README

You must agree with the terms and conditions specified in this link before downloading any material from the Kreiman lab web site. Downloading any material from the Kreiman Lab web site implies your agreement with this license.

Citation for this work

Madhavan R, Bansal AK, Madsen JR, Golby AJ, Tierney TS, Eskandar EN, Anderson WS, Kreiman G. Neural Inetractions Underlying Visuomotor Associations in the Human Brain. Cerebral Cortex, In Press.

Code

Run Figure2_example to plot an example like the one in Figure 2.

FileInfo.mat [4K]

load FileInfo.mat

BehaviorFileList	12×1	4296	cell
Blocks	12×1	3504	cell
RawDataFile	12×1	4282	cell
samplingrate	1×12	96	double
subjects	12×1	1398	cell

BehaviorFileList

List of files containing behavioral data, cell file of length 12.
There can be more than one entry per subject, when multiple sessions where ran for a given subject.
E.g. BehaviorFileList $\{5\}=\mathrm{p} 5-2011 _10 _27-18 _16 _48$. mat
which can be found under p5 folder

Blocks

Block numbers for each subject

RawDataFile

List of files containing neurophysiological data, cell file of length 12.
There can be more than one entry per subject, when multiple sessions where ran for a given subject
E.g. RawDataFile\{5\}=myst_vr_p5.mat
which can be found under p5 folder

samplingrate

Sampling rate in Hz for a given subject
Subjects
Subject folder names

Electrode parcelation files

e.g.
load p5/parcelation_p5.mat
Anatomical parcel information based on Freesurfer automatic parcelation for each subject

channels	96×1	768	double
hemisphere	1×96	768	double
orig_channels	1×96	768	double
region_codes	96×1	768	double
regions	96×1	14114	cell
talairach	96×3	2304	double
volumeind	96×3	2304	double

channels
Channel number
hemisphere
1 for right hemisphere, 2 for left hemisphere
region_codes
Parcel region number code based on the atlas of Destrieux C, Fischl B, Dale A, Halgren E. 2010. Automatic parcelation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 53:1-15.

regions

Abbreviation for each region
volume_ind
3D volume information in subjects native space for electrode location

Neurophysiological Data			
e.g.			
load p5/myst_vr_p5.mat			
correct_response	2×104	1664	double
image_category	1×104	832	double
ra_data	$104 \times 4001 \times 108$	359513856	double
subject_response	1×104	832	double
va_data	$104 \times 5001 \times 108$	449369856 double	

image_category
Image presented in each trial

```
subject_response
```

Subject responses
correct_response
Correct responses
ra_data
Data aligned to motor responses
104x4001x108

104 = number of trials
4001 = number of samples (see sampling rate to convert to seconds)
108 = number of recorded channels (note that only the channels under Electrode Locations are relevant)
va_data
Data aligned to visual onset
104x5001x108
$104=$ number of trials
5001 = number of samples (see sampling rate to convert to seconds)
108 = number of recorded channels (note that only the channels under Electrode Locations are relevant)

Behavioral data

e.g.
load p5/p5-2011_10_27-18_16_48.mat

block_struct	1×40	48576	struct
exp_params	1×1	10756	struct
image_list	1×126	17442	cell

exp_params
Set of experimental parameters. These are only useful to re-run the stimulus presentation paradigm
image_list
Name of each image. The image presented in each trial is coded in image_category, under Neurophysiology data.

```
block_struct
Information about each block. Note that not all 40 blocks are ran. In this case, only
the first }7\mathrm{ blocks were ran, as evidenced by the fact that most fields in
block_struct(8) are empty.
e.g.
block_struct(1)
n_images_in_block: 8
Number of trials in current block
presentations: [1 [ 2 2 2 2 1 1 2 1]
Group for each trial
score: 8
Score
m2sobj: 0
start_time: '18:18:02'
Block start time
reaction_times: [4.8972 2.5445 2.6455 2.1394 2.1355 2.2287 2.0533 1.9890]
Behavioral response times (seconds)
responses: [5 6 6 6 5 5 6 5]
Behavioral responses
correct: [1 1 1 1 1 1 1 1 1 1]
```

1 for correct, 0 for incorrect
pres_time: $\begin{array}{llllllllll}784.5234 & 791.9641 & 797.0389 & 802.2171 & 806.8930 & 811.5519 & 816.3112\end{array}$ $820 . \overline{9} 034$]
Stimulus onset time (secs)
off_pres_time: [$784.5355 \quad 791.9833 \quad 797.0600802 .2366806 .9123811 .5716816 .3307$ 820.9229]

Stimulus offset time (secs)
off_delay_time: $\left[\begin{array}{llllllll}786.1050 & 793.5180 & 798.5962 & 803.7728 & 808.4486 & 813.1078 & 817.8670\end{array}\right.$ 822.4592]

Delay time (secs)
cue_draw_time: $\begin{array}{llllllll}785.0538 & 792.4849 & 797.5616 & 802.7384 & 807.4139 & 812.0733 & 816.8324\end{array}$ 821.4248]

Cue onset time (secs)
cue_erase_time: $\left[\begin{array}{llllllll}785.0696 & 792.5010 & 797.5777 & 802.7541 & 807.4301 & 812.0891 & 816.8481\end{array}\right.$ 821.4405]

Cue offset time (secs)
end_delay_time: $\left[\begin{array}{llllllll}786.0698 & 793.5012 & 798.5779 & 803.7543 & 808.4303 & 813.0893 & 817.8483\end{array}\right.$ 822.4406]

End delay time (secs)
begin_feedback_time: $\begin{array}{lllllll}789.9459 & 795.0210 & 800.1992 & 804.8751 & 809.5349 & 814.2933\end{array}$ 818.8857823 .4110]

Feedback onset time (secs)
$\begin{array}{llllllll}\text { end_feedback_time: } & {\left[\begin{array}{llll}790.4638 & 795.5386 & 800.7168 & 805.3928 \\ 810.0516 & 814.8110\end{array}\right]}\end{array}$ 819.4032 823.9288]

Feedback offset time (secs)
trigger2_off_time: $\quad\left[\begin{array}{lllllll}786.1213 & 793.5345 & 798.6126 & 803.7892 & 808.4649 & 813.1242\end{array}\right.$
817.8833 822.4755]
m2sobj_location: $\left[\begin{array}{llllllll}-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}\right]$
companion_image: $\left[\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
end_time: '18:18:45'
Block end time

