1: Mol Cell. 2005 Aug 5;19(3):381-91. Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Vakoc CR, Mandat SA, Olenchock BA, Blobel GA. Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA. Methylation of histones modulates chromatin structure and function. Whereas methylation of histone H3 on lysines 4, 36, and 79 has been linked with gene activation, methylation of H3 on lysines 9 and 27 and histone H4 on lysine 20 is associated with heterochromatin and some repressed genes within euchromatin. Here, we show that H3K9 di- and trimethylation occur in the transcribed region of active genes in mammalian chromatin. This modification is dynamic, as it increases during activation of transcription and is rapidly removed upon gene repression. Heterochromatin Protein 1gamma (HP1gamma), a protein containing a chromo-domain that recognizes H3K9 methylation, is also present in the transcribed region of all active genes examined. Both the presence of HP1gamma and H3K9 methylation are dependent upon elongation by RNA polymerase II. These findings demonstrate novel roles for H3K9 methylation and HP1gamma in transcription activation. PMID: 16061184 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: Blood. 2002 Nov 15;100(10):3512-20. Epub 2002 Jul 12. GATA-2/estrogen receptor chimera regulates cytokine-dependent growth of hematopoietic cells through accumulation of p21(WAF1) and p27(Kip1) proteins. Ezoe S, Matsumura I, Nakata S, Gale K, Ishihara K, Minegishi N, Machii T, Kitamura T, Yamamoto M, Enver T, Kanakura Y. Department of Hematology/Oncology and Molecular Oncology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, Japan. GATA-2 is considered to be essential for the development, maintenance, and function of hematopoietic stem cells (HSCs). However, it was also reported that GATA-2 inhibits the growth of HSCs. To examine the role of GATA-2 in the growth of hematopoietic cells, we introduced an estradiol-inducible form of GATA-2 (GATA-2/estrogen receptor [ER]) into interleukin 3 (IL-3)-dependent cell lines, Ba/F3, 32D, and FDC-P1. Estradiol-induced GATA-2 suppressed c-myc mRNA expression and inhibited IL-3-dependent growth in these clones. As for this mechanism, GATA-2 was found to inhibit ubiquitin/proteasome-dependent degradation of p21(WAF1) and p27(Kip1) and to induce their accumulation by repressing the expression of Skp2 and Cul1, both of which are components of the ubiquitin ligase for p21(WAF1) and p27(Kip1). Overexpression of c-myc restored the expression of Skp2 and Cul1 mRNA, reduced the amounts of p21(WAF1) and p27(Kip1) proteins, and canceled GATA-2-induced growth suppression, suggesting that down-regulation of c-myc expression may be primarily responsible for GATA-2-induced growth suppression. Next, we transduced retrovirus containing GATA-2/ER into murine bone marrow mononuclear cells (MNCs) and stem/progenitor (Sca-1(+)Lin(-)) cells. GATA-2/ER suppressed cytokine-dependent growth of MNCs and Sca-1(+)Lin(-) cells by about 70%, which was also accompanied by the reduced expression of c-myc, Skp2, and Cul1 mRNA and the accumulation of p21(WAF1) and p27(Kip1) proteins. In addition, the amount of GATA-2 protein was found to decline in hematopoietic stem/progenitor cells that were promoted to enter cell cycle by the stimulation with cytokines. These results suggest that GATA-2 may regulate expression levels of p21(WAF1) and p27(Kip1), thereby contributing to the quiescence of hematopoietic stem/progenitor cells. PMID: 12393444 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 3: Blood. 2002 Mar 15;99(6):2037-44. Gene expression profiling identifies significant differences between the molecular phenotypes of bone marrow-derived and circulating human CD34+ hematopoietic stem cells. Steidl U, Kronenwett R, Rohr UP, Fenk R, Kliszewski S, Maercker C, Neubert P, Aivado M, Koch J, Modlich O, Bojar H, Gattermann N, Haas R. Department of Hematology, Oncology and Clinical Immunology, University of Dusseldorf, Moorenstrasse 5, D-40225 Dusseldorf, Germany. usteidl@usteidl.de CD34+ hematopoietic stem cells are used clinically to support cytotoxic therapy, and recent studies raised hope that they could even serve as a cellular source for nonhematopoietic tissue engineering. Here, we examined in 18 volunteers the gene expressions of 1185 genes in highly enriched bone marrow CD34+ (BM-CD34+) or granulocyte-colony-stimulating factor-mobilized peripheral blood CD34+ (PB-CD34+) cells by means of cDNA array technology to identify molecular causes underlying the functional differences between circulating and sedentary hematopoietic stem and progenitor cells. In total, 65 genes were significantly differentially expressed. Greater cell cycle and DNA synthesis activity of BM-CD34+ than PB-CD34+ cells were reflected by the 2- to 5-fold higher expression of 9 genes involved in cell cycle progression, 11 genes regulating DNA synthesis, and cell cycle-initiating transcription factor E2F-1. Conversely, 9 other transcription factors, including the differentiation blocking GATA2 and N-myc, were expressed 2 to 3 times higher in PB-CD34+ cells than in BM-CD34+ cells. Expression of 5 apoptosis driving genes was also 2 to 3 times greater in PB-CD34+ cells, reflecting a higher apoptotic activity. In summary, our study provides a gene expression profile of primary human CD34+ hematopoietic cells of the blood and marrow. Our data molecularly confirm and explain the finding that CD34+ cells residing in the bone marrow cycle more rapidly, whereas circulating CD34+ cells consist of a higher number of quiescent stem and progenitor cells. Moreover, our data provide novel molecular insight into stem cell physiology. PMID: 11877277 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 4: EMBO J. 1996 Jan 15;15(2):319-33. GATA transcription factors associate with a novel class of nuclear bodies in erythroblasts and megakaryocytes. Elefanty AG, Antoniou M, Custodio N, Carmo-Fonseca M, Grosveld FG. National Institute for Medical Research, UK. The nuclear distribution of GATA transcription factors in murine haemopoietic cells was examined by indirect immunofluorescence. Specific bright foci of GATA-1 fluorescence were observed in erythroleukaemia cells and primary murine erythroblasts and megakaryocytes, in addition to diffuse nucleoplasmic localization. These foci, which were preferentially found adjacent to nucleoli or at the nuclear periphery, did not represent sites of active transcription or binding of GATA-1 to consensus sites in the beta-globin loci. Immunoelectron microscopy demonstrated the presence of intensely labelled structures likely to represent the GATA-1 foci seen by immunofluorescence. The GATA-1 nuclear bodies differed from previously described nuclear structures and there was no co-localization with nuclear antigens involved in RNA processing or other ubiquitous (Spl, c-Jun and TBP) or haemopoietic (NF-E2) transcription factors. Interestingly, GATA-2 and GATA-3 proteins also localized to the same nuclear bodies in cell lines co-expressing GATA-1 and -2 or GATA-1 and -3 gene products. This pattern of distribution is, thus far, unique to the GATA transcription factors and suggests a protein-protein interaction with other components of the nuclear bodies via the GATA zinc finger domain. PMID: 8617207 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 5: Proc Natl Acad Sci U S A. 1995 May 9;92(10):4601-5. Pluripotent hematopoietic stem cells contain high levels of mRNA for c-kit, GATA-2, p45 NF-E2, and c-myb and low levels or no mRNA for c-fms and the receptors for granulocyte colony-stimulating factor and interleukins 5 and 7. Orlic D, Anderson S, Biesecker LG, Sorrentino BP, Bodine DM. Hematopoiesis Section, National Center for Human Genome Research, National Institutes of Health, Bethesda, MD 20892, USA. Pluripotent hematopoietic stem cells (PHSCs) were highly enriched from mouse bone marrow by counterflow centrifugal elutriation, lineage subtraction, and fluorescence-activated cell sorting based on high c-kit receptor expression (c-kitBR). We used reverse transcriptase polymerase chain reaction to assay the c-kitBR subset and the subsets expressing low (c-kitDULL) and no (c-kitNEG) c-kit receptor for expression of mRNA encoding hematopoietic growth factor receptors and transcription factors. The c-kitBR cells had approximately 3.5-fold more c-kit mRNA than unfractionated bone marrow cells. The c-kitDULL cells had 47-58% of the c-kit mRNA found in c-kitBR cells and the c-kitNEG cells had 4-9% of the c-kit mRNA present in c-kitBR cells. By comparing mRNA levels in c-kitBR cells (enriched for PHSCs) with those of unfractionated bone marrow, we demonstrated that c-kitBR cells contained low or undetectable levels of mRNA for c-fms, granulocyte colony-stimulating factor receptor, interleukin 5 receptor (IL-5R), and IL-7R. These same cells had moderate levels of mRNA for erythropoietin receptor, IL-3R subunits IL-3R alpha (SUT-1), AIC-2A, and AIC-2B, IL-6R and its partner gp-130, and the transcription factor GATA-1 and high levels of mRNA for transcription factors GATA-2, p45 NF-E2, and c-myb. We conclude from these findings that PHSCs are programmed to interact with stem cell factor, IL-3, and IL-6 but not with granulocyte or macrophage colony-stimulating factor. These findings also indicate that GATA-2, p45 NF-E2, and c-myb activities may be involved in PHSC maintenance or proliferation. PMID: 7538677 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 6: Bone. 1995 May;16(5):587-93. Characterization of the 5'-flanking region of the human tartrate-resistant acid phosphatase (TRAP) gene. Reddy SV, Kuzhandaivelu N, Acosta LG, Roodman GD. Department of Medicine/Hematology, Audie Murphy Veterans Administration Hospital, University of Texas Health Science Center, San Antonio 78284, USA. Tartrate-resistant acid phosphatase (TRAP) is expressed at high levels in osteoclasts and may play an important role in the bone resorptive process. However, factors regulating human TRAP gene expression have not been clearly defined. Therefore, we isolated a genomic clone (CL-9) for TRAP containing a 14-kb insert. A restriction map was generated for this insert, and a 2.6-kb ApaI fragment containing the 5'-flanking region was subcloned. Sequence analysis of this fragment revealed the presence of candidate transcription factor-binding sequences for H-APF-1, SP1, GATA2, and the c-Myc proto-oncogene. PCR analysis of RNA isolated from human osteoclastomas and pagetic bone revealed a 276-bp intron at -1 bp to -276 bp relative to the ATG and a transcript originating from this intron. Rapid amplification of the 5' end of the human TRAP mRNA by PCR indicated the presence of a 93-bp untranslated region 5' from the intron. Promoter activity was detected in the DNA fragment from +1 bp to -1903 bp relative to the ATG initiation codon, which drove the transient expression of a luciferase reporter gene when transfected into HRE H9 rabbit endometrial cells. Comparison of the human TRAP 5'-flanking region with mouse TRAP and uteroferrin revealed 41% and 47% homology, respectively. This suggests that regulation of human TRAP gene expression may differ from that for the murine TRAP gene. PMID: 7654474 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------