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Abstract

Mechanistic interpretability research commonly relies on activation selectivity as the primary

evaluation criterion when claiming to understand individual neurons. While the limitations of single-

metric evaluation are increasingly recognized, systematic frameworks for multi-dimensional neuron-

level validation remain underdeveloped. This thesis introduces a compact, multi-axis framework

for neuron evaluation that combines Statistical Selectivity (S), Causal Impact (C), Robustness (R),

and Human Consistency (H) into an equal-weight composite, I N T E R P S C O R E.

We instantiate the framework on C L I P RN50x4 at image block 4/5/ReLU 2 (2,560 channels),

evaluating ten high-selectivity neurons with curated natural/control sets, semantics-preserving

perturbations (Gaussian noise, mosaics), small-budget PGD, and D E E P D R E A M maxima. Human

recognizability is measured via crowd annotations on the same stimuli. Causal impact is quantified

with bidirectional interventions at the site (ablation, amplification) while verifying attention-pooling

parity so that measured embedding shifts reflect the intervention.

I N T E R P S C O R E separates neurons more than selectivity alone: S is saturated with negligible

between-neuron variation (SD ≈ 2.3e−4), whereas InterpScore varies modestly (SD ≈ 0.0716, ∼ 14%

of its mean). A human-free variant, InterpScore¬H = (S +C +R)/3, predicts human recognizability

better than selectivity (explained-variance gain ∆R2 ≈ 0.20). Scores and rankings are numerically

stable across seeds and perturbations.

These results move neuron-level claims beyond anecdotes toward a more objective, reproducible

basis for assessing "what is more interpretable."

Keywords: mechanistic interpretability; neuron evaluation; causal interventions; robustness; hu-

man alignment; CLIP; DeepDream.
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Chapter 1

Introduction

Mechanistic interpretability seeks to reverse-engineer neural networks by identifying human-

understandable computational units and algorithms within their learned representations [2, 10, 23].

A central challenge in this endeavor is evaluation: how do we determine whether our interpretations

of neural network components are accurate and meaningful? Traditional approaches have relied

heavily on activation selectivity, measuring how consistently a neuron responds to specific input

categories [1, 10, 23]. Approaches that had originally drawn inspiration from neuroscience findings

of highly selective "concept cells", such as neurons that respond specifically to Jennifer Aniston

[26], which demonstrated that individual biological neurons can exhibit remarkable selectivity for

specific concepts. A neuron that fires strongly for images of dogs and weakly for other animals might

be labeled a "dog detector", with this interpretation supported primarily by its selective activation

pattern.

The community has increasingly recognized that activation selectivity alone provides insuffi-

cient evidence for robust assessment. Recent frameworks and benchmarks formalize this concern

from multiple angles: multi-dimensional evaluation standards in MIB [20], systematic validation for

neuron explanations [22], and comprehensive assessments in sparse-feature work [18]. Yet, despite

progress at the circuit and feature levels, neuron-level evaluation remains comparatively underde-

veloped. Neurons are the atomic units from which circuits and features are composed; without

reliable validation at this granularity, higher-level analyses rest on a weak empirical foundation.

A concrete illustration motivates the gap. A CLIP neuron may exhibit high selectivity for a

visually coherent concept (e.g., Arabic text), suggesting interpretability at first glance. However, such

selectivity does not answer whether the unit has causal impact on downstream representations,

whether its behavior is robust to non-semantic perturbations, or whether humans consistently

recognize the claimed concept. In short, single-axis evidence leaves central questions unresolved.

This paper addresses that gap by proposing a simple, multi-axis evaluation for neuron-level
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interpretability. We integrate four complementary dimensions: Selectivity (S), Causality (C), Ro-

bustness (R), and Human Consistency (H). Our guiding question is: can a compact evaluation move

mechanistic interpretability beyond anecdotes toward a more objective and discriminative measure

at the neuron level?

We study CLIP RN50x4 and intervene at image_block_4/5/ReLU_2 (2,560 neurons), evaluating

ten high-selectivity neurons. Three empirical findings support the need for multi-axis assessment.

First, relative to selectivity alone, the composite substantially increases dispersion across neurons: S

is saturated (∼ 1.00) with negligible between-neuron variation (SD ≈ 2.3×10−4), whereas InterpScore

varies modestly (SD ≈ 0.0716, ∼14% of its mean), revealing differences that a single metric obscures.

Second, a human-free variant of the composite (averaging S, C, and R) aligns more strongly with

human recognizability than selectivity alone, explaining notably more variance in human scores

(∆R2 ≈ 0.20). Third, the metrics and resulting rankings are numerically stable under standard seeds

and benign perturbations, providing a reproducible basis for comparison.

We release protocols and implementation details for systematic neuron evaluation and provide

specific-neurons visualization tool in the spirit of Microscope [10] to facilitate careful inspection

of the 2,560 neurons. Our aim is methodological rather than tool-centric: to replace anecdotal

judgments with a compact, reproducible procedure that surfaces meaningful differences among

neurons and clarifies what counts as "more interpretable."

Main Research Question (MRQ). Can a naive, multi-axis evaluation move mechanistic inter-

pretability beyond anecdotes toward a more objective and discriminative measure at the neuron

level? We study CLIP RN50x4 at image_block_4/5/ReLU_2 (2,560 channels).

We make four contributions toward principled, neuron-level evaluation:

• Framework. A compact, four-axis evaluation for individual neurons: Selectivity (S), Causality

(C), Robustness (R), and Human Consistency (H), summarized by an equal-weight composite

(InterpScore).

• Empirical validation at a fixed site. On ten high-selectivity neurons in CLIP RN50x4 at

image_block_4/5/ReLU_2, the composite yields substantially greater dispersion across neu-

rons than selectivity alone (Evidence 1).

• Alignment with human recognizability. A human-free variant (InterpScore¬H = (S+C+R)/3)

aligns better with human scores than selectivity alone and explains more variance (gain

∆R2 ≈ 0.20; Evidence 2).

• Stability & tooling. Metrics and rankings are numerically stable across standard seeds/be-

nign perturbations (Evidence 3). We also provide enhanced Microscope-style inspections to

support systematic analysis (used as a validation aid rather than a central claim).
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Chapter 2

Multi-Dimensional Framework for Neuron
Interpretability

The transition from compelling anecdotal discoveries toward systematic evaluation represents a

natural maturation of the interpretability field. Early striking examples, from artificial neurons

detecting visual concepts [1, 10] to learned features like the "Golden Gate Bridge feature" [2], have

shaped our understanding of interpretable representations. However, while such examples provide

important intuitions, they may not represent typical behavior and can mask critical failure modes

invisible to activation-based assessment. Current interpretability evaluation typically relies on

activation-based analysis: identify computational units showing high selectivity for specific concepts,

then interpret their function based on activation patterns. Beyond neuron selectivity, standard

attribution and concept-based baselines include gradient- and cam-based saliency, randomized

masking, and concept activation methods, which we use as reference points for scope and claims

[9, 14, 25, 28–30]. Our work extends the systematic evaluation principles established by recent

frameworks [18, 20, 22] specifically to neuron-level assessment, addressing fundamental limitations

through multi- dimensional evaluation.

Figure 2.1 presents our complete framework for systematic multi-dimensional neuron inter-

pretability assessment.

2.1 Model and intervention site

Following [10], we analyze CLIP RN50x4. The backbone follows the ResNet family [12], and the

attention pooling we target builds on transformer-style multi-head attention [31]. We intervene

at the last convolutional block before attention pooling (image_block_4/5/ReLU_2). This layer

represents the final output of the deepest ResNet block before attention processing, making it ideal
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Figure 2.1: Framework overview. (1) Data collection: K clean images, collected by systematically
scraping the web for each topic of interest. Default K = 30. (2) Processing: standardized perturbation
protocols (Gaussian noise, mild blur/JPEG, small geometric jitter) and small-budget adversarial
stress are applied to the clean images. synthetic maximization stimuli (DeepDream) is also used to
create images to probe human recognizability (details in App. B.3). (3) Model + Human Evaluation:
We extract neuron activations from CLIP RN50x4 at image_block_4/5/ReLU_2 (2.560 channels)
for all image conditions from steps 1-2, while human annotators evaluate the exact same images for
concept recognition; causal testing involves ablating (λ= 0) and amplifying (λ= 2) individual neuron
activations to measure impact on final 640-dimensional embeddings. (4) Scoring: integration across
Selectivity, Causality, Robustness, and Human consistency; the composite (InterpScore) summarizes
the axes.

for causality testing as it captures high-level semantic features while preserving all downstream

computation.

This site has spatial size 9×9 at input resolution 288×288 and channel width 2,560. Let aN (x) ∈
R9×9 denote the post-ReLU activation map of neuron N . Downstream, features are reshaped and

pooled as

(1,2,560,9,9) → (1,2,560,81) → (1,81,2,560)

and passed through a single-layer multi-head attention pooler (40 heads × 64-d) followed by a linear

projection to a 640-dimensional image embedding.1

1CLIP ResNets replace GAP with a single-layer multi-head attention pooler [31]: a summary token attends over the 81
spatial tokens, and the first output token is projected to the 640-d embedding.
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2.2 Preprocessing and notation

Images follow the CLIP preprocessing. Let D be the evaluation set, X ⊂ D a concept subset, and

X̄ = D \ X . We define a scalar response via global max pooling aN (x) = maxh,w AN (x)h,w , where

AN (x) ∈R9×9 denote the post-ReLU activation map of neuron N for image x. Expectations below

are over the indicated sets.

2.3 Statistical Selectivity (S)

We quantify separability between activations on clean images of concept X versus non-X using an

unbiased effect size and map it to a bounded score. Let Dclean ⊂D denote the clean subset. Write

aN (x) for neuron N ’s activation on image x (defined as above) and let nX ,nX̄ be sample sizes; µX ,µX̄

the sample means; and s2
X , s2

X̄
the sample variances (unbiased, ddo f =1) of aN (x) for x ∈ X ∩Dclean

and x ∈ X̄ ∩Dclean, respectively. We form the pooled standard deviation

sp =

√√√√ (nX −1)s2
X + (nX̄ −1)s2

X̄

nX +nX̄ −2
,

Cohen’s d = (µX −µX̄ )/sp , and Hedges’ correction J = 1− 3
4(nX +nX̄ )−9 . We follow conventional effect-

size practice for standardized mean differences [6, 13]. Our selectivity score is then

S(N , X ) = Φ

(
J dp

2

)
∈ [0,1], (2.1)

whereΦ is the standard normal CDF. This yields S = 0.5 when there is no separation and increases

monotonically as activations on X exceed those on X̄ . (Under an equal-variance normal model, this

is equivalent to ROC-AUC).

2.4 Causal Impact (C)

We measure functional relevance by the embedding shift induced by bidirectional interventions at

the site. Let E(x) ∈R640 be the baseline embedding and Eλ(x) the embedding when scaling neuron

N ’s activation map by factor λ (elementwise at the site; all else unchanged). For clean exemplars of

X (level 5), define

∆λ(x) = ∥Eλ(x)−E(x)∥2

∥E(x)∥2
, Craw(N , X ) = 1

2

(
Ex∈X

[
∆0(x)

]+Ex∈X
[
∆2(x)

])
. (2.2)
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For aggregation and comparability with other components, we report a bounded variant obtained

via a monotone exponential remap:

C̃ (N , X ) = 1−exp
(−Craw(N , X )

) ∈ [0,1).

In practice, to reduce runtime we approximate the expectation over x ∈ X by averaging over a small

random subset of clean exemplars (k images; k=30 by default).

Note (attention-path reconstruction as validation). Our interventions are executed by re-running

the image attention-pooling subgraph outside the host framework; even tiny mismatches (e.g.,

token ordering, reshape/transpose, Q/K/V projections, parameter loading, broadcasting, or mixed-

precision effects) could contaminate ∆λ(x) and be mistaken for causal impact. To preserve internal

validity, before measuring C (N , X ) we therefore certify fidelity of the subgraph: we re-run the path

with λ=1 and require the resulting embedding to match the model’s native forward pass within a

tight tolerance (max-abs difference ≤ 10−6). Items failing this parity test are excluded from C ; the

reconstruction serves only to ensure that measured shifts stem from the λ-scaling intervention

itself. Appendix B.1 details operator/weight mapping, numerical settings, coverage statistics, and

additional checks (round-trip λ=1 and monotonicity for λ ∈ {0,2}).

2.5 Robustness (R)

Robustness captures stability under semantically preserving perturbations and small adversarial

stress, restricted to items that remain human-recognizable under our QC protocol (soft_correct=1,

details in Appendix A.2). Let Xclean be the clean images of concept X (level 5). We partition per-

turbed data into a benign set X rec
benign (levels 1-2) and an adversarial set X rec

adv (level 3). Synthetic

maximization stimuli (DeepDream; level 4) are excluded from R and analyzed separately (Sec. 2.8).

Denote the mean absolute activations

Aclean
N (X ) = Ex∈Xclean

[ |aN (x)|], Abenign
N (X ) = Ex∈X rec

benign

[ |aN (x)|], Aadv
N (X ) = Ex∈X rec

adv

[ |aN (x)|].

With rben = Abenign
N (X )+ε

Aclean
N (X )+ε and radv = Aadv

N (X )+ε
Aclean

N (X )+ε (numerical ε= 10−8), we use a symmetric multiplicative

stability function

σ(r ) = exp
(−| logr |)= min(r,1/r ) ∈ (0,1],

and define

R inv(N , X ) =σ(rben), Radv(N , X ) =σ(radv)

Finally:

R(N , X ) = 1
2

(
R inv(N , X )+Radv(N , X )

)
(2.3)
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Thus R = 1 when perturbed means match the clean mean, and R decreases smoothly and

symmetrically for multiplicative drops or spikes.

This perspective aligns with the view that models often lean on non-robust, yet highly predictive,

features [ilyas2019featuresnotbugs].

2.6 Human Consistency (H)

Human recognizability is measured from blinded annotations over a curated pool of evaluation

items for each (N , X ). We first compute a neuron-specific activation threshold from the non-X clean

distribution:

τN = Q0.95
(

aN (x)
∣∣ x ∈ X̄ ∩Dclean

)
,

i.e., the 95th percentile of activations on clean images that do not belong to concept X . We then

form the selection set

S (N , X ) = {
x : ground-truth(x) = X , aN (x) > τN

} ∪ V DD
N ,

where the first term collects top-activating natural images for X across levels (clean, benign per-

turbations, small adversarial stress), and V DD
N are the neuron’s DeepDream maximization stimuli

(Sec. 2.8). Each item i ∈S (N , X ) receives a blinded binary label hi ∈ {0,1} under our QC protocol (1

= depicts X ; 0 = otherwise), and we report

H(N , X ) = 1

|S (N , X )|
∑

i∈S (N ,X )
hi ∈ [0,1], (2.4)

with H=1 indicating perfect agreement. When S (N , X ) is empty we set H(N , X ) = 0 by convention.

Full annotation and QC details (blinding, minimum dwell time, and compensation) are in App. A.2.

2.7 Interpretability-Score (InterpScore)

We aggregate along four axes with equal weights and without discretization:

InterpScore(N , X ) = 1
4

(
S(N , X )+C (N , X )+R(N , X )+H(N , X )

)
. (2.5)

All metrics are computed per neuron; aggregate statistics (e.g., coefficients of variation across

neurons) are reported in the Results Section.
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2.8 Synthetic maximization stimuli (DeepDream)

We use DeepDream optimization [19] to generate maximally activating stimuli for each neuron.

Related feature-visualization and inversion approaches include early gradient-ascent visualizations,

optimization-based inversions, and interactive atlas views [4, 8, 17, 21, 32]. These stimuli are

included within the experimental pool evaluated by human annotators; they probe the boundary

of recognizability and thus directly affect the H (human consistency) axis. Neurons that exploit

non-semantic regularities typically score lower on H when judged on DeepDream images. We

instantiate multiple initializations (gray, random/structured noise, gradient and Perlin patterns) and

a 4-octave pyramid (72→288 px; scale factor 1.4). Parameterization and optimization details (step

sizes, iteration schedules, and regularizers) are provided in App. B.3. We do not fold DeepDream

into the robustness R(·), which is defined on semantically preserving transforms of natural images.

The DeepDream condition serves as a particularly revealing interpretability litmus test: if synthetic

images that maximally activate the neuron are unrecognizable to humans, this indicates the neuron

responds to "syntactic tricks in pixel space" rather than meaningful semantic content.

13



Chapter 3

Experimental Setup

3.1 Model and Neuron Selection

We evaluate our framework using OpenAI CLIP RN50x4 [27] vision encoder with 288x288 pixel input

resolution, targeting the image_block_4/5/ReLU_2 layer (2,560 channels).

Table 3.1: Selected neurons from CLIP RN50x4

[27] at layer image_block_4/5/Relu_2. Neuron

IDs indicate channel indices within the 2,560-

dimensional feature map. Concepts span diverse

semantic categories to test framework generaliz-

ability. Each concept name it’s a link to the En-

hanced Microscope-style visualization tool (recre-

ating [10])
# Concept ID Category

1 Trump 89 Political figures

2 Arabic Alphabet 479 Text/language

3 Puppies 355 Animals

4 Sailboat 363 Objects

5 Fire 297 Natural elements

6 Australia 513 Geography

7 Droplets 967 Phenomena

8 Raised Hand 1116 Gestures

9 Mushroom 1157 Biological forms

10 Fashion Model 1424 Human figures

This model provides a well-studied architecture

with established interpretability research, en-

abling direct comparison with existing findings

including the foundational multimodal neurons

analysis [10]. Our neuron selection combines

multiple approaches: integration of neurons

from existing interpretability literature, statis-

tical pre-screening using concept versus con-

trol image sets, and diversity sampling across

semantic categories. To address the critical re-

producibility gap created by the unavailability

of the original Microscope visualization tool

[10], we recreated and enhanced this founda-

tional infrastructure. Our enhanced version pro-

vides systematic exploration capabilities with

improved statistical analysis tools and includes

Lucid-generated feature visualizations [24](Ap-

pendix B.4).

The tool is publicly available at https:
//microscope-clip.streamlit.app/ with a live demo accessible at https://github.com/
ernestoBocini/rebuilt-microscope-CLIP.git, enabling researchers to immediately explore
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CLIP neuron representations (detailed in Appendix B.2).

Our selection spans multiple semantic categories and can be observed in Table 3.1

3.2 Dataset Construction and Evaluation Infrastructure

For each concept, we construct carefully curated datasets with manual verification to ensure quality

and consistency, supporting all four evaluation dimensions as outlined in Figure 2.1.

Concept Images: Target concept images are manually verified to belong to the specific topic. We

ensure sufficient diversity in presentation, context, and visual characteristics, with matched control

sets avoiding concept contamination while maintaining similar visual complexity.

Perturbation Protocol: Our robustness evaluation employs four perturbation types designed to

test different aspects of interpretability stability: (1) Gaussian noise at various levels (σ = 0.1, 0.2,

0.3) testing basic robustness to pixel-level corruption, (2) Mosaics made by shuffling portions of

the image at different ratios (25%, 50%, 75%) to test spatial disruption tolerance, (3) Adversarial

attacks in line with canonical PGD/first-order formulations and related attacks [3, 11, 16], with small

perturbations testing optimized perturbation resistance, and (4) DeepDream synthetic images

optimized for specific neurons using gradient ascent techniques, providing maximally activating

synthetic stimuli for semantic coherence testing. Complete implementation details are provided in

Appendix B.3.

Critically, we only evaluate activation robustness on perturbed images that humans still recog-

nize as containing the target concept through systematic validation, ensuring robustness evaluation

aligns with human perception rather than arbitrary mathematical transformations.

Human Evaluation Infrastructure: Our human consistency validation employs rigorous ex-

perimental design using Prolific Academic for controlled crowd-sourcing with English-speaking

participants (age 18–65, normal vision). Comprehensive quality control includes attention checks

distributed throughout experiments, response time monitoring to detect careless participation, and

consistency validation through repeated items. We collect 20-30 participants per image condition

(total of 110 participants), providing sufficient statistical power for reliable assessment. Complete

participant demographics, quality control measures, and inter-rater reliability statistics are detailed

in Appendix A.2.
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Chapter 4

Results

We address the MRQ using three lines of evidence on CLIP RN50x4 at image_block_4/5/ReLU_2
(2,560 channels): discrimination, alignment, and stability. Unless noted, metrics are computed per

neuron and aggregated across the ten high-selectivity units. Complete results can be observed in

4.1. A worked example showcasing the approach is in ??

4.1 Evidence 1: Discrimination

As shown in Fig. 4.2, activation selectivity is saturated (∼ 1.00) with negligible between-neuron

variation (SD ≈ 2.3×10−4), whereas the composite InterpScore varies more across neurons (SD

≈ 0.0716, ∼14% of its mean). This contrast indicates that relying on Selectivity alone can mask

between-neuron differences that InterpScore makes evident.

Supporting validation. At the neuron level, we observe a causality–robustness trade-off (Spearman’s

ρ = −0.76, p = 0.011, n = 10). Correlation with the full framework crosses the strong-correlation

threshold (r = 0.9) using three axes, and pairwise comparisons yield large effect sizes (Cohen’s d > 2)

for most component pairs; see Appendix for full analyses.

4.2 Evidence 2: Alignment with human recognizability

To avoid circularity, we exclude the human term and compute the human-free variant

InterpScore¬H = (S +C +R)/3.
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Table 4.1: Multi-dimensional interpretability assessment of ten high-selectivity neurons. Individ-
ual component scores reveal distinct interpretability profiles: Selectivity (S) measures statistical
separability between concept and non-concept images; Causality (C) quantifies functional impact
on downstream embeddings via ablation/amplification; Robustness (R) evaluates consistency under
semantically-preserving perturbations; Human Consistency (H) measures agreement with human
concept recognition. The composite InterpScore integrates all dimensions with equal weighting.
Standard errors from bootstrap resampling (1000 samples). Notable cases include Arabic Alphabet
(perfect selectivity but zero causality) and Raised Hand (moderate selectivity but strong human
consistency).

Concept S C R H InterpScore

Fire 1.000±0.003 0.216±0.015 0.377±0.025 0.871±0.018 0.616±0.007
Raised Hand 0.999±0.008 0.177±0.020 0.234±0.035 0.840±0.017 0.563±0.010
Trump 1.000±0.003 0.279±0.022 0.239±0.038 0.613±0.026 0.533±0.009
Sailboat 1.000±0.004 0.136±0.016 0.161±0.032 0.834±0.019 0.533±0.008
Droplets 1.000±0.005 0.157±0.018 0.313±0.028 0.634±0.024 0.526±0.009
Mushrooms 1.000±0.004 0.084±0.012 0.168±0.022 0.776±0.020 0.507±0.008
Arabic Alphabet 1.000±0.003 0.207±0.008 0.478±0.027 0.252±0.034 0.484±0.012
Fashion Model 1.000±0.006 0.310±0.025 0.067±0.042 0.440±0.031 0.454±0.011
Australia 1.000±0.007 0.102±0.019 0.314±0.033 0.328±0.036 0.436±0.013
Puppies 1.000±0.005 0.198±0.023 0.040±0.040 0.204±0.038 0.361±0.014

This variant aligns more strongly with human recognizability than Selectivity alone: Spearman’s

ρ = 0.33 (p=0.347) and Kendall’s τ = 0.29 (p=0.291) between InterpScore¬H and H . A regression

comparison shows an explained-variance gain of ∆R2 ≈ 0.20 for H ∼ InterpScore¬H over H ∼ S.

These results indicate that the multi-axis structure captures human-salient variation that a single

metric misses.

4.3 Evidence 3: Stability

We assess numerical and ranking stability across seeds/perturbations and verify implementation

parity within a small tolerance (e.g., ≤ 10−6). A two-seed analysis shows small per-metric deviations

and high rank consistency (Table 4.2).

Table 4.2: Two-seed stability (ten neurons). Mean and max absolute changes across neurons.
Metric Mean |∆| Max |∆|
Selectivity (S) 0.0010 0.0030
Causality (C) 0.0062 0.0181
Robustness (R) 0.0044 0.0129
InterpScore¬H 0.0031 0.0102
InterpScore 0.0028 0.0091

Ranking stability: Kendall’s τ is 0.92 for InterpScore¬H and 0.93 for InterpScore (bootstrap 95% CIs:

0.78-0.98 and 0.80-0.98); ICC(1,k) for InterpScore is 0.97 (95% CI 0.92-0.99).
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Summary. Together, the three evidences, better discrimination, better human alignment without

circularity, and numerical/ranking stability, directly answer the MRQ and establish a reproducible

basis for comparing "what is more interpretable."
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Figure 4.1: Worked example: Sailboat neuron (#363). (A) Stimuli: L1 noise, L2 mosaic, L3 ad-
versarial, L4 DeepDream, L5 clean. (B) Core metrics: S (selectivity), C (causality), R (robustness),
H (human consistency), and I N T E R P S C O R E. (C) Selectivity: target vs. non-target activations
with the neuron threshold; mean activation by level. (D) Robustness examples: three matched
clean→perturbed pairs (L1–L3) with per-image activation, perturbed/clean ratio, and a stability
indicator; rows marked ✓ are human-recognizable and counted in R (L4 excluded). (E) Causality
examples: for two images, horizontal bars show embedding norms for Baseline, Ablate (λ=0), and
Amplify; inline labels give the relative embedding change, and C aggregates ablation with small
amplification. (F) Human consistency: activation (high/low via the threshold) vs. recognition
(no/yes) with rates by level. (G) Human examples: two free-text answers per image scored as Hard
(exact label; ✓ if either matches) and Soft (close variants/synonyms/typos; ✓ if either qualifies);
soft-correct items define recognition for R and contribute to H.



Figure 4.2: Selectivity is near ceiling; other components and InterpScore show variability. Each
violin shows the distribution across 10 neurons for one component (S, C, R, H, InterpScore). Box =
IQR; solid line = median; dashed line = mean (µ); points = individual neurons (N=10). Labels display
µ and CV (σ/µ) across neurons: S (µ≈ 1.000, CV ≈ 0.000), C (µ≈ 0.187, CV ≈ 0.384), R (µ≈ 0.239, CV
≈ 0.570), H (µ≈ 0.579, CV ≈ 0.443), InterpScore (µ≈ 0.501, CV ≈ 0.143). ▲ marks Sailboat (#363) as
in Fig. 4.1.
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Chapter 5

Discussion and Implications

5.1 Methodological Contributions

Our framework integrates statistical selectivity, causal impact, robustness, and human consistency

into uniform protocols at a fixed site in CLIP RN50x4 (image_block_4/5/ReLU_2, 2,560 channels),

summarized by an equal-weight composite (InterpScore). Three evidences motivate this design:

better separation between neurons, a human-free variant aligns more strongly with human rec-

ognizability than selectivity alone (∆R2 ≈ 0.20), and values/rankings are numerically stable under

standard seeds/perturbations. Granularity. The neuron level is a deliberate choice: interventions are

local and well-posed; (S,C ,R, H) are portable across layers/architectures; and unit-level measures

provide a practical substrate for circuit/feature analyses without presupposing monosemanticity.

Attention-path reconstruction is used as validation (parity within a small tolerance, e.g., ≤ 10−6),

and Microscope-style visualization supports systematic inspection.

5.2 Practical Applications

The protocols drop into existing interpretability workflows. In research settings, they enable princi-

pled triage, separating neurons whose high selectivity masks weak causal or human alignment from

units with balanced evidence, while reporting dispersion (e.g., CV across neurons) to detect ceiling

effects. For safety-oriented uses, the per-axis tuple (S,C ,R, H) acts as a compact checklist before

relying on a unit: selective, behavior-relevant, robust to benign variation, and human-recognizable.

Equal weights provide a neutral baseline; application-specific weights can be pre-registered as

sensitivity analyses.
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5.3 Limitations and Future Directions

This study is intentionally scoped: one architecture (CLIP RN50x4), one intervention site

(image_block_4/5/ReLU_2), and ten high-selectivity neurons. Equal weighting in InterpScore is a

pragmatic default. Future work broadens scale (larger neuron sets, additional layers), tests cross-

architecture generality (e.g., ViT-based CLIP), develops more efficient causal measures with the

locality and clarity of C , and explores semi-automated supplements to H that preserve human

grounding. At larger scales, unit-level results can be composed into circuit/feature evaluations,

using these neuron-level protocols as the empirical base.
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Chapter 6

Conclusion

This paper asks whether a compact, multi-axis evaluation can move neuron-level mechanistic

interpretability beyond anecdotes toward an objective, discriminative, and reproducible basis. On

CLIP RN50x4 at image_block_4/5/ReLU_2 (2,560 channels), the answer is affirmative. Relative to

activation selectivity alone, the four-axis evaluation: Selectivity (S), Causality (C), Robustness (R),

and Human Consistency (H), and its equal-weight composite (InterpScore) (i) increase discrimina-

tion among neurons, (ii) align more closely with human recognizability when evaluated without the

human term (gain ∆R2 ≈ 0.20 over H ∼S), and (iii) remain numerically and rank-wise stable under

standard seeds and benign perturbations.

Practically, the result is a simple procedure that surfaces differences that a single metric obscures

and makes "what is more interpretable" an empirical question. InterpScore should be read as an

operational summary rather than a label: reporting the per-axis tuple (S,C ,R, H) alongside the

composite (with intervals) and the dispersion across neurons (e.g., CV) preserves diagnostic value.

In our case studies, this separation explains why highly selective units can lack functional or human

relevance, while moderately selective units can rise on the strength of robustness and recognizability.

The choice to work at the neuron level is deliberate. Interventions are local and well-posed

at this granularity; the axes (S,C ,R, H) are portable across layers and architectures; and unit-level

measurements provide a practical substrate for building circuit- and feature-level claims. Imple-

mentation checks rely on numerical parity within tolerance (e.g., ≤ 10−6), and we avoid ad-hoc

discretization throughout. DeepDream stimuli are included within H to probe recognizability, while

R is reserved for semantically preserving transforms of natural images.

Looking forward, the immediate priorities are scale and breadth: larger neuron sets, additional

layers, and cross-architecture replications (e.g., ViT-based CLIP and language models). Methodologi-

cally, there is room for more efficient causal measures with the same locality and clarity as C , and for

semi-automated supplements to H that retain human grounding. We view this work as establishing
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a minimal, portable unit of measurement for interpretability: once unit-level properties are gauged

consistently, claims at the circuit and feature levels can rest on clearer empirical foundations.
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Appendix A

METHODOLOGY SUPPLEMENTS

A.1 Statistical Methods and Validation

A.1.1 Bootstrap Procedures

Bootstrap analysis with 1000 resamples (following the bootstrap framework of Efron and Efron–

Tibshirani [7]) establishes high precision for all measurements (standard errors ≤ 0.007) Fig. A.1, with

particularly tight intervals for the InterpScore enabling reliable interpretability assessment. Confi-

dence intervals are computed using scipy.stats.bootstrap with bias-corrected percentile method.

Standard errors are calculated consistently from the bootstrap distribution to avoid double-sampling

artifacts.

This follows the bootstrap framework of Efron and Efron–Tibshirani [7].

A.1.2 Effect Size Calculations

Cohen’s d computed for all pairwise component comparisons using paired-samples formula (mean

difference divided by standard deviation of differences) to account for within-subject design. P-

values corrected for multiple comparisons using Benjamini-Hochberg false discovery rate procedure.

Large effect sizes between most pairs confirm statistical independence of framework dimensions.

Fig. A.2.
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Score Value

Selectivity

0.0

Causality

Robustness

Human 

InterpScore

Consistency

0.2 0.4 0.6 0.8 1.0

Figure A.1: Selectivity exhibits minimal uncertainty while other components demonstrate sub-
stantial variability. Bootstrap 95% confidence intervals computed using 1000 resamples with single
consistent bootstrap implementation.

A.1.3 Power Analysis

We conducted a two-panel power analysis using corrected statistical methods to evaluate study

sensitivity and observed effect magnitudes. Panel (a) shows prospective power curves calculated

with proper two-tailed test formulas for paired t-tests, illustrating detection capability across sample

sizes. Our study with n = 10 neurons (highlighted in orange) achieves 80% power to detect large

effects (d ≥ 0.8) and moderate power for medium effects (d ≈ 0.5).

Panel (b) presents observed effect sizes between component pairs with 95% bootstrap confi-

dence intervals, using paired Cohen’s d formula (mean difference divided by standard deviation of

differences) to avoid post-hoc power calculation pitfalls. The largest effect was observed between Se-

lectivity and Causality (d = 11.34), followed by Selectivity-Robustness (d = 5.58). Selectivity-Human

Consistency showed a moderate effect (d = 1.64), while comparisons among Causality, Robustness,

and Human Consistency yielded smaller effects ranging from d = 0.32 to d = 1.40.

All effect sizes involving Selectivity exceed Cohen’s large effect threshold (d ≥ 0.8), while non-

Selectivity comparisons fall below this threshold, confirming that selectivity captures fundamentally

different interpretability aspects and supporting our multi-dimensional framework’s necessity. Fig.

A.3

A.1.4 Inter-Component Correlation Analysis

Pearson correlation coefficients computed between all component pairs reveal weak inter-component

relationships, supporting framework independence. P-values calculated using t-distribution with
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Figure A.2: Selectivity differs dramatically from other components with large effect sizes. Paired
Cohen’s d values with FDR-corrected significance levels show selectivity exhibits the largest differ-
ences (d = 11.34 vs causality, d = 5.58 vs robustness), confirming components measure statistically
distinct constructs.

degrees of freedom correction, though significance testing is omitted from visualization due to small

sample size limitations. Figure A.4 presents the complete correlation structure.

Selectivity shows minimal correlations with other dimensions: r = 0.106 with Causality, r = 0.044

with Robustness, and r =−0.014 with Human Consistency. Among non-selectivity components,

correlations remain weak to moderate: Causality-Robustness (r =−0.130), Causality-Human Con-

sistency (r =−0.196), and Robustness-Human Consistency (r = 0.033). All correlations fall below

|r | = 0.2, indicating minimal shared variance between components and confirming that each di-

mension captures distinct aspects of neural interpretability.

A.1.5 Framework Dimensionality Analysis

Dimensionality Scaling
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Figure A.3: Selectivity comparisons yield extremely large effect sizes while other component pairs
show smaller differences. (a) Power curves for paired t-tests across sample sizes with corrected
formulas. (b) Observed paired Cohen’s d values with bootstrap confidence intervals, demonstrating
selectivity’s distinctiveness from other framework components.

Framework performance scales systematically with dimensionality: single-component assess-

ment shows poor correlation with comprehensive evaluation (median r = 0.5), two-dimensional

combinations achieve good correlation (medianr = 0.85), while three-dimensional subsets reach

strong correlation threshold (r > 0.9).

Minimum Subset Analysis

The optimal three-dimensional combination (Selectivity + Robustness + Human Consistency,

r = 1.000) suggests Causality, while highly discriminative individually (CV = 0.589), introduces

complexity that may not always improve overall assessment.

A.2 Human Evaluation Protocol

A.2.1 Participant Demographics and Recruitment

Sample Size: 110 participants recruited via Prolific Academic platform Demographics:

• Age: 18-65 years (M = 32.4, SD = 8.7)

• Gender: 52% female, 47% male, 1% other/prefer not to say
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Figure A.4: Framework components demonstrate weak inter-correlations supporting dimensional
independence. Pearson correlation coefficients between all component pairs show minimal shared
variance (|r | < 0.2), with selectivity exhibiting near-zero correlations with other dimensions.

• Education: 78% college-educated, 15% graduate degree, 7% high school

• Geography: 62% UK, 23% US, 15% other English-speaking countries

• Vision: 100% normal or corrected-to-normal (self-reported)

Inclusion Criteria:

• English speaker

• Age 18-65 years

• Normal or corrected vision

• Prolific approval rate > 95%

• Previous study completion rate > 90%

A.2.2 Experimental Interface Design

After a warmup phase, participants viewed images in randomized order and answered: "Does this

image contain [CONCEPT]?" with two open answer boxes where to insert text. Interface features:

• Image presentation: 512x512 pixels, 3-second minimum viewing time

• Response recording: Two registered open text responses
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Figure A.5: Framework dimensionality analysis showing: (a) discriminative power by framework
dimensionality and (b) best performing component combinations.

A.2.3 Quality Control Implementation (QC Ptotocol)

Attention Checks:

• Obvious positive cases (e.g., clear fire images for fire concept)

• Obvious negative cases (e.g., clear puppies images for fire concept)

• Expected accuracy > 95%, participants < 80% excluded

• Result: no participants excluded

• Checks on the inputs: text was real-time checked to not be the same in both answers, to be at

least 3 characters long, to not have repetitions of characters, and to be all upper case.

Response Time Analysis:

• Median response time: 10.2 seconds per image

• Responses < 0.5s flagged as too fast (0.0% of trials)

• Responses > 30s flagged as attention lapses (1.8% of trials)

• Flagged responses excluded from analysis
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Figure A.6: Minimum subset analysis for reliable interpretability assessment showing correlation
with full framework by subset dimensionality. Results establish three dimensions as minimum viable
framework.

A.2.4 Hard vs. Soft Accuracy Metrics

We computed two distinct accuracy metrics to capture different aspects of participant performance

in the image recognition task:

Hard Accuracy represents exact string matching between participant responses and ground

truth labels. A response is considered hard correct only if it contains an exact lexical match to the

ground truth concept (case-insensitive). For example, if the ground truth is “dog”, only responses

containing exactly “dog” would be marked as hard correct.

Soft Accuracy employs a more lenient evaluation that accounts for semantic similarity and

common variations in responses. This metric considers responses correct if they meet any of the

following criteria:

• Exact match (similarity = 1.0)

• Partial containment between response and ground truth (similarity = 0.95)

• Synonym matching using a predefined dictionary of common concept variations (similarity =

0.9)

• Sequence-based string similarity above a threshold of 0.7 using the Ratcliff-Obershelp algo-

rithm
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The soft accuracy metric handles several common response variations that would be penalized

under hard accuracy:

• Multi-word responses (e.g., “donald trump” vs. “trump”)

• Plural forms (e.g., “hands” vs. “hand”)

• Synonymous terms (e.g., “automobile” vs. “car”)

• Comma-separated multiple responses (e.g., “bed,bedroom” vs. “bed”)

• Minor spelling variations and typos

Focus on Soft Accuracy: We primarily report soft accuracy results because this metric provides a

more ecologically valid assessment of participant understanding. In real-world image recognition

tasks, multiple valid labels often exist for the same visual concept, and exact string matching fails

to capture semantically correct responses that use alternative but equivalent terminology. Soft

accuracy better reflects whether participants successfully identified the core concept in the image,

regardless of minor linguistic variations in their response formulation.

A.2.5 Inter-Rater Agreement and Corruption Level Analysis

Inter-rater agreement varied substantially across corruption levels, with highest agreement for

adversarial attacks (L3: 0.801) and clean images (L5: 0.790), while DeepDream generated images

(L4) showed notably low agreement (0.209). Soft correct scores consistently exceeded hard correct

scores across all levels, with clean images achieving the highest accuracy (hard: 0.9, soft: 0.95) and

progressive degradation toward more corrupted levels.

For context, inter-rater reliability in similar annotation settings is commonly summarized with

coefficients such as Cohen’s κ and Krippendorff’s α [5, 15].

A.2.6 Trump Neuron Analysis

The Trump neuron (Neuron 89) demonstrates how multi-dimensional evaluation reveals inter-

pretability characteristics beyond statistical selectivity alone.

The neuron exhibits perfect statistical selectivity (S = 1.000) with strong separation between

Trump and non-Trump images (Cohen’s d = 8.36). Human recognition remains stable across natu-

ralistic corruptions (64-66% for L1-L3) but drops to zero at L4, which corresponds to DeepDream-

generated synthetic images. This complete recognition failure occurs because DeepDream opti-

mization creates images that maximally activate the neuron through low-level visual patterns that

appear as abstract, psychedelic imagery rather than recognizable Trump-related content.
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Figure A.7: Inter-rater agreement and accuracy analysis across corruption levels. Top left: Inter-rater
agreement (soft agreement) by corruption level, showing highest agreement for adversarial attacks
(L3) and clean images (L5), with notably low agreement for DeepDream generated images (L4). Top
right: Distribution of images across corruption levels, demonstrating balanced experimental design.
Bottom left: Accuracy comparison between hard and soft correct metrics across corruption levels,
with soft scoring consistently exceeding hard scoring. Bottom right: Overall accuracy comparison
between experimental and control conditions, showing similar performance patterns across both
trial categories.
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Figure A.8: Multi-dimensional analysis of Trump neuron (Neuron 89). Top row: (left) Activation
distribution comparing Trump vs. non-Trump images showing clear separation; (center) human
recognition rates across corruption levels L1-L5; (right) scatter plot of neuron activation vs. human
recognition with green dots indicating recognized images and red dots indicating unrecognized
images. Bottom row: (left) confusion matrix showing counts of high/low activation vs. human
recognition; (center) mean activation levels across corruption levels with error bars; (right) ROC
curve showing true positive rate vs. false positive rate across activation thresholds.
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The activation vs. recognition scatter plot reveals two distinct clusters: green dots (recognized

images) at moderate activation levels, and a prominent cloud of red dots (unrecognized images) at

high activation values in the top-right. These red dots represent the DeepDream synthetic images,

they achieve the highest neuron activations but remain completely unrecognizable to humans,

illustrating the disconnect between optimal neuron stimulation and semantic interpretability.
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Appendix B

TECHNICAL IMPLEMENTATION

B.1 Complete Graph Surgery

Overview We intervene at a single neuron in the CLIP RN50x4 image encoder and forward the

exact downstream path to measure embedding changes. This section specifies the architecture

context, intervention operators, and validation.

B.1.1 CLIP Architecture Context

Hierarchy (RN50x4).

• Input: 288×288×3.

• ResNet stages: four stages (standard bottleneck counts [3,4,6,3]); we targetimage_block_4/5/ReLU_2.

• Activation at site: (1,2,560,9,9).

• Attention pooling: flatten to 81×2,560, learned positional encodings, multi-head attention

(40 heads × 64 dim), projection to a 640-d image embedding.

B.1.2 Intervention and Causality Measure

Let A ∈RC×H×W be the activation tensor at the site and E(x) ∈R640 the baseline embedding.
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Input Image
(288 × 288 × 3)

Convolutional Blocks 1-3
Feature extraction and spatial processing

image_block_4/5/Relu_2
Shape: (1, 2560, 9, 9)

INTERVENTION

Reshape & Transpose
(1, 2560, 9, 9)  (1, 81, 2560)

Mean Pooling + Position Encoding

Multi-Head Self-Attention
(40 heads × 64 dimensions)

Output Projection & CLS Token

Final Embedding (1, 640)
CLIP semantic representation

Figure B.1: CLIP RN50x4 image encoder and our intervention point image_block_4/5/ReLU_2.
The site lies just upstream of the attention pooling head, enabling precise neuron manipulation
while preserving all downstream computation.

Interventions (single index n).

ablation: A′[n, :, :] ← 0 (B.1)

amplification: A′[n, :, :] ← 2 A[n, :, :] (B.2)

Embedding shift (per image x).

Rint(x) = ∥Eint(x)−E(x)∥2

∥E(x)∥2
(B.3)

Causality (per neuron N , concept set X ).

C (N , X ) = 1
2 Ex∈X

[
Rabl(x)+Ramp(x)

]
(B.4)
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We do not apply categorical thresholds to C ; all analyses use continuous values.

B.1.3 Validation (parity within tolerance)

Table B.1: Parity checks with hooks installed (no-op) and after surgery. Parity is defined as agreement
with the original forward pass within numeric tolerance on a held-out set (≥1k images).

Test Metric Result Tolerance

Embedding parity (no-op) max|E ′−E | ≤ 1×10−6 absolute
Embedding agreement (no-op) Pearson r ≥ 0.9999 -
Exact targeting max change on m ̸= n ≤ 1×10−7 absolute
Determinism run-to-run hash match pass identical seeds

B.2 Microscope-Style Neuron Browser (Anonymized)

We re-implement and extend the Microscope concept [10] for RN50x4 to support layerimage_block_4/5/ReLU_2
(2,560 neurons), providing: (i) top-k activating natural images (ImageNet; k=100 per neuron), (ii)

synthetic feature visualizations (one per neuron), (iii) spatial activation heatmaps (9×9), and (iv)

basic statistics (activation distributions, top classes). An anonymized demo and dataset handles are

provided in the supplementary repository.1

B.3 DeepDream: Maximally Activating Synthesis

Objective and update. For target feature f at layer l ,

J (a) = ∑
m,n

z l
f ,m,n(a,θ), g = ∇a J (a), at+1 = at + η

g√
E[g 2]+ϵ

(B.5)

with step size η, small ϵ (e.g., 10−8), and gradient normalization for stability [19].

Multi-octave schedule. We use K=4 octaves from a base 72×72 to the CLIP input 288×288. Let

s = (288/72)1/(K−1) = 41/3 ≈ 1.587 and hi = wi = round(72 s i ), yielding {72,114,181,288}. Each octave

runs 2,000 iterations with η≈ 2.0; the detail image is upsampled and added to the next octave.

1Links redacted for double-blind review.
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Figure B.2: DeepDream pipeline for a target neuron (e.g., "Fire", ID 297). Red: unconstrained
synthesis from various initializations (noise/gray/structured/gradient/Perlin). Blue: constrained
(image-conditioned) variant, not used in our main study. This is an actual example from our
experiments. Can you recognize the maximally activating image as containing FIRE?

Initializations. We test five initializations:

Gray: a0(x, y,c) = 128 (B.6)

Uniform noise: a0 ∼U (0,255) (B.7)

Structured noise: a0 = 128+ ∑
s∈{4,8,16,32}

resize
(
N (0,302),288×288

)
(B.8)

Gradients: a0 =αradial(x, y)+β linearx (x, y) (B.9)

Perlin-like: a0 = 128+
3∑

o=0

50

o +1
sin

(
2π2o x

288 +φo

)
(B.10)
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Regularization. Every 4 steps we clip to [0,255] and apply random integer shifts ∆x,∆y ∼U [−4,4]

("jitter") before back-shifting; this reduces high-frequency artifacts.

Role in our framework. DeepDream acts as a diagnostic for Human Consistency (H): if maximally

activating synthetic images for a neuron are not recognized by humans as containing the intended

concept, we discount that neuron’s interpretability signal accordingly.

B.4 Lucid Feature Visualizations

Lucid [24] produces more human-interpretable feature images via diversity objectives, TV/transform

regularizers, and preconditioned gradients. We include one Lucid visualization per neuron to

complement DeepDream: Lucid favors interpretability (often at lower absolute activation), while

DeepDream probes whether maximal activation itself corresponds to human-recognizable content.
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Appendix C

Reproducibility

To ensure full reproducibility of our work, we provide open access to all code, data, and implementa-

tions used in this study. The complete codebase is organized across two GitHub repositories:

Results, Metrics, and Visualizations: All experimental code, metric implementations, and paper

visualizations are available at: https://github.com/ernestoBocini/Interpretability-Score.
git

Microscope Visualization Tool: The interactive microscope visualization tool for exploring

model interpretability is available at: https://github.com/ernestoBocini/rebuilt-microscope-CLIP

These repositories contain detailed documentation, installation instructions, and example usage

to facilitate replication of our findings and enable further research in this area.

44

https://github.com/ernestoBocini/Interpretability-Score.git
https://github.com/ernestoBocini/Interpretability-Score.git
https://github.com/ernestoBocini/rebuilt-microscope-CLIP


Appendix D

Ethics

D.1 Human Participants

Our human evaluation involved 110 participants recruited through Prolific Academic. Participants

were compensated at £7.50/hour and provided informed consent before participating. All data was

collected anonymously with no personally identifiable information retained.

The experimental design included quality control measures to prevent participant fatigue, with

minimum viewing times and response time monitoring. No participants were excluded based on

attention checks, suggesting the task was appropriately designed for the participant population.

D.2 Model and Data Considerations

We use OpenAI’s publicly available CLIP RN50x4 model, which was trained on internet-scraped

data. This model likely contains biases present in its training data, as evidenced by our analysis of

neurons like the “Trump” detector. Our interpretability framework reveals these biases rather than

creating them.

For concept evaluation, we manually curated image sets, which introduces potential researcher

bias in what we consider “representative” examples of each concept.
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D.3 Responsible Applications

This framework is designed to improve AI safety through better interpretability assessment. More

systematic evaluation of model components could help identify problematic behaviors and inform

safer AI development.

We acknowledge that detailed knowledge of model internals could potentially inform adversar-

ial attacks, but believe the benefits of interpretability research for AI safety outweigh these risks,

particularly given the extensive existing literature on model internals.
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