1: FEBS J. 2005 Mar;272(5):1265-77. Identification and characterization of four novel peptide motifs that recognize distinct regions of the transcription factor CP2. Kang HC, Chung BM, Chae JH, Yang SI, Kim CG, Kim CG. Department of Life Science, Hanyang University, Korea. Although ubiquitously expressed, the transcriptional factor CP2 also exhibits some tissue- or stage-specific activation toward certain genes such as globin in red blood cells and interleukin-4 in T helper cells. Because this specificity may be achieved by interaction with other proteins, we screened a peptide display library and identified four consensus motifs in numerous CP2-binding peptides: HXPR, PHL, ASR and PXHXH. Protein-database searching revealed that RE-1 silencing factor (REST), Yin-Yang1 (YY1) and five other proteins have one or two of these CP2-binding motifs. Glutathione S-transferase pull-down and coimmunoprecipitation assays showed that two HXPR motif-containing proteins REST and YY1 indeed were able to bind CP2. Importantly, this binding to CP2 was almost abolished when a double amino acid substitution was made on the HXPR sequence of REST and YY1 proteins. The suppressing effect of YY1 on CP2's transcriptional activity was lost by this point mutation on the HXPR sequence of YY1 and reduced by an HXPR-containing peptide, further supporting the interaction between CP2 and YY1 via the HXPR sequence. Mapping the sites on CP2 for interaction with the four distinct CP2-binding motifs revealed at least three different regions on CP2. This suggests that CP2 recognizes several distinct binding motifs by virtue of employing different regions, thus being able to interact with and regulate many cellular partners. PMID: 15720400 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 2: J Biomed Sci. 1995 Aug;2(3):203-226. Multiple Tandemly Repeated Binding Sites for the YY1 Repressor and Transcription Factors AP-1 and SP-1 Are Clustered within Intron-1 of the Gene Encoding the IE110 Transactivator of Herpes simplex Virus Type 1. Gu W, Huang Q, Hayward GS. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA. Expression of the IE110 (ICP0) transactivator protein of HSV appears to be critical for reactivation from the latent state and occurs at immediate-early times during the lytic cycle under the control of an upstream divergent enhancer-promoter region that contains multiple Oct and Sp-1 binding sites overlapping with VP16 response elements. Surprisingly, the large 800-bp first intron of the HSV-1 IE110 gene also proved to have a complex repetitive organization encompassing multiple transcription factor binding sites within four distinct domains. DNaseI footprinting studies revealed that 13 of 17 copies of a 15-bp repeated element represented high-affinity binding sites for the cellular YY1 repressor protein. Between 4 and 7 of these sites are direct tandem repeats and the rest are interpersed with three repeated AT-rich motifs and a dyad symmetry region containing two strong AP-1 binding sites and an adjacent SP-1 binding site on each arm. Several of the YY1 sites also bound weakly to SRF. The intron also contains four clustered purine/pyrimidine tracts of between 16 and 23 bp long. Both the AP-1/AP-2/SP-1 dyad protein binding region and, to a lesser extent, the YY1 tandem-repeat cluster conferred responsiveness to TPA when placed upstream of a heterologous promoter in transient expression assays. The functional significance of the HSV-1 IE110 intron region is unknown as yet, but the novel arrangement of tandemly repeated YY1 sites has the potential to produce structural bending and transcriptional attenuation effects. Interestingly, few of these transcription factor binding motifs are conserved in the equivalent IE110 intron of HSV-2, and the domain appears to represent a unique alternative control region that is specific for HSV-1. Copyright 1995 S. Karger AG, Basel PMID: 11725057 [PubMed - as supplied by publisher] --------------------------------------------------------------- 3: Biol Chem. 2001 Jun;382(6):891-902. Biological activity of mammalian transcriptional repressors. Thiel G, Lietz M, Bach K, Guethlein L, Cibelli G. Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical School, Homburg, Germany. Research on the regulation of transcription in mammals has focused in recent years mainly on the mechanism of transcriptional activation. However, transcriptional repression mediated by repressor proteins is a common regulatory mechanism in mammals and might play an important role in many biological processes. To understand the molecular mechanism of transcriptional repression, the activity of eight mammalian repressors or repressor domains was investigated using a set of model promoters in combination with two different transcriptional detection methods. The repressors studied were: REST, the thyroid hormone receptors alpha and beta, the zinc finger protein NK10 containing a 'kruppel-associated box' (KRAB), repressor domains derived from the proteins Egr-1, Oct2A and Dr1 and the repressor/activator protein YY1. Here we show that the repressor domains of REST, Egr-1, the thyroid hormone receptors alpha< and beta and NK10 were transferable to a heterologous DNA-binding domain and repressed transcription from proximal and distal positions. Moreover, these repressor domains also blocked the activity of a strong viral enhancer in a 'remote position'. Thus, these domains are 'general' transcriptional repressor domains. The 'kruppel-associated box' was the most powerful repressor domain tested. In contrast, the repressor domains derived from Oct2A and Dr1 were inactive when fused to a heterologous DNA-binding domain. The repressor domain of YY1 exhibited transcriptional repression activity only in one of the transcriptional assay systems. The recruitment of histone deacetylases to the proximity of the basal transcriptional apparatus was recently discussed as a mechanism for some mammalian transcriptional repressor proteins. Here we show here that histone deacetylase 2, targeted to the reporter gene via DNA-protein interaction, functions as a transcriptional repressor protein regardless of the location of its binding site within the transcription unit. PMID: 11501753 [PubMed - indexed for MEDLINE] --------------------------------------------------------------- 4: Prog Nucleic Acid Res Mol Biol. 1998;61:309-44. Structural organization and transcription regulation of nuclear genes encoding the mammalian cytochrome c oxidase complex. Lenka N, Vijayasarathy C, Mullick J, Avadhani NG. Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104, USA. Cytochrome c Oxidase (COX) is the terminal component of the bacterial as well as the mitochondrial respiratory chain complex that catalyzes the conversion of redox energy to ATP. In eukaryotes, the oligomeric enzyme is bound to mitochondrial innermembrane with subunits ranging from 7 to 13. Thus, its biosynthesis involves a coordinate interplay between nuclear and mitochondrial genomes. The largest subunits, I, II, and III, which represent the catalytic core of the enzyme, are encoded by the mitochondrial DNA and are synthesized within the mitochondria. The rest of the smaller subunits implicated in the regulatory function are encoded on the nuclear DNA and imported into mitochondria following their synthesis in the cytosol. Some of the nuclear coded subunits are expressed in tissue and developmental specific isologs. The ubiquitous subunits IV, Va, Vb, VIb, VIc, VIIb, VIIc, and VIII (L) are detected in all the tissues, although the mRNA levels for the individual subunits vary in different tissues. The tissue specific isologs VIa (H), VIIa (H), and VIII (H) are exclusive to heart and skeletal muscle. cDNA sequence analysis of nuclear coded subunits reveals 60 to 90% conservation among species both at the amino acid and nucleotide level, with the exception of subunit VIII, which exhibits 40 to 80% interspecies homology. Functional genes for COX subunits IV, Vb, VIa 'L' & 'H', VIIa 'L' & 'H', VIIc and VIII (H) from different mammalian species and their 5' flanking putative promoter regions have been sequenced and extensively characterized. The size of the genes range from 2 to 10 kb in length. Although the number of introns and exons are identical between different species for a given gene, the size varies across the species. A majority of COX genes investigated, with the exception of muscle-specific COXVIII(H) gene, lack the canonical 'TATAA' sequence and contain GC-rich sequences at the immediate upstream region of transcription start site(s). In this respect, the promoter structure of COX genes resemble those of many house-keeping genes. The ubiquitous COX genes show extensive 5' heterogeneity with multiple transcription initiation sites that bind to both general as well as specialized transcription factors such as YY1 and GABP (NRF2/ets). The transcription activity of the promoter in most of the ubiquitous genes is regulated by factors binding to the 5' upstream Sp1, NRF1, GABP (NRF2), and YY1 sites. Additionally, the murine COXVb promoter contains a negative regulatory region that encompasses the binding motifs with partial or full consensus to YY1, GTG, CArG, and ets. Interestingly, the muscle-specific COX genes contain a number of striated muscle-specific regulatory motifs such as E box, CArG, and MEF2 at the proximal promoter regions. While the regulation of COXVIa (H) gene involves factors binding to both MEF2 and E box in a skeletal muscle-specific fashion, the COXVIII (H) gene is regulated by factors binding to two tandomly duplicated E boxes in both skeletal and cardiac myocytes. The cardiac-specific factor has been suggested to be a novel bHLH protein. Mammalian COX genes provide a valuable system to study mechanisms of coordinated regulation of nuclear and mitochondrial genes. The presence of conserved sequence motifs common to several of the nuclear genes, which encode mitochondrial proteins, suggest a possible regulatory function by common physiological factors like heme/O2/carbon source. Thus, a well-orchestrated regulatory control and cross talks between the nuclear and mitochondrial genomes in response to changes in the mitochondrial metabolic conditions are key factors in the overall regulation of mitochondrial biogenesis. Publication Types: Review PMID: 9752724 [PubMed - indexed for MEDLINE] ---------------------------------------------------------------