Visual Population Codes -- edited by Nikolaus Kriegeskorte and Gabriel Kreiman
Chapter 18. Introduction to Statistical Learning and Pattern Classification (Jed Singer and Gabriel Kreiman)
We provide a non-exhaustive list of links that may help the user interested in implementing and/or using some of the ideas in this chapter.
If you have relevant material that should be added to this list, or to report broken links, please email gabriel.kreiman at tch.harvard.edu
http://numerical.recipes | Numerical Recipes (The Art of Scientific Computing) |
http://cbcl.mit.edu/software-datasets/index.html | Center for Biological and Computational Learning at MIT |
http://www.support-vector-machines.org/ | Literature and links to SVM software |
http://klab.tch.harvard.edu/code/code.html | Kreiman lab code repository |
http://sccn.ucsd.edu/eeglab/ | EEGLAB: MATLAB toolbox for ICA and other analyses on multichannel data |
http://afni.nimh.nih.gov/pub../pub/dist/doc/program_help/3dsvm.html | AFNI 3dsvm |
http://code.google.com/p/princeton-mvpa-toolbox/ | Princeton MVPA toolbox |
http://www.pymvpa.org | Python MVPA toolbox |
http://www.csie.ntu.edu.tw/~cjlin/libsvm | LIBSVM toolbox |
Stefano Panzeri's toolbox |
|
http://www.readout.info | Ethan Meyers' toolboxes |
https://www.caam.rice.edu/~cox/booksite/ | Fabrizio Gabbiani's spike train analysis techniques |
http://www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html | SVMhmm |