ms). Shaded areas represent s.e.m. across trials. 
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Supplementary Figure 3. Spiking activity for example neurons across images and 
conditions. Spiking activity of an example neuron in the hippocampus (a,b,c) in response to 
different images in the Pre-learning Mooney (a), Grayscale (b), and Post-learning Mooney (c) 
conditions. Spiking activity of an example neuron in the occipital cortex (d,e,f). Data use the same 
conventions as Figure 2 in the main text. 
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Supplementary Figure 4. Single-neuron decoding is higher for Gray vs. Pre than for Gray 
vs. Post. Decoding accuracy (mean ± sem) across all neurons (n = 318) in Figure 3d,e for 
Grayscale versus Pre-learning Mooney image decoding (red) and for Grayscale versus Post-
learning Mooney image decoding (blue). The dashed line is chance. Time zero indicates image 
presentation onset and the shaded gray area represents the presentation period. The solid lines 
below the curves represent time points significantly above chance for each of the curves (P < 
0.05, permutation test). The solid turquoise line below the curves represents the time points with 
significant difference between the two curves (P < 0.05, permutation test). 
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Supplementary Figure 5. Generalization in PHC. Generalization profiles for Gray-to-Post (a), 
Gray-to-Pre (b), and Pre-to-Post (c) in PHC. Data use the same conventions as Figure 4a-c. 
d,e,f, Generalization asymmetry corresponding to the decoding profiles in a, b, and c, 
respectively. Data use the same conventions as in Figure 4g-i. n.s. indicates no significant 
deviation from the diagonal. 
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Supplementary Figure 6. Peak decoding probability reveals asymmetric generalization 
dynamics in OC and MTL. a-c, Probability density functions of peak decoding in OC 
corresponding to the generalization profiles shown in Figure 4a-c. The matrices were computed 
using a resampling method to identify the maximum decoding (Methods). Each matrix entry 
represents the probability of observing the decoding maximum at that position. The sum of all 
entries in each matrix equals 1. Peak decoding below the diagonal suggests delayed 
generalization from Grayscale to Post-learning Mooney images. Time zero indicates image onset, 
the black dashed line represents the matrix diagonal, and the square with white dashed lines 
represents the image presentation interval.For Gray-to-Post generalization in OC (a), peak 
decoding probability is highly concentrated below the diagonal around coordinates [175, 300] ms 
(Grayscale and Post-learning Mooney coordinates, respectively), suggesting delayed 
generalization from Grayscale to Post-learning Mooney images in OC. Conversely, for Pre-to-
Post (c), peak decoding probability falls largely on the diagonal. d-f, Probability density functions 
of peak decoding in MTL corresponding to the generalization profiles shown in Figure 4d-f. For 
Gray-to-Post generalization in MTL (d), peak decoding probability is highly concentrated below 
the diagonal around coordinates [325, 425] ms (Grayscale and Post-learning Mooney 
coordinates, respectively), indicating delayed generalization in MTL.  
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Supplementary Figure 7. Generalization in OC is higher at late than early time points. Mean 
decoding accuracy below (Late) and above (Early) the diagonal for the generalization profiles in 
OC corresponding to matrices in Figure 4a-c. a-c, For each matrix, we selected one cluster from 
each side of the diagonal in the generalization matrix and compared their mean decoding. These 
clusters included all significant time points on both sides of the diagonal and their corresponding 
symmetric points. Insets show the two clusters used to compute the distributions for late (pink) 
and early (purple) time points. The x- and y-axis in the inset match those in the generalization 
matrices in Figure 4a-c (showing only the time range 0-1s). Distributions were computed via 
resampling methods. Asterisks (*) denote significant differences (P < 0.05) between early and 
late clusters. n.s. indicates no significant difference. The vertical dashed line marks decoding 
chance. d-f, Same analyses as in a-c, but using all time points during image presentation below 
(pink) and above (purple) the diagonal, as indicated in the insets. 
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Supplementary Figure 8. Generalization in MTL is higher at late than early time points. a, 
Mean decoding accuracy below (Late) and above (Early) the diagonal for the Gray-to-Post 
generalization profile in MTL corresponding to Figure 4d. b, Same analyses as in a, but using all 
time points during image presentation below (pink) and above (purple) the diagonal, as indicated 
in the insets. Format and conventions as in Supplementary Figure 7. A comparison was not 
conducted for the Gray-to-Pre and Pre-to-Post profiles in Figure 4e,f, given the absence of 
significant generalization. 
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Supplementary Table 1 
 
Information about each of the participants in this study. 
 

Patient ID Gender Age Handedness # Sessions 
S1 male 25 right 4 
S2 female 26 right 4 
S3 male 50 right 1 
S4 male 33 right 1 
S5 female 41 right 2 
S6 female 40 right 3 
S7 male 35 right 4 
S8 female 35 left 3 
S9 male 48 right 4 
S10 male 26 right 2 
S11 male 45 left 2 
S12 male 46 right 1 
S13 female 33 right 3 
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Supplementary Table 2 
 
Number of neurons recorded in each region and in each participant. OC = occipital cortex, PHC 
= parahippocampal cortex, Hipp = hippocampus, Amyg = amygdala, Ento = Entorhinal cortex, 
MTL = medial temporal lobe. 
 

Patient ID  OC PHC MTL Total 
      Hipp. Amyg. Ento.   

S1 42 56 56 0 0 154 
S2 0 0 2 82 49 133 
S3 0 10 0 0 0 10 
S4 0 19 14 0 0 33 
S5 38 0 18 18 0 74 
S6 0 0 61 43 0 104 
S7 0 0 49 61 0 110 
S8 28 0 39 0 0 67 
S9 0 75 46 0 0 121 
S10 0 0 37 0 0 37 
S11 0 52 0 43 0 95 
S12 0 0 0 22 0 22 
S13 55 0 21 68 0 144 

      343 337 49   
Total 163 212 729 1,104 
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